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Using the longitudinal expression of Hubble expansion rate for the general Lemâıtre-Tolman-Bondi
(LTB) metric as a function of cosmic time, we examine the scale on which the Copernican Principle
holds in the context of a void model. By way of performing parameter estimation on the CGBH void
model, we show that the Hubble parameter data favors a void with characteristic radius of 2 ∼ 3 Gpc.
This brings the void model closer, but not yet enough, to harmony with observational indications
given by the background kinetic Sunyaev-Zel’dovich effect and the normalization of near-infrared
galaxy luminosity function. However, the test of such void models may ultimately lie in the future
detection of the discrepancy between longitudinal and transverse expansion rates, a touchstone of
inhomogeneous models. With the proliferation of observational Hubble parameter data and future
large-scale structure observation, a definitive test could be performed on the question of cosmic
homogeneity. Particularly, the spherical LTB void models have been ruled out, but more general
non-spherical inhomogeneities still need to be tested by observation. In this paper, we utilise a
spherical void model to provide guidelines into how observational tests may be done with more
general models in the future.

PACS numbers: 98.65.Dx, 98.80.Es, 98.62.Py

I. INTRODUCTION

The Copernican Principle (CP) is the hypothesis that we do not occupy a privileged position in the Universe. It
leads to the Friedmann-Robertson-Walker (FRW) metric as the metric of the homogeneous and isotropic background
spacetime [1]. However, one may not expect the CP to hold on all scales of cosmological interest, for both theory
and observation shows that large-scale structure can emerge even if a homogeneous and isotropic initial background
is assumed. Recently, the observed near-infrared luminosity function from a complete sample of galaxies indicates
that the data cannot rule out the possibility of our vicinity being described by a void model [2]. In addition, the void
model may also serve as a possible explanation to the emergence of accelerated expansion of the Universe without
employing an exotic component dubbed ‘dark energy’. To further investigate the ramifications of such a non-CP
scenario and ascertain the possible existence of a local void, we consider a variety of other cosmological tests, as laid
out in this paper. We mainly make use of the observational Hubble parameter data (OHD) which is independent of
CMB and galaxy distribution measurement, and their observational properties have not been elucidated well enough
in the inhomogeneous void model.
Although the spherical symmetric LTB void models have been ruled out, this does not imply that inhomogeneity, as

a whole, has ”died” as an alternative to the concordance model. Apparently, LTB voids are simple and mathematically
tractable, but its inherent spherical inhomogeneity is very special and certainly non–generic. It is then impossible
to know a priori if the more generic forms and profiles of inhomogeneity will fare like LTB voids and end up failing
to fit the joint current tests such as SN, the kSZ effect or BAO or OHD and so on. Thus, we in this paper still use
spherical LTB models to provide a pathfinder of how future non-spherical models could be tested in the future.

II. LTB DYNAMICS AND THE VOID MODEL

The Lemâıtre-Tolman-Bondi (LTB) line element reads

ds2 = −dt2 +
A′(r, t)2

1− k(r)
dr2 +A2(r, t)dΩ2, (1)
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FIG. 1: Density profiles at different cosmic times. Time is in unit of Gyrs, and the densities are normalized to the background
density.

where ′ denotes ∂/∂r, and k(r) is associated with the spatial curvature. The Friedmann-Robertson-Walker (FRW)
metric can be recovered by imposing A(r, t) = a(t)r and k(r) = kr2. Besides the most popular inhomogeneous exact
solution of LTB model in cosmology, another interesting family of that are those found by Szekeres[3], which are much
less idealised than spherical LTB models. Generally, these models have no symmetries (i.e. no killing-vectors [4])
and are constructed by six arbitrary metric functions: one freedom being represented to rescale the radial coordinate
and remaining five degrees of freedom to model inhomogeneity. In fact, all of LTB quantities given in coordinate
independent manner can be readily generalised to that in Szekeres models[5, 6]. The Gpc-size spherical symmetric
LTB void modes are able to fit CMB data without dark energy under assumption that our cosmic observing position
is very close to the void centre[7, 8]. This certainly leads to an unacceptable fine tuning and is a direct effect of
spherical symmetry, and can also be corrected by considering non–spherical models. As shown in [7], even the still
idealised deviation from spherical symmetry furnished by a quasi–spherical Szekeres model allows for a significant
improvement on this fine tuning of the centre position that has always plagued LTB models.
From the LTB metric one can go on writing down and solving the dynamical equations for LTB void models. One

notices along the way that the spherical symmetric configuration gives rise to two expansion rates

H⊥ ≡
Ȧ

A
, H‖ ≡

Ȧ′

A′
(2)

After choosing a gauge A0(r) = r, and a homogeneous ‘bang time’, one needs only the boundary conditions to
finally obtain the evolution history(see Ref. [9, 10] for more detailed treatments). Expressed as two functions, Ωm

and H⊥0, these boundary conditions define an LTB void model. Throughout this work, we employ the Constrained
GBH (CGBH) model [11], in which

Ωm(r) = 1 + (Ω0 − 1)

(

1− tanh[(r − r0)/2∆r]

1 + tanh(r0/2∆r)

)

, (3)

where Ω0 describes the density at the symmetric center, r0 is the characteristic size of the void, and ∆r describes the
steepness of the void near the edge.
To illustrate how the universe and its evolution in CGBH model look like, we choose Ω0 = 0.05, H0 =

73 km s−1 Mpc−1, r0 = 6 Gpc, ∆r = 0.1 r0, and plot in Fig. 1 and Fig. 2 the density profile on different cos-
mic time (in Gyr) slices and on the light cone, respectively, and in Fig. 3 and Fig. 4 the profiles of the two expansion
parameters on time slices and the light cone, respectively.
It is seen from Fig. 1 that the void gets deeper and its shell gets denser as the universe evolves. On the other hand,

in a homogeneous universe one always has H‖ = H⊥. Observation of a difference, like that shown in Fig. 4, within
the redshift ranges of about 1-6, would imply spatial inhomogeneity.
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FIG. 2: Densities on the past light cone, normalized to the value at the void center.
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FIG. 3: Comparison of the H⊥ and H‖ profiles at different cosmic times. Time is in unit of Gyr, and the expansion parameters
are normalized to the value at the void center.
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FIG. 4: Comparison of the H⊥ and H‖ at different redshifts (on the past light cone).
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III. OBSERVATIONAL HUBBLE PARAMETER DATA

There are four main methods to measure the Hubble parameter H(z): by measuring the differential age of passively
evolving galaxies (differential age method)[12–17], the baryon acoustic oscillation (BAO) along the line-of-sight direc-
tion from the spectroscopic galaxy sample [18], the dipole of the luminosity distance dL of gravitational wave sources
(luminosity dipole method of standard sirens) [19, 20], and by measuring the Sandage-Loeb signal of the Lyman-α
forest of QSOs (Sandage-Loeb signal or redshift drift method) [21]. The radial BAO size method depends on the
detailed evolution of perturbations not well understood in the LTB cosmology, although progresses have been made
[22, 23]. The luminosity dipole method of standard sirens by now has produced no observational data yet. Therefore,
the OHD used in this work refer exclusively to that by the differential age method.
The Hubble parameter for FRW models with scale factor a reads

H ≡
ȧ

a
= −

1

1 + z

dz

dtct
, (4)

where dtct is the variation of the cosmic time due to a small change in the redshift dz. For any galaxy one has
TCA(z) = TF + TGA(z), which simply states that the cosmic age TCA at redshift z equates the summation of the
formation time of the galaxy, TF , and the age of this galaxy, TGA that can be determined spectroscopically. If we
could find a group of galaxies that share a uniform formation time, i. e. TF = const., we would then get a handle
of dtct by simply measuring the age difference of those galaxies: dtct(z) = dTCA = dTF + dTGA(z) = dTGA(z).
The passively evolving galaxies can be identified by figuring out at every redshift the oldest galaxies, which together
define the ‘red envelop’. One assumes in this process the oldest galaxies formed at the same time (standard cosmic
chronometers), which is a natural assumption in an FRW universe (one may call it the galaxy-formation version of
the cosmic Copernican Principle).
Of the two expansion rates defined in Eq. (2), the longitudinal expansion rate H‖ turns out to have the same

form as Eq. (4) H‖ = −[1/(1 + z)](dz/dtct), and hence corresponds to the observed H(z) [10]. For a general LTB
model, the bang time function tB(r) should not be zero, hence the age of the Universe is: T = t − tB(r) so we have
dT/dz = (dt/dz) − (dtB/dr)(dr/dz). But as emphasized in our previous paper [10], the gradients (dtB/dr) in the
bang time, tB, correspond to a currently non-vanishing decaying mode (also see: [22, 24]. This would imply a very
inhomogeneous early universe, and hence violate inflation. Further, it is true that the gradient dtB/dr is associated
with density decaying modes of linear dust perturbations [24] that can be generalised to fully non–linear LTB models
[22], though this has been updated by recent study of dust density modes in LTB models[25]. More importantly
for the current work, non-zero gradient will lead to great inhomogeneities in the galaxy formation time and make
the OHD data set invalid. Therefore, tB=constant must be set, i.e., dtB/dr = 0, and we set it to be zero in this
paper. Of course, a mathematically zero of big bang time gradient can cripples the dynamical freedom of the models
and is not strictly necessary to prevent the violation of inflation. Near homogeneous conditions prevailing in the
last scattering surface z ∼ 1100 can be realised by LTB models in which the density decaying mode is not zero but
becomes subdominant at such redshift, which is argued in [26–28] and also show that the extreme inhomogeneity and
violation of inflation is no longer valid for times close to the big bang, well before the last scattering surface. We also
notice that empiric calculations are not affected if the models allow for a small gradient of the big bang time function
(i.e. a small position dependent variation in cosmic ages of different observers). Thus, it evidently does not need the
LTB models (or any other late universe inhomogeneous model) to be valid all the way back to the big bang.
The problem of using OHD in LTB models is that the basic assumption that the oldest galaxies share a same

formation time might not hold any more, as discussed recently in Ref. [10], because the background in LTB models
has considerable inhomogeneities. However, we argue that OHD is still valid in our context (see Discussion). In the
following we will use the latest 23 data entries as listed in Refs. [15, 17], where the data sample is larger than that of
11 OHD used in our previous paper[10].

IV. CONSTRAINTS ON THE VOID MODEL

We perform the constraints on the void model by both OHD and the background inhomogeneity-induced kSZ
(BIkSZ) effect[29, 30]. The direction dependent, therefore observable, temperature shift reads

∆TBI = TCMB ×

∫ ze

0

δe(n̂, z)
~vH(n̂, z) · n̂

c
dτe, (5)

where TCMB = 2.73 K, ze = 100 (the result essentially does not change as long as z(r0) ≪ ze), and

vH(z) ≈ [H‖(r(z), t(z)) −H‖(r(ze), t(z))]A(r(z), t(z)) (6)
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FIG. 5: Background inhomogeneity-induced kSZ effect ∆T 2

BI in µK2. The line marked with 7 corresponds to the 95% observa-
tional upper limit of the South Pole Telescope [32, 33] which is significant to the constraint of void models [29]. Also plotted
are the 1σ and 2σ confidence regions from the OHD as well as those from the supernovae Union2 dataset. The vertical (red)
bar marks the characteristic void radius r = 250 Mpc in the small-void models of Refs. [7, 34] that are comparable with recent
observational data of near-infrared galaxy luminosity function [2].

Here,VH in void model is generally contributed from both Doppler and Sachs-Wolfe anisotropies induced by the void,
and it is qualitatively dependent on the size r0 of the void considered([29], and therein). Similarly, the β function is
employed instead of VH in works [27, 31]. However, for small voids considered in this paper, such as Gpc-size void
with size of less than a few Gpc, Sachs-Wolfe anisotropies could be neglected, and only Doppler contribution is left
as Eq.(6) above. So only for cases of larger void cases, the general expression of VH contributed from both Doppler
and Sochs-Wolfe anisotropies should be adopted. For a more general non-spherical pattern of inhomogeneity such as
Szekeres models, the full integral β function should be contributed from both Doppler and Sochs-Wolfe anisotropies
when used to examine kSZ effect.
We calculate BIkSZ power spectrum ∆T 2

BI at l = 3000 and its constraints on the (r0,Ω0) parameter plane, with

∆r/r0 = 0.21, H0 = 74 km s−1 Mpc−1 fixed at their respective best-fit values, which are in turn obtained from the
Hubble parameter dataset. The resulting contours, as well as confidence regions from the OHD and the supernovae
Union2 dataset, are plotted in Fig. 5. The OHD data favor a smaller (and more tightly constrained) void than what
the supernovae Union2 data do. Indeed, there is a clear discrepancy between those two datasets, as found in Ref. [10].
This is a sign of inadequacy for this specific LTB model. Also, as pointed out in Ref. [29], one can see from Fig. 5 that
the Gpc-sized voids, as those favored by the supernovae data, are incompatible with the BIkSZ measurement, hence
are largely excluded. Now we can tell from the figure that the OHD dataset give slightly weaker, though basically the
same, conclusion. Furthermore, the observed normalization of the near-IR galaxy luminosity function indicates that a
void, if exists, amounts to a few hundred Mpcs[2]. This could in principle be consistent with the BIkSZ measurement.

V. FUTURE BAO CONSTRAINT

As is shown in Fig. 4 above, unlike the homogeneous cosmological models, H‖ can differ from H⊥in LTB models
at redshift z roughly ranging from 1 to 6. Therefore one straightforward way is to define the ratio between these two
expansion rates E = H‖/H⊥, which always equals to 1 for the homogeneous cosmological models, but deviates from
1 in LTB models. Specifically, we can further write E as

E = H‖/H⊥ = 1 +
A

A′

H ′
⊥

H⊥
, (7)

since H‖ = Ȧ′

A′
= H⊥ + A

A′
H ′

⊥.
Therefore, the violation of E = 1 could also be an indicator of LTB-type models. To adopt this criteria however,

one needs independent measurements of H‖ and H⊥ at the same redshift or just the variation of H⊥ on the light cone.
The BAO feature imprinted in the non-relativistic matter such as galaxies distribution yields a further geometric test
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of homogeneity, and future large-volume BAO surveys will also allow us detect the BAO scale in both radial and
transverse directions, although the transverse H⊥ could not be measured in current measurement accuracy of BAO.
Thus, we expect future BAO measurement would supply the information of the criteria E by radial Hubble parameter
H‖ and transverse Hubble parameter H⊥, and improve greatly the testing of violation of homogeneity.

VI. DISCUSSION

In our calculation of OHD constraints on the void model, we assume that OHD could be used in LTB models.
Actually, the same formation time of the oldest galaxies is a basic assumption in obtaining OHD. However, in LTB
models where the universe has a considerable background inhomogeneity, this assumption becomes unreasonable and
some arguments are also recently given in Ref. [35] where galaxy ages are used. First, despite the overall uniform-
formation-age assumption, the validity of an H(z) data point requires the same formation time only inside the redshift
bin where OHD is locally defined and obtained (Eq. [4]), even if the global density – hence the formation time of
the oldest galaxies – at different redshifts varies much. Secondly, a standard viewpoint (referred to as the onion
approximation) is to treat the LTB void universe as a group of thin shells structured together, and inside each of
these spherical shells the matter is homogeneously distributed [36]. For the OHD used in this paper, the size of each
redshift bin is between 0.1 and 0.15, where the first limit is so chosen that the age evolution between the two bins is
larger than the error in the age determination [13]. As the precision of the age determination improves, we expect
an even smaller bin size. To be sure about the validity of OHD used in LTB models, one needs the exact knowledge
about the thickness of the shell given the size of a redshift bin, as well as the steepness of the density profile at the
time the oldest galaxies formed. We ever discussed this issue in Ref. [10].
On the other hand, future observation is expected to yield ∼ 2000 measurements for passively evolving galaxies

in the redshift range 0 < z < 1.5 in the future [13]. It has been estimated that about 1000 OHD entries at a 15%
accuracy level will be determined with 10% error of the galaxies ages. In Ref. [37] the power of OHD in the context
of ΛCDM model has been assessed. With the increase of high quantity OHD, the power of OHD constraining void
model should also be greatly improved for constraining the void models [10].
Although the large void model appear to be ruled out by some cosmological observations, future OHD measurement

in both radial and transverse directions, as an alternative and complementary cosmological test, could give a tight
constraint on LTB model with a small void. If the transverse BAO information can be realized from future large-scale
structure observations, we should be able to arrive at a definite test of spatial homogeneity of the Universe. In this
context, the role played by the transverse BAO is complementary to the radial BAO discussed in Ref. [38].

Acknowledgments

We sincerely thank the two PRL and last anonymous referees whose suggestions and objective, judicial assessment
greatly helped us improve our manuscript. Tong-Jie Zhang thank Prof. Martin White for his hospitality during
visiting Departments of Physics and Astronomy, University of California, Berkeley and Lawrence Berkeley National
Laboratory. This work was supported by the National Science Foundation of China (Grants No. 11173006), the
Ministry of Science and Technology National Basic Science program (project 973) under grant No. 2012CB821804.

Appendix A: H‖ and H⊥ in a coordinate independent manner

The “longitudinal” and “transverse” Hubble parameter in Eq.(2) has only a covariant meaning for spherical symme-
try: they are the components, tangent and orthogonal to the orbits of SO(3), of the expansion tensor Ha

b = H ha
b +σa

b ,

where H = (1/3)∇au
a is the Hubble expansion scalar and σa

b is the shear tensor. Since Hr
r = H|| and Hθ

θ = Hφ
φ = H⊥,

and we can always choose an orthonormal tetrad with ua as the timelike tetrad vector, one vector na orthogonal to
the orbits and two vectors ma

(1), m
a
(2) tangent to them, then H|| = Habn

anb and H⊥ = Habm
a
(1)m

b
(1) = Habm

a
(2)m

b
(2),

which renders the parameter E introduced in Eq.(7) as the ratio

E =
Habn

anb

Habma
(1)m

b
(1)

=
Habn

anb

Habma
(2)m

b
(2)

For non-spherical models, these quantities can always be computed in terms of an orthonormal tetrad, but their
interpretation as “longitudinal” and “transverse” becomes coordinate dependent. Another possible comparison that
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provides a measure of local inhomogeneity is given by the ratios σ1/H and σ2/H , where σ1 and σ2 are the eigenvalues
of the shear tensor (being trace-free and it admits two eigenvalues in general). For LTB models, σ1 = σ2 = σ =
−(1/3)(H||−H⊥) is the unique eigenvalue: σ

a
b = σeab with eab = ha

b −3nanb and H = 2H||+H⊥. For Szekeres models,
there is also a single shear eigenvalue, so by replacing E with σ/H as a measure of inhomogeneity one can readily
generalise the interpretation of observational tests from LTB to Szekeres models. In fact, all of LTB quantities given
in coordinate independent manner can be readily generalised to that in Szekeres models[5, 6].
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