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Lensing peaks have been proposed as a useful statistic, containing cosmological information from
non-Gaussianities that is inaccessible from traditional two-point statistics such as the power spec-
trum or two-point correlation functions. Here we examine constraints on cosmological parameters
from weak lensing peak counts, using the publicly available data from the 154 deg2 CFHTLenS
survey. We utilize a new suite of ray-tracing N-body simulations on a grid of 91 cosmological mod-
els, covering broad ranges of the three parameters Ωm, σ8, and w, and replicating the galaxy sky
positions, redshifts, and shape noise in the CFHTLenS observations. We then build an emulator
that interpolates the power spectrum and the peak counts to an accuracy of ≤ 5%, and compute the
likelihood in the three-dimensional parameter space (Ωm, σ8, w) from both observables. We find
that constraints from peak counts are comparable to those from the power spectrum, and somewhat
tighter when different smoothing scales are combined. Neither observable can constrain w without
external data. When the power spectrum and peak counts are combined, the area of the error “ba-
nana” in the (Ωm, σ8) plane reduces by a factor of ≈ two, compared to using the power spectrum
alone. For a flat Λ cold dark matter model, combining both statistics, we obtain the constraint
σ8(Ωm/0.27)0.63 = 0.85+0.03

−0.03.

PACS numbers: 98.80.-k, 95.36.+x, 95.30.Sf, 98.62.Sb

I. INTRODUCTION

Weak gravitational lensing (WL) is one of the most
promising techniques to probe dark energy (DE) with
improved precision in the future (see recent reviews by
[1–5]). By statistically measuring the distortions in the
shapes of background galaxies, the matter density fluc-
tuations at different redshifts can be mapped, yielding
constraints on the parameters of the background cosmo-
logical model. Pioneering WL surveys, such as the Cos-
mic Evolution Survey (COSMOS, [6]) and the Canada-
France-Hawaii Telescope Lensing Survey (CFHTLenS,
[7, 8]) have recently successfully demonstrated the utility
of this technique, yielding constraints on the matter den-
sity Ωm and fluctuation amplitude σ8 comparable with
other existing methods, even with relatively small sky
coverage (∼ 1 and 154 deg2, respectively).

In this paper, we use the publicly available CFHTLenS
data on ≈ 4.2 million galaxies, combined with a suite
of ray-tracing simulations in 91 different cosmological
models, to constrain the cosmological parameters, Ωm,
σ8, and the DE equation of state w. Traditionally,
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WL data is analyzed using the two-point correlation
function (2PCF), or its Fourier-space counterpart, the
power spectrum. However, these statistics can not fully
characterize the weak lensing shear field on small ( <∼
arcmin) angular scales, where it is sensitive to mat-
ter density fluctuations in the non-linear regime, and
is strongly non-Gaussian. Various non-Gaussian statis-
tics (e.g. higher moments [9, 11, 15, 16, 18, 21], three-
point functions [17, 26], bispectra [19, 20, 22, 24], peak
counts [14, 23, 25, 27, 28], or Minkowski function-
als [29, 55]) have been proposed in the past, and shown
to improve cosmological constraints from WL surveys.

In this work, we focus on peak statistics, which de-
scribe the distribution of local maxima in a convergence
map, as a function of peak height. It is a particularly
simple statistic, forecasted to yield a factor of ∼ two im-
provement on cosmological parameters when combined
with two-point statistics by several recent studies [30–
34], and also found to be unusually robust to systematic
errors from baryonic effects [34]. In a companion pa-
per (Petri et al. in prep) we examine constraints from
Minkowski functionals and higher moments of the WL
convergence field.

A handful of works have recently begun to examine
non-Gaussian features in the CFHTLenS data. Three-
point statistics have been measured in both CFHTLenS
[35] and earlier in COSMOS [36] and found to lead to
modest (up to ≈ 10%) improvements on the combina-
tion σ8Ωαm with α ≈ 0.3 − 0.5. Ref. [37] measured
Minkowski functionals in CFHTLenS and showed that
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they can break degeneracies among cosmological parame-
ters, improving constraints on Ωm and σ8. Finally, higher
moments [38] and peak counts [39] have both been mea-
sured in CFHTLenS , although cosmological constraints
have not yet been derived from them.

The distinguishing feature of the present work is that
we compute peak count statistics, including their depen-
dence on cosmology and their variance, from simulations
in a large number of cosmological models (91 in total).
add Fan+2010 reference Simulating multiple cosmologi-
cal models is necessary because analytical predictions of
peak counts for non-Gaussian fields are still in early de-
velopment (for example, Ref.[40]). simulating multiple
cosmological models is necessary. Furthermore, a large
number ( >∼ hundreds) of realizations per model is neces-
sary to measure the covariance of the peak counts, and
to compute accurate confidence limits on cosmological
parameters. Because of computational limitations, most
works on non-Gaussian WL statistics to date have sam-
pled only a few points in the multi-dimensional cosmolog-
ical parameter space, and assumed a linear dependence
on cosmological parameters to compute observables in
other cosmologies (effectively implementing a numerical
version of a Fisher matrix) or else relied on fitting for-
mulae calibrated with a handful of simulations. The
only exception we are aware of is Ref. [30], who studied
peak counts in simulations on a two-dimensional Ωm, σ8
grid, and whose results already indicate that the Ωm and
σ8 dependence is non-linear, and the Fisher approach is
therefore highly inaccurate.

Recently, a series of papers dubbed “the Coyote Uni-
verse” [41–44] have built an emulator, based on a large
number of simulations, to address analogous issues for the
matter power spectrum. Using 37 cosmological models,
these studies have shown that the matter power spec-
trum can be interpolated and computed to 1% accuracy
out to k ∼ 1 Mpc−1 for models in-between the simulated
points in parameter space. We have built an emulator
following a similar approach, but describing WL observ-
ables, and tailored specifically for the CFHTLenS fields.
Unlike in a general–purpose emulator, galaxy properties
(e.g. redshift distribution, position, and noise) are not
freely adjustable parameters, but rather fixed and built
into our simulations from the outset, adapted directly
from the CFHTLenS measurements.

The paper is structured as follows. We first describe
CFHTLenS data processing and convergence map con-
struction in § II, and our ray-tracing simulations and
numerical details in § III. We present the results of our
analysis in § IV, and we offer our conclusions in § V.

II. CFHTLENS DATA PROCESSING

The 154 deg2 CFHTLenS data cover four individual
patches on the sky, with an area of 64, 23, 44 and
23 deg2 for field W1, W2, W3 and W4, respectively. The
CFHTLenS data analysis roughly consists of: (1) cre-

ation of the galaxy catalogue using SExtractor [45]; (2)
the photometric redshift estimation with a Bayesian pho-
tometric redshift code [46] ; (3) galaxy shape measure-
ment with lensfit [47, 48]; and finally (4) cosmological
analysis with 2PCF [8]. A summary of the data analysis
process is listed in Appendix C of Ref. [45]. We refer the
readers to the CFHTLenS papers mentioned above for
more technical details.

We apply the following cuts to galaxies: mask ≤ 1 (see
Table B2 in Ref. [45] for the meaning of mask values),
redshift 0.2 < z < 1.3, fitclass = 0 (requiring the ob-
ject to be a galaxy), and weight W > 0 (with larger W
indicating smaller shear measurement uncertainty). Ap-
plying these cuts leaves us 4.2 million galaxies, 124.7 deg2

sky, and average number density ngal ≈ 9.3 arcmin−2.

A. Map Projection and Smoothing

Because the CFHTLenS fields are irregularly shaped,
and because we ray-trace to the actual observed galaxy
positions, we first divide them into 13 squares (subfields)
to match the square shape and ≈12 deg2 size of our sim-
ulated maps. Fig. 1 shows the convergence maps for the
CFHTLenS fields, as well as the divisions into subfields.
To maximize the data usage, three subfields are each
composed of two physically separated sky patches (the
ones with rectangular shape in the figure).

Galaxies in each subfield are then placed on a 512×512
pixel grid using the flat sky (Gnomonic) projection [49],

x =
cosφ sin(λ− λ0)

cos η
, (1)

y =
cosφ0 sinφ− sinφ0 cosφ cos(λ− λ0)

cos η
(2)

where (x, y) is the galaxy position in radians on the grid
map, (λ, φ) the position in (RA, Dec), (λ0, φ0) the cen-
ter of the subfield, and η the angular distance from the
center,

cos η = sinφ0 sinφ+ cosφ0 cosφ cos(λ− λ0). (3)

In order to reduce the noise and to perform a Fourier
transform, we use a Gaussian window function to smooth
the grid map,

e(θ0) =

∫
d2θW (|θ − θ0|)W(θ)

[
eobs(θ)− c(θ)

]∫
d2θW (|θ − θ0|)W(θ)[1 +m(θ)]

(4)

W (θ) =
1

2πθ2G
exp(− θ2

2θ2G
), (5)

where e(θ0) is the smoothed complex ellipticity e =
e1 + ie2 at the pixel θ0. W (θ) is the Gaussian smoothing
window with scale θG, which we choose to be 0.5, 1.0,
1.8, 3.5, 5.3, and 8.9 arcmin. W is the lensfit weight
for each galaxy. c and m are additive and multiplicative
corrections, which we include following Refs. [47, 48],

eobs = (1 +m)etrue + c. (6)
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FIG. 1. Convergence maps for the four CFHTLenS fields. They are divided into 13 subfields of 12 deg2 in size to match our
simulation configuration. Scattered white dots are masks. White lines mark the edges of our simulated maps. Three subfields
are collages of the six rectangular patches in W1,W2,W4. Patches in black and white are not used in our simulation.

The additive correction c is consistent with 0 for e1,
and < 0.05 for e2, and m is a function of signal-to-noise
(νSN) and galaxy size (r),

m(νSN, r) =
β

log10(νSN)
exp(−αrνSN), (7)

with α = 0.057 and β = −0.37. This multiplicative cor-
rection for each galaxy (denominator of eq. 4) is a fit
to the ensemble average over galaxies within the win-
dow function, because the result can be unstable on a
galaxy–by–galaxy basis when (1+m)→ 0. We tested the
impact of the m calibration following § 8.5 of Ref. [48].
We sampled 100 sets of random (α, β) values from their
probability distribution provided in Ref. [48], and com-
puted the variance of the power spectrum and the peak
counts among these 100 samples. Similar to the results

of the analysis in Ref. [48] for the 2PCF, we found that
this calibration impacts the power spectrum and the peak
counts at the <∼10−3 level, negligible comparing to the
variance between random realizations of the underlying
lensing maps.

B. Convergence Map Construction and Masking

The convergence (κ) and the complex shear (γ = γ1 +
iγ2) are obtained from derivatives of the lensing potential
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(ψ). They are defined as

κ(θ) =
1

2
∇2ψ(θ), (8)

γ1(θ) =
1

2
(ψ,11−ψ,22 ), (9)

γ2(θ) = ψ,12 , (10)

where indices separated by a comma denote partial
derivatives with respect to two orthogonal components
θ1 and θ2 of θ. We can reconstruct the convergence map
from shear measurements [50] using,

κ̂(`) =

(
`21 − `22
`21 + `22

)
γ̂1(`) + 2

(
`1`2
`21 + `22

)
γ̂2(`) (11)

where κ̂, γ̂ are the convergence and the shear in Fourier
space, and ` is the wave vector with components `1, `2.
Note that ellipticity is used as a measure of the shear,
using the weak lensing approximation (〈e〉 = γ; see be-
low).

The data contain unusable regions (due to bright stars
and bad pixels). These regions and sky patches with low
galaxy number density can induce large errors and noise
(e.g. [51–53]). Hence we mask them out (shown as the
scattered white dots in Fig. 1). By masking out low den-
sity regions, we assume there is no correlation between
the lensing signal and the galaxy number density, i.e.
neglecting the magnification bias. Ref. [54] found that
the magnification bias has negligible impact on cosmo-
logical parameters for surveys with < 1000 deg2 cover-
age. To generate masks, we first create grid maps of the
same size and resolution as the convergence maps, but
with each pixel containing the number of galaxies (ngal)
falling within that pixel. We then smooth this galaxy sur-
face density map with the same Gaussian window func-
tion as before (Eq. 5). Finally, we remove regions where
ngal < 5 arcmin−2 (see Ref. [37]). In order to perform a
Fourier transform on the resulting maps, we set all pixels
within the masked regions to zero. This can introduce
noise at small scales, and we limit our final analysis to
scales ` < 7, 000. We also apply the same procedure on
the simulated maps.

C. Power Spectrum and Peak Counts

The power spectrum is the Fourier counterpart of the
two-point correlation function. We first Fourier trans-
form the convergence map (with 0.5 arcmin smoothing
scale), and then average over all spherical harmonics
(` = |`|) to obtain the power spectrum, with 40 equally
spaced log bins in the range 370 < ` < 25, 000.

Peak counting is done by scanning through the pixels
on the convergence map, and identifying local maxima
(pixels with a higher value of κ than its surrounding 8
pixels). We then record the number of peaks as a function
of their central κ value. In our analysis, we use peaks with
−0.04 < κ < 0.12 and test various smoothing scales.

The final power spectrum is averaged over the 13 sub-
fields, weighted by the number of galaxies in each sub-
field. The final peak counts is the sum over 13 subfields.

III. THE EMULATOR

The construction of the emulator consists of three
steps. First, we sample 91 points using the latin hyper-
cube method in the three-dimensional (3D) parameter
space within the broad ranges 0 < Ωm < 1, −3 < w < 0,
and 0.1 < σ8 < 1.5. For each sampled point, we
run an N-body simulation and perform ray-tracing to
create shear maps that are directly comparable to the
CFHTLenS data. Second, we create convergence maps,
measure the power spectra and peak counts, and interpo-
late between the 91 simulated grid points to make predic-
tions for arbitrary cosmological models within the sim-
ulated range. Finally, we compute the parameter like-
lihood in the 3D space (Ωm, w, σ8) to find the best fit
values and marginalized confidence contours, using the
CFHTLenS observations.

A. N-body simulation and ray-tracing

We first pick 91 sampling points that are spread out in
the 3D space as evenly as possible, but not overlap when
projected on 2D or 1D space. To do this, we use the latin
hypercube sampling method following Ref. [42]. A list of
parameters residing on a diagonal line is first generated,
and then randomly shuffled on each dimension. For a
random pair of points and a random parameter, we swap
their values. The last step was repeated until we reached
convergence in average distance between the points (105

iterations). The resulting parameter values are listed in
Table I and shown visually in Figure 2.

We then run one N-body simulation at each sam-
pling point, using a modified version of the Gadget-2
code1. Except for the values of the three cosmological
parameters, the parameters and setup of these N-body
simulations are the same as used in our earlier work
[27, 29, 31, 34, 54–56]. We refer readers to these papers
for more detailed information. The simulations have a
box size of 240h−1 comoving Mpc, containing 5123 dark
matter particles. This corresponds to a mass resolution of
7.4× 109h−1M�. We set the Hubble constant h = 0.72,
baryon density Ωbh

2 = 0.0227, and the spectral index
ns = 0.96. We compute the initial (linear) total mat-
ter power spectrum with the Einstein-Boltzmann code
CAMB2 [57] at z = 0 and scale it back to initial redshift
z = 100. The power spectrum is then fed into N-GenIC,
the initial condition generator associated with Gadget-2.

1 http://www.mpa-garching.mpg.de/gadget/
2 http://camb.info/
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Snapshot cubes are recorded at redshifts corresponding
to every ∼ 80 Mpc (comoving).

To create mock shear maps, we next perform ray-
tracing. We divide each 3D box into three parallel pieces
and project each slice onto a 2D plane perpendicular to
the observer’s line of sight, using the triangular shaped
cloud scheme [58]. We then convert the surface density to
the gravitational potential at each plane using Poisson’s
equation. At each position of the 4.2 million observed
CFHTLenS galaxies, we follow a light ray from z = 0,
traveling backward through the projection planes to the
redshift of the galaxy, zgal. For simplicity, we chose zgal
to be the peak of the photometric redshift probability
distribution function (PDF). Using the most probable
redshift, instead of the full PDF, can potentially induce
biases as the former does not follow the stacked poste-
rior probabilities when fainter galaxies are included (see
Fig. 10 in Ref. [46]). We test this effect by ray-tracing
to redshifts randomly drawn from the PDF of individual
galaxies for one cosmology, and found the deviation of
cosmological parameters , add below line in the full like-
lihood analysis to be negligible. Ref. [37] also found the
bias caused by using the most probable photometric red-
shift to be small (∆w0 ≈ 0.1), but important for future,
larger surveys.

The deflection angle, convergence, and shear are calcu-
lated at each plane for each light ray. Between the planes,
the light rays travel in straight lines. Finally, for each cos-
mological model, we create 1,000 realizations (including
κ and γ for each galaxy) by randomly rotating/shifting
the simulation data cubes.

In total, we created 1,183,000 mock catalogues (91
models × 13 subfields per model × 1,000 realizations per
subfield).

B. Convergence Maps

Next, we process the simulation catalogues, mimicking
as closely as possible the procedures applied to the real
CFHTLenS data. The transformation from intrinsic to
observed galaxy ellipticity is [59],

e =


eint+g

1+g∗eint
|g| ≤ 1

1+ge∗
int

e∗
int+g∗ |g| > 1

(12)

g =
γ

1− κ
, (13)

where eint is the galaxy’s intrinsic ellipticity. For each
simulated galaxy, we assign an intrinsic ellipticity by ro-
tating the observed ellipticity for that galaxy by a ran-
dom angle on the sky, while conserving its magnitude
|e|. g = g1 + ig2 is the reduced shear, and asterisk de-
notes complex conjugation. To be consistent with the
CFHTLenS analysis, we adopt the weak lensing limit
(|γ| � 1, κ � 1), hence g ≈ γ, e ≈ eint + γ. We esti-
mate the bias on cosmological parameters to be < 50%

Ωm w σ8

1 0.624 -2.757 0.327
2 0.849 -0.183 0.821
3 0.136 -2.484 1.034
4 0.295 -1.878 0.1
5 0.418 -1.758 0.383
6 0.615 -1.668 0.185
7 0.558 -2.577 1.146
8 0.915 -2.544 1.175
9 0.7 -0.273 0.283
10 0.446 -1.212 1.486
11 0.991 -1.908 1.02
12 0.155 -0.393 0.652
13 0.145 -2.211 1.303
14 0.981 -1.242 1.048
15 0.409 -2.94 0.737
16 0.436 -0.06 0.878
17 0.183 -0.909 0.269
18 0.502 -1.152 1.189
19 0.38 -2.424 0.199
20 0.887 -0.363 0.439
21 0.276 -0.849 1.429
22 0.718 -1.728 1.472
23 0.755 -0.456 1.359
24 0.831 -0.759 0.213
25 0.455 -2.637 1.373
26 0.671 -2.364 0.793
27 0.765 -2.091 1.076
28 0.493 -0.243 0.297
29 0.483 -1.515 0.68
30 0.474 -1.302 0.114
31 0.84 -2.274 1.387
32 0.963 -2.151 0.51
33 0.258 -1.395 0.241
34 0.972 -0.666 0.694
35 0.943 -2.394 0.835
36 0.643 -2.454 1.444
37 0.821 -2.88 0.863
38 0.775 -1.122 1.132
39 0.54 -0.03 1.161
40 0.352 -0.576 1.09
41 0.333 -0.213 0.552
42 0.897 -0.999 0.468
43 0.221 -1.485 0.666
44 0.953 -1.545 0.355
45 0.315 -2.241 0.638

46 0.361 -0.606 0.171
47 0.389 -0.939 0.454
48 0.634 -1.575 0.976
49 0.305 -0.879 0.765
50 0.211 -0.333 0.341
51 0.812 -1.788 0.722
52 0.661 -0.486 0.892
53 0.681 -2.97 0.61
54 0.746 -0.09 1.118
55 0.464 -2.121 0.906
56 0.568 -0.516 1.331
57 0.737 -2.847 1.203
58 0.427 -2.91 0.411
59 0.249 -2.727 0.369
60 0.652 -1.029 1.458
61 0.794 -1.365 0.156
62 0.925 -0.636 1.259
63 0.164 -2.181 0.313
64 0.267 -2.667 1.317
65 0.192 -1.605 1.401
66 0.324 -2.001 1.217
67 0.577 -3.0 0.948
68 0.596 -0.696 0.496
69 0.728 -0.12 0.596
70 0.173 -0.423 1.231
71 0.803 -2.607 0.255
72 0.53 0.0 0.624
73 0.69 -1.332 0.482
74 0.549 -1.818 1.287
75 0.239 -1.848 0.962
76 0.906 -1.698 1.273
77 0.512 -0.819 0.849
78 0.399 -1.938 1.5
79 0.37 -0.303 1.345
80 0.869 -2.031 0.227
81 0.709 -2.061 0.425
82 0.286 -1.272 1.104
83 0.784 -1.062 0.779
84 0.342 -2.817 1.062
85 1.0 -1.425 0.708
86 0.878 -2.697 0.524
87 0.606 -0.789 0.142
88 0.521 -2.334 0.538
89 0.587 -2.304 0.128
90 0.201 -2.787 0.807
91 0.859 -1.182 1.415

TABLE I. Cosmological parameters used in our simulations.
The universe is assumed to be spatially flat (ΩΛ + Ωm = 1),
with the Hubble constant h = 0.72, baryon density Ωbh

2 =
0.0227 and spectral index ns = 0.96.

of the one σ error for σ8, and < 30% for Ωm, using re-
sults from Ref. [60] for a CFHTLenS-like survey (with
ngal = 9.3 arcmin−2 and sky coverage fsky = 0.03). We
also add multiplicative noise by replacing γ → γ(1 +m).
As with CFHTLenS data, we continue with smoothing
(eq. 4), convergence map construction (Eq. 11), masking
(§ II B), and computing the power spectrum and peak
counts (§ II C).
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FIG. 2. Visual representation of the cosmological parameters
in the 91 models used in our simulations, and listed in Table I.

C. Interpolation

We test two methods to interpolate from the 91 mea-
sured power spectra and peak counts to other cosmologi-
cial models: (1) multi-dimensional Radial Basis Function
(RBF) and (2) Gaussian Process (GP). RBF uses the av-
erage power spectrum or the peak counts (over 1,000 re-
alizations) at each sampled point. The interpolated value
is the weighted average of all sampling points, and the
weight is a function of the distance from the interpola-
tion point. We choose the function to be “multiquadric”
(
√

(pi/ε)2 + 1, where pi = |pi − p0| is the distance in
parameter space, and ε is a constant chosen to be the
average distance between sampling points), as it gives us
the best results among other commonly used functions3.
RBF interpolation is computed using scipy4. The GP
method is a technique to interpolate smooth functions
on an irregular grid, minimizing artifacts due to cluster-
ing of sampled points in parameter space. GP utilizes not
only the mean value at each point, but also the standard

3 For example, “inverse”: 1/
√

(p/ε)2 + 1, “Gaus-
sian”: exp [−(p/ε)2], “linear”: p, “cubic”: p3, and “quintic”: p5.

4 http://www.scipy.org

deviation among the simulated realizations. We compute
GP interpolation using the scikit-learn package5.

Though GP uses more information than RBF, we do
not find a significant difference between the two algo-
rithms. We test the validity of both interpolators as fol-
lows. First, we choose one model as the test point, and
use the remaining 90 models to construct the interpola-
tor. We then compare the prediction at the test point to
the actual power spectrum and peak counts. This is re-
peated 91 times for all models. For both power spectrum
and peak counts, using either RBF or GP, we are able
to predict at ∼ 1% level for the power spectrum (with
only one case that is over 5%) and at ∼ 5% level for peak
counts (with few cases that are slightly larger than 5%
for high κ peaks). Most our predictions are well within
the error bars (i.e. the variance between realizations).
The interpolation performance decreases slightly at the
edges of the model parameter space. Fig. 3 shows a typi-
cal example of the interpolated power spectrum and peak
counts, compared against the actual values. In our final
analysis, we use RBF for faster computation.

D. Parameter Estimation

With only three free parameters, we can directly com-
pute the probability distribution on a 3D parameter grid.
According to Bayes’ theorem, the posterior probability
of a set of parameters p = [Ωm, w, σ8] for given data
d = [d1, d2, ...dn] is,

P (p|d) =
P (p)P (d|p)

P (d)
, (14)

where P (p) is the prior, P (d|p) the likelihood function of
measuring d given p, and P (d) the normalization. Un-
der the assumption that the observables are Gaussian
distributed, the likelihood function is,

P (d|p) =
1

(2π)n/2|C|1/2

× exp
[
−0.5(d− µ)C−1(d− µ)

]
, (15)

where µ is the prediction as described in § III C, n is
the number of free parameters (= 3 in this work), and
C the (constant) covariance matrix. We compute C us-
ing a fiducial model [Ωm, w, σ8] = [0.305,−0.879, 0.765],
assuming dC/dp is small. The fiducial model is selected
from the 91 models so that its parameters are close to
the WMAP7 values [61]. We use a flat prior for Ωm in
[0, 0.8], w in [−2.1,−0.3], and σ8 in [0.1, 1.4]. We obtain
the normalization P (d) by setting the sum of the proba-
bility of all grid points to unity. Within the range of our
flat priors, we compute P (p|d) for 1003 equally spaced
grid points. To obtain 2D error contours, we marginalize
over the third parameter. The results are presented in
§ IV below.

5 http://scikit-learn.org
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FIG. 3. Examples of the interpolated power spectrum (up-
per panel) with 0.5 arcmin smoothing and peak counts (lower
panel) with 1.0 arcmin smoothing and 25 κ bins, using the
two different interpolation techniques Radial Basis Function
(RBF) and Gaussian Process (GP). The solid curves show
the true quantities for the given cosmological model (#49 in
Table I), and the dashed and dotted curves show the interpo-
lations based on the other 90 models.

IV. RESULTS

A. Power Spectrum

We first compare our power spectrum model with the-
oretical predictions. Fig. 4 shows the interpolated power
for ` = 3, 000 (7.2 arcmin) as a function of Ωm, w, and
σ8. We only show the change for one particular `, be-
cause the change is similar for all scales within our model
(370 < ` < 25, 000). The upper panel of Fig. 4 is

from our simulations, and the lower panel is computed
using fitting formulae from [62] and the code Nicaea6.
The third parameter for each plane is at a fixed value
([Ωm, w, σ8] = [0.26,−1.0, 0.8]). Overall, simulations and
theory predictions are in good agreement, with the figure
showing that the power in the upper and lower panels
is similar, and varies as a function of cosmological pa-
rameters similarly. For a more quantitative test of the
power spectrum, see Fig. 1 in Ref. [27]. For cosmologi-
cal constraints, we use our simulated power spectra di-
rectly, rather than theoretical fitting formulae. The up-
turn seen at ` > 20, 000 is an artifact introduced by the
finite pixel size on our maps.. However, we found no
bias from this artifact, when comparing error contours
using bins with ` < 20, 000 and all available bins (up to
` = 25, 000).

Reference [47] identified 25% of the 172 individual
CFHTLenS pointings, each ≈ 1 deg2 in size, with signif-
icant PSF residuals. Including these fields can increase
the systematic error in the 2PCF, and possibly impact
other statistics. However, because the power spectrum is
a convolution of the signal and the mask, it is suscepti-
ble to the masking pattern (due to bright stars and bad
pixels) whose characteristic scale is significantly larger
than the smoothing scale. As each bad field removes one
square degree from the data, much larger than our ∼
arcmin smoothing scale, excluding these areas can also
introduce additional noise. To study the effect due to
PSF residuals and masks, we compute the power spec-
trum for all fields and for the 75% “pass” fields, shown in
the upper panel of Fig. 5. We find power spectra with or
without this PSF screening are consistent within errors
on large scales. On small scales (` > 7, 000, or 3 arcmin),
however, we find a significant difference in power spec-
tra with or without the corrupted fields. This difference
is caused primarily by the particular masking pattern,
rather than field selections. This is demonstrated by per-
forming the same comparison using our simulated power
spectra, with the same corrupted regions either included
or excluded. The result of this comparison is shown (for
the fiducial cosmology) in the lower panel of Fig. 5, re-
vealing a similarly large discrepancy for ` > 7, 000.

Fig. 6 shows the 68% confidence level (CL) error con-
tour in the Ωm–σ8 plane (marginalized over w) for the
full set and for the pass–only fields, and for all available `
and for ` < 7, 000. We found the contours are fairly con-
sistent among the four cases. To be conservative, we use
the 75% pass fields only for our power spectrum anal-
ysis, and further limit our analysis to ` < 7, 000. The
latter restriction eliminates small scales, where baryonic
effects can bias the shear correlation function by more
than 5-10% [63], and lead to a non-negligible bias on the
best-constrained cosmological parameter combination Σ8

(defined below). For all four contours in the figure, we
are unable to exclude the lower right corner in the Ωm–σ8

6 http://www2.iap.fr/users/kilbinge/nicaea/
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plane. Given the strong degeneracy between Ωm and σ8,
it is of little meaning to quote a best fit for individual
parameters; rather we will compare the areas of the 2D
contours for various probes, and obtain constraints on a
combination of the two parameters ( see below).

B. Peak Counts

Interpolated peak counts from simulations as a func-
tion of cosmological parameters are shown in Fig. 7. We
present the effect for three representative κ values, low
(< 1σκ, upper panel), medium (1 − 3σκ, middle panel),
and high (> 3σκ, lower panel), where σκ = 0.03 is
the standard deviation in the convergence map for 1
arcmin smoothing (with galaxy noise). As in Fig. 4,
the third parameter for each plane is at a fixed value
([Ωm, w, σ8] = [0.26,−1.0, 0.8]). Low and high peaks
behave similarly, where larger Ωm or σ8 increases the
number of peaks. Medium peaks behave the opposite
way. Ref. [27] investigated the origin of peaks, and found
typical high peaks are linked to one single massive halo,
while medium peaks are associated with constellations
of 4–8 lower-mass, off-center halos near the line of sight.
It is not surprising to see the effect of Ωm and σ8 on
high peaks, as higher values increase the number of mas-

sive halos. The opposite behavior of medium peaks is
somewhat counter-intuitive, but has been observed and
explained in [27].

As peak counts are local, we expect field selections to
have a smaller impact on them, beyond modifying the
total number of peaks and their variance. This is shown
to be the case in Fig. 8, where we compare peak counts
from pass–only fields and from all fields, and found these
to be consistent for all κ within errors (for a fair com-
parison, peak counts using all fields are multiplied by the
sky ratio of pass fields to all fields, ≈ 0.75). Therefore,
unlike for the power spectrum, we choose to include all
fields for peak counts for tighter constraints.

We test the constraints from different smoothing
scales. Large smoothing windows reduce the total num-
ber of peaks, and wash out cosmological information,
whereas small smoothing scales result in very noisy distri-
butions. We examine six smoothing scales (0.5, 1.0, 1.8,
3.5, 5.3, and 8.9 arcmin). The smallest (0.5 arcmin) and
the largest (8.9 arcmin) yield significantly larger errors
than the other four. We show the error contours from
these four, intermediate smoothing scales in Fig. 9. The
1.0 and 1.8 arcmin scales yield tighter contours than the
other two, larger scales. A combination of these two best
scales (also shown in the figure) further tighten the er-
rors, and we therefore use it in our final analysis. Clearly,



9

FIG. 5. Comparison of the CFHTLenS (top panel) and sim-
ulated (bottom panel) power spectrum measured using 75%
of the fields (solid line) which pass the PSF residual test and
all fields (dashed line). The error is measured from our sim-
ulations.

the above is only a limited investigation of the benefit of
using multiple smoothing scales. We expect that a more
rigorous study in the future, identifying optimal filter
shapes, sizes, and combinations can help further tighten
constraints from peak counts.

C. Cosmological Constraints

From the interpolated planes for the power spectrum
(Fig. 4) and peak counts (Fig. 7), we see some similarity
between the two statistics. They both suffer a similar
Ωm–σ8 degeneracy, and both have a much weaker depen-
dence on w than on Ωm or σ8. However, peak counts
are less impacted than the power spectrum by field selec-
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σ
8
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FIG. 6. 68% error contours from the power spectrum mea-
sured using only the 75% of the CFHTLenS fields that pass
the PSF residual test (solid curves) and for all fields (dashed
curves). Constraints are shown with (thick curves) and with-
out (thin curves) imposing an upper limit ` < 7, 000.

tions (due to PSF residuals) and masks, two non-trivial
systematics in CFHTLenS observations.

Fig. 11 shows 68% and 95% confidence contours for
the power spectrum, peak counts (1.0 + 1.8 arcmin),
and the combination of both statistics. The full co-
variance is taken into account when combining the two
statistics. Table II lists the marginalized constraints
on Σ8 = σ8(Ωm/0.27)α, which is roughly orthogonal to
the Ωm–σ8 degeneracy direction. We find the best fit
α = 0.63 and Σ8 = 0.85+0.03

−0.03 (with a fixed α). For com-
parison, using the 2PCF, Ref. [8] found this constraint
(with best fit α = 0.59) to be 0.79+0.07

−0.06, comparable to
within ≈ 1σ with our result (although their values have
been marginalized over additional cosmological parame-
ters). Our probability distribution for Σ8 (Fig. 10) also
shows a somewhat asymmetric shape, with a long tail to
low values, when using the power spectrum, which cre-
ates our asymmetric error bars.

The relative area covered by each contour is listed in
Table III, normalized by the size of the 68% contour
from the power spectrum. In both 2D parameter planes
shown, the constraints from the peak counts is stronger
than from the power spectrum, and largely determines
the size and shape of the combined contour. The size of
this combined contour is a factor of ≈ 1.5 − 2 smaller
than from the power spectrum alone. One may worry
that this result is unfair, as our power spectrum analysis
uses only 75% of all fields and is restricted to ` < 7, 000,
while peak counts use all fields and include information
from smoothing scales as small as 1 arcmin. We find
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FIG. 7. Interpolated number counts for typical low (< 1σκ, top panel), medium (1 − 3σκ, middle panel), and high (> 3σκ,
bottom panel) peaks, where σκ = 0.03 is the standard deviation of κ measured in our simulations. As in Fig. 4, the third
parameter in each panel is at a fixed value ([Ωm, w, σ8] = [0.26,−1.0, 0.8]).

that using all fields can reduce the power spectrum error
contour by 83%, while using all available ` can reduce
the contour by 90%. When both of these restrictions on
the power spectrum are lifted, the area enclosed by the
68% confidence level contour from the power spectrum
is 62% smaller than that listed in Table III, making the
power–spectrum–alone and the peaks–alone constraints
comparable. However, as argued above, the power spec-
trum result in this case may be significantly biased by
systematic errors and baryonic effects (and, as shown by
the blue curve in Fig. 6, the concordance ΛCDM model
is indeed outside the 68% CL in this case).

Ref. [67] examined the covariance between cluster
counts and weak lensing power spectrum and found
that including the cross-covariance leads to degrada-
tion of cosmological constraints by few percent (also see
Ref. [68]). We test the importance of the covariance
between peak counts and the power spectrum. added
covariance matrix Fig. 12 shows the total covariance of
the power spectrum and peak counts (1.0 + 1.8 arcmin
smoothing scales). Fig. 13 shows the error contours when
such cross-covariance is included in the analysis (as done
throughout our paper; black solid curves) or ignored
(dashed red curves). In the latter case, i.e. when the
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simulated (lower panel) peak counts measured using 75% of
the fields (solid curves) which pass the PSF residual test and
all fields (dashed curves). The error is measured from our
simulations.

two statistics are assumed to be independent, the area
of the 68% CL contour is reduced by ≈ 16%, a some-
what larger change than was found for the combination
of cluster counts and power spectrum (although for dif-
ferent parameters; see Fig.12 in Ref. [67]).

Finally, we show in Fig. 14 the best–fit and two other
models, randomly selected from within the 68% error ba-
nana, along with the CFHTLenS power spectrum and
peaks. The reduced χ2 ≈ 2 for the best–fit model to
the power spectrum is large, indicating the model does
not fully describe the data, and the discrimination be-
tween the best-fit model and other models located along
the ridge of the degeneracy “banana” is weak. Overall,
these results indicate that there may still be significant
systematic errors, even after the problematic fields have
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FIG. 9. 68% error contours from peak counts using smoothing
scales of 1.0 (dotted curve), 1.8 (thick dashed curve), 3.5 (thin
solid curve), and 5.3 (thin dashed curve) arcmin, as well as
from peak counts with 1.0 and 1.8 arcmin smoothing scales
in combination (thick solid curve).

Σ8 α
power spectrum 0.87+0.05

−0.06 0.64
peak counts 0.84+0.03

−0.04 0.60
combined 0.85+0.03

−0.03 0.63

TABLE II. Marginalized 68% constraints for Σ8 =
σ8(Ωm/0.27)α, using the power spectrum, peak counts, and
their combination.

been excluded. The reduced χ2 ≈ 0.8 for the fits to the
peak counts is significantly lower.

added plot

V. CONCLUSIONS

In this paper, we have run 91 cosmological models,
built a CFHTLenS–specific weak lensing emulator for

w–Ωm Ωm–σ8

68% 95% 68% 95%
power spectrum 1.00 1.74 1.00 1.99
peak counts 0.41 1.01 0.59 1.51
combined 0.42 1.05 0.61 1.46

TABLE III. The areas of the two-dimensional error contours
computed using the power spectrum, peak counts, and their
combination, in two parameter planes (marginalized over the
third parameter). The areas are normalized to the 68% power
spectrum contour in each case.
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spectrum is computed using the 75% of the fields that pass the
PSF residual test, and restrictd to ` < 7, 000. Peak counts
are computed using all fields, and include measurements of
peaks on two smoothing scales (1.0 and 1.8 arcmin).

the power spectrum and peak counts, and obtained con-
straints on Ωm, w, and σ8. Peak counts as a recently
developed non-Gaussian statistics have previously been
proven in theory to have comparable constraining power
as the power spectrum. This work is the first attempt to
test this hypothesis rigorously on real data.

We have found that combining peak counts with the
power spectrum can reduce the area of the 2D error con-
tour by a factor of ≈ 2 compared to using the power
spectrum alone. Combining both statistics, we obtained
σ8(Ωm/0.27)0.63 = 0.85+0.03

−0.03.

To conclude, peak counts can serve as a complemen-
tary probe to the power spectrum in two important ways:

(1) As a calibration tool for systematics. Peaks with
small (∼ arcmin) smoothing scales suffer less (or are im-
pacted differently by) systematics than the power spec-
trum. For CFHTLenS, we have found that the PSF
residuals have little impact on peak counts, in contrast
with the bias seen with the 2PCF in Ref. [47]. We find
that masking also has little impact on the peak counts,
whereas it changes the power spectrum at small scales
(` > 7, 000). The change in the power spectrum does not
impact cosmological constraints, as long as the mask is
taken into consideration in the model (e.g. Fig. 6). Fur-
thermore, in our previous work on theoretical systemat-
ics due to the magnification bias [54], we also discovered
that, while both the power spectrum and peak counts
are affected, the resulting directions of the biases in the
cosmology parameter space are different. Combining the
two probes can mitigate the impact from these system-
atics.
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FIG. 11. 68% (dark color) and 95% (light color) error contours
from the power spectrum (dashed curves), peak counts (thin
solid curves), and their combination (thick solid curves). The
shaded region in the bottom panel is the 68% error contour
for the combination. The power spectrum is computed using
the 75% of the fields that pass the PSF residual test, and
restricted to ` < 7, 000. Peak counts are computed using all
fields, and include measurements of peaks on two smoothing
scales (1.0 and 1.8 arcmin).

(2) By providing tighter constraints on cosmological
parameters. The peak counts by themselves have a sim-
ilar, or even better constraining power than the power
spectrum. This can be attributed to the fact that the
peaks capture information from non-Gaussian features of
the convergence maps. We have shown in Fig. 11 and Ta-
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ble III that combining power spectrum and peak counts
improves the constraints by a factor of ≈ two, compared
to using the power spectrum alone.

The potential of the peak counts have not yet been
fully realized. Our work can be improved further by:

(1) Examining the effects of additional smoothing
scales, binning of peaks, and the robustness of the results
under masking. We have examined only six smoothing
scales, and demonstrated that using multiple smoothing
scales can reduce the size of the area of the error contour
by a moderate amount. We also showed that masking
can change the power spectrum. More detailed study on
these effects can be beneficial.

(2) Including the cosmological dependence of the co-
variance matrix, especially for peak counts. We use a
constant covariance matrix in this work, assuming the
cosmological dependence is weak, as we expect the covari-
ance to be dominated by the shape noise. However, as
the survey size increases, cosmological sensitivity should
be taken into consideration when constructing the covari-
ance matrix.

(3) Increasing the number of independent simulations
run for each cosmological model. In our current work,
due to computational limitations, we have only used one
independent N-body simulation per model. Although we
randomly rotate and shift the lensing planes to create
multiple pseudo-independent realizations, some outliers
(such as massive halos) will inevitably be repeated in
several maps. However, our previous work has shown
that the bulk of the cosmological information from peak
counts resides in low-amplitude peaks, which do not arise
from single massive halos; these peaks should be less sus-
ceptible to repeated structures between pseudo-random
realizations. Nevertheless, to test possible errors due to
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FIG. 13. 68% (dark color) and 95% (light color) power spec-
trum + peak counts error contours with (thin curves) and
without (thick curves) the cross-covariance. The power spec-
trum is computed using the 75% of the fields that pass the
PSF residual test, and restricted to ` < 7, 000. Peak counts
are computed using all fields, and include measurements of
peaks on two smoothing scales (1.0 and 1.8 arcmin).

not having sufficiently independent maps, we ran a sep-
arate set of 50 simulations for one cosmology.

We found that the variance in the (noiseless) power
spectrum and peak counts is increased by approximately
10%, when compared to that using only one simulation.
However, when noise is added, the difference is no longer
systematic, with a 5% fluctuation and is consistent with
0. We also found a larger-than Gaussian variance even
at our lowest ` = 400, by approximately 10%. This in-
crease in the variance due to non-Gaussianities is some-
what lower than that found previously [69]. Further de-
tails on tests of the covariance matrices will be presented
in our companion paper (Petri et al., in prep).

Future WL surveys, such as the Dark Energy Survey,
and the Large Synoptic Survey Telescope, cover much
larger areas (5,000 and 20,000 deg2, respectively), hence
are more sensitive to instrumental and theoretical sys-
tematics. These will need to be addressed carefully in
order to realize the full potential of these larger surveys.
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