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All species of (non-conformally-coupled) particles are produced during inflation so long as their
mass M is not too much larger than H, the expansion rate during inflation. It has been shown that
if a particle species that is normally massive (M � H) couples to the inflaton field in such a way
that its mass vanishes, or at least becomes small (M < H), for a particular value of the inflaton
field, then not only are such particles produced, but an irruption of that particle species can occur
during inflation. In this paper we analyze creation of a massive particle species during inflation in a
variety of settings, paying particular attention to models which realize such an irruptive production
mechanism.
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I. INTRODUCTION

The epoch of inflation [1–3] is the highest energy phys-
ical process to which we are ever likely to have obser-
vational/experimental access. Recent observational evi-
dence for degree-scale B-mode polarization of the cosmic
microwave background radiation [4]1 suggests that infla-
tion occurred at or near the Grand Unified Theory scale
with an expansion rate during inflation of H ∼ 1014 GeV,
and that the inflaton field traversed a field space distance
much larger than the Planck scale during the inflationary
epoch (e.g., Refs. [7, 8]).

For physicists, this situation is fortuitous, because very
high energy scale inflation provides us with a significant
opportunity to uncover new physical laws. This is be-
cause as the inflaton traverses a great (super-Planckian)
distance in field space, it is possible to uncover new ul-
traviolet physical effects and probe the couplings of the
inflaton to other particles. The inflaton must be coupled
to other particle species since after inflation ends the in-
flaton energy density must be converted to entropy by
reheating or preheating. Presumably this is related to
the coupling of the inflaton to “light” particle species.2

However the inflaton might also be coupled to additional
“heavy” particle species. If the inflaton couples to a par-
ticle species of mass that is always much larger than the
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1 See, e.g., Refs. [5, 6] for a critical discussion of galactic dust

foregrounds in connection with these results.
2 Unless otherwise specified, “light” and “heavy” particle species

refers to the mass of a species compared to the mass of the infla-
ton, which is approximately the expansion rate of the universe
during inflation in the inflation models we study.

inflaton mass or the expansion rate of the universe, the
heavy field can be integrated out to form an effective
field theory describing the inflaton field and its coupling
to light degrees of freedom. In this case, the heavy field
will not be dynamically important during inflation.

In this paper we investigate the possibility that the
inflaton couples to another particle species in such a way
that the mass of the additional species depends on the
value of the inflaton field. Thus, as the inflaton field
evolves, the mass of the other particle species will change
with the value of the inflaton field. We will consider
several toy models in which the mass of the additional
field vanishes (or at least becomes “light”) for a particular
value of the inflaton field. For that particular value of the
inflaton field, and only for that value, the additional field
becomes dynamically important. One consequence of the
fact that for a particular value of the inflaton field the
new particle is dynamically important, is that while the
field is light it can be produced via the usual mechanism
of particle creation during inflation. This may result in
a sudden growth, or irruption, in the population of the
new particle species, which we dub the “irrupton.”

String theory provides a calculable framework for ar-
ticulating the general statement that the inflaton might
be coupled to heavy fields, so let us describe some char-
acteristic examples from the literature of string cosmol-
ogy. One of the most successful early models for infla-
tion within string theory was brane inflation [9], wherein
the separation of two higher dimensional (memb)branes
played the role of the inflaton. After extensive study of
this framework it was realized that the string-theoretic
context of brane inflation excluded the possibility of
super-Planckian field excursions and hence observable
gravitational waves [10]. Intuitively, this is because the
higher dimensional Calabi-Yau geometries in which brane
inflation was thought to operate cannot be enlarged well
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beyond the string (and hence, 4-dimensional Planck)
scales without their constituting elements generating an
overwhelming back-reaction. Since this phenomenon was
general (if not universal), the “model space” for inflation
in string theory was generally thought to involve small
volumes and field excursions; see, e.g., Burgess et al. [11]
for a review.

Nonetheless, the breadth of the string landscape (and
theorists’ capacity for imagination) is also large (super-
Planckian, in fact). A significant breakthrough in this di-
rection was the model of axion monodromy [12], a proof-
of-principle calculation that geometries could exist in
string theory that permitted super-Planckian field excur-
sions. Although the well-studied models of monodromy
are in some conflict with recent gravitational wave dis-
coveries (because their gravitational wave production is
too small! ), they offer hope that string-theoretic con-
structions can agree with the cosmological data we have.
Moreover, it suggests that the higher dimensional ge-
ometry necessary to embed high energy scale inflation
within string theory will have to be something very dif-
ferent from the simple geometries most often studied in
the past.

Summing up, we are in a remarkable situation: if string
theory is the correct description of quantum gravity, then
the observation of gravitational waves tells us that the
inflationary epoch can in principle affect, and hence po-
tentially generate, many ultra-UV phenomena previously
thought of chiefly as technological arcana of higher di-
mensional geometries. Put more simply, if inflation is
near the GUT scale and the inflaton field traverses super-
Planckian distances, it can shake and rattle fields (e.g.,
moduli that describe and shape that geometry) as it rolls.

In this context, then, it becomes of intense interest to
understand the full range of observable phenomena that
may result from such an inflationary epoch. A relatively
less well studied possibility in this research space is the
creation of new particles during the inflationary period.
Within the picture we have outlined, following the semi-
nal work of Kofman et al. [13], this can be thought of as
the physical manifestation of enhanced symmetry points
within the geometrical space of fields that characterize
the extra dimensions (see also Refs. [14] and [15]). In such
a set-up, the vanishing of effective masses corresponds to
a momentary enhancement of symmetry, which we ex-
pect on general grounds to be a dynamical attractor. By
the same token, it is worth going beyond the relatively
simple effective theory described in Kofman et al. [13],
where a dynamically varying mass was captured by a
simple gφ2χ2 potential (where φ is the inflaton and χ
the representative extra modular field), to richer dynam-
ical systems.

To that end, we extend the study of particle creation
beyond the canonical gφ2χ2 model, which has been a fa-
miliar friend since its introduction in the context of pre-
heating after inflation [16]. In particular, although we
continue to work in the context of a simple two scalar-
field model, we will study in detail two models that en-

capsulate the phenomenon of a field that is heavy (and
thus dynamically unimportant) before, during, and after
inflation except at a particular value of the inflaton field
during inflation.

The two models we investigate in detail have different
starting points for coupling a new field to the inflaton.
In our first model, the new field is coupled to the inflaton
field through a potential term with a simple Yukawa-type
coupling of the new field to the inflaton. We will refer
to this as the “potentially-coupled” case. For the second
model we study the coupling of the new field to the infla-
ton traces to the kinetic interactions of the inflaton field
and the new field. We will refer to this as the “kinetically-
coupled” case. We do not suggest that the two models we
investigate span the space of all possibilities for massive
particle species irruption during inflation; indeed there
are many other possibilities one might consider. We con-
centrate on the two models we have chosen in order to
understand the issues that we anticipate will be generic
to any model of massive species irruption.

While previous studies have considered potentially-
coupled models [17–21], this work will also focus on ki-
netic interactions between the two fields. Such interac-
tions are characteristic of the supergravity limit of string
theory (see, e.g., Groot Nibbelink and van Tent [22] and
references therein). Complete formal perturbative anal-
ysis of such systems has been done [23–25], but the re-
sulting system is complex and can describe a surprising
range of nontrivial phenomena, including reduced speed-
of-sound effective dynamics [26], step-like features in the
effective potential for the inflaton [27], and temporarily
non-adiabatic evolution of the inflaton itself [28–30].

In the original model for super-heavy dark matter pro-
duction, the simple fact of the highly energetic (yet still
adiabatic) inflationary background was exploited to gen-
erate a tiny number density of ultra-heavy particles that
could play the role of dark matter. The mechanism we
will describe is a generalization of that approach, where
the existence of non-trivial multi-field dynamics will al-
low the prospective dark matter particle to become effec-
tively light (or even temporarily tachyonic) during infla-
tion, thus allowing it to be produced. Once created, the
particle’s mass then varies strongly with the value of the
inflaton, turning the former into an end-of-inflation very
massive particle, with a mass greater than 1013 GeV.

In the next section we discuss the criteria for species
irruption. We then review a model for creation of mas-
sive particles during creation under the condition that
the particle mass is unaffected by the value of the in-
flaton field. While there is no species irruption in this
model it serves as a useful baseline in understanding ir-
ruption in models where the species mass does depend on
the inflaton field. We then discuss the adiabatic condi-
tions that must be violated for particle creation to occur.
Also in Sec. II we describe the potentially-coupled and
kinetically-coupled models. Finally, in the next section
we discuss the expressions for the number density of the
particles in terms of the Bogoliubov coefficient and the
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issue of initial conditions.
In Sec. III we review the relationship between the Bo-

goliubov coefficient and the present number density as-
suming the produced particle is stable. Section IV dis-
cusses the numerical methods we employ as well as the
limitations of our numerical study. In Sec. V we present
the numerical results in the three models we consider. We
comment on possible implications of irruption of massive
particle species and conclude in Sec. VI. Appendices A
and B contain longer technical derivations of some results
which we will have occasion to refer to multiple times in
the text.

II. IRRUPTION OF PARTICLE SPECIES
DURING INFLATION

In this section we discuss the creation of particles dur-
ing inflation. When we refer to a “massive” particle, we
mean a particle species with a mass at the end of infla-
tion larger than the expansion rate of the universe during
inflation.

The idea of creation of particles during any phase of
the expansion of the universe traces back to the (largely
forgotten) 1939 paper of Schrödinger, The proper vibra-
tions of the expanding universe [31]. Here, we briefly
summarize what we have learned in 75 years since that
paper about cosmological particle creation:

1. For a particle species to be created during the ex-
pansion of the universe it must participate in the
breaking of conformal invariance. This is usually
accomplished by a mass for the field and/or a non-
conformal coupling of a scalar field to the Ricci
scalar.

2. Particle (in this case, the inflaton) creation during
inflation is the origin of the temperature and den-
sity perturbations seen as temperature anisotropies
in the background radiation.

3. Particle (in this case, the graviton) creation dur-
ing inflation is the origin of the gravitational waves
(tensor modes) deduced from the background radi-
ation polarization pattern.

4. In the inflationary phase the expansion rate of
the universe H is nearly constant, and with
the assumption of adiabatic initial conditions for
each quantum mode, creation of particles of mass
m larger than H is suppressed by a factor of
exp(−m/H).

5. Gravitationally created particles of mass compara-
ble to (or slightly larger than) H, if stable, would
be a candidate for dark matter [32–34].

6. Particles of mass larger than H can only be created
during inflation if one is willing to accept some sort
of trans-Planckian particle creation [35].

The above considerations assume that the mass, the
couplings, and the kinetic term of the field are constant.
The situation changes if the particle couples to the infla-
ton, which evolves during inflation.

In the first proposal studying creation of massive par-
ticles during inflation, Chung et al. [17] assumed the ex-
istence of a fermion field ψ that has a Yukawa coupling to
the inflaton φ of the form LY = λφψ̄ψ and a Lagrangian
mass term of the form LM = −M0ψ̄ψ. For nonzero val-
ues of φ, the mass of the ψ would be M(φ) = M0 − λφ,
where M0 is the mass at φ = 0. This leads to a critical
value of the inflaton field, φ∗ = M0/λ, where the mass
vanishes. Even if M0 � H, there will be a resonant pro-
duction of ψ during inflation when the inflaton field is
around φ∗. Note that in large-field models of inflation
φ is of order MPl, so one can have resonant production
even if M0 � H. Several papers extended this work to
the analogous situation for a scalar field χ coupled to the
inflaton via a Lagrangian effective mass term of the form
Leff
M = − 1

2g
2(φ−φ∗)2χ2 [18–20]. Again, there is a critical

value of the inflaton field φ = φ∗ where the mass vanishes
and particle creation can occur.

A. A Simple Non-Irruptive Model

Before turning to the complicated cases of φ-dependent
mass terms, let us consider the simple case of production
of particles of fixed mass M in the expanding universe;
such a model has been used in, e.g., the context of infla-
tionary production of superheavy dark matter (e.g., Refs.
[33, 34]). Start with a particle of mass M with action

S =

∫
d4x
√−g

[
1

2
gµν∂µχ∂νχ−

1

2
M2χ2 − 1

2
ξRχ2

]
.

(1)
Here ξ is a constant in the coupling term of the scalar
field to the Ricci scalar R. In this paper we will assume
a flat Friedmann–Robertson–Walker (FRW) spacetime
with mostly minus signature: ds2 = dt2 − a2(t)dx2 =
a2(η)(dη2 − dx2), where η is conformal time. In the flat
FRW backgroundR = 6a′′/a3, where ′ denotes d/dη (dot
will denote d/dt). The equation of motion for χ is

χ̈+ 3Hχ̇+
ηij∂i∂jχ

a2(t)
+M2χ+ ξRχ = 0. (2)

Now we mode expand χ =
∑
k âkuk+ â†ku

∗
k and make the

plane wave ansatz

uk(x, t) =
eik·x

(2π)3/2a(t)
χk(t) (3)

where k is the comoving momentum.3 This gives the
mode equation χk (here and below k ≡ |k|, not the four-

3 The choice of normalization is such that χk · (χ∗k)′ −χk′ ·χ∗k = i
gives modes normalized with respect to the usual inner product
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momentum)

χ̈k +Hχ̇k +

[
k2

a2
− a′′

a3
(1− 6ξ) +M2

]
χk = 0, (4)

where we used a−1a′′ = aä + ȧ2. Passing to conformal
time using a−2χ′′k = χ̈k +Hχ̇k, the mode equation takes
the form

χ′′k + ω2
k(η)χk = 0, (5)

as is indeed expected for a sensible mode expansion. In
Eq. (5), ω2

k(η) is given by

ω2
k(η) = k2 − a′′

a
(1− 6ξ) + a2M2

= a2H2

[(
k

aH

)2

+H−2
[
M2 − (1− 6ξ)a−3a′′

]
]
.

(6)

Note that if a−3a′′(1− 6ξ) = M2 is a non-zero constant,
the total coupling of the field is conformal, although the
mass term and the Ricci scalar term individually break
conformal symmetry. Since we will eventually encounter
sufficient complexity, we will assume henceforth that ξ =
0, and make the choice that χ is a “minimally” coupled
scalar field.

In this simple model we can see the underlying cause
of particle creation. For a static case, a is constant (so
a′′ vanishes) and M is constant as well, so ω2

k is constant
in conformal time. If we choose at some initial time a
pure outgoing wave (positive frequency mode),

χk(η) =
1√
2ωk

e−iωkη, (7)

then it will remain a solution without admixture onto
incoming waves (negative frequency modes). If ωk(η) is
not constant (in our simple case due to the a′′/a term
and the mass term), the previous statement need not be
true. One might try an adiabatic approximate solution
of the form

χk(η) =
1√

2ωk(η)
e−i

∫
ωk(η)dη. (8)

This (zeroth-order) adiabatic solution (see, e.g., Ref. [36]
for a discussion of the adiabatic approximation in this
context) is constructed to satisfy the equation of motion
(EOM) Eq. (5) up to terms of O

(
|ω′k/ω2

k|2, |ω′′k/ω3
k|
)
, and

so the conditions for the adiabatic solution to be a good
approximation are that

A ≡
∣∣∣∣
ω′k
ω2
k

∣∣∣∣
2

� 1 and B ≡
∣∣∣∣
ω′′k
ω3
k

∣∣∣∣� 1. (9)

(uk, uk′ ) = −i
∫
Σ dΣα [−gΣ]1/2 uk

↔
∂αu

∗
k′ = δ(3)(k−k′), etc. We

take the usual creation/annihilation algebra [âk, â
†
k′ ] = δ(3)(k−

k′), etc. (see, e.g., pp. 44-45 of Ref. [36]).

If either condition fails, the adiabatic solution is not a
good approximation. When the solution is non-adiabatic
the incoming and outgoing modes (Schrödinger’s “proper
vibrations”) are mixed: particles are created.4 Notice
that in the inflationary universe a′′ is positive. This
means that it is possible to have a “tachyonic” mass for
χ: i.e., ω2

k < 0.
Using the simple scalar field model above, let us see

where the evolution is non-adiabatic. The problem is
very simple if we consider the evolution of the scalar
field in a de Sitter background. In de Sitter space,
H is constant and conformal time and the scale fac-
tor are related by a = −1/ηH where η is in the range
−∞ ≤ η ≤ 0. With the definitions x ≡ kη (0 < x2 <∞)
and γ = M2/H2 − 2, where −2 < γ <∞,

∣∣∣∣
ω′k
ω2
k

∣∣∣∣
2

=

∣∣∣∣
γ2

(x2 + γ)3

∣∣∣∣ , (10)

∣∣∣∣
ω′′k
ω3
k

∣∣∣∣ =

∣∣∣∣
γ2

(x2 + γ)3
+

3γ

(x2 + γ)2

∣∣∣∣ . (11)

Note that γ = 0 is a special point where there would not
be particle creation. This happens if M2/H2 = 2. As
mentioned above, this is where (a′′/a3)(1 − 6ξ) = M2

(for ξ = 0, as we consider here). The condition for
non-adiabatic particle creation, violation of Eq. (9), is
satisfied when x2 ' −γ, or k2η2 = k2/a2H2 ' −γ =
2 − M2/H2. For M2/H2 � 2 the evolution is non-
adiabatic at k/aH ∼ 1, i.e., when a momentum mode
crosses the Hubble radius. But for M2/H2 � 1 the evo-
lution is always very nearly adiabatic and particle cre-
ation is suppressed. The two lessons we have learned
from this model are

1. for M � H, one should not expect significant pro-
duction of particles

2. for M � H particle creation is continuous, since
for any value of conformal time (or, equivalently
the scale factor) there is a comoving momentum
mode k that satisfies k2η2 = 2.

This simple model assumes that the mass of the χ field
remains constant. But if the mass varied during inflation,
one might imagine that today the mass of the species is
much larger than H during inflation, but for some period
during inflation the mass vanished (or at least became
much less than the value ofH) due to the species coupling
to the inflaton. If this occurs there can be an irruption
of the particle species, but only while the mass is less
than O(H). This is exactly what occurs in the models
discussed in the next two subsections.

We remark that for the remainder of this paper, we
employ a simple “chaotic” inflation model rather than

4 Here we are glossing over the fact that one can only really speak
of particles if the evolution is adiabatic.
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this fixed de Sitter background. Production of massive
states during inflation has also been considered for hybrid
inflation models as well as natural inflation models [37]
and the results seem to imply that the phenomenon of
massive particle production is generic.

B. Massive Particle Species Irruption from a
Potential Term

For the first irruption model consider the following sim-
ple two-field model

S =

∫
d4x
√−g

[
1

2
gµν∂µφ∂νφ− V (φ)

+
1

2
gµν∂µχ∂νχ− U(χ, φ)

]
(12)

The φ field will serve as the inflaton. As the purpose
of this paper is to study the the sudden increase in the
population of the particle species (the irruption of the
particle species) χ, rather than referring to χ as “the
second scalar field” we will refer to it as the irrupton.

We will assume the simplest inflaton potential and a
simple inflaton–irrupton interaction term that will serve
our purpose (we refer to this as the “potentially-coupled”
irrupton):

V (φ) =
1

2
m2φ2, (13)

U(χ, φ) =
1

2
g2 (φ− φ∗)2

χ2. (14)

During inflation we will assume φ > 0, φ̇ < 0, and
φ∗ > 0. The recent BICEP2 determination of tensor
modes in the background [4] suggests that the inflaton
mass and the expansion rate during inflation are of or-
der 1014 GeV, and that inflaton field excursions during
inflation are super-Planckian (although see Refs. [5, 6]
for critical analysis of galactic dust foregrounds in con-
nection with this result). The effective mass of the ir-
rupton is M(φ) = g |φ− φ∗|; today, we have φ = 0 and
M(0) = gφ∗. We wish to choose φ∗ so that U(χ, φ) van-
ishes during inflation: since the inflaton field excursion
in this model is super-Planckian, φ∗ may be chosen to be
in excess of MPl, and the mass of the irrupton today may
be of the scale of the Planck mass. We will discuss pos-
sible implications of this observation in the final section
of the paper.

The equation of motion for the (spatially homoge-
neous) inflaton field is

φ̈+ 3Hφ̇+m2φ = −g2 (φ− φ∗)χ2 ≈ 0, (15)

where the approximate equality reflects that fact that
we will ignore the back-reaction on the classical inflaton

field (and hence on the metric) induced by the irrupton.5

For the chosen potential, inflation ends at φ ' 0.2MPl,
and 50 e-folds before the end of inflation corresponds to
φ ' 2.8MPl.

The equation of motion for the irrupton is

χ̈+ 3Hχ̇+
ηij∂i∂jχ

a2(t)
+ g2 (φ− φ∗)2

χ = 0. (16)

Employing the same mode expansion as before and again
making the plane wave ansatz as in Eq. (3), the mode
equation for χk is

χ̈k +Hχ̇k +

[
k2

a2
− a′′

a3
+ g2(φ− φ∗)2

]
χk = 0. (17)

Passing to conformal time the mode equation again takes
the form

χ′′k + ω2
k(η)χk = 0, (18)

but now ω2
k(η) is given by

ω2
k(η) = k2 − a′′

a
+ a2M2

eff

= a2H2

[(
k

aH

)2

+H−2
(
M2

eff − a−3a′′
)
]
, (19)

M2
eff = g2(φ− φ∗)2 ≡M2

g (ν − ν∗)2, (20)

where Mg ≡ gMPl, and we have defined the variable
ν ≡ φ/MPl, where MPl is the Planck mass, for future
convenience.

Just as before, species irrupton will occur when one of
the conditions in Eq. (9) is violated. For sure, ω′k and
ω′′k are more complicated in this model than the model of
Sec. II A, but if we make use of what we learned in Sec.
II A we expect that irruption will occur when ω2

k passes
through zero. Since (k/aH)2 is positive, for ω2

k to pass
through zero we must have H−2

(
M2

eff − a−3a′′
)
< 0. A

graph of H−2
(
M2

eff − a−3a′′
)

as a function of cosmic time
(not conformal time) is given in Fig. 1. Regions in the
evolution where the above quantity is negative is shown
by the dashed part of the curve. Irruption will occur in
and around the dashed regions.

A basic understanding of the results may be obtained if
we make a couple of simple approximations. First, recall
that

a′′

a3
=

4πG

3
(ρ− 3p) =

8πG

3

(
2ρ− 3

2
φ̇2

)
, (21)

5 One can, and we will, justify this a posteriori for the present pur-
poses by showing that the energy density extracted by irrupton
production is a negligible fraction of the inflaton energy density.
See however Refs. [17, 21] for a discussion of observational ef-
fects in the cosmic microwave background which can arise in this
model, or its fermionic cognate, when the back-reaction is not
ignored.
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FIG. 1. (Color online) A graph of H−2(M2
eff − a−3a′′) as a function of time in two models for four choices of parameters. The

models are for inflaton–irrupton coupling through either the potential term (discussed in Sec. II B) or through the kinetic term
(discussed in Sec. II C). Where the lines are dashed, H−2(M2

eff − a−3a′′) < 0. The dashed vertical lines denoted ‘tEI’ mark the
end of the inflationary phase. Time is in units of m−1, where m is the inflaton mass, and t = 0 corresponds to the time when
φ = 3MPl. The inflaton field has the value φ = φ∗ = 0.8MPl at t = 13.6, indicated by the dashed vertical lines marked ‘t∗.’
Model parameters are chosen such that in each individual plot the irrupton masses are the same at φ ≡ 0 and a′′ = 0 (i.e., at
late time) for the two models.

where the first equality holds for any FRW model, and
the second equality holds if the energy density is dom-
inated by the inflaton (regardless of inflaton potential).
One could numerically solve the inflaton field equation
for φ̇, or use the slow-roll approximation for φ̇; however,
to get a rough idea of what is expected we can make an
even cruder (but still reasonable) approximation and ig-

nore the φ̇ term in Eq. (21) altogether with the result
a−3a′′ ∼ 2H2.

Since for this inflaton model φ ∼ 105H during infla-
tion, unless g is quite small Meff will be much larger than
H except in a very narrow range near φ = φ∗. So for ir-
ruption we may write M2

eff = g2δφ2 where δφ = φ− φ∗.
Using M2

eff = g2δφ2 and a−3a′′ = 2H2, the square
bracket in Eq. (19) becomes (k/aH)2 − 2 + g2δφ2/H2.

We expect irruption when (k/aH)2 ∼ 2 − g2δφ2/H2 ∼
2− g2δφ2/m2, where we have made the further approxi-
mation that H ∼ m, the inflaton mass.

We can draw a couple of expected results from these
crude approximations:

1. The condition for irruption, ω2
k ∼ 0, obtains for

only for a rather narrow range of |δφ| . m/g. Since
m ∼ 1013 GeV, MPl ∼ 1019 GeV, and φ ∼ MPl,
unless g . 10−6 irruption occurs for δφ� φ.

2. The duration of irruption will increase as g de-
creases, roughly as |δφ| ∼ m/g.

3. Since g2δφ2/H2 is positive definite, the largest
k/aH can be during irruption is of order unity.
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4. The spectrum of produced particles is peaked; po-
tentially strongly peaked at large g. This is differ-
ent than the model of the previous section.

5. Particles with present mass much larger than H can
be created during inflation if the particle species
couples to the inflaton is such a way that its effec-
tive mass vanishes during inflation.

6. In this model, if g is not much smaller than about
0.1 or so, the present mass of the irrupton can be
larger than the Planck mass. We will speculate on
the implications and complications of this fact in
the concluding section.

7. We have assumed the irrupton is stable. Again, we
will discuss this in the concluding section.

In the next subsection we will consider an even more
complicated irruption model. It will prove very useful to
understand the results of that model on the basis of the
results of these first two simpler models.

C. Massive Particle Species Irruption from
Non-Canonical Kinetic Term

Now consider the following two-field model where the
inflaton is coupled to the irrupton through the irrupton
kinetic term (we refer to this as the “kinetically-coupled”
irrupton)

S =

∫
d4x
√−g

[
1

2
gµν∂µφ∂νφ− V (φ)

+
1

2
e2f(φ)gµν∂µχ∂νχ− U(χ, φ)

]
,

(22)

where φ is the inflaton and χ is the irrupton. Here, U and
V are potentials defined such that the U contains only
potential terms depending on χ and χ − φ interaction
terms, and V contains all terms depending on φ only.

We again take φ to be a spatially homogeneous classical
field, governed by the EOM

φ̈+ 3Hφ̇+ V,φ = f,φe
2f(φ)(∂χ)2 − U(φ, χ),φ ≈ 0, (23)

where the approximate equality above reflects that fact
that we will again ignore the back-reaction on the classi-
cal inflaton field (and hence the metric) induced by the

χ field. In terms of the dimensionless field ν ≡ φ/MPl we
have

ν̈ + 3Hν̇ +m2ν = 0, (24)

where we have specialized to V (φ) = 1
2m

2φ2. Ignoring
the back-reaction on the metric is equivalent to ignoring
the contribution of the χ field to the total energy density,
so from the Friedmann equation it follows that

H(t) ≡ ȧ(t)

a(t)
=

√
4π

3

(
ν̇2 +m2ν2

)1/2
. (25)

For our numerical work in this paper we will solve the
classical field equation for ν is assuming that ν(t0 = 0) =
3 and that the inflaton field undergoes initial slow-roll
ν̇(t0 = 0) = −1/

√
12π, yielding roughly 57 e-foldings

of inflation. We also fix the normalization of the scale
parameter to be a(tEI) = 1 where tEI ≈ 17.5 is the end
of inflation (defined to be the moment when ä(tEI) = 0,
or w = −1/3) which gives H(tEI) ≈ 0.50.6

The irrupton field χ is governed by the field equation

χ̈+ 3Hχ̇+
ηij∂i∂jχ

a2(t)
+ 2f,φφ̇χ̇+ e−2f(φ)U,χ = 0. (26)

Specializing to U(χ, φ) ≡ 1
2 · U(φ) · χ2, passing to the

ν variable and making a field redefinition µ = ef(ν)χ to
eliminate the mixed derivative term,7 this becomes

µ̈+ 3Hµ̇+



ηij∂i∂j
a2

− f,ν (ν̈ + 3Hν̇)

−ν̇2
(
f,νν + f2

,ν

)
+ e−2f(ν)U(ν)


µ = 0.

(27)

We again mode-expand µ =
∑
k âkuk+ â†ku

∗
k and make

the plane wave ansatz

uk(x, t) =
eik·x

(2π)3/2a(t)
µk(t) (28)

where k is the comoving momentum. This gives the mode
equation for µk

µ̈k +Hµ̇k +



k2

a2
− a′′

a3
+m2νf,ν

−ν̇2
(
f,νν + f2

,ν

)
+ e−2f(ν)U(ν)


µk = 0,

(29)

where we used Eq. (24) to simplify.
In this paper we will specialize to the potential U(ν) =

M2 and we assume that the function f(φ) takes the form
f(φ) = −(φ− φ∗)2/2ε2M2

Pl, which implies f(ν) = −(ν −
ν∗)2/2ε2. We then have f,ν = −(ν − ν∗)/ε2 and f,νν =
−1/ε2, so that the mode equation can be written in the
form:
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µ̈k +Hµ̇k +
ω2
k(η)

a2
µk = 0 ⇔ µ′′k + ω2

k(η)µk = 0 (30)

ω2
k(η) = k2 − a′′

a
+ a2M2

eff = a2H2

[(
k

aH

)2

+H−2(M2
eff − a−3a′′)

]
(31)

M2
eff = M2 exp

[
(ν − ν∗)2

ε2

]
− m2

ε2
ν(ν − ν∗) +

ν̇2

ε2

[
1− 1

ε2
(ν − ν∗)2

]
. (32)

which implies that the late-time (ν, ν̇ ≈ 0) effective mass

of the µ field is given by M∞eff = Meν
2
∗/2ε

2

, which may
be much larger than M if ε � ν∗. In all our numerical
work, we will take ν∗ = 0.8; the solution of the mode
equation becomes increasingly numerically intractable as
ν∗ is increased or ε is decreased.

Note that as ε → ∞, Meff → M = constant. Thus
in the limit of large ε, the kinetically-coupled irrupton
model approaches the simple model of Sec. II A, albeit in
a different inflationary background, as we already noted.

Before we discuss the numerical calculation of species
irruption in this model we can observe similarities and
differences between this model and potentially-coupled
irruption model. In Fig. 1 we show the function
H−2(M2

eff − a−3a′′) for a variety of parameter choices.
There are some general observations we can draw:

1. One very general result is that the kinetically-
coupled irrupton mass is very large at early time.

2. For some model parameters the function can ap-
pear similar to that for the potentially-coupled ir-
rupton model (see, e.g., the upper-right plot).

3. For some model parameters the function never be-
comes negative (see, e.g., the lower plots).

4. The region where the function is negative is not
centered on the time when φ = φ∗.

D. Irrupton number density and irrupton initial
conditions

Now let us turn to the numerical calculation of irrup-
ton irruption. As noted, the form of the mode equation
for µk on the right in Eq. (30) is an “harmonic oscilla-
tor” equation with η-dependent frequency in conformal
time; however, we find it more convenient8 for our nu-
merical work to use the form on the left of Eq. (30) in

6 We denote all parameters at the end of inflation by the subscript
“EI”.

7 At the level of the action, this re-definition canonically normal-
izes the µ kinetic term: S ⊃

∫
d4x
√−g 1

2
µ̇2.

8 The relation dt = a dη implies that for exponentially small a, as
occurs in the early inflationary epoch, a very large range of η

terms of cosmic time t.9 We also emphasize that if ω2
k

anywhere runs negative (as it may do owing to the pres-
ence of the −a′′/a term, which would be absent if the
irrupton were coupled conformally to the metric, rather
than minimally) the mode becomes “tachyonic” and the
mode function diverges exponentially.10

During the non-adiabatic phase, the notion of parti-
cle number is ambiguous [36], but in both the early-time
and late-time regimes, where the expansion is adiabatic
with respect to any given mode, the notion of a particle
number regains physical validity. In order to extract the
number of particles produced in mode k, we make use of
the method of Bogoliubov coefficients. We specify some
initial conditions (equivalent to the in-vacuum choice; see
below) then numerically integrate the mode equation for
µk to some late time after inflation has ceased (ä < 0),
and use this solution to extract the Bogoliubov coeffi-
cient βk giving the overlap of the exact solution to the
mode equation subject to the early-time-vacuum initial
conditions with the exact solution which is pure negative-
frequency at late-time. This gives the differential comov-
ing number density of particles present in mode k in the
asymptotic late time regime as

(2π)3 dn

d3k
≡ |βk|2 =

ωk
2

[
|µk|2 + ω−2

k |µ′k|
2
]
− 1

2

=
ωk
2

[
|µk|2 +

a2

ω2
k

|µ̇k|2
]
− 1

2
. (33)

Clearly the identification of the rhs of Eq. (33) as the ab-
solute value squared of a complex quantity is only sensi-
ble if the rhs is real and positive. If ω2

k < 0 (the tachyonic
regime) the rhs is imaginary and cannot be identified as
|βk|2. While the identification of the rhs as |βk|2 is sen-
sible if ω2

k > 0, it can only be interpreted as a particle

must be covered to cover even a small range of t. Since the 57
e-folds of inflation in our computation last ∆t ≈ 18 in the units
in which we perform the computation, whereas a(0) ∼ 10−25,
this would be a significant problem.

9 Here, and throughout the remainder of the paper, we use µk
generically to mean ‘the mode function.’ Whenever the constant-
M or potentially-coupled models are under discussion, µk should
of course be read instead as χk: cf. Eq. (30) and Eqs. (5) and/or
(18).

10 Despite this exponential growth, the evolution does always ex-
actly preserve the norms defined in footnote 3.
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density in the adiabatic regime, A =
∣∣ω′k/ω2

k

∣∣2 � 1 and

B =
∣∣ω′′k/ω3

k

∣∣ � 1. We will frequently have recourse to
refer to the differential comoving number density nc

k of
particles per logarithmic interval of k ≡ |k| which is given
by

nc
k ≡

dn

d ln k
≡ k3

2π2
|βk|2, (34)

as well as the total physical number density np of parti-
cles, which is given by

np =
1

a3

∫
d3k

(2π)3
|βk|2 =

1

a3

∫ ∞

−∞
nc
k d ln k. (35)

If ω2
k does run negative anywhere, the resulting tachyonic

evolution of the mode function will show up as an expo-
nential enhancement in the particle production since µk
and µ̇k will be exponentially larger at late time.11 On
the other hand, if ω2

k � 0 is everywhere too large (say,
we choose k much larger than other parameters) then
there is never appreciable particle creation as the mode
will suffer neither tachyonic evolution nor a strongly non-
adiabatic background space-time expansion with respect
to that mode.

The question of which initial conditions to specify for
the mode function µk is subtle since their choice defines
which basis of solutions are used for the mode expan-
sion, making the question equivalent to the deep issue
of the choice of vacuum in a non-static spacetime [36].
For practical reasons of numerical stability, we choose
initial conditions such that we start in an instantaneous
Minkowski vacuum:12

µk(tk0) =
eiπ/4√
2ωk(tk0)

, and µ̇k(tk0) = −iωk(tk0)

a(tk0)
µk(tk0),

(36)

for mode k at a time t = tk0 chosen such that, for the
mode in question, ωk(tk0)/a(tk0) is equal to a very large
threshold value (at least 5 × 103m). That is, we pick
the vacuum state |0〉 such that âk(tk0)|0〉 = 0, which im-
plies that nc

k(tk0) = 0. We immediately note that this
choice of initial conditions does indeed specify a differ-
ent (zeroth-order adiabatic) vacuum for every mode as
tk0 is mode-dependent; however, since up to and includ-
ing this time, the adiabaticity parameters |ω′k/ω2

k|2 � 1
and |ω′′k/ω3

k| � 1 are very small, and the bases of mode
functions specified by the imposition of the initial con-

ditions at tk0 or tk0
′

differ from each other only by terms

11 While this statement is true, the issue is a bit more subtle than
it appears. It will be discussed in more detail in Sec. V.

12 These initial conditions would obtain by requiring the exact solu-
tion match onto the zeroth-order adiabatic approximate solution
at t = tk0 , correct up to terms of zeroth adiabatic order. That is,
these initial conditions specify a ‘zeroth-order adiabatic vacuum.’
See, e.g., Sec. 3.5 of Ref. [36].

of adiabatic order greater than zero, the family of vacua
are all approximately equivalent. Indeed, we have ex-
plicitly verified that by increasing the threshold value of
ωk(tk0)/a(tk0), the amount of particle production we find
does not change. There is one subtlety involved here,
mainly relevant for the kinetically-coupled case: if Meff

is very large at early time (and/or k is very small), ω2
k/a

2

may cross the large threshold value while dominated by
the M2

eff term, which could possibly lead to a situation
where tk0 comes after the mode in question crosses outside
the Hubble radius at tHC (see Figs. 7 and 8). This would
be potentially problematic on conceptual grounds, and
we thus choose to present results only for modes which
satisfy tk0 < tHC.

III. PRESENT-DAY ABUNDANCE FOR
STABLE IRRUPTONS

Before we turn to a more detailed discussion of our
numerical work, we specify how the comoving number
density of irruptons produced in the final e-foldings of
inflation is translated into a physical present-day relic
abundance assuming the irrupton is stable. We follow
the discussion of Ref. [33].

The irruptons are produced mainly during the final
stages of inflation, which we assume to be followed by
a brief matter-dominated phase characterized by coher-
ent inflaton oscillations about the potential minimum
φ = 0. At the onset of oscillations, the universe is in
a low-entropy frozen state owing to the inflationary ex-
pansion; however, after some number of inflaton oscilla-
tions, during which time the overwhelming majority of
the energy density of the universe is contained in the
inflaton field, the inflaton energy density is converted to
radiation, heating the universe to some high temperature
TRH following which, in the standard thermal history of
the universe, there is no significant further entropy pro-
duction and the universe in the large simply undergoes
adiabatic expansion to the present time.

We consider first the epoch after the inflaton energy
density has been converted to radiation. The inflaton is
non-relativistic (NR) so that the irrupton energy density,
ρI = M∞effn

p with np given by Eq. (35) and where M∞eff is
the late-time effective irrupton mass (see Eq. (42) below).
Under adiabatic expansion the comoving entropy density
is constant, so it follows that the ratio

ρI
ρR

geff

heff
T (37)

is constant, where ρR is the radiation energy density, and
geff (heff) is the effective number of relativistic degrees
of freedom relevant for the computation of ρR (entropy
density s). The present day relic abundance of the heavy
irrupton species is thus

ΩIh
2
∣∣
0

= ΩRh
2
∣∣
0

(
TRH

T0

)(
heff

geff

)

0

(
ρI
ρR

)

RH

, (38)
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where ‘RH’ denotes quantities evaluated at the mo-
ment of matter-radiation equality at the completion of
(p)reheating, T0 = 2.7255 K [38], ΩRh

2 = 4.149 ×
10−5, geff,0 = 3.38 and heff,0 = 3.91 [39] and we have
taken geff = heff at the completion of (p)reheating.

It remains to determine (ρI/ρR)RH. To do this,
we note that during the matter-dominated inflaton-
oscillation epoch, the overwhelming majority of the en-
ergy density is in the NR inflaton coherent oscillations, so
the Friedmann equation yields ρφ ≈ ρtot = 3M2

PlH
2/8π.

The irruptons carry a subdominant component of the
energy density (see Sec. VI) and are already NR at this
epoch, so we still have ρI = M∞effn

p with np given by
Eq. (35) (the mass of the irrupton is fairly well approxi-
mated by its asymptotic large-time value M∞eff after a few
inflaton oscillations). The ratio (ρI/ρφ)osc. ∼ H−2a−3 ∼
t−2w is thus constant for a pure-matter era (w = 0). This
means that we may extract ρI at any point during the
matter-dominated era once ρI has stabilized. In order to
relate (ρI/ρφ)osc. to (ρI/ρR)RH we must now make two
assumptions:

1. the entire energy density of the inflaton coherent
oscillations ends up in radiation after the inflaton
oscillations decay

2. the transition between the matter-dominated os-
cillation epoch and the radiation-dominated epoch
happens fairly quickly so that a) the universe
does not expand significantly during the transition
which would cause the ratio ρI/ρtotal = ρI/(ρR +
ρφ) to change non-trivially, and b) there is no sig-
nificant further entropy production once in the ra-
diation dominated era.

Under these assumptions, it it a good approximation
to set (ρI/ρφ)osc. ≈ (ρI/ρR)RH and to apply Eq. (38).
Putting this all together, we have

ΩIh
2
∣∣
0
≈ ΩRh

2
∣∣
0

(
TRH

T0

)(
heff

geff

)

0

×
(

3M2
Pl

8π
H2(t̃ )

)−1

×
[
M∞eff

a3(t̃ )

∫ ∞

−∞
nc
k(t̃ ) d ln k

]
(39)

where t̃ is some reference time during the matter-
dominated inflaton oscillation era at which we choose to
extract the particle spectrum from our numerical solu-
tions (see Sec. IV). In order to make contact with our
numerical simulations in which we work in units for k,
H, and t which are based on m = 1, we can re-write the
above result as

ΩIh
2
∣∣
0
≈ 8π

3

(
ΩRh

2
)

0

(
TRH

109GeV

)(
109GeV

T0

)

×
(
heff

geff

)

0

( m

1013GeV

)2
(

1013GeV

MPl

)2

× M∞eff
′

H ′2(t̃ )a3(t̃ )

∫ ∞

−∞
nck′(t̃ ) d ln k′ (40)

or

ΩIh
2
∣∣
0
×
(

TRH

109GeV

)−1

×
( m

1013GeV

)−2

≈ 1.1× 106 ×
[

M∞eff
′

H ′2(t̃)a3(t̃)
×
∫ ∞

−∞
nck′(t̃ ) d ln k′

]
,

(41)

where the values of H ′, M∞eff
′, and nk′ are all extracted

from the numerical solution of the ν EOM and the mode
equation for µk in the units where m = 1. For the three
models we have discussed in this paper, M∞eff is given by

M∞eff
′ =





M/m constant M

(Mg/m)ν∗ = 0.8Mg potentially-coupled

(M/m) exp(ν2
∗/2ε

2) kinetically-coupled
(42)

Also, in the matter-dominated era after inflation,
H ′2(t̃)a3(t̃) ' 0.18.

We shall henceforth drop the primes with the under-
standing that all of these quantities are measured in units
of m.

IV. NUMERICAL METHODS AND ISSUES

In order to calculate the final value of the Bogoliubov
coefficient, βk, and hence the number density of the irrup-
ton, in principle we require the late-time values of |µk|2
and |µ̇k|2 [see Eq. (33)]. The straightforward procedure is
to integrate the 7-dimensional system of first-order cou-
pled ordinary differential equations (odes) for the scale
factor a, the inflaton field value ν and its derivative ν̇,
and the real and imaginary components of the irrupton
mode function and its first derivatives

F [t] ≡ { a, ν, ν̇, Re [µk] , Im [µk] , Re [µ̇k] , Im [µ̇k] } .
(43)

In some cases we will consider, this straightforward pro-
cedure is impractical. One issue is for large irrupton mass
the irrupton oscillation frequency may be much, much
larger than the inflaton oscillation frequency. We will
also see that for some parameters we require integration
of the system very deep into the matter-dominated era af-
ter inflation. Integrating the 7-dimensional system is oc-
casionally unwieldy and computationally limited. There-
fore, we will have occasion to employ a different compu-
tational strategy that can be used in the regimes where
there is no tachyonic phase.

A. Integration of the Full Seven-Dimensional
System

For the numerical integration of the 7-dimensional sys-
tem of odes we utilized the the Runge-Kutta Dormand-
Prince 8(53) algorithm dop853 natively implemented in
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the scipy v0.13 module for python v2.7, and have
cross-checked our results against at least one other solver
(scipy’s native lsoda algorithm) for a large subset of
parameter values, finding agreement for most input pa-
rameter choices, and noting that it is fairly obviously the
lsoda algorithm which fails when the two numerical so-
lutions disagree.

In implementing these algorithms it was necessary to
impose very strict error tolerances and small maximum
step sizes δt as a variety of egregious numerical issues
arise in solving the system of equations owing to the mag-
nitude of some terms which enter. For example, an in-
complete cancellation at early times between the positive
and negative terms in Eq. (33) arising from tolerances
which are too loose can cause |βk|2 to jump nonphysi-
cally to a value many orders of magnitude larger than it
should be in the first few time steps, and this erroneously
large value places a floor on how small a value of |βk|2 can
be probed in our simulations at late times, which causes
complications in tracking certain features in the particle
spectra.

Furthermore, the cosmic-time oscillation frequency
ωk/a can become very large in both the early and late
evolution of the inflationary epoch making it computa-
tionally unfeasible (given the number of solutions re-
quired to scan over parameter space) to perform suf-
ficiently small δt time steps when the oscillation fre-
quency ωk/a of the mode function is larger than about
O(104).13 This necessitated a subdivision of the com-
putation. As we are ignoring the back-reaction due
to the irrupton on the space-time metric, as a first
step we solved the restricted 3-dimensional problem for
F̃ [t] = { a , ν , ν̇ } specifying initial conditions F̃ [0] ={

1.60928× 10−25 , 3 , −1/
√

12π
}

where the value of
a(0) was set by the requirement that a(tEI) = 1. We
used this solution to find the time tk0 (or more precisely,
the nearest sampled time-step earlier than this) where
ωk/a ∼ 5 × 103 and is decreasing. As discussed above,
this is the point at which we specify the mode function µk
to match the zeroth-order approximate adiabatic solution
(i.e., specify the in-vacuum). Having identified this point,
we then switched to integrating the full 7-dimensional
system14 F [t] starting with initial conditions

F [tk0 ] =

{
ã(tk0) , ν̃(tk0) , ˙̃ν(tk0) ,

1

2
√
ωk(tk0)

,

1

2
√
ωk(tk0)

,

√
ωk(tk0)

2ã(tk0)
, −

√
ωk(tk0)

2ã(tk0)

}
(44)

13 As was alluded to above (see footnote 8), the opposite side of
the same coin is that by going to conformal time, the domain
of the η integration becomes unfeasibly long to step forward any
reasonable amount of cosmic time.

14 For reasons of numerical accuracy, we prefer this approach to
interpolating the already-known solution for the restricted 3-
dimensional problem and solving just the 4-dimensional system
for µk.

where the quantities with a tilde are obtained from the
integration of the restricted 3-dimensional problem, and
the µk initial conditions are precisely those defined in
Eq. (36). We obtain |βk|2 from this full solution via Eq.
(33); an example plot demonstrating the time-evolution
of |βk|2 thus extracted is shown in Fig. 2.

We extract the final particle spectrum using the
‘asymptotic’ value of |βk|2 deep in the matter-dominated
inflaton oscillation era. When |βk|2 has stabilized to
a damped oscillation about a constant central value at
large time, we extract the asymptotic value by averaging
over the last few oscillations at some late time. How-
ever, for certain parameter choices, |βk|2 does not sta-
bilize to oscillations about a constant central value even
by t = 500, but rather is still executing oscillation about
a downward-drifting central value. Although for such
modes a stable asymptotic value for |βk|2 is achieved
if the mode equation is integrated for sufficiently long
(see Appendix A), this is not computationally feasible
via straightforward solution of the 7-dimensional system,
and below we describe the method we use to obtain the
asymptotic value of |βk|2 at very late time in such cases.

B. The Iterative Solution Approach

Now we describe another approach to the calculation of
|βk|2 that can be used only in the absence of a tachyonic
phase. This approach is amenable to a very useful and
computationally much less demanding iterative solution
approach when |βk| remains small. It also is the formal-
ism we use to extract the late-time asymptotic value of
|βk|2 for model parameters where it has not stabilized to
its asymptotic value by t of a few hundred, which gener-
ically only occurs for modes without a tachyonic phase.

If ωk is real (no tachyonic behavior), the solution to the
mode equation may be written as (see, e.g., Ref. [40])

µk =
αk(t)√

2ωk
e−iΦ(t) +

βk(t)√
2ωk

e+iΦ(t) (45)

where the accumulated phase Φ(t) is given by [obviously
Φ0 ≡ Φ(tk0)]

Φ(t) ≡
∫ t

tk0

ωk(t′)
a(t′)

dt′ + Φ0. (46)

Equation (45) is a solution to the mode equation (30) if
α(t) and β(t) satisfy the coupled equations of motion

α̇k =
ω̇k
2ωk

βke
2iΦ

β̇k =
ω̇k
2ωk

αke
−2iΦ, (47)

which also implies that

µ̇k = −iωk
a

[
αk(t)√

2ωk
e−iΦ(t) − βk(t)√

2ωk
e+iΦ(t)

]
. (48)
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FIG. 2. The time evolution of
∣∣∣ωk

2

[
|µk|2 + a2

ω2
k
|µ̇k|2

]
− 1

2

∣∣∣ for two representative cases for the kinetically-coupled irrupton as

extracted from the numerical solution for the choices of parameters M = 2.5, ε = 0.6 and k = 2.3 × 10−15 (left plot) and

M = 4.0, ε = 0.6 and k = 4.3× 10−5 (right plot). If ω2
k > 0, ωk

2

[
|µk|2 + a2

ω2
k
|µ̇k|2

]
− 1

2
is real and equal to |βk|2. The evolution

during the tachyonic phase is presented for demonstrative purposes to indicate the rapid increase during this period; we caution
however that there is no fashion in which it can be interpreted as a particle number during the tachyonic phase. At both early-
and late-times, the background space-time evolution is sufficiently adiabatic with respect to this mode that |βk|2 can indeed

be interpreted as the occupation number for mode k = kk̂; note that the late-time behavior (i.e., after the end of inflation)
shows that |βk|2 undergoes damped oscillation about a constant non-zero value, indicating particle production has occurred.
The times tk0 , tHC, t∗ and tEI indicate, respectively, the times when the initial conditions Eq. (44) were imposed, when the mode
crosses the Hubble radius (k = aH), when ν = ν∗, and when inflation ends (ä < 0).

In line with our previous discussion, we take initial con-
ditions

µk(tk0) =
1√

2ωk(tk0)
eiπ/4

µ̇k(tk0) = −iωk(tk0)

a(tk0)
µk(tk0), (49)

where the threshold value of ωk/a which dictates the
value of tk0 can be taken to be much larger than
ωk(tk0)/a(tk0) = 5×103 in this method provided we have a
sufficiently accurate background solution for { a, ν, ν̇ };
we utilize a threshold value of ωk(tk0)/a(tk0) = 107, and
have checked explicitly (for a subset of parameter values)
that the results are insensitive to this parameter provided
it remains large. These initial conditions imply that (Φ0

is of course arbitrary; we simply take the value consistent
with our previous discussion)

αk(tk0) = 1, βk(tk0) = 0, and Φ0 = −π
4
. (50)

The occupancy number for the mode k = kk̂ is given by

nk =
1

2

[
|αk|2 + |βk|2 − 1

]
= |βk|2 = |αk|2 − 1, (51)

where we have used the Wronskian condition |αk|2 −
|βk|2 = 1 at the last two steps; this condition follows from
demanding correctly normalized modes per footnote 3.

This approach is amenable to an iterative solution
when |βk| is small and the evolution is nearly adiabatic

(we will quantify this statement shortly). To develop the
iterative solution we introduce a formal small parameter
ε by rescaling ω̇k/ωk:

ω̇k
ωk
→ ε

ω̇k
ωk
, (52)

and expanding the solutions in powers of ε

αk(t) ≡
∞∑

n=0

ε2nα
(2n)
k (t)

βk(t) ≡
∞∑

n=0

ε2n+1β
(2n+1)
k (t), (53)

in terms of which we impose the initial conditions on the

α
(n)
k (t) and β

(n)
k (t) as

α
(0)
k (t) ≡ 1, Φ0 = −π

4
(54)

α
(2n)
k (tk0) = β

(2n−1)
k (tk0) = 0 for n ≥ 1. (55)

Substitution into the equations of motion for αk and βk,
followed by equating coefficients of εn to zero for all n,
then sending ε → 1 at the end of the process, yields the

equations of motion for α
(n)
k and β

(n)
k :

α̇
(0)
k = 0

β̇
(2n+1)
k =

ω̇k
2ωk

α
(2n)
k e−2iΦ for n ≥ 0

α̇
(2n+2)
k =

ω̇k
2ωk

β
(2n+1)
k e+2iΦ for n ≥ 0, (56)
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which has the following solutions consistent with the ini-
tial conditions:

α
(0)
k (t) ≡ 1, Φ0 = −π

4

β
(2n+1)
k (t) =

∫ t

tk0

ω̇k(t′)
2ωk(t′)

α
(2n)
k (t′)e−2iΦ(t′) dt′

α
(2n+2)
k (t) =

∫ t

tk0

ω̇k(t′)
2ωk(t′)

β
(2n+1)
k (t′)e+2iΦ(t′) dt′, (57)

where the last two lines hold for n ≥ 0. From these ex-
pressions, the iterative solution method is obvious. Con-
vergence is generally obtained after only a few iterations;
we always truncate the series for |βk|2 at the tenth iterate
and use this value in Eq. (51) to obtain nk.

Note however that to utilize this method, we still
need a very accurate solution for the background F̃ [t] =
{ a , ν , ν̇ } out to whatever time we choose to run the
solution, which must be obtained by solving the (re-
stricted 3-dimensional set of) odes for these fields per
the methods discussed in the previous subsection. Al-
though dramatically less computationally intensive than
solving the full 7-dimensional set of odes, this is still time-
consuming if we wish to have the solutions out to very
late time to track |βk|2 all the way to its asymptotic
value. In the next subsection we describe how in our ac-
tual numerical implementation of this iterated method,
we have made a modification to the procedure just out-
lined which allows this problem also to be avoided.

In order to understand the conditions for the iterative
solution to be a good approximation, consider the first-

order solution β
(1)
k , which yields the lowest-order approx-

imation for the occupancy number nk:

n
(1)
k =

∣∣∣β(1)
k

∣∣∣
2

=

∣∣∣∣∣

∫ t

tk0

ω̇k(t′)
2ωk(t′)

e−2iΦ(t′) dt′
∣∣∣∣∣

2

. (58)

Since in the absence of a tachyonic phase ωk(t) is ev-

erywhere positive and real, Φ̇(t) = ω(t)/a(t) > 0, and
the accumulated phase is a strictly increasing function of
time. Thus, we can recast the first-order approximation
using the accumulated phase as the integration variable:

n
(1)
k =

∣∣∣β(1)
k

∣∣∣
2

=
1

4

∣∣∣∣∣

∫ Φ(t)

Φ0

ω′k(t′)
ω2
k(t′)

∣∣∣∣
t′=t′(Φ)

e−2iΦ dΦ

∣∣∣∣∣

2

.

(59)

In the asymptotic late-time regime t → ∞, we have
Φ(t)→∞, so that

n
(1)
k (t→∞) =

1

4

∣∣∣∣
∫ ∞

Φ0

ω′k
ω2
k

e−2iΦ dΦ

∣∣∣∣
2

≤
∫ ∞

Φ0

∣∣∣∣
ω′k
ω2
k

∣∣∣∣
2

dΦ =

∫ ∞

Φ0

A dΦ, (60)

where we used the Cauchy-Schwarz inequality and A is
the adiabaticity parameter defined in Eq. (9). The ap-
pearance in the integral of the ‘square-root’ (with phase)

of the adiabaticity parameter A refines our previous ar-
gument that the size of the adiabaticity parameters limits
the amount of particle production. It is in fact the total
time-integrated magnitude of the adiabaticity parameter
which provides a hard upper limit to the amount of par-
ticle production. Note of course that modifications to the
adiabaticity parameter near its maximum clearly impact
the upper bound more strongly.

It is important to note that the simple expression in
Eq. (60) is only an extremely crude upper bound to

n
(1)
k (t → ∞); we do not expect this bound to be sat-

urated as it represents the integral of the envelope of the
highly oscillatory integrand, rather than the integrand
itself. Phase cancellations are important.

C. Late-time Solution in the Matter-Dominated
Era

Well after inflation ends the dynamics of the expan-
sion of the universe is that of a matter-dominated (MD)
model with the energy density from the oscillating infla-
ton field (of course, the energy in the inflaton field even-
tually must be converted to radiation, so this MD phase
is not of infinite duration; absent postulating a specific
model for this process, we cannot assess its impact on
our results). Where necessary, we exploit this fact to ex-
tend our solution for |βk|2 very deep into the MD era to
extract its asymptotic late-time value without having to
solve a set of odes.

For a MD phase the scale factor evolves as a(t) ∝ t2/3.
We will choose a reference time tref following inflation
deep into the MD era (in our computations, we use tref ∼
103). Then the scale factor and expansion rate may be
written as

a(t) = aref

(
t− τ
tref − τ

)2/3

and H =
2

3

1

t− τ , (61)

where τ is the effective bang time assuming a MD uni-
verse all the way back to the singularity; τ has no physical
significance. The inflaton field and its time derivative are
given by

ν(t) = A
sin(t− τ)

t− τ +B
cos(t− τ)

t− τ ,

ν̇(t) = A
cos(t− τ)

t− τ −A sin(t− τ)

(t− τ)2

−B sin(t− τ)

t− τ −B cos(t− τ)

(t− τ)2
, (62)

where A and B are given by

A ≡ (ν̇ref(tref − τ) + νref) cos(tref − τ)

+ νref(tref − τ) sin(tref − τ),

B ≡ − (ν̇ref(tref − τ) + νref) sin(tref − τ)

+ νref(tref − τ) cos(tref − τ). (63)
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For the late-time MD evolution we require ω̇k/ωk.
There are three terms in the expression for ω2

k(t): k2,
a′′/a, and a2M2

eff . At late-time in the MD era the three

terms scale as t0, t−2/3, and t4/3, respectively, so at
late time we will use ω2

k(t) ' a2(t)M2
eff . This leads to

ω̇k/ωk = H + Ṁeff/Meff .

At late time

Meff = M (constant M)

Meff = Mg(ν∗ − ν) (potentially-coupled)

Meff 'M exp
[
(ν − ν∗)2/2ε2

]
(kinetically-coupled).

(64)

For all cases we can write for the late-time MD era

ω̇k
2ωk

=
1

2
H − δ ν̇, (65)

where H(t) is given by Eq. (61), ν̇ is given in Eq. (62),
and for ν � ν∗, δ = 0, δ = 1/2ν∗ and δ ' ν∗/2ε2 for the

constant-M , potentially-coupled, and kinetically-coupled
models, respectively.

We are now positioned to find the expressions for α(t)
and β(t) in the MD era. First consider the accumulated
phase Φ(t):

Φ(t) ≡ Φ0 +

∫ t

tk0

ωk(t′)
a(t′)

dt′

≈ Φ0 +

∫ tref

tk0

ωk(t′)
a(t′)

dt′ +M∞(t− tref)

≡ Φref +M∞(t− tref), (66)

where Φ0 is the accumulated phase at tk0 , Φref is evaluated
in the full numerical evolution, and M∞ = Mgν∗ in the

potentially-coupled model and M∞ = Meν
2
∗/2ε

2

in the
kinetically-coupled model. We have assumed here that
|ν| � ν∗.

Supposing that we have obtained α
(n)
k,ref = α

(n)
k (tref)

and β
(n)
k,ref = β

(n)
k (tref) (e.g., by the methods of the previ-

ous subsection), we may now use our MD-era expressions
to extend these to later times t > tref by iterating (for
n ≥ 0)

β
(2n+1)
k (t) = β

(2n+1)
k,ref +

1

2
e−2iΦref

∫ t

tref

[H(t1)− 2δ ν̇(t1)]α
(2n)
k (t1) e−2iM∞(t1−tref) dt1 (67)

α
(2n+2)
k (t) = α

(2n+2)
k,ref +

1

2
e+2iΦref

∫ t

tref

[H(t1)− 2δ ν̇(t1)]β
(2n+1)
k (t1) e+2iM∞(t1−tref) dt1. (68)

In our actual numerical implementation for the alterna-
tive solution method based on α and β, we utilize the
iterated method implicit in Eq. (57) without change for

t ≤ tref, but for t > tref we obtain α
(n)
k and β

(n)
k with the

iterated method implicit in Eqs. (67) and (68).
One could of course also use a hybrid method in

which the full 7-dimensional system of odes is integrated
through any tachyonic regions, and the iterative solution
method is used to evolve the solution forward to very late
time starting from some time after the tachyonic phase
ends. We never find this necessary.

We develop an analytical understanding of the late-
time asymptotic behavior of |βk|2 in Appendix A.

D. Parameters scanned and breakdown of methods
employed

For the kinetically-coupled case, we have completed a
scan over the parameters (M, ε) at fixed ν∗ = 0.8 in the
ranges M ∈ [0.2, 7], ε > 0.2−0.25 (the smallest computa-
tionally feasible lower cutoff here is somewhat dependent
on the choice of M) with the largest ε investigated being

effectively infinite (specifically, 1030) to allow us to com-
pare our numerical investigations to the simple model
of Sec. II A in the context of the chaotic inflation back-
ground, which has been previously investigated in Ref.
[34]. Additionally, we investigated the M dependence
of the spectra up to M = 9 at fixed ε = 0.6. For the
potentially-coupled case, we have completed a scan over
Mg in the range Mg ∈ [1.2, 3.7 × 104]. In Table I, we
summarize explicitly which numerical method was used
in obtaining the various spectra we present in the next
section; the general rule-of-thumb is that we use the it-
erative solution method wherever possible, but directly
solve the full 7-dimensional set of coupled odes whenever
a tachyonic phase is present.

Where we choose to present results for Ωh2, the par-
ticle spectrum extracted as detailed above is integrated
over k per Eq. (41) in the maximal numerically sampled
range k ∈ [10−20, 20]15 to obtain a relic abundance Ωh2,
provided that the numerical results we have extracted in-

15 We occasionally work outside this range if necessary to capture
a relevant feature: for example, at M = 0.2 and ε = 0.8 for the
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dicate that this integral converges in the infrared (M < 1
results at large ε in the kinetically-coupled case are prob-
lematic in this regard) and subject to modification in the
upper limit of the integral to avoid obvious numerical
artifacts which enter at large k (read: very small |βk|2).

V. RESULTS

In this section we present the numerical results for par-
ticle species irruption either in the model of inflaton–
irrupton coupling through the potential term (the model
discussed in Sec. II B) or in the model of inflaton-irrupton
coupling through the kinetic term (the model discussed
in Sec. II C). The most general models of these types
have either two or three free functions: an inflaton po-
tential V (φ), an inflaton–irrupton potential U(χ, φ), and
for the kinetically-coupled case only, a function f(φ) that
describes the coupling of the inflaton to the kinetic term
of the irrupton. For V (φ) we choose the simple infla-
ton potential V (φ) = 1

2m
2φ2. In the potentially-coupled

case, for U(χ, φ) we choose the same potential as in Sec.
II B: U(χ, φ) = 1

2g
2(φ − φ∗)2χ2 ≡ 1

2M
2
g (ν − ν∗)2χ2; for

the kinetically-coupled case, for U(χ, φ) we choose the
same potential as in Sec. II C: U(χ, φ) = 1

2M
2χ2. Fi-

nally, for f(φ) in the kinetically-coupled case, we choose
f(φ) = −(φ− φ∗)2/2ε2M2

Pl ≡ −(ν − ν∗)2/2ε2. Thus, the
two or three free functions are described, respectively,
in terms of either three parameters: { m, Mg, ν∗ }, or
four parameters: { m, M, ν∗, ε }. From background ra-
diation measurements m ∼ 1013 GeV. We will express
M and Mg in units of m and t in units of m−1. For
the chaotic inflation model we consider, ranges of φ in
the observable region of the background radiation are
0.2 . φ/MPl ≡ ν . 3. So we will make the choice
φ∗/MPl ≡ ν∗ = 0.8 for all numerical results presented.
With these choices for m and ν∗, the one parameter we
will vary for the potentially-coupled irrupton is { Mg }
(in units of m), and the two parameters we will vary for
the kinetically-coupled case are { M, ε } (again, M in
units of m and ε dimensionless).

We note that the ε → ∞ limit of the kinetically-
coupled irrupton is a minimally-coupled scalar field of
mass M in a background chaotic-inflation model. This
model was described in Sec. II A (but for de Sitter space
with constant H, not in chaotic inflation with a slowly
evolving H as for the numerical results of this section).
Our result for the comoving number density of produced
particles as a function of M in this limit is shown in Fig.
3. This case has been previously considered in the lit-
erature, e.g., Ref. [34], for the same inflationary regime
we utilize, and where available we reproduce their results

kinetically-coupled case, nc
k peaks around k ∼ 10−19, and we

wish to capture this behavior fully to get an accurate particle
number, so we extend the range of integration down to k =
10−22.

well (the blue circles in the figure are sample points taken
from Ref. [34]). The qualitative behavior of the curves
in Fig. 3 are different for different M . For M < 1 there
is a slow growth of nc

k in the infrared corresponding to
|βk|2 ∼ k−3−x for some x > 0 leading to an infrared (IR)
divergence in the number of particles produced.16 For
M > 1 the spectra decrease in the far infrared corre-
sponding to |βk|2 ∼ k−3+x for some x > 0. For M = 1,
the spectrum of nc

k is consistent with being exactly flat
in the IR. There is a sharp drop in the spectra for k & 1
for M > 1; the drop is more gradual for small M , and a
small bump is even evident in the spectrum for M = 0.2
around k ∼ 0.5. These features will be explained below.

Representative particle spectra for the potentially-
coupled irrupton as a function of Mg are given in Fig.
4, while those for the kinetically-coupled irrupton as a
function of M are given for fixed ε = 0.6 in Fig. 5, and
as a function of ε for two fixed values of M (M = 2 and
M = 4) in Fig. 6. These figures capture all the important
features we have observed in our numerical work. Indeed,
for the specific potential and kinetic couplings we have
considered for the irrupton, many interesting features are
present. Before explaining the causes of these features
in the spectra, we qualitatively describe the scalings of
the spectra with k and Mg for the potentially-coupled
irrupton, or with k, M , and ε for the kinetically-coupled
irrupton.

Consider first the potentially-coupled irruption spectra
shown in Fig. 4. In all these cases with Mg & 5, in the in-
frared region the spectra scale as nc

k ∼ k3, which implies
|βk|2 ∼ k0. Provided also that Mg . 10, this behavior
is valid until a threshold value k = k∗, beyond which
the spectra increase more slowly than k3, but have no
simple power-law scaling. The spectra then peak, more
sharply for larger Mg, before showing a steep drop-off
in the UV region; for larger Mg, the spectra instead roll
off exponentially fast directly from the nc

k ∼ k3 regime.
For smaller Mg the IR behavior does not enter an ap-
proximate k3 scaling regime (at least for the numerically
sampled range of k & 10−16) and based on arguments we
present below we do not necessarily expect that such a
regime would exist for smaller k when Mg . 3. We note
that for Mg . 60 in the results we have presented there is
a strict ordering in the size of nc

k: at fixed k, nc
k is smaller

the larger Mg becomes. This behavior is modified at very
large Mg & 200, where the IR spectrum stops decreasing
with increasing Mg and instead approaches from above
the limit nc

k = k3/2π2 (which implies |βk|2 = 1); on the
other hand, the spectrum near the peak begins to in-
crease again with increasing Mg approaching the same
limit from below, while the peak itself shifts further to
the UV.

For the kinetically-coupled irrupton, first consider the
case of fixed ε and fairly small M in the left plot of Fig.

16 Presumably this IR divergence is cut off if inflation has a finite
duration.
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TABLE I. A summary of which numerical method has been used to obtain the late-time asymptotic value of |βk|2, organized
by figure number. The end-time tf used in these solutions varies and is taken to be ‘late enough’ in the sense that we can
reliably extract the asymptotic value of |βk|2. This can be as short as tf = 100 for cases which quickly go to their late-time
asymptotic value (e.g., M = 2 at small ε), or as long as tf ∼ 4.5× 105 for particularly stubborn cases which take a very long
time to ‘ring down’ (e.g., M > 4 at very large or very small k); a full listing of the values of tf used would not be enlightening.
In this table “7D” refers to the straightforward solution of the full 7-dimensional system of equations for the background fields
and the mode equation as described in Sec. IV A, and “Iter.” refers to the iterated solution method for α and β described in
Sec. IV B, taken where necessary with the late-time MD-era modification described in Sec. IV C.

Figure Number and Description Parameter Range or Identifier Method Employed

Fig. 3 (ε→∞) k & 0.5 and M ≥ 1.5; or M ≥ 5.0 Iter.

k . 0.5 and / or M < 1.5 7D

Fig. 4 (Potentially-coupled) — 7D

Fig. 5 (left plot, ε = 0.6) k & 0.1 and M ≥ 0.6 Iter.

All others 7D

Fig. 5 (right plot, ε = 0.6, large M) All, solid lines Iter.

Selected, open circles 7D

Fig. 6, M = 2.0 (upper plot) k & 0.6 and ε ≥ 0.4 Iter.

k . 0.6 and ε ≥ 0.4 7D

k & 0.4 and ε = 0.3 Iter.

k . 0.4 and ε = 0.3 7D

k & 6× 10−2 and ε = 0.2 Iter.

k . 6× 10−2 and ε = 0.2 7D

Fig. 6, M = 4.0 (both lower plots) All, solid lines Iter.

Selected, open circles 7D

5. In the infrared region the spectra scale as nc
k ∼ k3,

which implies |βk|2 ∼ k0. This scaling behavior is valid
up until an ‘elbow’ in the spectra at a value of k that
depends on M (and ε). After the elbow, for increasing
k there is a slow decrease in nc

k with k for M . 1, or a
slow increase in nc

k for M & 1. For M . 2.5, the spectra
scale as a power law in k in this intermediate-k regime,
with an M -dependent power which is less than 3. This
behavior continues until k ∼ 10−1, and thereafter there
is a steep decrease in nc

k. There is however a pronounced
bump in the nc

k spectra at small M (M = 0.2) and k ∼ 1;
this does not occur for M & 0.2. Just as in the model of
a minimally-coupled scalar field with constant M , there
is a general trend of decreasing particle production with
increasing M .

Consider now the impact of varying ε when M is fairly
small, starting with the case of M = 2 shown in the upper
plot in Fig. 6. First of all, we note the good agreement of
the ε → ∞ limit of our results with those from Ref. [34]
as shown by the blue circles. The next feature to note is
that just as in Fig. 5, in the infrared nc

k ∝ k3 for finite ε.
Again, at some value of k there is an elbow after which
the spectrum grows (for ε & 0.4, as a power law) more
slowly than k3, and there is again a steep drop in nc

k for
large k. As ε decreases the spectra become more peaked,

and decrease in magnitude.

Finally consider the large-M cases: M = 4 in the
lower plots of Fig. 6, and large M at fixed ε = 0.6 in
the right plot of Fig. 5. For these values of M the
nc
k spectra scale as k3 in the deep infrared (constant
|βk|2), show oscillations (provided that ε is not too
small) when transitioning from this behavior to a scaling
steeper than k3 in an intermediate region of k (corre-
sponding to a bump in |βk|2), then peak at k ∼ 10−1

and finally decrease rapidly at larger k. Particularly
in the vicinity of the peak in the nc

k spectra in Fig. 6
(see the inset plot), there is only a weak dependence on ε.

Now that we have described the spectra, we turn to an
explanation for their behavior. The presence or absence
of the tachyonic phase, along with its duration, is cru-
cial for understanding the spectra. For modes which can
run tachyonic, the behavior of ω2

k clearly dictates the
duration of the tachyonic phase and hence the amount
of particle production that can occur as the exponential
increase in the mode functions during this phase is the
dominant effect. For modes which never run tachyonic,
we will show that a good understanding of the behavior of
the adiabaticity parameters leads to a good understand-
ing of the characteristics of the spectrum.
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FIG. 3. (Color online) Comoving particle density spectra nc
k as a function of comoving k (in units of m) for a minimally-coupled

scalar field with constant mass M (as annotated; also in units of m) as discussed in Sec. II A, but using the chaotic inflation
model to describe the evolution of the background (i.e., the ε → ∞ limit of the kinetically-coupled irrupton of Sec. II C).
Different curves are for various heavy particle masses M . For comparison, the thin (red) dashed line indicates the scaling of nc

k

with k if the scaling were k3 (constant |βk|2). The (blue) circles on the lines for M = 0.2, 1, and 2 are sampled from spectra in
Ref. [34]. The vertical dashed line denotes k = aEIHEI. See Table I for a summary of which numerical methods were applied
to obtain these results.

We begin with a discussion of the IR behavior of the
spectra. In the case where M is constant (i.e., the ε→∞
limit for the kinetically-coupled irrupton) and not much
larger than H (Fig. 3), a mode of comoving momen-
tum k enters the period of tachyonicity almost imme-
diately after crossing outside the comoving Hubble ra-
dius Rc

H(t) = [a(t)H(t)]
−1

since at this time, the sum
M2 + k2/a2 becomes comparable to the −a′′/a3 term in
Eq. (6) for ω2

k/a
2. (Note that k2/a2 is a rapidly falling

function of t since a is growing exponentially; at the
equality point, all three terms are of roughly the same
size in our parameter region of interest. After equality,
k/a rapidly becomes completely negligible for all subse-
quent evolution. See Figs. 7 and 8.) This means that the
Hubble-crossing time is a reliable indicator of the onset
of the tachyonic phase, and that the exit time from the
tachyonic phase is independent of the value of k; modes
of smaller k thus spend much longer in such a tachyonic
phase than modes of larger k, which implies that |βk|2
grows without bound at small k, explaining the absence
of a nc

k ∼ k3 scaling regime in the infrared region for the
constant-M case.

However, in the case of the potentially- or kinetically-
coupled irruptons with a running Meff, the situation
is different. We discuss first the scaling with k for
the kinetically-coupled case. In Fig. 7 we plot ω2

k/a
2

as given in Eq. (31) along with the magnitude of the
three terms contributing to it: k2/a2, |a′′/a3|, and M2

eff.
The heavy dashed curve is where the given momentum
mode is tachyonic, which requires k2/a2 +M2

eff to be less
than the magnitude of a′′/a3 (recall that during infla-
tion a′′ > 0). In the far IR (illustrated by k = 10−14)
k is sufficiently small that k2/a2 drops below M2

eff early
in the evolution and the onset of tachyonicity is deter-
mined by when M2

eff drops below |a′′/a3|, implying that
the onset of tachyonicity no longer closely tracks Hubble-
crossing (see also the left plot of Fig. 2). As k increases,
eventually it, and not Meff, will determine the onset of
the tachyonic phase. Let us call the crossover point
k∗. The value of k∗ will be the value of k for which
ω2
k/a

2 ≈ k2
∗/a

2 ≈ M2
eff ≈ |a′′/a3|.17 From Fig. 7 we see

17 The value of k∗ is exponentially sensitive to the value of ε since
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FIG. 4. (Color online) Comoving particle density spectra nc
k for the potentially-coupled irrupton as a function of comoving
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(colored) lines. These latter cases are plotted differently to aid the reader visually, and also because these large-Mg spectra show
qualitatively different behavior, which is discussed in the text. The thin (red) dashed lines illustrate an nc

k scaling proportional
to k3 (constant |βk|2). The vertical dashed lines denote k = a∗H∗ and k = aEIHEI, where ∗ denotes the values at the instant
where φ = φ∗. See Table I for a summary of which numerical methods were applied to obtain these results.

that occurs at k = 2.5× 10−7 for M = 2, ε = 0.6, which
agrees well with the cross-over point (i.e., the ‘elbow’)
in the spectrum shown in the Fig. 5. For larger k > k∗
(illustrated by k = 10−2) the duration of the tachyonic
phase is shorter.

To understand the resultant scaling with k, we make
the crude approximation (reasonable for ε & 0.4) that
ω2
k/a

2 is approximately constant during the tachyonic
phase: ω2

k/a
2 ≈ −Ω2 where Ω2 > 0 is a k-independent

constant (see Fig. 7). As ω2
k is negative (iωk ∈ R),

the expression for |βk|2 in Eq. (33) is inapplicable dur-
ing the tachyonic phase itself; but the expression can be
used immediately before and after the tachyonic phase
when ω2

k > 0. Since the value of ω2
k/a

2 passes through
zero, it will be equal to the same small positive value at
times both immediately before, and immediately after,

the flatness of M2
eff, which is clearly (see Fig. 7) the most impor-

tant factor for deciding where M2
eff and k2/a2 become of roughly

the same size, is directly set by this parameter.

the tachyonic phase (see Fig. 7). Consider then the ratio
of the values of |βk|2 at those times, which we denote
“before” and “after”:

|βk|2after

|βk|2before

∼ (ωk)after

(ωk)before

|µk|2after

|µk|2before

=
aafter

abefore

|µk|2after

|µk|2before

, (69)

where we have used that |µ̇k|2 = |a−1µ′k|2 ∝ |µk|2
(which will be obvious from the form of the solution
shown below) and have neglected the constant term in
Eq. (33). We must now estimate |µk|after/|µk|before. The
mode function satisfies µ′′k + ω2

kµk = 0, which under
our assumption of constant negative ω2

k/a
2 = −Ω2 be-

comes µ′′k − a2Ω2µk = 0. Since H does not change very
much over the short duration of the tachyonic phase,
we will use the de Sitter result η = −1/aH, so the
mode equation becomes η2µ′′k − (Ω2/H2)µk = 0, whose

growing mode solution is µk = (−η)

(
1−
√

1+4Ω2/H2
)
/2

=
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FIG. 5. (Color online) Comoving particle density spectra nc
k (left plot) and the late-time Bogoliubov coefficient (i.e., mode-k

occupancy number) |βk|2 (right plot) for the kinetically-coupled irrupton for as a function of comoving k (in units of m) for
various heavy-particle masses M (as annotated; also in units of m) with fixed ε = 0.6. We choose to present |βk|2 rather than
nc
k in the right plot for greater clarity in these very-large-M cases. In the left plot, the thin (red) dashed lines illustrate a scaling

proportional to k3 (constant |βk|2). The vertical dashed lines denote k = a∗H∗ and k = aEIHEI, where ∗ denotes the values
at the instant where φ = φ∗. See Table I for a summary of which numerical methods were applied to obtain these results, and
the meaning of the open circles and solid lines in the right plot.

(aH)

(√
1+4Ω2/H2−1

)
/2

. We thus estimate that

|βk|2after

|βk|2before

∼
(
aafter

abefore

)ζ

where ζ =
√

1 + 4Ω2/H2 > 0. (70)

Now in the deep IR (k < k∗), we have already
noted that the values of a when entering and leaving
the tachyonic phase are independent of k, so we ex-
pect |βk|2after/|βk|2before to be independent of k. Since

nc
k ∼ k3 |βk|2, nc

k will be proportional to k3.
But for k > k∗, the onset of the tachyonic phase

is determined by k2/a2 = |a′′/a3| ∼ 2H2. So now
abefore ∼ k whereas aafter is still k-independent, so that
|βk|2after/|βk|2before ∼ k−ζ which implies nc

k ∼ k3−ζ . This
correctly captures the observed behavior of power-law
scaling of nc

k with a power less than 3 above the elbow
for the cases M . 2.5 (i.e., those with a tachyonic phase)
in Fig. 5.18 Note however that this conclusion is pred-
icated on a period of approximate constancy of ω2

k/a
2,

18 A quantitative estimate of the scaling power (3− ζ) requires an
estimate for Ω2/H2. A well-motivated approximation is to take
it equal to the largest value of |(ω2

k/a
2)/H2| attained during the

tachyonic phase. There is no simple closed-form expression for
this value, but it can be easily (and accurately) estimated as-
suming that a, ν and ν̇ take their slow-roll values. With such
an estimate, we find scaling powers offset systematically high by

which is not a very good approximation when ε is small;
therefore, we would not expect a power-law intermediate
regime for nc

k at small ε, but rather a spectrum with a
more constantly evolving slope, as is becoming evident
in the ε = 0.2, 0.3 spectra at M = 2 in the upper plot of
Fig. 6.

Eventually as k increases the tachyonic phase disap-
pears altogether and the evolution becomes more adia-
batic, suppressing particle production even further.

The deep-IR scaling nc
k ∼ k3 for the potentially-

coupled irrupton arises for the exact same reason as for
the kinetically-coupled irrupton provided Mg is not too
large: the onset of tachonicity is governed by the k-
independent condition M2

eff ≈ a′′/a3 for small enough k,
provided that Mg is sufficiently large. Since k = 10−12

is the smallest comoving momentum value shown in Fig.
4, we would only expect such a regime to be manifest in
the results presented if Mg & 4.6 (obtained from solv-
ing M2

eff ≈ k2/a2 ≈ a′′/a3 for Mg at k = 10−12). For
smaller Mg, one would need to probe smaller k to en-
ter the nc

k ∼ k3 regime; however, once Mg . 3 it is

about 0.15 compared to the values extracted from linear fits to
the power-law section of the spectra above the elbow in Fig. 5 for
all values ofM from 0.2 to 2.5 (ε = 0.6). The offset notwithstand-
ing, we capture the M -dependence very well. There is also some
weak ε-dependence in the power law above the elbow (see Fig.
6, upper plot) which arises from the curvature of ω2

k/a
2 during

the tachyonic phase; our approach here is manifestly inadequate
to capture this.
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FIG. 6. (Color online) Comoving particle density spectra nc
k as a function of comoving k (in units of m) for the kinetically-

coupled irrupton, for various choices of ε with fixed M = 2 (upper plot) and M = 4 (lower-left plot). The thin (red) dashed
lines illustrate a scaling proportional to k3 (constant |βk|2). The (blue) circles on the line for ε → ∞ in the upper plot are
sampled from a spectrum in Ref. [34]. The inset in the lower-left plot shows detail near the peak in the spectra. Also shown
for the case of M = 4 are the values of |βk|2 (lower-right plot). The vertical dashed lines denote k = a∗H∗ and k = aEIHEI,
where ∗ denotes the values at the instant where φ = φ∗. See Table I for a summary of which numerical methods were applied
to obtain these results, and the meaning of the open circles and solid lines in the lower plots.
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always the case that M2
eff < a′′/a3 for all ν > 0.8 (even

if ν is allowed to run much larger than 3; i.e., more e-
foldings of inflation are allowed) and so M2

eff cannot come
to dominate in setting the onset of tachyonicity for any
value of k and we would thus not necessarily expect an
nc
k ∼ k3 scaling regime to exist in such cases (i.e., we do

not expect an irruption of limited duration; the produc-
tion duration and characteristics are more similar to the
constant-M case). The intermediate scaling where nc

k in-
creases more slowly than k3, if present, once again occurs
once the onset of tachyonicity becomes governed by when
k2/a2 ≈ a′′/a3. Although in the kinetically-coupled case
this regime gave rise to a simple intermediate power-law
scaling, such a regime does not manifest itself for the
potentially-coupled case.

On the other hand, at very large Mg, the duration of
any possible tachyonic phase becomes too small to result
in an exponentially large increase in the size of the mode
function.19 Instead, it begins to looks more like an im-
pulsive ‘kick’ to the mode function localized very sharply
around t = t∗ as ω2

k/a
2 very rapidly falls from a very large

value to some small negative value before rapidly increas-
ing again. This results in |βk|2 jumping from essentially
zero to its late-time value almost instantaneously; we de-
velop this argument further into a quantitative analytical
prediction for the shape of the spectrum in Appendix B.
However, since this process is still k-independent when k
is sufficiently small to not significantly modify ω2

k/a
2 at

t = t∗, it also results in a nc
k ∼ k3 scaling in the IR. This

is quantitatively confirmed by Eq. (B10) which shows
that in the large-Mg limit, nc

k → k3/2π2 (|βk|2 → 1) for
small k.

Even if no tachyonic phase or impulsive kick is present
owing to the relative sizes of the contributions to ω2

k/a
2,

the nc
k ∼ k3 infrared scaling can still obtain for the

kinetically-coupled irrupton; for instance, the cases with
M > 3 in Fig. 5 or the M = 4 cases in Fig. 6. Al-
though the explanation of this particular behavior does
not require the full machinery we are about to develop,
we will nevertheless have recourse to the same ideas to
explain other features in the non-tachyonic cases, so we
pause to carefully develop the arguments here. Firstly,
we note that can obtain a good qualitative understanding
of the behavior of the spectra for non-tachyonic cases by

19 In the IR, we expect this regime to be entered roughly when
the duration of the tachyonic phase is short enough that the
mode function cannot increase in size by much more than an
e-fold during this phase. We assume for the sake of this ar-
gument that ω2

k/a
2 ≈ −a′′/a3 ≈ − 8π

3
ν2
∗ ≈ constant dur-

ing the tachyonic phase and take the duration of the tachy-
onic phase, ∆t, to be limited both before and after t = t∗ by
where M2

eff = a′′/a3 giving M2
g ν̇

2
∗(∆t/2)2 ≈ 8π

3
ν2
∗ which implies

∆t = 4
√

2π/3 |ν∗/ν̇∗|M−1
g . Then requiring no more than n

e-folds of increase for µk during the tachyonic phase demands
we set |ωk/a|∆t ≤ n leading to Mg ≥ (16π/3) ν2

∗ / |ν̇∗|n ≈ 67n.
Taking n ≈ 1−2 gives good qualitative agreement with the value
of Mg for which there is a quantitative behavior change in the
IR in Fig. 4.

examining the lowest-order solution βk
(1) in the iterated-

solution method, particularly in the form as given in
Eq. (59): we see that the size of the (square root of)
the adiabaticity parameter |ω′k/ω2

k|2 defines the envelope
bounding the rapidly oscillating phase factor e2iΦ. Pro-
vided that this envelope varies only slowly as the phase
advances by π, neighboring excursions in the positive
and negative directions, of both the real and imaginary
parts of the integrand, cancel nearly completely when
integrated over. On the other hand, if the envelope
varies rapidly as the phase advances by π, neighbor-
ing excursions cancel incompletely. Although in either

case it is possible to obtain transient values of |βk(1)|2
which are large, a non-zero late-time asymptotic value

of |βk(1)|2 occurs as a result of the accumulated incom-
plete cancellations between neighboring excursions over
the full evolution out to Φ → ∞ (see Fig. 9). To illus-
trate the point explicitly, consider a toy model in which
ω′k/ω

2
k were an exact Gaussian with standard deviation

σ = πn; we then find that the late-time asymptotic value

of |βk(1)|2 ∝ e−4π2n2

. Clearly, the wider the Gaussian
(i.e., the slower the envelope varies), the smaller the late-

time asymptotic value of |βk(1)|2. Although these argu-
ments can be formalized, our goal here is simply to build
qualitative intuition for the behavior of the spectrum.

In order to apply this intuition to understand the
nc
k ∼ k3 IR scaling of the spectra, we note firstly that the

adiabaticity parameters are larger and evolving rapidly
with increasing Φ when ω2

k/a
2 is near its minimum; for

sufficiently small k they are generally smaller and (pro-
vided that t & tHC) evolving more slowly with increas-
ing Φ when ω2

k/a
2 is large; for t . tHC the adiabatic-

ity parameters evolve fairly rapidly but are damped to
very small values exponentially quickly as the phase Φ
is decreased since ω2

k/a
2 generally increases much more

rapidly with decreasing phase Φ when dominated by
k2/a2 than by M2

eff (see Fig. 8). Therefore, for small val-
ues of k and viewed as a function of increasing phase Φ
(see Fig. 9), the envelope modulating the rapid phase os-
cillation starts exponentially small, fairly rapidly rises to
some small value around the time of Hubble-radius cross-
ing, evolves fairly slowly for some duration of increasing
phase Φ, grows in size and evolves more rapidly as ω2

k/a
2

goes through its minimum, then decreases in size again as
ω2
k/a

2 increases in size and finally executes small ampli-
tude oscillations with the same period at which ω2

k/a
2 os-

cillates around a constant in the MD era. Crucially how-
ever, most of that evolution is completely k-independent,
and if k is further decreased, the only modification to
the envelope is to add in an additional duration of fairly
slow evolution of the envelope at early time by shifting
to earlier times the point around tHC where the envelope
rises from its initial very small value (compare the upper
plots of Fig. 9). As such, for sufficiently small k, we do
not expect that significant additional incomplete cancel-
lation between neighboring excursions in the additional
oscillations can occur as k is further decreased. As a
result we expect qualitatively that |βk|2 should become
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FIG. 7. (Color online) The oscillation frequency ω2
k/a

2 and its three contributions for the kinetically-coupled irrupton, see Eq.
(31), plotted as a function of cosmic time. The open circle in each plot indicates the point where two of the contributions to
ω2
k/a

2, namely M2
eff and |a′′/a3|, are approximately equal. The point where k2/a2 and M2

eff first intersect is denoted by the open
square. The value of k at the ‘elbow’ break-point, k∗, is the value of k for which k2

∗/a
2 ≈ |a′′/a3| ≈ M2

eff ; i.e., the open circle
and the square coincide. From the figure we see that this occurs for k = k∗ = 2.5× 10−7. For k � k∗ (illustrated by the case
k = 10−14) the onset of the tachyonic phase is determined by M2

eff and independent of k. Since the duration of the tachyonic
phase is independent of k, |βk|2 should be independent of k, and nc

k ∝ k3. For k � k∗ (illustrated by the case k = 10−2) the
onset of the tachyonic phase is determined by k2/a2 and the duration of the tachyonic phase is reduced, which implies |βk|2
will decrease with k and nc

k will grow more slowly than k3. It is clear that for even larger k, there may be no tachyonic phase
at all, which exponentially suppresses the particle number produced. Note that larger values of ε flatten M2

eff, giving a longer
maximum duration of the tachyonic phase, while larger values of the M move the minimum of M2

eff upward, which suppresses
particle production by reducing the duration of the tachyonic phase (which argument holds until such a phase ceases to exist;
see Fig. 8 for further consideration of this case).

k-independent at sufficient small k, leading to nc
k ∼ k3.

Furthermore, by virtue of the fact that neighboring
oscillations near the maximum of the envelope become
more rapidly incommensurate in size if the envelope de-
creases more rapidly from its maximum with changing
phase, such as occurs for cases of smaller ε, we expect

that the plateau value of |βk|2 should be larger, as ob-
served (at least for ε ≤ 0.6) in Fig. 6. We can mock up the
plateau behavior in the same toy model discussed above
by supposing that the Gaussian envelope is simply cut-off
sharply to zero at a point ζ standard deviations before its
maximum, which leads to a late-time asymptotic value
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FIG. 8. (Color online) As for Fig. 7, except this series of plots of the various contributions to ω2
k/a

2 for varying k is shown for
a case where no tachyonic phase is present. Nevertheless, the minimum value of ω2

k/a
2 still becomes k-independent at small k,

which leads to a nc
k ∼ k3 infrared behavior in the particle spectrum. As k becomes very large (lower plot), the minimum value

of ω2
k/a

2 is clearly shifted upward, which leads to the large-k suppression in the spectra.

of |βk(1)|2 ∝ e−4π2n2 ∣∣1− Erf
(
−
√

2 (ζ − iπn)
)∣∣2, which

for ζ > πn = σ is essentially independent of ζ, and is
larger if n is smaller. Translating back to the language
of our actual model we see that this captures all the
salient features: for k sufficiently small that tHC occurs a
number of phase oscillations before ω2

k/a
2 goes through

its minimum, the spectrum would be tHC- and thus k-
independent, and this plateau would be at a higher value
if ε were smaller.

In almost all cases of either constant or running ef-
fective masses, as the effective mass term increases in

size,20 fewer particles are produced both at fixed k and
overall. Qualitatively the reason is clear: heavier modes
experience changes in the background spacetime ‘more
adiabatically’. We mean one of two things here: either
a) the duration of any possible tachyonic phase is short-
ened as the effective mass grows (see, e.g., Fig. 7), or
b) in the more extreme case where the effective mass is
so large that no tachyonic phase at all is present (i.e.,

20 To be concrete: for the minimally-coupled (constant mass) case
of Sec. II A (in the chaotic inflation background), we mean in-
creasing M ; for the potentially-coupled of Sec. II B, we mean
increasing Mg ; and for the kinetically-coupled case of Sec. II C
we mean increasing M and/or decreasing ε.
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FIG. 9. (Color online) The envelope ±(1/2)
∣∣ω′k/ω2

k

∣∣ (grey) bounding the real part of the rapidly oscillating integrand

(1/2)(ω′k/ω
2
k)e−2iΦ in Eq. (59) (black) for the first iterate βk

(1), for a variety of values of k for the case M = 4 and ε = 0.6 for
the kinetically-coupled irrupton, plotted as a function of the phase deviation ∆Φ from when ω2

k/a
2 is minimized. The imaginary

part of the integrand shows similar behavior; we omit it for clarity. We also show |βk(1)(Φ)|2 per Eq. (59) (right-scale on each
axes; red dotted line) for illustrative purposes to indicate the impact of the shape of the envelope on the evolution of |βk|2. ‘HC’
denotes Hubble-radius crossing; the mode with k = 1 is always sub-Hubble-radius sized. The relevant comparisons we intend
to reader to make from this series of plots are between plots A and B, and between plot C and plots A or D; in particular, we
caution the reader that the approximate order-of-magnitude equality of the value of |βk|2 at large positive ∆Φ of |βk|2 in plot
D (large k), and the values of the same quantity in plot A and B (small k), is a coincidental consequence of the values of k we
have chosen to display (see right plot of Fig. 5), so no deep significance should be attached to that approximate equality.

M2
eff > |a′′/a3| at all times during inflation; see, e.g.,

Fig. 8), the minimum value of ω2
k/a

2 reached during in-
flation increases in size as the effective mass increases,
which generally correlates with a decrease in the maxi-
mum size of the adiabaticity parameters. This not only
collapses the envelope modulating the phase factor e2iΦ

in Eq. (59) (see the lower-right plot of Fig. 9) but also
results in the envelope evolving more slowly with phase
since larger ωk/a results in a smaller ∆t to get the same
∆Φ ≈ (ωk/a)∆t. Therefore, by arguments similar to
those just advanced, production is suppressed in the lat-
ter case.

The obvious exception in our results to this general rule
of decreasing nc

k with increasing mass parameters occurs
in the large-Mg results for the potentially-coupled case
in Fig. 4. For k < kth ≈ 4 × 10−2, as Mg increases,
the spectrum goes to a limiting value of |βk|2 = 1 from
above, while for larger (fixed) k > kth, the spectrum
goes to the same limit from below. The comoving mo-
mentum kpeak where the nc

k spectrum peaks shifts over

to the UV roughly as kpeak ∝ (Mg)
0.500(5) (from fits to

the largest-Mg numerical results we have). We already

argued in footnote 19 that once Mg & 70, the duration-
of-tachyonicity argument for understanding the results
breaks down and we enter the regime in which the analyt-
ical expressions we develop in Appendix B apply. Indeed,
examining Eq. (B10) immediately explains many of the
observed ‘anomalous’ features at large-Mg: at fixed k, as
Mg gets larger the exponent in Eq. (B10) goes to zero,
and |βk|2 → 1. Since the exponent is, for the parameter
values we give in Appendix B, positive for k . 4× 10−2,
and negative for larger k, it is also clear that the limit
should indeed be approached from above for k < kth and
from below for larger k. Finally, once k � H2

∗ , Ḣ∗, the
exponent scales proportional to (−k2/Mg), and so for
equal exponential fall-offs from |βk|2 = 1, k has to in-
crease as

√
Mg consistent with the peak shift to the UV

seen in the numerical results.

The remaining point we wish to clarify in connection
with this discussion is how this specific analytical un-
derstanding of the scaling of the spectra at large Mg is
consistent, in the regime where no tachyonic phase ex-
ists, with the more general picture outlined just above;
i.e., that the amount of production in this regime is lim-
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ited by the maximum size of the adiabaticity parameters.
If we were discussing the kinetically-coupled case, it is
obvious that increasing M necessarily monotonically in-
creases the minimum value of Meff, and hence could only
increase the minimum value of ω2

k/a
2, suppressing pro-

duction. However, for the potentially-coupled case, Meff

always goes to zero at ν = ν∗, and the resulting Mg de-
pendence of the minimum value of ω2

k/a
2 (and hence the

maximum value of the adiabaticity parameters) is not im-
mediately clear. In particular, if our general arguments
are to hold, the behavior of the adiabaticity parameters
with increasing Mg must necessarily be non-monotonic,
because we observe the spectrum to first decrease and
then increase again at large k as Mg is increased.

We begin by making the important observation that
the threshold value kth is additionally the boundary, in
the limit of large Mg, between the cases where a (brief,
impulsive) tachyonic phase exists (k < kth), and when
one does not exist (k > kth): to see this, note that in
the Mg → ∞ limit, the minimization of ω2

k/a
2 occurs

at ν = ν∗, so in this limit kth is simply estimated by
requiring that ω2

kth
/a2|ν=ν∗ = 0, which implies that kth ≈√

4πa2∗/3× (2ν2∗ − 1/12π) ≈ 3.7 × 10−2 where we have
used a′′/a3 = 4π/3× (2ν2 − ν̇2), the slow-roll value ν̇ ≈
−1/
√

12π, and have taken a∗ ≡ a(ν = ν∗) = 1.6 × 10−2

from our full numerical solutions.
Therefore, for k > kth, no tachyonic phase exists for

the large Mg cases and the amount of particle produc-
tion should indeed be governed by the size of the adi-
abaticity parameters |ω′k/ω2

k|2 and |ω′′k/ω3
k| (as well as

phase cancellations as we have previously argued) and so
it is necessary to demonstrate non-monotonic behavior
of those parameters with increasing Mg for all k > kth

if our arguments are to be consistent. In Fig. 10 we
plot the maximum value of the adiabaticity parameter
|ω′′k/ω3

k| (max {|ω′k/ω2
k|2} behaves similarly) as a function

Mg at fixed k as evaluated in in our numerical work. It is
clear that the requisite non-monotonic behavior is indeed
present.

It is instructive to understand the origin of this non-
monotonic Mg dependence of max {|ω′′k/ω3

k|}. We ob-
serve that it is usually true that the the maximum value
of |ω′′k/ω3

k| is reached very near to the point where ω2
k/a

2

reaches a minimum. As we have already noted, for large
Mg the latter function is minimized at ν ≈ ν∗; imposing
this condition kills all Mg-dependence in |ω′′k/ω3

k| except
for a term which scales as M2

g in the numerator (i.e., the

surviving term arising from twice differentiating M2
eff as

given in Eq. (20)), which gives rise to the M2
g scaling.

On the other hand, once Mg gets small enough, the
minimum of ω2

k/a
2 (and hence the maximum of |ω′′k/ω3

k|)
is no longer reached at ν ≈ ν∗. Assuming for the sake
of this argument that k is sufficiently large that, even
though Mg is small, the −a′′/a3 term in ω2

k/a
2 always re-

mains negligible, the minimum is reached at a later time
when ν ≈ ν̃ (ν̃ < ν∗), where ν̃ is defined to be the point
where the decreasing function k2/a2 is equal to the in-
creasing (on ν < ν∗) function M2

eff, yielding ω2
k(ν = ν̃) ≈

2k2. This requires ν∗−ν̃ = k/(ãMg) > 0; taking the slow-
roll expression ã ≡ a(ν = ν̃) ≈ a∗ exp

[
−2π(ν̃2 − ν2

∗)
]

as
a good approximation results in a transcendental equa-
tion for ν̃, which we solve numerically. If in evaluating
the adiabaticity parameters |ω′′k/ω3

k| and |ω′k/ω2
k|2 we ad-

ditionally take ν̇ ≡ −1/
√

12π and drop all ν̈ terms (con-
sistent with the slow-roll approximation for a), we find
the adiabaticity parameters scale approximately as

{
|ω′′k/ω3

k|, |ω′k/ω2
k|2
}
∝ 1

M2
g

ν̃2

(ν∗ − ν̃)2

[
1 +

1

2πν(ν∗ − ν)

]
.

(71)

Using the numerically obtained values of ν̃, we find that
the factor multiplying M−2

g scales roughly proportional
to Mg for large enough k, leading to an approximate
scaling of

{
|ω′′k/ω3

k|, |ω′k/ω2
k|2
}
∝ M−1

g in the regime of
large k and small Mg. This compares favorably with the
large-k results in Fig. 10. The behavior for smaller k at
small Mg would be obtained from a similar argument,
in which one did not neglect the −a′′/a3 term, but still
assumed that k and Mg were sufficiently large to prevent
a tachyonic phase.21

The question then naturally arises as to where the
cross-over point between the two regimes occurs as this
should give a good estimate of when max {|ω′′k/ω3

k|} goes
through its turning point which indicates at what value
of Mg one would expect the spectrum, at a fixed value of
k, to stop decreasing and instead enter the regime where
it increases again back to the limiting value of unity as
we discussed above. Since we expect the g2 scaling to
obtain whenever ω2

k/a
2 is minimized around ν ≈ ν∗, we

can estimate that once ν∗ − ν̃ & 0.1ν∗, this scaling may
begin to break down. Again throwing away the −a′′/a
term in ω2

k/a
2, and solving for the value of Mmin

g required
to achieve such a deviation assuming a ≈ a∗, we find
that Mmin

g ≈
√

4πk2/0.1a2∗ ≈ 7 × 102k; this compares

fairly well with the values of Mg for which max
{
|ω′′k/ω3

k|
}

reaches its minimum in Fig. 10. Of course, the fairly good
numerical agreement here is sensitive to the exact value
of a and the assumed small deviation from ν∗ which is
used in this argument; however, the fact that Mmin

g ∝ k
is a fairly robust prediction, and is consistent with the
scaling with k of the minima of the curves shown in Fig.
10 for sufficiently large k.

We now turn attention to the far-ultraviolet (UV) be-
havior of the spectra. To understand the rapid drop-off

21 Indeed, the divergences evident in Fig. 10 for small k and Mg are
precisely due to these cases allowing for a tachyonic phase. For
small Mg , since ω2

k/a
2 is not minimized at ν = ν∗, our earlier

argument that kth = 4 × 10−2 is the threshold value beyond
which no tachyonic phase is present is not applicable. Instead,
the threshold value kth should be obtained from the full condition
minν {ω2

kth
} = 0, and this typically requires a larger threshold

value than kth = 4× 10−2 if ω2
k/a

2 is minimized at ν < ν∗. The
appearance of divergences in Fig. 10 related to the existence of
a tachyonic phase is thus not in contradiction with our earlier
statements.



26

101 102 103 104

Mg

10−3

10−2

10−1

100

101

102

103

104

m
ax
|ω
′′ k/
ω

3 k
|

Fixed k

5.6× 10−2

1.0× 10−1

1.8× 10−1

3.2× 10−1

5.6× 10−1

1.0× 100

FIG. 10. (Color online) The maximum values attained during inflation of the adiabaticity parameter |ω′′k/ω3
k| (the behavior of

the other adiabaticity parameter |ω′k/ω2
k|2 is similar) in the potentially-coupled irrupton model at representative fixed k (see

legend) as a function of Mg (in units of m). The black circles indicate the relevant values Mg = { 17, 60, 2.1 × 102, 7.2 ×
102, 1.2×103, 3.7×103, 1.2×104} (see Fig. 4). The divergences evident at small Mg for some of the smaller-k curves indicate
that these modes allow for a tachyonic phase. The minimum of each curve is indicated by a grey diamond.

in the particle spectra once k & 10−1 (see Figs. 3 to 6)
one must consider three qualitatively distinct cases: a)
for small enough k there exists a broad region of tachy-
onic behavior of the mode function (e.g., for M . 3
and ε = 0.6 for the kinetically-coupled irrupton, and the
potentially-coupled irrupton results for Mg . 60 in Fig.
4), b) for small enough k there is a very narrow tachy-
onic region which looks more like the impulsive kick we
discussed above (e.g., for the Mg & 200 results in Fig.
4), and c) there is never any tachyonic behavior of the
mode functions for any value of k (e.g., for M & 3 for
the kinetically-coupled irrupton).

We begin with case (a) by noting again that a tempo-
rary but fairly broad tachyonic instability in the mode
function, such as occurs in this case at smaller k, leads
naturally to exponentially more particle production than
in a case where no such instability exists. The impor-
tant observation is that once k2 > max {a′′/a}, it is im-
possible for the mode function to become tachyonic at
any point during its evolution, regardless of the value of
M2

eff. Therefore, for large enough k, we naturally expect
the spectrum (or more exactly, |βk|2) to show a rapid
fall-off compared to the values it obtains at smaller k. A
simple-minded estimate for when this criterion is satis-
fied, obtained by assuming that the slow-roll regime is
always valid, yields k & 0.4, which is of the same order
of magnitude of the point beyond which the nc

k spectra
are observed to drop-off exponentially fast in Fig. 5 and
at small Mg in Fig. 4.22

22 This estimate is about 30% too large compared to the same cri-
terion evaluated in our full numerical solution. Also, adding a
(positive) effective mass term only helps to make ω2

k/a
2 more

Case (b) is handled by our analytical treatment in Ap-
pendix B: once the value of k is large enough so that
the k2/a2 term in ω2

k/a
2 is significant, the spectrum rolls

off exponential quickly as exp
[
−
(
π/Mg|ν̇∗|a2

∗
)
k2
]

from

|βk|2 ≈ 1. We have already noted above that the quanti-
tative prediction arising from Eq. (B10) for the location
of the peak in the nc

k spectra, which coincides with the
drop-off of |βk|2, does indeed match well with the numer-
ical results shown in Fig. 4.

Case (c) requires a little more care, since the evolution
can never be tachyonic for any value of k; however, by
increasing k beyond the point where Hubble-crossing is
occurring around ν = ν∗, the minimum value of ω2

k/a
2

achieved during inflation becomes a monotonically in-
creasing function of k (see, e.g., Fig. 8). We have already
argued that the minimum value of ω2

k/a
2 anti-correlates

with the maximum value of the adiabaticity parameters,
so as this minimum value increases the particle produc-
tion is suppressed as the envelope bounding the phase
factor e2iΦ in Eq. (59) collapses. The simple-minded es-
timate here for when the spectrum starts to drop is thus
obtained from setting k = aH at ν = ν∗; assuming that
slow-roll is valid, this gives k & 0.1, which is again in
good agreement with the observed behavior in Figs. 5
and 6.

The foregoing comments about the UV spectra do have
a clear exception in the slower drop-off / small bump
around k ∼ 5 in the constant-M spectra for M . 1
(Fig. 3) and the pronounced bump around k ∼ 5 in
the kinetically-coupled irrupton spectrum for small M

positive, so the estimate shown is really an upper bound which
we do not expect to be saturated.
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(M = 0.2) and ε = 0.6 (Fig. 5). This bump clearly has a
different physical origin to the rest of the spectrum; an
examination of the time-evolution of |βk|2 and the behav-
ior of ω2

k/a
2 indicates that it arises from modes which

become light during the first few coherent inflaton os-
cillations immediately after the end of inflation, leading
to their excitation either in the usual matter-dominated
Friedmann expansion phase, or in the transition out of
the inflationary phase. Again, once k is sufficiently large,
even this effect is suppressed.

We now discuss the some features the large-M
kinetically-coupled irrupton spectra (Fig. 6) to which we
drew attention above: the bump in |βk|2 at intermediate
k (corresponding to nc

k ∼ k3+x for some x > 0) and the
nearly-universal behavior of the spectra near the peak.

Consider first the bump in |βk|2 at intermediate k,
which occurs provided that ε is not too small; see Fig.
6. The reason for this feature can be traced back to
the behavior of (the square root of) the adiabatic pa-
rameter |ω′k/ω2

k|2 per our earlier argument about the
shape of the envelope of the rapid oscillations in the
integrand in Eq. (59). For such intermediate k cases,
ω2
k/a

2 is dominated by k2/a2 until it is very near its
minimum, and from our general observation of an anti-
correlation in the sizes of ω2

k/a
2 and the adiabaticity pa-

rameters it follows that this envelope is very small until
very close to its maximum, making it highly asymmetric
near that maximum (see the lower-left plot in Fig. 9);
this leads to a significantly larger accumulated incom-
plete cancellation between neighboring oscillations when
viewed in the late-time regime. The appearance of os-
cillations in the spectra in the transition from the IR k3

scaling to this ‘bump’ regime can also be qualitatively
understood as the effect of first the positive, and then
the negative, excursions just before the maximum be-
ing alternately larger as the envelope opens up on the
low-phase Φ side as k is decreased from, e.g., the situ-
ation pictured in the lower-left plot of Fig. 9. Further-
more, the fact (which we noted above) that neighboring
excursions become more rapidly incommensurate in size
as the envelope decreases more rapidly in size from its
maximum with changing phase, such as happens in the
cases of smaller ε, makes this argument more marginal
in such cases, explaining why the oscillations in smaller-ε
cases are less pronounced (see Fig. 6). Again, our toy
model captures the essential elements of this behavior:

|βk(1)|2 ∝ e−4π2n2 ∣∣1− Erf
(
−
√

2 (ζ − iπn)
)∣∣2 increases

rapidly from its plateau value as soon as ζ < nπ (read: as
tHC approaches the time at which ω2

k/a
2 is minimized),

and also demonstrates some dips and wiggles, more pro-
nounced for larger n (read: for larger ε) provided it is
not too large, in the transition from the plateau to this
regime of growth.

The second feature of interest is the fairly universal
behavior (i.e., approximately independent of changing ε)
for k & 10−2 for M = 4 in Fig. 6. Since the nc

k spectra
are strongly peaked near k ∼ 10−1, it follows that to a
fairly good approximation the total number of particles

produced, np, thus also becomes independent of ε. This
is clearly an important qualitative feature of this result,
and can be explained by appealing to arguments simi-
lar to those already advanced about the maximum size
of, and behavior near the maximum of, the adiabatic-
ity parameters in this regime via their role of defining
the envelope of oscillations in Eq. (59). Briefly, since
at large k, ω2

k/a
2 is dominated by k2/a2 until quite late

during inflation, ω2
k/a

2 has no ε-dependence until very
late during inflation. This implies that the evolution of
the adiabaticity parameters is nearly identical for differ-
ent values of ε until the k2/a2 term red-shifts away suf-
ficiently to expose the ε-dependence in Meff, and hence
in the adiabaticity parameters. However, the resulting
ε-dependence of the maximum value of the adiabaticity
parameters, and their behavior near that maximum, in
the k & 10−2 regime is very mild for all the values of
ε we have examined, which implies that as a gross ap-
proximation, the amount of particle production should
be approximately the same for each ε value, roughly as
observed in Fig. 6. Going beyond this gross approxi-
mation, we note that the small excess in the production
at ε = 0.25 versus that at ε = 0.8 in the regime between
k ∼ 10−2 and k ∼ 5×10−1 (see the inset in the lower-left
plot in Fig. 6) is borne out in the slightly larger maxi-
mum value of the adiabaticity parameter attained for the
former case compared to the latter.

VI. DISCUSSION AND APPLICATIONS

While inflation is a phenomenological success, the
particle-physics foundations upon which a complete the-
ory of inflation can be built are yet to be set. Even as-
suming that the dynamics of inflation may be described
in terms of a scalar field (the inflaton), we do not know
whether the inflaton is a “fundamental” scalar field de-
scribable in terms of a ultraviolet-complete theory, or
whether it should be considered within the framework
of an effective field theory. We do not yet understand
how inflation began (e.g., whether inflation is eternal),
or how inflation ended (preheating, reheating, etc.). We
also do not know how the inflaton couples to other fields.

If the universe did undergo an early phase of infla-
tion, then one probe of the dynamics results from par-
ticle production during inflation. One relic of particle
production during inflation is the “scalar” curvature fluc-
tuations resulting from creation of inflaton quanta dur-
ing inflation. A second relic is the “tensor” perturbations
(gravitational waves) resulting from creation of the trans-
verse, traceless component of the gravitational field (viz.,
gravitons). Measurements of the scalar and (especially)
the tensor perturbation spectra and possible nongaus-
sian signatures will go a long way toward untangling the
foundations of inflation.

In addition to the inflaton and the graviton, other fields
will be produced during inflation if conformal symmetry
is broken through either a mass term or a non-conformal
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coupling to gravity. We considered such a model in Sec.
II A. This model has been considered before (e.g., Refs.
[33, 34]); here, we extend the range of numerical results
to larger mass and larger comoving wavenumber and de-
velop a clearer physical understanding of the expected
results in ranges of parameters not accessible to numeri-
cal techniques.

Another avenue of exploration is the possibility that
the inflaton may couple to massive particles, where again
“massive” is with respect to the expansion rate during
inflation. Of particular interest is the possibility that the
additional field may become massless (or at least light
compared to H) during inflation as a result of its coupling
to the inflaton. In this case there may be a “resonant”
production of the particle species at a particular value
of the inflaton field. This is what we call an irruption
of the massive particle species, and why we refer to the
additional scalar field as the irrupton.

We study two such models. While it is impossible to
imagine all possible inflaton–irrupton couplings, the two
models we consider exhibit a range of final spectra that
should encompass a wide range of possibilities.

The first model is a potentially-coupled irrupton in
which the field couples through a term in the potential
that couples the inflaton and the irrupton. This possibil-
ity was first proposed in a similar model by Chung et al.
[17], and explored in Refs. [18–21]. Here, we develop
numerical and analytic techniques to allow us to extend
the numerical range of study and to understand the be-
havior of the resulting spectra with parameters where a
numerical calculation is problematic.

We also consider a new model for irrupton–inflaton
coupling; specifically a non-canonical kinetic-term cou-
pling between a heavy scalar field with a canonical mass
parameter and the scalar (inflaton) field which drives
inflation. By canonically normalizing the heavy scalar
kinetic term, for our choice of coupling, we find a time-
dependent exponential enhancement of the effective mass
of the canonically-normalized heavy scalar which allows
it to briefly become as light (or lighter than) H, but oth-
erwise to be much heavier at both early and late times.
By using the method of Bogoliubov coefficients, and nu-
merically solving the equations of motion for the infla-
ton field, the scale factor, and the mode equations for
the heavy scalar field, we determine the number of these
heavy scalar particles produced gravitationally by the
non-adiabatic expansion of the background space-time
during inflation acting on quantum fluctuations of the
heavy scalar field. From this we extract the final irrup-
ton particle spectra.

The particle spectra in the two models are found to
exhibit a variety of complex behaviors attributable to
the time dependence of the effective mass, with the most
generic feature being an infrared cutoff in the spectra
compared to the the minimally-coupled WIMPzilla which
has been previously extensive studied in the literature, in
addition to the well-known usual UV fall-off. These spec-
tra become increasingly peaked toward scales which cross

the comoving Hubble radius near the end of inflation as
the mass parameter M or Mg increases. For the second
model, they additionally become more peaked as the non-
canonical kinetic term increasingly singles out a specific
inflaton field value as important (i.e., the parameter ε
decreases in size).

One important result of our work is the relic density
of these heavy particles, assuming they are stable, as a
function of the heavy particle effective mass (Fig. 11).23

From these results, we conclude that the effect of sin-
gling out in the non-canonical kinetic-coupling a single
inflaton field value as more important (i.e., decreasing ε)
at fixed sufficiently large M is to increase both the late-
time effective mass of the heavy particle and the relic
abundance. (For smaller M , the effect of increasing ε is
first to decrease the relic abundance while increasing the
late-time effective mass of the heavy particle, but this be-
havior is short-lived and as ε gets smaller, the mass and
relic abundance increase together again.) As a result, we
find explicitly that we can produce heavy particles with
late-time effective masses more than three orders of mag-
nitude larger than the inflation mass (m ∼ 2H(tEI)) yet
with sufficient relic abundance to saturate the Planck
result for ΩDMh

2, which is in marked contrast to the
usual minimally-coupled WIMPzilla whose mass must be
around 3.3m to achieve the same result (see our “ε→∞”
results, which agree well with those of Ref. [34]). We
expect that the mechanism should remain operative for
even higher effective masses, possibly even up to the
Planck mass scale, for suitable parameter choices.

We note that to obtain the ratio of the irrup-
ton mass density to the inflaton mass density
during the inflaton oscillation phase, one should
multiply the quantity plotted in Fig. 11,

(
Ωh2

)
×(

ΩDMh
2
)−1

Planck
× (TRH/109GeV)−1 × (m/1013GeV)−2,

by 5.8 × 10−19 × (m/1013GeV)2. This implies that the
irrupton mass density is a very small fraction of the
total since the maximum value of the plotted quantity is
around 109 for all cases we have considered, and justifies
ignoring it in the dynamics of expansion.

We will now recapitulate some of the important results
we have obtained for the various models investigated in
this paper, and make some additional comments. Con-
sider first the constant-M model:

23 Note that in integrating nc
k over k to extract of the total particle

number np via Eq. (35), a problem arose in some cases (i.e., the
kinetically-coupled irrupton at M ≤ 1 as ε → ∞), indicated in
Fig. 11 by (green) squares, due to the non-convergence of the
integral owing to IR-divergent behavior in nc

k. We simply cut-off
the integration in the IR at k = 10−20 as this was the small-
est value we sampled; this corresponds to modes that crossed
the Hubble radius roughly 48 e-folds before the end of inflation.
The marked results may very well underestimate the total parti-
cle number produced, and they should thus be interpreted with
caution. These results are also larger than those from Ref. [34]
as we have probed smaller values of k.



29

10−1 100 101 102 103

M∞eff/m = (M/m)× eν2
∗/2ε

2

10−6

10−4

10−2

100

102

104

106

108

1010

( Ω
h

2
) ×

( Ω
D

M
h

2
) −

1

P
la

nc
k
×
( T

R
H
/
1
09

G
eV
) −

1
×
( m

/
1
0

1
3

G
eV
) −

2

Kinetically-coupled

10−1 100 101 102 103

M∞eff/m = (Mg/m)× ν∗

10−6

10−4

10−2

100

102

104

106

108

1010

( Ω
h

2
) ×

( Ω
D

M
h

2
) −

1

P
la

nc
k
×
( T

R
H
/1

0
9

G
eV
) −

1
×
( m

/
1
0

1
3

G
eV
) −

2

Potentially-coupled 101 102 103 104

1.0

1.5

2.0

A
na

ly
ti

cs
N

um
er

ic
s

FIG. 11. (Color online) The present-day relic mass density of stable irruptons for the kinetically-coupled model (upper plot) and
the potentially-coupled model (lower plot) in units of

(
ΩDMh

2
)

Planck
×(TRH/109GeV)×(m/1013GeV)2 where

(
ΩDMh

2
)

Planck
=

0.1186 [41], as a function of the late-time effective mass M∞eff . Crosses (black) represent points we have explicitly sampled in
our numerical computations. In the upper plot, solid (grey) lines join points at constant M/m (from top to bottom M = 0.2,
0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 3.75, 4.0, 4.25, 4.5, 4.75, 5.0, 6.0, 7.0), and dashed (grey) lines join points at constant
ε (from left to right ε = ∞, 1.0, 0.8, 0.6, 0.5, 0.4, 0.35, 0.3, 0.27, 0.25), where interpolation between sampled points has been
performed. The (green) square points in the upper plot are models where it was necessary to cut the spectrum off in the
infrared to obtain a finite value; while the dash-dot (red) line is the ‘constant-M ’ result taken from Kuzmin and Tkachev [34],
which our ε→∞ results recover well except at small M ; see footnote (23). In the lower plot, the solid (grey) line is a (log-log)
cubic spline interpolant between the sampled points while the dashed (red) line is the result of our analytical expression Eq.
(B10). We show the ratio of the analytical to numerical result in the inset, including also numerically sampled points up to

the mass M∞eff/m = 2.9× 104 which are not shown on the main axes as they lie exactly on the Ωh2 ∝M5/2
g extrapolation line.
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1. The only parameter in the model is M (always ex-
pressed in units of the inflaton mass, m ' 1013

GeV).

2. The spectra are slightly red for M < 1, slightly blue
for 1 < M . 2, and increasingly peaked around
10−2 . k . 1 for 2 . M . There is a sharp drop in
the spectra for k > 1.

3. The spectra of produced particles decreases very
rapidly with M for M & 1; the decrease in the
spectra with M for wavenumbers in the range
10−2 . k . 100 is still substantial, but less pro-
nounced than in the infrared.

4. If the produced particle is stable, Ωh2 = 0.12 is
obtained for M ' 3.3 provided TRH = 109 GeV.
(This can be inferred from the ε → ∞ results in
Fig. 11.)

For the potentially-coupled irrupton model, some of
our important results are:

1. There are two parameters in this model, Mg =
gMPl, and ν∗. The late-time value of the irrupton
mass is M∞eff = Mgν∗. Our numerical investigation
fixed ν∗ = 0.8 which corresponds to 4 e-folds before
the end of inflation.

2. For Mg < 3 the spectrum is similar in shape to the
constant-M model, owing to the existence in both
cases of a broad tachyonic phase whose duration
depends on k. That is, at small Mg this model
has continuous particle production over extended
durations rather than a localized irruption.

3. The spectrum for the potentially-coupled case is
much larger than the corresponding spectrum for
the constant-mass model with Mg = M .

4. For still larger Mg, say Mg & 5 or so (see Fig. 4),
the spectrum becomes increasingly peaked around
10−2 . k . 1.

5. The irruption production mechanism is too effi-
cient at producing particles to allow for their inter-
pretation as a possible superheavy DM candidate
unless the reheat temperature is fairly low: the
total number of particles produced over-saturates
the Planck result for Ωh2 [41] by a factor of at

least 104×
(
TRH/109 GeV

)
×
(
m/1013 GeV

)2
for all

choices of Mg which we have studied (see Fig. 11).
This conclusion is, however, rather sensitive to the
value of ν∗: since Ωh2 ∼ ν∗ a3

∗ (see Eq. (B14)),
had we taken ν∗ & 1.1 (greater than 8 e-folds
before the end of inflation), the minimum value

of
(
Ωh2

)
×
(
ΩDMh

2
)−1

Planck
× (TRH/109GeV)−1 ×

(m/1013GeV)−2 would drop below 1, and it would
be possible to attain the right relic abundance even
for TRH ∼ 109GeV.

6. For fixed Mg, our understanding of how the be-
haviour of Meff impacts the spectra leads us to con-
clude on general grounds that as ν∗ is increased, the
nc
k spectrum will have the same general shape but

will a) shift to the infrared because smaller values
of k are needed to allow for strongly non-adiabatic
/ tachyonic behaviour if Meff has its zero earlier
during inflation when a∗ is smaller, b) broaden on
the low-k side due to an extension of the tachyonic
phase to earlier times, and c) decrease in amplitude
owing to the greater dilution of an NR species if it is
created earlier during inflation. The dilution effect
is always dominant, leading to a exponential sup-
pression of the abundance of particles as measured
by Ωh2 after the end of inflation, as ν∗ is increased
linearly. These points are all explicitly borne out
by our large-Mg analytical expressions Eqs. (B12)
and (B14), as discussed further in Appendix B.

7. Our analytical expressions in Appendix B also in-
dicate that at large Mg this model produces more

particles with increasing Mg: np ∝ M
3/2
g and

Ωh2 ∝M5/2
g ; our numerical results agree with these

scalings.

Finally, we turn to some additional final comments on
the kinetically-coupled irrupton model:

1. There are three parameters in this model, M , ε,
and ν∗. The late-time value of the irrupton mass

is M∞eff = Meν
2
∗/2ε

2

. For ε → ∞ the constant-M
model is recovered. M∞eff is exponentially sensitive
to ν∗/ε.

2. The simple large-M scaling behavior with changing
ε evident in Fig. 11 traces its origin to the insen-
sitivity of the spectra, in the regions where they
contribute dominantly to the particle number inte-
gral in Eq. (35), to changing values of ε (at fixed
M) which we also noted with regard our discus-
sion of Fig. 6 in Sec. V: for example, np increases
by a factor of only about 2 between ε = 0.80 and
ε = 0.25 for M = 4, yet ΩDMh

2 increases by a fac-
tor 2 orders of magnitude larger than that. That
is, the clean scaling behavior of Ωh2 with varying
ε at fixed M seen in Fig. 11 at large M arises pre-
dominantly through the parametric dependence on
ε of the horizontally- and vertically-plotted quan-

tities [both proportional to eν
2
∗/2ε

2

; see Eqs. (41)
and (42)] rather than through the impact on the
particle spectra of varying ε per sé.

3. The simple large-M scaling with increasing M
arises jointly from parametric dependence causing
M∞eff to increase linearly, while the spectra them-
selves undergo an exponentially fast decrease, fairly
uniform over a fairly wide range of M , in normal-
ization causing the relic abundance (proportional to
np) to drop, notwithstanding its parametric scaling
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proportional to M . The integrated spectrum itself
can be very well fit over the range from M = 4 to

8 by a function of the form np ∼ e−aM+bM2

where
a and b are some positive real numbers and b� a.

4. The more complex behavior at smaller M is due the
more non-trivial dependence of the particle spectra
in the vicinity of their maxima (e.g., Fig. 6) on M
and ε, in addition to the parametric dependence
just discussed. As an example, consider the case of
varying ε at small M . Two effects compete against
one another: with decreasing ε the normalization
of the particle spectrum drops at fixed small M
(e.g., the upper plot of Fig. 6), but the late-time

effective mass rises proportional to eν
2
∗/2ε

2

. Since
Ωh2 is proportional to M∞eff n

p, this gives rise to
the turning-point behavior around ε = 0.4 seen in,
e.g., the M = 1 results because at small ε, the
latter effect wins whereas at larger ε, the former
effect does.

5. Our general understanding of the behaviour of Meff

leads us to conclude that if a tachyonic phase is al-
ready present, further increasing ν∗ will increase
the duration of that phase, and will shift it to
slightly earlier times. While the former effect would
argue for an increase in the nc

k spectra, the latter ef-
fect leads to a greater dilution of the NR species as
it is produced earlier. Simulations indicate that the
latter effect wins, causing the amplitude of the nc

k
spectra to decrease with increasing ν∗. The exten-
sion of the tachyonic phase to earlier times causes
the spectrum to broaden on the low-k side, while
its truncation at later times causes the UV drop-
off to happen for slightly smaller k. In other words,
with increasing ν∗, the nc

k spectrum gets smaller at
fixed k, and broadens as a function of k, and moves
to the IR.

6. In contrast, if no tachyonic phase exists (e.g., at
large M), increasing ν∗ can cause more complex
changes to the spectrum. This is perhaps easiest
discussed by way of an example; for instance, con-
sider the case of M = 4. As ν∗ is increased from
0.4 to 0.8, the nc

k spectrum increases in amplitude,
broadens and the peak moves to the IR due to the
fact that min

{
ω2
k/a

2
}

decreases and is attained at
slightly earlier times (the increase in the production
from the former effect swamps the dilution implied
by the latter effect). As ν∗ is increased further from
0.8 to 1.2, the spectrum continues to move to the
IR, but its amplitude drops as the dilution effect be-
comes the dominant. Eventually for large enough
ν∗, a tachyonic phase develops, and point (5) begins
to apply.

All the models we consider are capable of produc-
ing massive particles during inflation. For the constant
mass model the efficacy of particle creation drops precip-
itously for M & H. Also, for constant mass models with

mass light enough for appreciable particle production,
the spectrum of produced particles tends to be flat. We
considered two models with varying mass: a “potentially-
coupled” model and a “kinetically-coupled” model. Both
of these models are capable of producing an irruption of
a particle species as the effective mass of the species van-
ishes or becomes small compared to H. Both of these
models are able to produce particles with mass (after in-
flation) much larger than H. They are also capable of
producing highly-peaked spectra.

While the models we considered do not exhaust the
space of models with varying particle mass due to the
coupling of the particle to the inflaton, they do encom-
pass a remarkable range of phenomena and results.

While a complete study of the applications of massive
particle production is outside of the scope of this work,
we conclude by remarking on some possible implications
and applications.

1. Backreaction on the Inflaton Field: The original
motivation for studying irrupton of massive parti-
cles during inflation was the backreaction of parti-
cle production on the inflaton field, which can lead
to features in the scalar density spectrum [17]. It
was later demonstrated that there are additional
effects on the density spectrum due to the scatter-
ing of the produced particles with the inflaton field
[20, 21]. All of these studies assumed a potentially-
coupled irrupton.

Both of the aforementioned effects are sensitive to
the magnitude and the duration of particle irrup-
tion. As we have shown, a wide range of possibili-
ties for magnitude and duration are possible just in
the two irrupton models we have considered. We
have shown that for a same mass (M∞eff ) particle
species, the spectrum and amplitude of produced
particles may differ greatly between the potentially-
coupled and the kinetically-coupled models. This
will have a large effect on the calculation of the ef-
fect of the backreaction on the inflaton field as well
as irrupton–inflaton scattering after production.

2. Superheavy Dark Matter (‘WIMPzilla’) production:
The concept of dark matter produced by parti-
cle creation during inflation was proposed within
the framework of the constant-mass model [33, 34].
The idea is that the particle coupling to the inflaton
is stable and is produced gravitationally during in-
flation in the correct abundance to be the relic dark
matter. As we can see from Fig. 11, the correct relic
mass density in this model is obtained if M ' 3.3m.
This is in broad agreement with previous analyses.

We can now extend this idea to models with species
irruption. The results for a potentially-coupled ir-
rupton model is also shown in Fig. 11. The interest-
ing result is that for fairly small values of ν∗ there is
no value of the model parameters that do not over-
produce the particle, provided the reheat tempera-
ture is not quite low. For this model, Ωh2 actually
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has a minimum around M∞eff ≈ 30 as a result of the
fact that np does not continue to monotonically de-
crease with increasing Mg when the latter is large
(Fig. 4): once ∂np/∂Mg ∼ M−1

g , the relic density
(proportional toMgn

p) will go through a minimum.
Once ν∗ & 1.1 however, the correct relic abundance
can be obtained (even for TRH ≈ 109GeV) due to
the additional dilution of the NR species owing to
it being produced earlier during inflation.

For a kinetically-coupled irrupton, M∞eff can be
(many) orders of magnitude larger than 3.3m and
still give rise to the right abundance of particles (see
Fig. 11); in fact, it could näıvely be as large as the
Planck mass (i.e., it can be a Planckon). We will
remark briefly on the possibility of super-Planckian
particle production below.

3. Isocurvature modes: Isocurvature modes are pro-
duced in the WIMPzilla scenario [42, 43] because
the dark matter is produced by the dynamics of
the coupled irrupton-inflaton system and the cur-
vature perturbations are produced by the inflaton
dynamics alone.

Again, the calculation of amplitude and spectrum
of the isocurvature component will differ in the
constant-mass case and either of the kinetically- or
potentially- coupled irrupton models. This is par-
ticularly important as the limits to the isocurvature
model become more stringent [44].

4. Nongaussian Features: Nongaussian features in the
scalar perturbation spectrum will occur in all of the
models we study. Isocurvature perturbations were
considered in the WIMPzilla scenario in Ref. [43]
assuming a constant-M model. If there is an ir-
ruption of massive particles during inflation there
is another source of nongaussianity called infrared
cascading in Barnaby et al. [20] (see Ref. [21] for
a review). The model used in that study is the
potentially-coupled model of this paper. The calcu-

lations for both of these effects (WIMPzilla and in-
frared cascading) will be modified in the kinetically-
coupled scenario.

5. Planck-mass particle production: As we noted
above, the efficacy of the either the potentially-
or kinetically- coupled irrupton production mech-
anism with regard to large-mass particles is ex-
pected to extend beyond the regime we have
explicitly investigated numerically. This raises
the prospect that by dialing the parameters M, ε
and ν∗ (kinetically-coupled case) or Mg and ν∗
(potentially-coupled case), we could näıvely raise
the late-time (as well as early-time) effective mass
of the irruptons to M∞eff &MPl while still maintain-
ing a non-negligible abundance.

This raises the possibility that inflation could be
sensitive to particles24 with mass larger than the
Planck mass. In this scenario except for an ex-
tremely narrow region near φ = φ∗ the Planck-
ian state can be integrated out of the effective field
theory describing inflation. But it is exactly near
φ = φ∗ that the particles will be produced, and
when they are produced they are light. Only af-
ter the inflaton continues to evolve past φ = φ∗
will the particle regain its proper Planckian mass.
Presumably then the ‘particle’ becomes a classi-
cal black hole, and description of its dynamics in
terms of single-particle excitations of a fundamen-
tal scalar field is then inappropriate. Furthermore,
with Planck-mass particles present, the local space-
time will be subject to significant back-reaction,
and if a black-hole forms, it would look locally like
Schwarzschild, rather than homogeneous quasi-de
Sitter, so it is clear that our results in this regime
are on shaky footing. At some point our simple
model must break down and it is therefore unclear
whether it does actually allow for the production
of trans/super-Planckian particles. This is an in-
teresting open question.

Appendix A: Late-time asymptotics

It is instructive to develop a further analytical understanding of the late-time behavior of |βk|2, building from our

discussion in Sec. IV C. We examine here the expression for the first-order iteration, β
(1)
k (t), for t � tref. Starting

with Eq. (67) for n = 1, and using α
(0)
k (t) = 1, we have

β
(1)
k (t) = β

(1)
k,ref +

1

2
e−2iΦref

∫ t

tref

[H(t1)− 2δ ν̇(t1)] e−2iM∞(t1−tref) dt1. (A1)

24 Dvali and Gomez [45] argues that these states are not properly quantum particles, but black holes.
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Applying Eq. (62), the integral in Eq. (A1) can be written in terms of exponential integral functions Ei(y). Two
standard integrals will enter:

I1(y; ỹ, ξ) ≡
∫ y

0

e−iξ(y1+ỹ)

y1 + ỹ
dy1 = Ei(−iξ(y + ỹ))− Ei(−iξỹ), (A2)

I2(y; ỹ, ξ) ≡
∫ y

0

e−iξ(y1+ỹ)

(y1 + ỹ)2
dy1 = e−iξỹ

[
1

ỹ
− e−iξy

y + ỹ

]
− iξ [Ei(−iξ(y + ỹ))− Ei(−iξỹ)] . (A3)

Here, we will have either ξ = 2M∞ or ξ = 2M∞ ± 1, and y ≡ t− tref, ỹ ≡ tref − τ , and y + ỹ = t− τ (all are positive,
provided M∞ > 1/2). Finally, we can write the desired late-time expression for βk(t):

β
(1)
k (t) ≈ β(1)

ref +
1

2
e−2i(Φref−M∞ỹ)

{
2

3
I1(y; ỹ, 2M∞)

− δ
[
(A+ iB) I1(y; ỹ, 2M∞ − 1) + (A− iB) I1(y; ỹ, 2M∞ + 1)

]

− iδ
[
(A+ iB) I2(y; ỹ, 2M∞ − 1)− (A− iB) I2(y; ỹ, 2M∞ + 1)

]}
. (A4)

We are interested in the late-time asymptotic limit of Eq. (A4). Since the exponential integral function has a branch
cut one must be careful when making asymptotic expansions:

Ei(±ia)→ ±iπ + e±ia
[
∓ i
a
− 1

a2
+ · · ·

]
as a→ +∞ (a ∈ R). (A5)

Thus, the late-time asymptotic expansions for the two standard integrals are

I1(y →∞; ỹ, ξ) ∼ − [iπ + Ei(−iξỹ)] + e−iξ(y+ỹ)

[
i

ξy
− 1 + iξỹ

ξ2y2
+ · · ·

]
(A6)

I2(y →∞; ỹ, ξ) ∼ e−iξỹ

ỹ
+ iξ [iπ + Ei(−iξỹ)] +

e−iξ(y+ỹ)

y

[
i

ξy
− 2

1 + iξỹ

ξ2y2
+ · · ·

]
. (A7)

Finally we may expand this late-time asymptotic solution in the large-mass limit (ξ →∞), yielding

I1(y →∞; ỹ, ξ →∞) ∼ − i
ξ

[
e−iξỹ

1

ỹ
− e−iξ(y+ỹ)

(
1

y
− ỹ

y2

)
+ · · ·

]
+

1

ξ2

[
e−iξỹ

1

ỹ2
− e−iξ(y+ỹ) 1

y2
+ · · ·

]
+ · · · (A8)

I2(y →∞; ỹ, ξ →∞) ∼ − i
ξ

[
e−iξỹ

1

ỹ2
− e−iξ(y+ỹ)

(
1

y2
− 2ỹ

y3

)
+ · · ·

]
+

2

ξ2

[
e−iξỹ

1

ỹ3
− e−iξ(y+ỹ) 1

y3
+ · · ·

]
+ · · · (A9)

After a bit of manipulation, the late-time–large-mass asymptotic value of β
(1)
k can be written as

β
(1)
k (t→∞) ≈ β(1)

k,ref − i
e−2iΦref

6M∞

{
1

tref − t0
[1− 3δ (tref − t0) ν̇ref]

+
e−2iM∞(t−tref)

t− tref

[
1− 3δ

(
(νref + (tref − t0)ν̇ref) cos(t− tref)− νref (tref − t0) sin(t− tref)

)]}
. (A10)

Armed with this expression, we can immediately see the qualitative features of the late-time, large-mass solution:

1. A non-zero (in general) late-time value of

|β(1)
k (t→∞)|2 =

∣∣∣∣β
(1)
k,ref − i

e−2iΦref

6M∞

1

tref − t0
[1− 3δ (tref − t0) ν̇ref]

∣∣∣∣
2

(A11)

arising from the constant term squared.

2. A fast oscillation at frequency 2M∞, whose amplitude is modulated at frequency m, which damps out as
1/t. This arises from the cross-term between the constant term and the damped term. Schematically, this

contribution takes the form
1

t
cos(2M∞t+φ)

[
1 + ζ cos(mt+φ′)

]
. Although we have not displayed it here, if we

expanded β
(1)
k itself up to 1/t2, there would also be a similar term damped at 1/t2, but this will be subdominant.
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3. A slow oscillation at frequency m on top of a constant 1/t2 contribution. This arises from the damped term

squared. Schematically, this contribution takes the form
1

t2

[
1 + ζ ′ cos(mt+ φ′′)

]2
.

We see all these behaviors in the numerical solutions; in particular, we have performed Fourier analysis on selected
late-time numerical solutions and found strong peaks in the Fourier power spectrum at all the expected frequencies
(including sidebands generated by the modulations).

Appendix B: Analytics for the potentially-coupled
case

This appendix is based on ideas and methods to be
found in Section VII B of Kofman et al. [40].

We consider the potentially-coupled case at large Mg

(larger than any other scale in the problem, except pos-
sibly k). In this case, the duration of production is ex-
tremely short around t = t∗, and we need only consider
the solution of the mode equation in this short interval,
taking |βk|2 = 0 identically at some short time just be-
fore t = t∗, and extracting the asymptotic value of |βk|2
shortly after t = t∗ (‘short’ will be made precise below).
As a result of this observation, we may Taylor expand
a(t), H(t), etc. in the mode equation around the point
t = t∗ and will keep only terms up to t2.

Rather than solve the mode equation Eq. (17) for χk,
we solve the equation for fk(t) ≡ a1/2χk(t) [21]:

f̈k +

[
M2
g (ν − ν∗)2 +

k2

a2
− 9

4
H2 − 3

2
Ḣ

]
fk = 0, (B1)

where we used the fact that a′′/a3 = 2H2 + Ḣ.

We may now Taylor expand the relevant functions to
second-order in powers of t, for the present purposes re-
zeroing t at ν = ν∗:

M2
g (ν − ν∗)2 = M2

g ν̇
2
∗t

2 ≡ k4
?t

2

k2

a2
=
k2

a2∗

[
1− 2H∗t+

(
2H2
∗ − Ḣ∗

)
t2
]

H2 = H2
∗ + 2H∗Ḣ∗ + (Ḣ2

∗ +H∗Ḧ∗)t
2

Ḣ = Ḣ∗ + Ḧ∗t+
1

2

d3H

dt3

∣∣∣∣
∗
t2 , (B2)

where we defined k? ≡
√
Mg|ν̇∗|. To evaluate the higher

derivatives here in terms of ν and ν̇, one can exploit Eq.
(25), Ḣ = −4πν̇2 and ν̈ = −3Hν̇ − ν, all of which are
exact relations when the back-reaction is ignored and the
irrupton energy density is assumed to be a very small
fraction of the inflaton energy density. We thus have

f̈k +
[
pt2 + qt+ r

]
fk = 0, (B3)

where we have defined

p = k4
? +

k2

a2∗

[
2H∗ − Ḣ∗

]
− 9

4

(
Ḣ2
∗ +H∗Ḧ∗

)
− 3

2

d3H

dt3

∣∣∣∣
∗

q = −2H∗
k2

a2∗
− 9

2
H∗Ḣ∗ −

3

2
Ḧ∗

r =
k2

a2∗
− 9

4
H2
∗ −

3

2
Ḣ∗. (B4)

Defining

z ≡
√

2p1/4

(
t+

q

2p

)

c ≡ 1

2
√
p

(
q2

4p
− r
)
, (B5)

the equation for fk can be written as

d2fk
dz2

+

(
1

4
z2 − c

)
fk = 0. (B6)

The solutions to this equation can be written in terms of
confluent hypergeometric functions 1F1 (see §9.2 of Ref.
[46] or Ref. [47]):

fk = e−iz
2/4
[
A 1F1

(
1
4 − i

2c,
1
2 ,

i
2z

2
)

+Beiπ/4 z 1F1

(
3
4 − i

2c,
3
2 ,

i
2z

2
) ]
, (B7)

where A and B are integration constants to be chosen to
specify the adiabatic in-vacuum.

Recall that fk = a1/2χk and the in-vacuum solution for

χk must reduce to χk → (1/2ωk)1/2 exp
(
−i
∫ t
dt′ ωk/a

)

as t → −∞. Therefore, we must have fk →
(a/2ωk)1/2 exp

(
−i
∫ t
dt′ ωk/a

)
as t → −∞. We now

Taylor expand ω2
k and look sufficiently far from t = 0:

|t| � k−1
∗ . Assuming that the mass term is the largest

contribution to ω2
k/a

2, the latter is dominated by the t2

term, and up to small corrections like Ḣ∗/k4
?, etc., we

then have that ωk/a ≈ √p t ≈ p1/4z/
√

2. Therefore,
the in-vacuum asymptotic early-time form of fk must be
fk → exp(+iz2/4)/

(
21/4p1/8

√−z
)

as z → −∞, where
we have ignored the presence of a possible irrelevant over-
all phase and have dropped small terms. Note the oppo-
site sign to the näıve expectation appears in the exponent
since the t < 0 form of ωk must be used.

By demanding this early-time asymptotic form, we re-
cover the values of A and B for the correctly normalized
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modes which give an in-vacuum; although these expres-
sions are not particularly enlightening, we present them
here for completeness:

A = − (−1)7/82ic/2

4πp1/8
e−3πc/4

(
1 + e2πc

)

× Γ
(
ic
2 + 1

4

)
Γ
(

1
2 − ic

)
, (B8)

B = − (−1)3/82ic/2

23/2πp1/8
e−3πc/4

(
1 + e2πc

)

× Γ
(
ic
2 + 3

4

)
Γ
(

1
2 − ic

)
. (B9)

To extract αk and βk we simply look at the late-time
behavior of f(z) as z → ∞: αk is the coefficient of
the term exp(−iz2/4)/

(
21/4 p1/8

√
z
)

and βk is the co-

efficient of the term exp(+iz2/4)/
(
21/4 p1/8

√
z
)
. The

results are

|αk|2 = 1 + e2πc

|βk|2 = e2πc = exp

[
π√
p

(
q2

4p
− r
)]

, (B10)

which clearly satisfy the Wronskian condition |αk|2 −
|βk|2 = 1.

The (red) dashed line in the lower plot of
Fig. 11 is obtained via numerical integration of

Eq. (B10) using Eq. (41): Ωh2 ×
(
Ωh2

)−1

Planck
×

(TRH/109GeV)−1 × (m/1013GeV)−2 ≈
(
2.7043× 106

)
×

Mgν∗×
∫∞

0
k2|βk|2 dk. The relevant parameters in terms

of which p, q, and r can be evaluated must be taken from
our numerical background solutions: when ν = ν∗ = 0.8,
we have H∗ = 1.6697, ν̇∗ = −0.1599 and a∗ = 0.0160.

At very large Mg further simplifications are possible:

p ≈ k4
? = M2

g ν̇
2
∗

c ≈ − r

2
√
p
≈ 1

2Mg|ν̇∗|

[
9

4
H2
∗ +

3

2
Ḣ∗ −

k2

a2∗

]
, (B11)

so that using Ḣ∗ = −4πν̇2
∗ ,

|βk|2 ≈ exp

[
π

Mg|ν̇∗|

(
9

4
H2
∗ +

3

2
Ḣ∗ − k2/a2

∗

)]

≈ exp

[
π

Mg|ν̇∗|

(
9

4
H2
∗ − 6πν̇2

∗ − k2/a2
∗

)]
. (B12)

Expressing H2 in terms of V (φ) and φ̇, and using Ḣ =

−(4π/M2
Pl)φ̇

2, we have

9

4
H2
∗ +

3

2
Ḣ∗ =

9

4
H2
∗

[
V (φ∗)− 1

2 φ̇
2
∗

V (φ∗) + 1
2 φ̇

2∗

]
= −9

4
H2
∗w∗ ,

(B13)
which is always positive during inflation (the equation
of state at any point ν = ν∗ during inflation satisfies
w∗ < −1/3). Therefore, it is clear that |βk|2 is flat for
small k and approaches unity from above for large Mg.

It also drops rapidly once the k2 term drives the expo-
nent negative, but at fixed large k approaches unity from
below as Mg is further increased. Granted, this expres-
sion is invalid when k dominates ωk, but since the rapid
drop-off sets in by this point for large enough Mg, we can
simply neglect this regime.

Furthermore, if we confine ourselves to consideration
of values of ν∗ such that slow-roll inflation is still a very
good approximation around t = t∗, it follows that ν̇∗ is
very nearly independent of ν∗, so H2

∗ as given by Eq. (25)

is proportional to ν2
∗ . We also have a∗ ∝ e−2πν2

∗ . There-
fore, the deep-IR value |βk=0|2 ∝ exp

(
3π2ν2

∗/Mg|ν̇∗|
)

in-
creases exponentially quickly as ν∗ is increased linearly.
However, the value k = k1 required to cause a 1-e-fold
drop-off in |βk|2 from this IR value decreases exponen-

tially quickly roughly as k1 ∝ a∗H∗ ∝ ν∗e−2πν2
∗ . The net

result is that as ν∗ is increased linearly, the nc
k spectrum

broadens on the low-k side (since |βk=0|2 is larger), yet
peaks at a much smaller value of k and as a result has a
much smaller maximum value.

Integrating the approximate very-large-Mg spectrum
(B12) over all k yields

1

2π2

∫ ∞

0

k2|βk|2 dk

=
1

2π2

∫ ∞

−∞
k3|βk|2 d ln k

=
a3
∗

8π3
(Mg|ν̇∗|)3/2

exp

[
3π

4

3H2
∗ − 8πν̇2

∗
Mg|ν̇∗|

]

≈
(
a∗
√
|ν̇∗|

2π

)3

M3/2
g . (B14)

This shows us that in the largeMg limit, the total number

of produced particles goes like np ∝ M
3/2
g , and Ωh2 ∝

M
5/2
g , both of which increase with increasing Mg. Also,

as ν∗ increases, both np and Ωh2 (measured at the same
fixed time t in the MD era following the end of inflation)
drop exponentially quickly as a+3

∗ , as expected for the
dilution of an NR species being produced earlier during
inflation.
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[27] A. Achúcarro, J.-O. Gong, G. A. Palma, and S. P. Patil,
Phys.Rev. D87, 121301 (2013), arXiv:1211.5619 [astro-
ph.CO].

[28] G. Shiu and J. Xu, Phys.Rev. D84, 103509 (2011),
arXiv:1108.0981 [hep-th].

[29] D. Baumann and D. Green, JCAP 1109, 014 (2011),
arXiv:1102.5343 [hep-th].

[30] A. Avgoustidis, S. Cremonini, A.-C. Davis, R. H.
Ribeiro, K. Turzynski, et al., JCAP 1206, 025 (2012),
arXiv:1203.0016 [hep-th].

[31] E. Schrödinger, Physica 6, 899 (1939).
[32] D. J. Chung, E. W. Kolb, and A. Riotto, Phys.Rev.Lett.

81, 4048 (1998), arXiv:hep-ph/9805473 [hep-ph].
[33] D. J. Chung, E. W. Kolb, and A. Riotto, Phys.Rev.

D59, 023501 (1998), arXiv:hep-ph/9802238 [hep-ph].
[34] V. Kuzmin and I. Tkachev, Phys.Rev. D59, 123006

(1999), arXiv:hep-ph/9809547 [hep-ph].
[35] E. W. Kolb, A. Starobinsky, and I. Tkachev, JCAP

0707, 005 (2007), arXiv:hep-th/0702143 [hep-th].
[36] N. Birrell and P. Davies, Quantum fields in curved space

(Cambridge University Press, 1982).
[37] D. J. Chung, P. Crotty, E. W. Kolb, and A. Riotto,

Phys.Rev. D64, 043503 (2001), arXiv:hep-ph/0104100
[hep-ph].

[38] D. J. Fixsen, Astrophys. J. 707, 916 (2009),
arXiv:0911.1955 [astro-ph.CO].

[39] E. W. Kolb and M. S. Turner, The Early Universe (West-
view, 1990).

[40] L. Kofman, A. D. Linde, and A. A. Starobinsky,
Phys.Rev. D56, 3258 (1997), arXiv:hep-ph/9704452
[hep-ph].

[41] P. Ade et al. (Planck Collaboration), (2013),
arXiv:1303.5076 [astro-ph.CO].

[42] D. J. Chung, E. W. Kolb, A. Riotto, and L. Senatore,
Phys.Rev. D72, 023511 (2005), arXiv:astro-ph/0411468
[astro-ph].

[43] D. J. Chung and H. Yoo, Phys.Rev. D87, 023516 (2013),
arXiv:1110.5931 [astro-ph.CO].

[44] P. Ade et al. (Planck Collaboration), (2013),
arXiv:1303.5082 [astro-ph.CO].

[45] G. Dvali and C. Gomez, (2010), arXiv:1005.3497 [hep-
th].

[46] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals,
Series, and Products, seventh ed., edited by A. Jeffrey
and D. Zwillinger (Elsevier/Academic Press, Amster-
dam, 2007).

[47] E. W. Weisstein, “Parabolic Cylinder Function.
From MathWorld — A Wolfram Web Resource.
http://mathworld.wolfram.com/ParabolicCylinderFunction.html.”.


