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We describe a positive energy theorem for Einstein gravity coupled to scalar fields with first-
derivative interactions, so-called P (X,φ) theories. We offer two independent derivations of this
result. The first method introduces an auxiliary field to map the theory to a Lagrangian describing
two canonical scalar fields, where one can apply a positive energy result of Boucher and Townsend.
The second method works directly at the P (X,φ) level and uses spinorial arguments introduced by
Witten. The latter approach follows that of recent work by Nozawa and Shiromizu [41], but the end
result is considerably less restrictive. We point to the technical step where our derivation deviates
from theirs, which substantially expands the class of Lagrangians encompassed by the theorem. One
of the more interesting implications of our analysis is to show it is possible to have positive energy in
cases where dispersion relations following from locality and S-Matrix analyticity are violated. This
indicates that these two properties are logically distinct, i.e., it is possible to have positive energy
even when the S-matrix is non-analytic, and vice-versa.

In recent years there has been much interest in deriva-
tively coupled scalar theories, particularly in cosmology,
but also in other areas of high-energy physics and con-
densed matter. The novelty of these theories is that, in
certain cases, they can have large classical non-linearities
while remaining radiatively stable, allowing for a range
of interesting phenomena. For example, ghost condensa-
tion [1] and galileons [2] possess time-dependent solutions
that can violate the Null Energy Condition (NEC) [3–7]
and yield novel cosmologies [8–13]. These examples are
free of ghost or gradient instabilities, but may have other
unwelcome features, such as superluminality or conflict
with black hole thermodynamics [14], casting doubt on
whether they admit a local ultraviolet (UV) comple-
tion [15].

It is natural to wonder if there are any statements one
can make about the viability of these theories in the pres-
ence of gravity. One desirable property is that the vac-
uum be classically stable. This will be the case if the
theory admits a positive energy theorem for asymptot-
ically flat solutions, i.e., that the ADM mass is always
non-negative and is zero for Minkowski space only.1 It
was originally shown [16] that Einstein gravity plus mat-
ter has positive energy if the matter obeys the dominant
energy condition (DEC).2 This proof was later simplified
using a spinor technique due to Witten [17–19]. (These
arguments were originally developed for asymptotically
flat geometries, but can be extended to include asymp-

1 For the ADM mass to be well-defined, we focus on flat (or AdS)
asymptotics, where φ → const. at spatial infinity. This imme-
diately rules out time-dependent asymptotics, φ → φ(t), which
may be more realistic for cosmology.

2 The DEC states that: i) for any time-like u, Tµνu
µuν ≥ 0;

and ii) for any future-pointing and causal u, −T
µ
ν uν is also

future-pointing and causal. Roughly, these correspond respec-
tively to the statements that the energy density is positive, and
the energy-momentum flow is subluminal.

totically anti-de Sitter3 spacetimes [20–23].) The result
was extended by Boucher and Townsend, who showed
that demanding that the matter satisfy the DEC is not
necessary to ensure positive energy [26, 27]. See also [28].
For a nonlinear σ-model with N scalars coupled to Ein-
stein gravity,

L = −1

2
fIJ(φ)∂µφ

I∂µφJ − V (φI) , (1)

where fIJ is positive-definite, positivity is guaranteed for
asymptotically Minkowski/AdS solutions where φI → φ̄I

at infinity so long as V (φI) is derivable from a “superpo-
tential” W (φI) obeying the equation:4

V (φI) = 8f IJW,φIW,φJ − 12W 2 , (2)

assuming that V (φI) admits a minimum with V (φ̄I) ≤ 0.
In this note, we further extend this result and derive a

positive energy theorem for scalar theories of the form

L = P (X,φ) , (3)

by similarly constraining the functional form that
P (X,φ) can take. Here X is the canonical kinetic term:
X = − 1

2 (∂φ)
2. (We use the mostly-plus sign conven-

tion.) This class of theories has a long history, especially
in cosmology. They can be used for inflation [29–31],
dark energy [32, 33], bouncing cosmologies [8, 9, 11], and
display screening around heavy sources [34–39]. We are
therefore motivated to ask: in what situations can it be

3 These results do not generalize straightforwardly to asymptoti-
cally de Sitter spaces because of the lack of a time-like Killing
vector. For a construction and analysis of a somewhat similar
quantity on dS space, based upon a conformal Killing vector,
see [24, 25].

4 In fact, V (φI) must only satisfy the weaker inequality V (φI ) ≥
8fIJW,φIW,φJ − 12W 2.
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shown that the energy of isolated gravitating systems is
positive in theories of this type? Specific forms of P for
which the energy can be shown to be positive in this set-
ting are then somewhat better motivated to consider in
other arenas, for example, cosmology.
Another motivation for this work is to disentangle the

various criteria typically imposed upon theories. It is
clearly desirable for a theory to have positive energy—an
unbounded Hamiltonian leads to ghost instabilities upon
quantization of the theory. Other oft-imposed criteria are
that a theory not admit superluminal propagation or that
the S-Matrix of the theory defined on Minkowski space
be analytic, which leads to various dispersion relations
obeyed by scattering amplitudes. Although violation of
these last two criteria is less obviously bad, it is still
somewhat undesirable. It is known that some P (X,φ)
theories can violate one or both of these; therefore, we
are compelled to see whether violation of any of these
criteria necessarily implies negative energy, for example.
The result we establish is the following: consider

Einstein gravity coupled minimally to a derivatively-
interacting scalar field theory with a Lagrangian of the
form (3) and zero cosmological constant.5 For solutions
where the metric is asymptotically flat (resp. AdS) and
the scalar field goes to a constant6 φ → φ̄ at infinity
such that P (X̄, φ̄) = 0 (resp. P (X̄, φ̄) = const. < 0), the
system has positive ADM energy so long as we can find
two functions W(φ) and G(X,φ) such that P satisfies the
following equation

P −XP,X + 8
W2

,φ

P,X
+ G2

,X − 12W2 = 0 . (4)

We establish this positive energy result in two different
ways. First, at the classical level we map (3) to an equiv-
alent two-derivative theory via an auxiliary field, follow-
ing [40]. Turning on a small kinetic term for this second
field, the action takes the form (1). We can then apply
the result (2), which is translated to a statement about
P (X,φ) upon solving for the auxiliary field.
Second, we will reproduce this result directly at the

P (X,φ) level using Witten’s spinor arguments. This ap-
proach was taken in [41], although we will see that their
result was too restrictive; ultimately the models they con-
sider can only violate the DEC by utilizing a pure poten-
tial for the scalar, making them morally equivalent to
the σ-model example. Violation of the DEC through the
kinetic part of the action is one of the main reasons for
considering P (X,φ) models, so it is worth asking whether
the class of models for which we can prove positive en-
ergy can be expanded. We will show that relaxing a small

5 The generalization to negative cosmological constant is straight-
forward.

6 In order for this asymptotic boundary condition on the field
to be well-defined, it is necessary for the function P to satisfy
P,φ (X̄, φ̄) = 0.

technical assumption in their argument allows for greater
flexibility in choosing the functional form of P (X,φ).
This broader assortment of P (X,φ) theories consistent

with positive energy allows for interesting phenomena.
In particular, consider P (X) = X + αX2, arguably the
simplest P (X,φ) example. With α > 0, this theory obeys
the DEC and hence has positive energy. Even with α < 0,
however, we will show that the theory allows positive
energy, as long as we restrict to the region P,X > 0.
This is remarkable since this theory with α < 0 both
exhibits a screening mechanism and violates some of the
dispersion relations following from S-matrix analyticity
requirements of a local theory [15].

Two-Field Description: It is possible to map a P (X,φ)
theory to a 2-derivative action by introducing an auxil-
iary field χ [40] so that the Lagrangian takes the form

L = −1

2
P,χ(∂φ)

2 − χP,χ + P , (5)

where P = P (χ, φ). Indeed, the equation of motion for
χ is P,χχ(X − χ) = 0, which sets χ = X , as long as
P,χχ 6= 0. Substituting χ = X in (5) gives L = P (X,φ),
establishing the classical equivalence of the two descrip-
tions. To put it in the form (1), we simply turn on a
small kinetic term for χ:

L = −1

2
P,χ(∂φ)

2 − 1

2
Z2(∂χ)2 − χP,χ + P . (6)

At this level, this is just a technical trick — at the end
we will take Z → 0. Upon making the identifications

fχχ = Z2 ; fφφ = P,χ ; V (χ, φ) = χP,χ − P , (7)

this is of form (1). Note fIJ must be positive-definite,
imposing P,χ > 0. After solving for χ, this translates to
P,X > 0, which is equivalent to the Null Energy Condi-
tion,7 and represents a minimal restriction on the theory.
Violating this constraint necessarily implies that the per-
turbations in the φ field are either ghostlike or possess a
gradient instability [7, 39]. In some cases this constraint
will restrict the range of X , but this is acceptable be-
cause it is a Lorentz-invariant restriction on the space of
allowed solutions. The condition P,X > 0 is required for
the validity of the single-field EFT which is partially UV
completed by the two-field system (6) [40].
Substituting (7), the condition (2) yields

χP,χ − P = 8
W 2

,φ

P,χ
+ 8

W 2
,χ

Z2
− 12W 2 . (8)

To have a smooth Z → 0 limit, the superpotential must
take the form W (χ, φ) = W(φ) + Z

2
√
2
G(χ, φ) + O(Z2) ,

7 The stress tensor for P (X,φ) is Tµν = P,X∂µφ∂νφ + gµνP .
Contracting with a null vector nµ, the NEC boils down to
0 ≤ Tµνn

µnν = P,X(nµ∂µφ)2, which requires P,X > 0.
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where the factor of 2
√
2 is introduced to simplify later

expressions. Substituting this into (8) and taking χ →
X , the positive energy condition becomes

P −XP,X + 8
W2

,φ

P,X
+ G2

,X − 12W2 = 0 . (9)

This is our main result. It is the analogue of (2) for
theories of the P (φ,X) type. Positivity of the energy re-
quires the existence of two functions, W(φ) and G(φ,X),
related to P (φ,X) through (9). Asymptotically, we as-
sume X → 0 and φ → φ̄ such that P,φ(φ̄) = 0. The
asymptotic geometry can be either flat (if P (X̄, φ̄) = 0)
or AdS (if P (X̄, φ̄) < 0).
The proof generalizes to N scalar fields with

P (XIJ , φK), where following [41] we have defined the
tensor XIJ = − 1

2∂µφ
I∂µφJ . This generalization is par-

ticularly interesting because the EFT of fluids [42] is a
theory of this type. We introduce a matrix of scalar fields
χIJ , and the generalization of (6) becomes

L = −1

2
PMN∂µφM∂νφ

N − 1

2
Z2PKMPLN∂µχ

KL∂νχ
MN

+ P − χMNPMN , (10)

where PIJ ≡ ∂P/∂χIJ is positive definite and invertible.
Again, solving for χ and setting Z → 0 gives XIJ =
χIJ . Following the same steps as before, we find that
the superpotential must take the form W = W(φI) +
Z

2
√
2
G(φI , χMN ) +O(Z2) . Writing the inverse of PIJ as

P IJ , we arrive at the positivity condition

P − XMNPMN + 8PMNW,φMW,φN

+ PKMPLNGKLGMN − 12W2 = 0 . (11)

Direct derivation: We now re-derive the positive en-
ergy condition (9) directly at the level of P (X,φ). This
method generally follows the presentation of Witten’s
proof of the positive energy theorem in [41], but with
a crucial difference, which we will point out below.
The starting point is the Nester 2-form [17, 19]:

Nµν = −i
(

ǭγµνρ∇̂ρǫ− ∇̂ρǫγ
µνρǫ

)

. (12)

where we have defined the super-covariant derivative

∇̂µǫ = (∇µ +Aµ) ǫ . (13)

Some words on notation: ǫ is a commuting Dirac
spinor [27], with conjugate ǭ = iǫ†γ0; the Dirac matrices
obey the Clifford algebra {γµ, γν} = 2gµν , and we have

defined the anti-symmetric product γµνρ ≡ γ[µγνγρ].
The virtue of Nµν is that its integral is simply related

to the energy of a gravitating system [17, 19, 27]

E =

∫

∂Σ

dΣµνN
µν =

∫

Σ

dΣν∇µN
µν , (14)

where Σ is an arbitrary space-like surface, with dΣν

denoting the normal-pointing volume form. In order

for (14) to be the energy, it is necessary that the space-
time admit an asymptotically time-like Killing vector,
which along with our boundary conditions on the scalar
field restricts us to asymptotically Minkowski or Anti-de
Sitter spacetimes. The divergence of Nµν is given by [41]

∇νN
µν = 2i∇̂νǫγ

µνρ∇̂ρǫ−
T µ

ν

M2
Pl

iǭγνǫ− iǭγµνρFνρǫ ,

(15)
where Fνρ = ∇νAρ − ∇ρAν + [Aν ,Aρ] is the curvature
of the connection Aµ. The stress tensor for (3) is

Tµν = P,X∂µφ∂νφ+ Pgµν . (16)

The term 2i∇̂νǫγ
µνρ∇̂ρǫ, gives a positive contribu-

tion to the energy, after imposing the Witten condition
γi∇̂iǫ = 0 [17]. The other two terms are not manifestly
positive. To proceed, we follow [41] and make the ansatz

Aµ = W(φ)γµ , (17)

for some W(φ). The last term in (15) becomes

−iǭγµνρFνρǫ = −4iǭγµνǫW,φ∂νφ+ 12iǭγµǫW2 . (18)

Our goal is to write this as a sum of squares of spinors,
plus a remainder piece. To do this, we define

δλ1 =
1√
2

(

√

P,Xγµ∂µφ− 4
W,φ
√

P,X

)

ǫ ;

δλ2 = G,Xǫ , (19)

so that

− iǭγµνρFνρǫ = i

2
∑

i=1

δλiγ
µδλi + iǭγνǫP,X∂µφ∂νφ

+ iǭγµǫ

(

XP,X − 8
W2

,φ

P,X
− G2

,X + 12W2

)

. (20)

This is the key difference from the derivation in [41]. In
that calculation, the authors only used one δλ spinor
field, which led to a strongly restricted class of solutions
whereX could only appear in the Lagrangian underneath
a square root. Instead we expressed −iǭγµνρFνρǫ as the
sum of two squares of spinors. The second spinor in-
troduces a new function G = G(X,φ), which allows us
to derive a more general positivity constraint than [41],
leading to Lagrangians that may contain arbitrary pow-
ers of X as long as the positivity constraint is satisfied.
Combining (15), (16) and (20), we obtain

∇νN
µν = 2i∇̂νǫγ

µνρ∇̂ρǫ + i

2
∑

i=1

δλiγ
µδλi

+ iǭγµǫ

(

XP,X − P − 8
W2

,φ

P,X
− G,2X +12W2

)

. (21)

The first line is positive-definite, whereas the second line
is not. To ensure positivity of E, it is sufficient to set the



4

second line to zero. This yields (9), which is precisely the
energy condition obtained from the 2-field approach.
An alternative route to (9) is to not introduce G,X

through (19), but demand that the second line of (21)
(with G,X = 0) be positive definite. This yields the
inequality XP,X − P − 8W2

,φ/P,X + 12W2 ≥ 0. Since
the left-hand side is positive-definite, we can write it as
the square of some function. Calling this function G,X

yields (9).

The mass vanishes for ∇̂µǫ = δλa = 0, which implies
Minkowski or AdS space-time [27]. Having derived this
constraint on the functional form of P , we now turn to
solving this equation in a few situations of interest.

Pure P (X): One simple but nontrivial case to consider is
P = P (X), i.e., a field with purely derivative couplings
and no potential. We simply assume that W ≡ W0 is
constant, and take G = G(X). In this case, the positive
energy condition (9) reduces to an ordinary differential
equation for G, which can be integrated:

G(X) =

∫

dX
(

XP,X − P + 12W2
0

)1/2
. (22)

In order for this integral to be real-valued, we must have
XP,X −P ≥ −12W2

0 . Note that this condition is weaker
than the dominant energy condition: XP,X − P ≥ 0,
indicating that we have actually gained some freedom
with respect to the standard positive energy theorem.
As a simple example, consider the function

P (X) = X − βX2 ; β ≥ 0 . (23)

This theory violates the DEC for all X : XP,X − P =
−βX2 < 0. Recall that our derivation requires P,X ≥ 0,

so we must restrict ourselves to the range |X | ≤ 1/
√
2β.

In this case, (22) can be integrated, ensuring the exis-
tence of a suitable superpotential, and guaranteeing that
the theory has positive energy in the allowed X range.
This theory with “wrong-sign” X2 term is well-known

to violate the standard dispersion relations following
from local S-matrix theory [15], at least at tree level.
Nevertheless, we have shown that the theory does allow
positive energy, at least over the range of X where the
NEC is satisfied, indicating that positive energy and S-
matrix analyticity are independent criteria to place on a
given EFT. This may seem paradoxical from the perspec-
tive of the 2-field action discussed earlier; after all, (6)
describes two healthy scalars with some potential, and
therefore should have an analytic S-matrix. The reso-
lution is that the vacuum state X = 0 or, equivalently,
χ = 0, is tachyonic in the two-field language, hence its
S-matrix is ill-defined.

Separable P (X,φ): A slightly more complicated case is
where P is a separable function:

P (X,φ) = K(φ)P̃ (X)− V (φ) , (24)

with K(φ) ≥ 0 without loss of generality. This form has
been widely-studied in the context of k-essence [29, 32].

It will prove convenient to redefine the arbitary func-
tion G(X,φ) via

G2
,X = H(X,φ) + 8

W2
,φ

K(φ)

(

1− 1

P̃,X

)

. (25)

Inserting this into (9), we find that P must satisfy

P̃ −XP̃,X +
H(X,φ)

K(φ)
=

1

K(φ)

(

12W2− 8
W ,2φ
K

+V (φ)

)

.

For this to be separable, H must factorize as H(X,φ) =
K(φ)H(X). The above then implies two equations

H(X) = XP̃,X − P̃ (X)− E ;

V (φ) = 8
W ,2φ
K(φ)

− 12W2 + EK(φ) . (26)

We must ensure that through all these redefinitions we
maintain G,2X ≥ 0. Combining (25)–(26), we find

XP̃,X − P̃ (X) ≥ E − 8
W2

,φ

K2(φ)

(

1− 1

P̃,X

)

. (27)

This allows for DEC-violation through the kinetic part
of the action whenever the right-hand side is negative.
A few limiting cases of these results:

• If P̃ = X , corresponding to the two-derivative La-
grangian L = K(φ)X−V (φ), we can set E = 0 and
G = 0. The second of (26) reduces to the standard
result (2) for a single scalar field

V (φ) = 8
W ,2φ
K(φ)

− 12W2 . (28)

• For the pure P (X) case, corresponding to K(φ) =
1 and V (φ) = 0, the second of (26) allows us to
choose W = W0 = constant, with E = 12W2

0 . The
first of (26), combined with (25), then implies

G2
,X = H(X) = XP,X − P + 12W2

0 , (29)

whose integral reproduces (22).

Conclusions: We have derived, following two different
methods, an extension of the positive energy theorem
of General Relativity to the class of P (X,φ) scalar field
theories coupled to gravity. The first method we used
is a new technique we have introduced, inspired by [40],
and may greatly simplify positivity calculations for more
complicated models in the future. We found that as long
as it is possible to write P in terms of two arbitrary
superpotential-like functions, positive energy is guaran-
teed. This derivation generalizes the result of [26, 27]
for two-derivative scalar theories with arbitrary poten-
tial, and reduces to the known condition as a particular
case. This result allows for more general P than the re-
cent result of [41], and we highlighted the technical step
where our derivation deviates from theirs.
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By examining a few special classes of P we showed that
in the P (X) context it is possible to have positive energy
while violating the DEC. The derivation does however
require that the NEC to be satisfied. More interestingly,
it is possible to have positive energy in cases where the S-
matrix fails to satisfy the usual analyticity requirements
for a local theory and where tree-level superluminality
appears. At the very least, this logically disentangles
these constraints which are often placed upon low-energy
EFTs.
For future work, it will be interesting to investigate

BPS solutions admitted by the class of P (X) Lagrangians

with positive energy. It will also be interesting to extend
our results to more general derivative interactions, such
as galileons or massive gravity [43].
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