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Banana Split: Testing the Dark Energy Consistency with Geometry and Growth

Eduardo J. Ruiz∗ and Dragan Huterer†

Department of Physics, University of Michigan, 450 Church St, Ann Arbor, MI 48109-1040

We perform parametric tests of the consistency of the standard wCDM model in the framework
of General Relativity by carefully separating information between the geometry and growth of
structure. We replace each late-universe parameter that describes the behavior of dark energy
with two parameters: one describing geometrical information in cosmological probes, and the other
controlling the growth of structure. We use data from all principal cosmological probes: of these,
Type Ia supernovae, baryon acoustic oscillations, and the peak locations in the cosmic microwave
background angular power spectrum constrain the geometry, while the redshift space distortions,
weak gravitational lensing and the abundance of galaxy clusters constrain both geometry and growth.
Both geometry and growth separately favor the ΛCDM cosmology with the matter density relative
to critical ΩM ' 0.3. When the equation of state is allowed to vary separately for probes of growth
and geometry, we find again a good agreement with the ΛCDM value (w ' −1), with the major
exception of redshift-space distortions which favor less growth than in ΛCDM at 3-σ confidence,
favoring the equation of state wgrow ' −0.8. The anomalous growth favored by redshift space
distortions has been noted earlier, and is common to all RSD datasets, but may well be caused by
systematics, or be explained by the sum of the neutrino masses higher than that expected from the
simplest mass hierarchies, mν ' 0.45 eV. On the whole, the constraints are tight even in the new,
larger parameter space due to impressive complementarity of different cosmological probes.

I. INTRODUCTION

The discovery of the acceleration of the universe’s ex-
pansion [1, 2] has brought about one of the most inter-
esting and important questions in modern physics: what
is the nature of dark energy responsible for the accelera-
tion? Arguably the simplest and certainly the most pop-
ular candidate is vacuum energy, responsible for the cos-
mological constant term in Einstein’s equations. The cos-
mological constant-dominated universe (ΛCDM), where
the energy density today is dominated by ∼ 75% dark
energy and ∼ 25% matter, is well fit by essentially all
current data. Nevertheless, many alternatives to vac-
uum energy have been discussed over the past 15 years
or so. Some of these alternatives involve scalar fields
or other light degrees of freedom which obey the stan-
dard equations of general relativity but lead to a richer
dynamics and a different expansion rate and growth of
structure than ΛCDM, and therefore can in principle be
distinguished from the latter. Nevertheless, in all such
explanations the growth of linear structures (matter den-
sity contrast δ ≡ δρM/ρM � 1) evolves independently of
the spatial scale k and can be obtained, well within the
Hubble radius, by solving the equation

δ̈ + 2Hδ̇ − 4πGρMδ = 0, (1)

where H is the Hubble parameter and dots are deriva-
tives with respect to time. For a review of dark energy
observations and theory, see e.g. Frieman et al. [3].

A very different class of explanations fall in the cate-
gory of modified gravity (for an excellent review, see [4]).
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Here the the acceleration of the universe is caused by the
corrections to general relativity at large scales. These
corrections obviously have to be suppressed at Solar-
System-size and perhaps galactic-size scales, and there
are several known mechanisms that do just that. Be-
cause the gravity theory is truly modified, the growth is
generally not given by Eq. (1), and moreover the growth
is not necessarily scale-independent any more. Therefore,
for a fixed expansion rate H(t) — or for that matter the
comoving distance as a function of redshift r(z) or any
other geometric quantity — the growth of linear struc-
tures is different in standard and modified gravity. More-
over, the time dependence of δ is in general k-dependent
in modified gravity.

Comparing the geometrical quantities to the growth
of structure is therefore an excellent way to test the
consistency of the fiducial standard-gravity cosmological
model; this has been pointed out early on after the dis-
covery of the accelerating universe [5–10]. The idea is to
separately measure the redshift evolution of the geomet-
rical quantities such as distances on the one hand, and
growth of structure on the other, and test whether or not
they are related by Eq. (1). This approach is the same in
spirit to a much more extensive body of work on param-
eterizing the nonrelativistic and relativistic gravitational
potentials, Φ and Ψ (which govern the motion of matter
and of light, respectively), and testing in whether they
are the same or not [11–17]. In practice and implementa-
tion, however, the two approaches are very complemen-
tary.

Our goal is to make a major step forward in develop-
ing the first one of the aforementioned consistency tests
— testing the consistency of wCDM (the generalization
of ΛCDM where the dark energy equation of state w is
allowed to take constant values other than the ΛCDM
value of -1) by separately constraining the geometry and

mailto:ejruiz@umich.edu
mailto:huterer@umich.edu


2

growth in major cosmological probes of dark energy. This
program has been started very successfully by Wang et al.
[18] (see also [19–21] which contained very similar ideas),
who used data available at the time; the constraints how-
ever were weak. Our overall philosophy and approach
are similar as those in Refs. [18–21], but we benefit enor-
mously from the new data and increased sophistication
in understanding and modeling them, as well as the avail-
ability of a few additional cosmological probes not avail-
able in 2007.

The paper is divided as follows: we present the reason-
ing behind our approach in section II. In section III we
review the cosmological probes used in the analysis. A
review of the analysis method is provided in section IV,
and we present our constraints on parameters in section
V. We discuss these results in section VI, and give final
remarks in section VII.

II. PHILOSOPHY OF OUR APPROACH

We would like to perform stringent but general consis-
tency tests of the currently favored ΛCDM cosmological
model with ∼25% dark plus baryonic matter and ∼75%
dark energy, as well as the more general wCDM model.
The ΛCDM model, favored since even before the direct
discovery of the accelerating universe (e.g. [22]), is in ex-
cellent agreement with essentially all cosmological data,
despite occasional mild warnings to the contrary ([23–
26]). There has been a huge amount of effort devoted
to tests alternative to wCDM – most notably, modified
gravity models where modifications to Einstein’s Gen-
eral Theory of Relativity, imposed to become important
at late times in the evolution of the universe and at large
spatial scales, make it appear as if the universe is accel-
erating if interpreted assuming standard GR.

Here we take a complementary approach, and study
the internal consistency of the wCDM model itself, with-
out assuming any alternative model. We split the cosmo-
logical information describing the late universe into two
classes:

• Geometry: expansion rate H(z) and the comoving
distance r(z), and associated derived quantities.

• Growth: growth rate of density fluctuations in lin-
ear (D(z) ≡ δ(z)/δ(0)) and non-linear regime.

Regardless of the parametric description of the geome-
try and growth sectors, one thing is clear: in the standard
model that assumes General Relativity with its usual re-
lations between the growth and distances, the split pa-
rameters Xgeom

i and Xgrow
i have to agree – that is, be

consistent with each other at some statistically appropri-
ate confidence level. Any disagreement between the pa-
rameters in the two sectors, barring unforeseen remaining
systematic errors, can be interpreted as the violation of
the standard cosmological model assumption.

The split parameter constraints provide very general,
yet powerful, tests of the dominant paradigm. They can

Cosmological Probe Geometry Growth

SN Ia H0DL(z) —–

BAO

(
D2
A(z)

H(z)

)1/3

/rs(zd) —–

CMB peak loc. R ∝
√

ΩmH2
0 DA(z∗) —–

Cluster counts
dV

dz

dn

dM

Weak lens 2pt
r2(z)

H(z)
Wi(z)Wj(z) P

(
k =

`

r(z)

)
RSD F (z) ∝ DA(z)H(z) f(z)σ8(z)

TABLE I. Summary of cosmological probes that we used and
aspects of geometry and growth that they are sensitive to.
The assignments in the second and third column are neces-
sarily approximate given the short space in the table; more
detail is given in respective sections covering our use of these
cosmological probes. Here rs(zd) refers to the sound horizon
evaluated at the baryon drag epoch zd.

be compared to more specific parameterizations of de-
partures from GR — for example, the γ parametrization
[27], or the various schemes of the aforementioned com-
parison of the Newtonian potentials. Our approach is
complementary to these more specific parameterizations:
while perhaps not as powerful in specific instances, it is
equipped with more freedom to capture departures from
the standard model.

Most of the cosmological measurements involve large
amounts of raw data, and their information is often com-
pressed into a very small number of meta-parameters.
For example, weak lensing shows the two-point cor-
relation function, cluster number counts are given in
mass bins, while baryon acoustic oscillations, cosmic
microwave background, and redshift space distortions
information is often captured in a small number of
meta-parameters which are defined and presented below.
[Type Ia supernovae are somewhat of an exception, since
we use individual magnitude measurements from each
SN from the beginning.] Given that in some cases one
assumes the cosmological model (often ΛCDM) to derive
these intermediate parameters, the question is whether
we should worry about using the meta-parameters to
constrain the wider class of cosmological models where
growth history is decoupled from geometry. Fortunately,
in this particular case our constraints are robust: cer-
tainly for surveys that specialize in either geometry and
growth alone, the meta-parameters are de facto correct
by construction, and capture nearly all cosmological in-
formation of interest. For probes that are sensitive to
both growth and geometry, e.g. weak lensing and cluster
counts, the quantities used for the analysis — correlation
functions and number counts, respectively — provide a
general enough representation of the raw data that one
can relax the assumption that growth and geometry are
consistent without the loss of robustness and accuracy.
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III. OBSERVATIONAL PROBES

We now discuss in turn the various cosmological probes
used in this work: Type Ia supernovae, cosmic microwave
background fluctuation power spectrum, baryon acoustic
oscillations, cluster counts, weak gravitational lensing,
and redshift space distortions.

In Table I we summarize quantities or aspects of each
cosmological probe that are sensitive to geometry, and
those that depend on growth. In the following subsec-
tions, we describe the cosmological probes, the quantities
that they measure, and the datasets that we use, in more
detail.

A. Type Ia Supernovae

Type Ia supernovae (SNIa) are the principal probes
of geometry of the universe, as they directly measure
the luminosity distance. Thus SNIa are specialized in
probing the geometrical parameters.

Each SNIa provides an independent measurement of
the magnitude-redshift relation. The theoretically ex-
pected apparent magnitude of the supernova at redshift
z is

mth(z) = 5 log10(H0DL(z)) +M, (2)

whereM is a nuisance parameter combining the intrinsic
magnitude of the supernova with the Hubble parameter
H0 [2]. Therefore, each SNIa constrains the luminosity
distance DL(z), with one overall nuisance parameter M
to be determined from the data as well.

There are several properties of supernovae that can
change the magnitude of a supernova; these must be cor-
rected for. The stretch (or broadness) of a supernova
light curve is correlated with its brightness. Similarly,
the color of a supernova is also correlated with its bright-
ness — the broader and bluer the supernova light curve,
the brighter that supernova will be. We correct for these
effects by writing the magnitude as [28, 29]

m = mth − αs (s− 1) + βC C, (3)

where s is the stretch and C the color of each SNIa, and
αs and βC are additional, global nuisance parameters.

In addition to the statistical errors for each super-
nova measurement, we also include the correlated system-
atic errors between each supernova measurement [28, 29].
The covariance matrix resulting from these correlations
is also a function of αs and βC . Finally, we take into
account host-galaxy effects in the value of M [26, 28] in
our analysis. We allow two values of M, one for super-
novae in lower-mass host galaxies and one for higher-mass
galaxies. These twoM’s are then marginalized over ana-
lytically. See Appendix C of Conley et al. [28] for details.

We use the Supernova Legacy Survey (SNLS) data
compilation from Conley et al. [28], which contains 472
supernovae from various surveys, including SNLS itself,

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
z

14
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22
24
26

m

SNLS

Low-z

HST

SDSS

FIG. 1. Plot showing the set of 472 supernovae used in this
work. Error bars are from diagonal-only statistical errors.
The black line shows the best fit ΛCDM model with parameter
values from Column 2 of Table VII.

Source NSN Redshift range

Low-z 123 0.01− 0.1

SDSS 93 0.06− 0.4

SNLS 242 0.08− 1.05

HST 14 0.7− 1.4

TABLE II. Summary of SNIa observations included in this
analysis, showing the number of SN included from each survey
and the approximate redshift ranges.

the Sloan Digital Sky Survey (SDSS), some high red-
shift supernovae observed by the Hubble Space Telescope
(HST), and a selection of low-z supernovae observed by
various ground-based telescopes, collectively named the
Low-z sample.

B. CMB Peak Location

The hot and cold spots of the cosmic microwave back-
ground (CMB) anisotropies provide an excellent standard
ruler: their angular separation, combined with the sound
horizon distance that is independently well-determined
(from the CMB peaks’ morphology), provides a single
yet accurate measurement of the angular diameter dis-
tance DA(z∗) to recombination. In addition to being very
high-redshift, this measurement of DA(z∗) is unique in
that the physical matter density ΩMh

2 is essentially fixed
by the CMB peaks’ height. This is why the CMB peak
location measurement traces out a very complementary
degeneracy direction in the ΩM–w plane to low-redshift
measurements of distance [30].

For simplicity and clarity, we only use the geometrical
measurement provided by the CMB acoustic peaks’ loca-
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tions. The integrated Sachs-Wolfe (ISW) effect of dark
energy imprints on the CMB angular power spectrum
on very large scales adds very little to the information
due to large cosmic variance. CMB is also sensitive to
the physics at the last-scattering surface [31], but recall
that we decided to study the growth vs. geometry only
in the late universe, when dark energy becomes signifi-
cant. Our use of the peaks’ location only obviates the
use the numerical CMB codes that evaluate a full set of
Einstein-Boltzmann equations, and speeds on this aspect
of computation by a factor of O(100).

Therefore, we use the aforementioned angular diame-
ter distance to last scattering with ΩMh

2 fixed, which is
sometimes referred to as the “shift parameter” R, defined
as

R =
√

ΩmH2
0 (1 + z∗)DA(z∗). (4)

To obtain a value of R, we use the Planck collabora-
tion’s Planck + WP measurements of r∗ and θ∗ [32];
since θ∗ = r∗/DA(z∗), we marginalize over these mea-
surements assuming the ΛCDM cosmological model, as
in [32] to get a value for DA(z∗). Combining this with
the Planck values of ΩMh

2 and z∗, we obtain

R = 1.7502± 0.0073 (5)

for their value of z∗ = 1090.48. Being only sensitive to
ΩM and w, R presents a handy yet powerful constraint
on the late universe. When using the CMB peak infor-
mation alone, measurement of parameter R in Eq. (5)
therefore provides complete information – modulo the
aforementioned small ISW contribution – about CMB’s
constraint on the late universe.

Once we combine the CMB peaks information
with that of other cosmological probes and add the
CMB early-universe prior (discussed further below in
Sec. IV A), simply including the R measurement would
be inconsistent as R is necessarily correlated with the
early universe parameters, e.g. ΩMh

2. To do it correctly,
we first extract the 5× 5 covariance matrix from Planck
which contains the 4×4 early universe prior shown in Ta-
ble VI, plus an additional row and column corresponding
to R. We than use the 5× 5 matrix as our early universe
prior that automatically and consistently includes the
CMB peaks information. Other probes are then added
straightforwardly; see Sec. IV B for details.

C. Baryon Acoustic Oscillations

Baryonic acoustic oscillations (BAO) are features that
arise from the propagating sound waves in the early uni-
verse. The distance the sound wave can travel between
the Big Bang and decoupling – the sound horizon – im-
prints a characteristic scale not only in the CMB fluc-
tuations, but also in the clustering two-point correlation
function of galaxies. Roughly speaking, the two-point
correlation function is enhanced by ∼ 10% at distances

Survey zeff Parameter Measurement

6dFGS [34] 0.106 rs/DV 0.336± 0.015

SDSS LRG [35] 0.35 DV /rs 8.88± 0.17

BOSS CMASS [36] 0.57 DV /rs 13.67± 0.22

TABLE III. BAO data measurements used here, together with
the effective redshift for the corresponding galaxy sample.

of ∼ 100h−1Mpc. This latter distance is, similarly to the
CMB case, well-measured by the early-universe parame-
ters (ΩMh

2 and ΩBh
2 principally), but where we observe

it is dependent on the expansion history of the universe
between the time that light from the galaxies is emitted
and today.

Specifically, for two galaxies at the same redshift sep-
arated by comoving distance r and seen with separation
angle θ, we have θ = r/DA(z) which enables measure-
ment of the angular diameter distance given known sep-
aration between galaxies. Similarly, two galaxies at the
same angular location but separated by redshift differ-
ence ∆z are separated by comoving distance r, with the
two quantities related via ∆z = rH(z). The information
from these transverse and radial sensitivities can be con-
veniently combined into a single quantity, a generalized
distance DV (zeff) defined as [33]

DV (z) ≡
(

(1 + z)2D2
A(z)cz

H(z)

)1/3

. (6)

The BAO surveys measure rs(zd)/DV (zeff) (or its in-
verse), where rs(zd) is the comoving sound horizon at
the redshift of the baryon drag epoch zd

rs(z) =
1√
3

∫ 1/(1+z)

0

da′

a′2H(a′)
√

1 + 3ρb/4ργ
. (7)

In addition to the late-universe parameters, these BAO
observable quantities are only sensitive to the early-
universe physics via a fixed single combination, the sound
horizon rs(zd).

It is important to note that the radiation term must be
included in H(a) in Equation (7). The radiation energy
density relative to critical is Ωr = ΩMaeq, where aeq =
1/(1+zeq) is the scale factor at matter-radiation equality
and

zeq ≈ 25000 ΩMh
2

(
TCMB

2.7K

)−4

. (8)

The ratio of the baryonic density to the radiation density
can be approximated as

3ρb
4ργ
≈ 31500 ΩBh

2

(
TCMB

2.7K

)−4

a. (9)

We assume a value of TCMB = 2.7255K.
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The redshift of the drag epoch can be approximated
by the fitting formula [37]

zd =
1291(ΩMh

2)0.251

1 + 0.659(ΩMh2)0.828

[
1 + b1(ΩBh

2)b2
]
, (10)

where

b1 = 0.313(ΩMh
2)−0.419

[
1 + 0.607(ΩMh

2)0.674
]
, (11)

b2 = 0.238(ΩMh
2)0.223.

We use three sources of data for BAO constraints: the
Six-degree-Field Galaxy Survey (6dFGS) [34], the SDSS
Luminous Red Galaxies (SDSS LRG) [35], and the SDSS-
III DR9 Baryon Oscillation Spectroscopic Survey (BOSS)
[36]. These measurements and the corresponding redshift
ranges of their galaxy samples are summarized in Table
III.

D. Cluster Counts: MaxBCG

Counts of galaxy clusters are a particularly useful
probe for this work, as they probe both growth and geom-
etry (for a review see Allen et al. [38]). Cluster number
density and its dependence on the cosmological model
are calibrated from N-body simulations; they are deter-
mined by the growth of structure. On the other hand, the
volume is purely a geometric quantity that is straightfor-
wardly calculated from first principles. Product of the
number density and volume gives the number of clusters
in some mass and redshift range, which can be compared
to measurements.

More specifically, the number of clusters within some
mass and redshift range is

N =

∫
dM dz

dn

dM

dV

dz
ψ(M)φ(z) (12)

where dn/dM is the halo mass function, dV/dz is the
comoving volume per unit redshift, and ψ(M) and φ(z)
are the top-hat functions that specify our binning in mass
and redshift, that is, ψ(M) = 1 if M is in the mass bin
of interest and 0 otherwise, and likewise for φ(z).

Here we use the measurements from the MaxBCG clus-
ter catalog (Rozo et al. [39]), based on measurements
from the Sloan Digital Sky Survey [40]. A key proxy
for measuring cluster masses is “richness”, defined as the
number of galaxies in R200, the radius at which the av-
erage density of the cluster is 200 times that of the crit-
ical density of the universe. The richness-mass relation
has been calibrated using weak gravitational lensing mea-
surements from Johnston et al. [41]. For clarity and com-
pleteness, we give further details of the Rozo et al. [39]
analysis that we adopt in Appendix A.

Cluster mass and redshift are not directly observable,
but instead we rely on cluster richness-mass relation and
photometric redshift of cluster galaxy members, respec-
tively. We define P (N200|M) to be the probability that

a cluster of mass M has a richness N200, and P (zphoto|z)
to be the probability that a cluster at redshift z is ob-
served with a photometric redshift zphoto. We redefine
ψ = ψ(N200) and φ = φ(zphoto). The expected number
of clusters then becomes

〈N〉 =

∫
dM dz

dn

dM

dV

dz
〈ψ|M〉〈φ|z〉 (13)

where we introduce the probability weighting functions

〈ψ|M〉 =

∫
dN200 P (N200|M)ψ(N200), (14)

〈φ|z〉 =

∫
dzphoto P (zphoto|z)φ(zphoto). (15)

Here P (zphoto|z) is modeled as a Gaussian distribution
as discussed in Rozo et al. [39]. Meanwhile, P (N200|M)
is modeled as log-normal distribution, with the mean
〈lnN200|M〉 assumed to vary linearly with mass, result-
ing in two free parameters and an unknown variance
which is also treated as free parameter. These param-
eters are marginalized in the analysis; see Appendix A
for details.

In a similar fashion, the expected total mass of clusters
in a richness bin is given by

〈NM̄〉 = β

∫
dM dz

dn

dM

dV

dz
〈ψ|M〉〈φ|z〉. (16)

where another nuisance parameter β is introduced to take
into account the uncertainty in the overall calibration of
mass; M̄obs → βM̄obs. The comoving volume is simply

dV

dz
= Ωsky

r2(z)

H(z)
(17)

where Ωsky = 2.254 sr is the solid angle covered by SDSS
and r(z) is the comoving distance.

Finally, we use the Tinker mass function [42] for our
halo mass function dn/dM . The mass function requires
the matter power spectrum as input, and to speed up
the code we calculate P (k) semi-analytically; for that
purpose we use the Eisenstein and Hu transfer function
[37]. We have checked that our calculation leads to neg-
ligible differences in the results compared to one using
CAMB’s matter power spectrum as input.

E. Weak Lensing Shear: CFHTLens

Recent measurements by the Canada-France Hawaii
Telescope Lensing Survey (CFHTLenS) provide a very
appealing test bed to apply our methodology and test the
consistency of the cosmological model, as weak lensing is
sensitive to both growth and distance.

The CFHTLenS survey [43, 44] covered 154 square de-
grees over a period of five years in five wavebands (ugriz).
The resolved galaxy density is 17/arcmin2. What is par-
ticularly appealing for cosmological tests is that the sur-
vey is very deep (mean redshift zmean ' 0.75), implying
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that potentially strong constraints on the temporal evo-
lution of the effects of dark energy – and therefore, the
growth and geometry parameters – can be achieved. A
detailed analysis by the CFHTLenS team made the shape
measurements and obtained the photometric redshift of
galaxies, all the while dealing with a host of observa-
tional and astrophysical systematic errors. The results
are publicly available at the survey website1. We use
their blu sample data, which was shown in [44] to have
a negligible intrinsic alignment signal. The data is given
in six tomographic redshift bins, and presented at five dif-
ferent angles, θ = {1.73′′, 3.75′′.8.13′′, 17.6′′, 37.9′′}. The
data is given for the two 2-point correlation functions ξ+

and ξ−, defined as

ξ±ij =
1

2π

∫ ∞
0

d` ` Pκij(`)J
±(`θ), (18)

where ` is the multipole, and J+(x) ≡ J0(x) and J−(x) ≡
J4(x). Here Pκ is the weak lensing convergence power
spectrum, that is, the two-point correlation function of
the convergence field on the sky, given as a function of
the multipole `. In the Limber approximation, which
only includes modes perpendicular to the line of sight
and is an excellent approximation at scales of interest,
the convergence power is given as

Pκij(`) =

∫
dz

r2(z)

H(z)
Wi(z)Wj(z)P

(
k =

`

r(z)

)
, (19)

where r(z) and H(z) are the comoving distance and Hub-
ble parameter respectively, and the weight functions in-
volve the distribution of galaxies dN/dz in each redshift
bin

Wi(z) =
3

2
ΩMH

2
0gi(z)(1 + z), (20)

where the weight function is given in terms of the radial
distance χ =

∫
dz/H(z)

gi(χ(z)) = r(χ)

∫ ∞
χ

dχsni(χs)
r(χs − χ)

r(χs)
(21)

−→ r(z)

∫ ∞
z

dzs
H(zs)

ni(zs)
r(zs)− r(z)

r(zs)
.

Here the second line holds in the special case of a flat uni-
verse which we adopt in the paper, and where n(zs) is the
distribution of source galaxies in each redshift bin, nor-
malized to ni(zs)dzs = 1, and provided by CFHTLenS
for each tomographic bin (see Fig. 1 of Heymans et al.
[44]).

Finally, special attention is required to modeling the
power spectrum P (k), given that scales probed are small

1 http://www.cfhtlens.org/astronomers/

content-suitable-astronomers

— consider, for example, that the smallest angle θ =
1.73′′, at the mean redshift of the survey z ' 1 spans
k ' 1hMpc−1, which is in a regime of strongly nonlinear
clustering. It is imperative to have an accurate theo-
retical prediction for the dark matter clustering at these
scales which are a ’sweet spot’ for sensitivity for weak
lensing surveys [45]. Here we adopt an updated version
of the halofit [46] prescription for non-linear clustering
given by Takahashi et al. [47]. This fit has the same func-
tional form as the original halofit, but with updated
parameter values. The formula has been optimized for
the dark energy equation of state w ' −1, justifying its
use in this analysis. We find that the Takahashi et al. pre-
scription makes a non-negligible difference relative to the
original; for example, the best-fit σ8 value, in a simplified
analysis we ran as a check, moves downwards by ∼0.03
relative to the original halofit, returning σ8 ' 0.74 (for
a fixed ΩM = 0.3), in agreement with Heymans et al.
[44].

We also checked the robustness of the data assump-
tions by verifying that the blue and full datasets from
CFHTLens give very similar constraints.

0.3 0.4 0.5
fσ8
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0.4

0.5

0.6

0.7
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0.9

F
(z

)

6dFGS

BOSS, z=0.32

WiggleZ, z=0.44

WiggleZ, z=0.60

BOSS, z=0.57

WiggleZ, z=0.73

ΛCDM

Alt. BOSS,
   z=0.57

FIG. 2. RSD data used in our analysis, shown in the fσ8–
F plane; more details can be found in Table IV. The black
line shows the best fit ΛCDM model with our best-fit pa-
rameter values given in the second column of Table VII. The
low-redshift 6dFGS measurement does not have an associated
value for F (z), and we therefore only show its horizontal error
bar. The BOSS constraint on F is obtained from the covari-
ance of H(z) and DA(z); see Appendix B for details. The
dashed error ellipse corresponds to an alternative RSD mea-
surement at z = 0.57 from Samushia et al. [48]; for details,
see Section VI.

http://www.cfhtlens.org/astronomers/content-suitable-astronomers
http://www.cfhtlens.org/astronomers/content-suitable-astronomers
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F. Redshift Space Distortions

Redshift space distortions (RSD) refer to the effect of
how density modes affect velocity distribution of galax-
ies in their vicinity. Galaxies’ peculiar velocities are im-
printed in galaxy redshift surveys in which recessional
velocity is used as the line-of-sight coordinate for galaxy
positions, leading to an apparent compression of radial
clustering relative to transverse clustering on large spa-
tial scales (a few tens of Mpc). On smaller scales (a
few Mpc), one additionally observes the “finger-of-God”
elongation [49] due to non-linear effects. The spatial clus-
tering of galaxies is affected on scales corresponding to
the size of the largest objects (galaxy clusters) and larger,
all the way up to ∼ 100Mpc. Measuring the clustering
at these scales and at various redshifts provides valuable
information about the growth of structure across cosmic
history.

RSD measurements are uniquely sensitive to the com-
bination of cosmological parameters f(a)σ8(a) (often just
referred to as fσ8) [50], where f(a) ≡ d lnD/d ln a and
D(a) is the linear growth factor.

In addition to pure growth information, however, we
must take into account the geometrical aspect of the RSD
measurements, which comes about from the breaking of
underlying isotropy of galaxy clustering when observed
in redshift space. The effect is accurately captured by
the parameter which serves to compare clustering in the
radial and tangential directions [51–53], and which has
been motivated by the original analysis by Alcock and
Paczynski [54]

F (z) ≡ (1 + z)H(z)DA(z)/c (22)

where H(z) is the Hubble parameter and DA(z) is the
angular distance. Intuitively, the comoving diameter a
spherical object (or, more generally, a feature in the clus-
tering of galaxies) ds at redshift z is related to its angular
size on the sky ∆θ by ds = DA(z)∆θ. The diameter of
the feature can also be related to its redshift extent ∆z
via ds = c∆z/[(1 + z)H(z)]. By comparing the angu-
lar and redshift dimensions of the feature (i.e. measuring
∆θ/∆z) one can then determine the parameter combi-
nation given in Eq. (22). Alternatively, the effect is cap-
tured by the separate but correlated measurements of
H(z) and DA(z). These parameters all measure geomet-
ric effects and thus grant RSD the ability to test both
geometry and growth.

We use a compilation of measurements of fσ8, F (z),
H(z), andDA(z) from a number of spectroscopic surveys;
these are summarized in Table IV and illustrated in Fig.
2.

z Parameter Measurement (diag) Survey

0.067 fσ8 0.42± 0.06 6dFGS [55]

0.32 H(z) 78.1± 7.1 BOSS LOWZ [56]

0.32 DA(z) 950± 61 BOSS LOWZ [56]

0.32 fσ8 0.38± 0.10 BOSS LOWZ [56]

0.44 F (z) 0.48± 0.05 WiggleZ [57]

0.44 fσ8 0.41± 0.08 WiggleZ [57]

0.57 H(z) 97.1± 5.5 BOSS CMASS [56]

0.57 DA(z) 1351± 60 BOSS CMASS [56]

0.57 fσ8 0.38± 0.04 BOSS CMASS [56]

0.60 F (z) 0.65± 0.05 WiggleZ [57]

0.60 fσ8 0.39± 0.06 WiggleZ [57]

0.73 F (z) 0.87± 0.07 WiggleZ [57]

0.73 fσ8 0.44± 0.07 WiggleZ [57]

TABLE IV. RSD measurements from various surveys. Each
line shows the effective redshift associated with the data point,
the measured parameter, the value of that parameter with as-
sociated diagonal error, and the data point’s associated sur-
vey. Measurements from the same survey are correlated; [55–
57]; for brevity we show the diagonal errors (i.e. square roots
of parameter variances) here and the full covariance matrices
in Appendix B.

IV. PARAMETERS AND ANALYSIS

A. Parameter space

We adopt the following set of fundamental cosmologi-
cal parameters

~pfund = {ΩM ,ΩMh2,ΩBh
2, w, 109A,ns} (23)

where ΩM and ΩB are the energy densities in matter and
baryons relative to critical density, w is the equation of
state of dark energy, A is the amplitude of the primordial
curvature power spectrum on scale of 0.05 Mpc−1, and
ns is the scalar spectral index of curvature perturbations.
We also include the nuisance parameters

~pnuis = {αs, βC , 〈lnN |M1〉, 〈lnN |M2〉, σNM , β}, (24)

where αs and βC are the supernovae nuisance parame-
ters, while the others enter the cluster count analysis.
Our analysis also produces constraints on several derived
parameters,

~pderiv = {σ8, h;σMN}. (25)

Here, σMN is the scatter of the richness for a given mass
(opposed to σNM , which is the scatter of the mass for
a given richness), and is considered a derived nuisance
parameter.

Throughout we assume a constant equation of state
parameter w for analyses, as well as a flat universe
(ΩK = 0). The latter assumption effectively assumes
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standard inflation, and also has a very practical benefit of
improving the convergence of the parameter constraints.
At any rate, in this paper we are interested in testing the
consistency of the dark energy sector, which is typically
unrelated to the flatness of the universe. In addition, we
set the sum of neutrino masses to mν = 0.06 eV, which is
consistent with atmospheric and solar data on neutrino
flavor oscillations and a normal hierarchy between indi-
vidual mass eigenstates [58]. Note that, in our extended
tests in Sec. VI, we also vary the neutrino mass mν . The
number of neutrino species is held fixed at Nν = 3.046
throughout the analysis, as predicted by the standard
model.

We adopt priors on ΩM , σNM , β, and σMN from Rozo
et al. [39]. In addition, we add very weak top-hat priors
on h, w and ns. See Table V for details.

We also impose a multidimensional Gaussian prior
based on Planck constraints on ΩMh

2, ΩBh
2, 109A, and

ns; we term this the early-universe prior (“EU” for short
in our plots). While we would have ideally liked to run
our analyses without this prior, we find that the MCMC
runs without the prior have difficulty converging in the
large parameter space with split geometry and growth
late-universe parameters. The early-universe prior corre-
lation matrix is calculated from Planck ΛCDM (+ lowl)
MCMC chains [32]; see Table VI. The square roots of
the diagonal entries of the full covariance matrix prior
– the unmarginalized errors of the prior – are shown in
Table V. We apply this full prior covariance to RSD, WL
and clusters, and the overall combined constraint. In the
case of BAO, we apply only information coming from the
2× 2 subset of this matrix containing ΩMh

2 and ΩBh
2,

corresponding to the sound horizon (“SH” in our plots).
The Planck prior changes very little if one assumes the
underlying Planck wCDM model instead of ΛCDM, as
has been verified explicitly by the authors, implying that
it should represent the early-universe information with
the sufficient accuracy even when the late-universe pa-
rameters have been split.

B. Likelihood

We assume that the likelihood is Gaussian in suitably
chosen meta-parameters for each cosmological probe. We
assign the individual likelihoods as follows:

• SNIa: the data vector consists of SN magnitudes,
and we calculate the full off-diagonal covariance
matrix that takes into account errors in magni-
tude, stretch factor, color, redshift, and gravita-
tional lensing. See Appendix C of Conley et al.
[28] for details.

• CMB peak location: the data vector consists of the
single measurement of the “shift parameter” R; see
Eq. (4). In the combined-probe analysis, we ac-
count for the correlation ofR and the early-universe
parameters, as explained near the end of Sec. III B.

Parameter Priors Geometry Growth

ΩM [0.05, 0.95] X X

ΩMh
2 0.1423± 0.0029a X

ΩBh
2 0.02207± 0.00033a X

w [-2, 0] X X

109A 2.215± 0.16a X

ns [0.9, 1.1], 0.9616± 0.0094a X

σ8 — derived par.

h [0.5, 1.0] derived par.

αs — nuisance par.

βC — nuisance par.

〈lnN |M1〉 — nuisance par.

〈lnN |M2〉 — nuisance par.

σNM [0.1, 1.5] nuisance par.

β [0.5, 1.5], 1.0± 0.06 nuisance par.

σMN 0.45± 0.1 der. nuis. par.
a These errors are the diagonal parts of the full covariance matrix
prior. See table VI for further details and the full correlation
matrix.

TABLE V. Parameters used in our analysis. The first seven
parameters lying above the horizontal line are the fundamen-
tal quantities that we varied in the Markov Chains. The next
two parameters are derived from the fundamental parame-
ters. Those in the final sections are nuisance parameters,
again separated into fundamental (six) and derived (one). In
the ’Priors’ column, notation [a, b] indicates a flat prior be-
tween the end points a and b, while c±d indicates a Gaussian
prior with mean c and standard deviation d. For the basic
set of cosmological parameters (i.e. the first six above), we
include information about whether they enter the geometry
or growth in the final two columns. If a parameter is found
in both columns, it is necessarily a split parameter.

• BAO: data vector and corresponding (diagonal) er-
rors are quantities given in Table III. Because the
SDSS and BOSS CMASS samples cover different
redshift ranges, and the two are in the northern
hemisphere while 6dFGS is in the south, it is a
good approximation to ignore correlations between
these three surveys.

• Clusters: following Rozo et al. [39], we utilize both
the number counts, and number-weighted mass
counts in richness; details are explained in Ap-
pendix A.

• Weak lensing (WL): data vector are the correlation
functions ξ±ij(θ) given for six redshift bins (so i ≤
j ≤ 6) and for measurements at five values of θ.
The total length of the vector is therefore 2× (6×
7/2) × 5 = 210. The 210 × 210 covariance matrix,
calculated using numerical simulations, is provided
by the CFHTLens team [44].

• RSD: data vector and corresponding (diagonal) er-
rors are quantities given in Table IV. The corre-
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lation matrices for the off-diagonal errors between
data points can be found in Tables X and XI in
Appendix B.

ΩMh
2 ΩBh

2 109A ns

ΩMh
2 1.00 −0.62 −0.51 −0.84

ΩBh
2 — 1.00 0.56 0.70

109A — — 1.00 0.65

ns — — — 1.00

TABLE VI. Correlation matrix corresponding to our early-
universe prior (labeled as “EU” in our plots). The correlation
matrix is calculated from Planck ΛCDM (+ lowl) MCMC
chains [32]. The square roots of the diagonal entries of the
full covariance matrix prior – the unmarginalized errors of
the prior – are shown in Table V. We apply this full prior
covariance to RSD, WL and clusters, and the overall combined
constraint. In the case of BAO, we apply only information
coming from the 2× 2 subset of this matrix containing ΩMh

2

and ΩBh
2, corresponding to the sound horizon (“SH” in our

plots).

The likelihood of the combined cosmological probes is
given by the product of individual likelihoods:

L = LSNIa LCMBpeak LBAO Lcluster LWL LRSD Lprior. (26)

The assumption that the individual likelihoods are inde-
pendent may well be questioned, but it is in practice well
justified by the nature of the datasets that we combine.
CMB peak location is decoupled from other probes, as it
is a much higher-redshift measurement. Similarly, clus-
ter counts are a 1-point correlation function, and as such
only weakly coupled to clustering. Weak lensing is ex-
pected to be slightly correlated with SNIa, as the latter
are also weakly lensed, but the effect is very small for
current data.

Perhaps the biggest worry is potential correlation be-
tween the BAO and RSD, since these use the same spa-
tial scales (e.g. 32-100 Mpc for the BOSS CMASS sam-
ple) and, in the case of both Wigglez and BOSS, the
same galaxies. This correlation occurs because the RSD
are partially sensitive to the Alcock-Paczynski parame-
ter combination F (z) ∝ H(z)DA(z); this in turn may be
slightly degenerate with BAO measurements, depending
on the treatment of the broadband clustering power in
the BAO analysis. Direct estimates indicate that the cor-
relation between the RSD and BAO measured quantities
are at the 10% level (e.g. Table 2 of Blake et al. [57] and
Tables 2, 4 and 6 in Chuang et al. [56]). Therefore, simply
multiplying the BAO and RSD likelihoods is justified.

At face value, the Gaussian assumption for the likeli-
hoods might seem risky and unrealistic. Certainly, the
exact likelihood in any given probe will not be precisely
Gaussian, even if evaluated in parameters that are well-
measured by the cosmological probes (e.g. the apparent
magnitudes of SNIa). Nevertheless, in addition to mak-
ing the problem vastly more tractable, the assumption of

Gaussianity seems to be well-justified at this stage: for
cosmological models that fit the data well, tails of the
distribution are not as important. Had our analysis been
oriented toward ruling out wCDM – using, for example,
Bayesian model-selection techniques – then the analysis
would have perhaps warranted a much more careful ac-
counting of the likelihood. This, in turn, would have ne-
cessitated a vastly more complex data challenge – for ex-
ample, fitting theoretical models to the observed galaxy
clustering power spectrum, as opposed to the convenient
quantity DV (z). In this work, instead, we follow a large
body of literature in simplifying our likelihood as Gaus-
sian in the derived parameters since it is expected to be
a very good approximation to the truth.

C. Parameter constraints

We use a Markov Chain Monte Carlo (MCMC) algo-
rithm to place constraints on cosmological parameters.
The MCMC algorithm estimates the posterior distribu-
tion of the cosmological, derived, and nuisance param-
eters by sampling the parameter space and evaluating
the likelihood of each model with the datasets provided.
Given the likelihood L(x|p) of the data set x for the pa-
rameters p, the posterior distribution is obtained using
Bayes’ Theorem

P(p|x) =
L(x|p)P(p)∫
dpL(x|p)P(p)

(27)

where P(p) is the prior probability density. The MCMC
algorithm produces the posterior probability in the pa-
rameter space including the parameter mean values, co-
variances, and confidence intervals.

We analyze our models using an MCMC code that one
of us (E. R.) developed specifically for this purpose. We
initially generate an optimized parameter covariance ma-
trix calculated using several shorter MCMC runs to opti-
mize the MCMC step size and direction and to minimize
the overall runtime. The initial 10% of the chains are
thrown out, and the resulting chains are analyzed for
convergence using the Gelman-Rubin criteria [59], with
a conservative convergence requirement for the conver-
gence parameter of r < 1.03 across a minimum of six
chains for each case. Additionally, the step sizes in pa-
rameters are optimized so that they have an acceptance
rate of ∼35%. The resulting chains are then binned and
smoothed with a Gaussian filter for plotting.

V. RESULTS

A. Unsplit case

Before splitting the late-universe parameters into those
sensitive to geometry and growth, we first show the fidu-
cial constraints to make sure they are in reasonably good
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FIG. 3. Fiducial constraints from cosmological probes before the geometry-growth parameter split. We show the 68% and 95%
confidence constraints in the ΩM–σ8 plane assuming w = −1 held constant (left panel) and in the ΩM -w plane (right panel).
In the labels, “EU” refers to our early universe prior, while “SH” refers to the sound horizon prior; see Table VI for relevant
details.

agreement with similar recent constraints in the litera-
ture. The left panel of Fig. 3 shows constraints on the
ΩM − σ8 plane assuming w = −1, while the right panel
shows the constraints in the ΩM − w plane. Note that
these plots include marginalization over four other cos-
mological parameters (ΩMh

2,ΩBh
2, 109A, and ns), in

addition to several SNIa and cluster nuisance parame-
ters; see Eqs. (23) and (24). We can already see the com-
plementarity of the various cosmological probes: SNIa,
BAO and the CMB distance are sensitive only to geom-
etry, so they measure ΩM and w quite well, but are not
sensitive to σ8. In contrast, WL, RSD and, to a smaller
extent, cluster counts constrain (in the case of w = −1)
the characteristic combinations

(ΩM/0.3)0.28σ8 = 0.799± 0.018 (WL),

(ΩM/0.3)0.04σ8 = 0.809± 0.022 (RSD),

(ΩM/0.3)0.27σ8 = 0.837± 0.021 (clusters).

(28)

To obtain these best-constrained combinations of ΩM
and σ8, we simply varied the power α until the error
in (ΩM/0.3)ασ8 was minimized.

Note that WL constraints favor a somewhat lower
value of ΩM and a higher value of σ8 than those favored
by the combination of other datasets. This has been
noted and extensively explored in MacCrann et al. [60]
who discuss possible reasons for this parameter tension.
Given that weak lensing is currently less mature than
most of the other cosmological probes, and the fact that
WL only weakly contributes to our principal constraints
to be discussed below, we do not discuss this point fur-
ther.

The final combined constraints on ΩM and w are

ΩM = 0.299± 0.010

w = −1.03± 0.05
(unsplit case) (29)

Constraints on all other parameters can be found in the
third column of Table VII. For completeness,we also show
constraints on the unsplit case with w = −1 held fixed
in the second column of the same Table.

We next study constraints when the late-universe pa-
rameters are split into geometry and growth components.

B. Split case: ΩM alone

We now carry out the first of our analyses where the
late-universe, dark-energy parameters have been split
into those governing geometry and growth. Recall, the
parameter split has been described at length in Sec. III,
and summarized in Table I.

Fixing wgeom = wgrow = −1, we first split the mat-
ter density alone into two separate parameters, Ωgrow

M
and Ωgeom

M . In addition to these two parameters, we as-
sume the usual set of four additional fundamental early-
universe parameters {ΩMh2,ΩBh

2, 109A,ns}, plus the
nuisance parameters. Constraints are shown in Fig. 4
and in the fourth column of Table VII. Here we learn
the first interesting lessons in how surveys complement
in measuring growth and distance.

Some trends are fully as expected: CMB distance and
BAO are sensitive exclusively to the geometry, and both
prefer Ωgeom

M ' 0.30; recall that BAO requires the help
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FIG. 4. 68% and 95% confidence constraints in the split ΩM plane with the equation of state held constant at the ΛCDM
value (wgeom = wgrow = −1). As in Fig. 3, “EU” refers to our early universe prior, while “SH” refers to the sound horizon
prior.

of the sound horizon prior, otherwise its constraints be-
come much weaker. We do not add any priors to Type
Ia supernovae, which are able to constrain Ωgeom

M , pre-
ferring however somewhat lower values but with errors
large enough to encompass the value of 0.3 at 2-σ. On
the other hand RSD, combined with the early-universe
prior, is sensitive to both geometry and growth, though
it constrains either only weakly.

The first small surprise is that clusters are much more
sensitive to growth than geometry, despite the fact that
they probe both (recall the summary in Table I). This
is excellent news for consistency tests of wCDM, since
growth is typically more weakly probed than geometry
and “needs more help”. The cluster constraint, com-
bined with the early-universe prior, is broadly consistent
with Ωgrow

M ' 0.25-0.30. Finally, weak lensing constrains
both geometry and growth about equally well, but the
overall constraint is rather weak and consistent with a
wide range of values of the two ΩM s.

On the whole, Fig. 4 shows an impressive complemen-
tarity between the different cosmological probes in how
they constrain geometry and growth. It also shows the
huge progress in the field since similar constraints im-
posed by Wang et al. [18] seven years ago. Because the
constraints are mutually consistent, it is reasonable to
combine them; the fully marginalized constraints on the
matter energy density relative to critical is

Ωgeom
M = 0.302± 0.008

Ωgrow
M = 0.321± 0.017

(ΩM split, w ≡ −1) (30)

Clearly, in this w = −1 split case the geometry and
growth constraints are perfectly consistent with each
other. The geometry constraint is stronger, as expected.
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FIG. 5. 68% and 95% confidence constraints in the split w plane. Note that the combined 2−σ contour does not pass through
the wgeom = wgrow line. As before, “EU” refers to our early universe prior, while “SH” refers to the sound horizon prior.
Individual CMB results have been omitted due to the poor constraints they provide in this plane, but they are included in the
combined constraint. See text for details.

C. Split case: ΩM and w

A much more challenging task is to constrain the ge-
ometry and growth components of the dark energy equa-
tion of state, since in that case one also has to split
the matter density and therefore deals with the dark en-
ergy sector parameter space consisting of four param-
eters: Ωgeom

M ,Ωgrow
M , wgeom and wgrow. Before we show

the constraints, let us emphasize that, despite their rel-
atively weak individual constraints on the equation of
state, all of the cosmological probes are invaluable since
in combination they help break degeneracies in the full
∼ 10-dimensional parameter space and lead to excellent
combined constraints.

In Fig. 5, we show constraints on wgeom

and wgrow, marginalized (for each probe) over
{Ωgeom

M ,Ωgrow
M ,ΩMh

2,ΩBh
2, 109A,ns}, plus the nui-

sance parameters as before. As in the previous case
when only the matter density parameter was split, we
find largely expected directions probed in this plane.

However, because we now fully marginalize over the
matter density parameters Ωgeom

M and Ωgrow
M , the con-

straints on the equation of state are necessarily weaker.
Nevertheless, BAO and SNIa still do an admirable job
in constraining the geometric w. The CMB distance,
being a single quantity, is subject to degeneracy between
Ωgeom
M and wgeom and, by itself, provides no constraint

on either parameter alone. Finally WL and clusters also
weakly constrain either equation of state parameters
due to partial degeneracies. All of the aforementioned
probes are broadly consistent with the ΛCDM value
wgeom = wgrow = −1. In addition, we want to check
that our constraints are comparable to those obtained
previously. To that effect, we get constraints using only
the combined CMB and Weak Lensing, and find that
these are similar to comparible constraints obtained
Wang et al. [18] and shown in Fig. 3 of that work.

The one significant outlier are the RSD; they alone,
combined with the Planck early-universe prior, precisely
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Parameter Unsplit, w = −1 Unsplit, w free Split, w = −1 Split, w free

ΩM

{
Ωgeom
M

Ωgrow
M

0.303± 0.008 0.299± 0.010
0.302± 0.008

0.321± 0.017

0.283± 0.011

0.311± 0.017

ΩMh
2 0.140± 0.001 0.141± 0.002 0.140± 0.001 0.142± 0.002

ΩBh
2 0.0221± 0.0002 0.0220± 0.0003 0.0221± 0.0002 0.0221± 0.0003

w

{
wgeom

wgrow
—– −1.03± 0.05

—–

—–

−1.13± 0.06

−0.77± 0.08

109A 1.95± 0.09 1.91± 0.10 1.96± 0.09 2.17± 0.13

ns 0.961± 0.005 0.959± 0.006 0.962± 0.005 0.961± 0.006

σ8 0.786± 0.015 0.788± 0.016 0.782± 0.016 0.771± 0.017

h 0.680± 0.006 0.687± 0.012 0.661± 0.017 0.677± 0.018

αs 1.44± 0.11 1.44± 0.11 1.44± 0.11 1.44± 0.11

βc 3.26± 0.11 3.26± 0.11 3.26± 0.11 3.27± 0.11

ln(N |M1) 2.36± 0.06 2.37± 0.06 2.29± 0.08 2.33± 0.08

ln(N |M2) 4.15± 0.09 4.16± 0.09 4.09± 0.11 4.15± 0.11

σNM 0.359± 0.057 0.357± 0.057 0.378± 0.059 0.367± 0.060

β 1.041± 0.050 1.045± 0.051 1.018± 0.054 1.036± 0.055

σMN 0.462± 0.081 0.459± 0.082 0.486± 0.085 0.464± 0.084

TABLE VII. Constraints on the cosmological parameters from the combined probes. The second column shows constraints in
the unsplit ΛCDM (so w = −1) model, while the third column also shows the standard unsplit case but allows w to vary. The
fourth and fifth columns are our main results, and show the split-parameter cases where ΩM is split and wgeom = wgrow = −1
is fixed (fourth column), and finally where both ΩM and w are split and allowed to vary (fifth column). In cases of parameters
that can be split, the constraints are given either on the unsplit parameter (vertically centered number) or separate constraints
on the geometry and growth split parameters (vertically offset pair of numbers).

constrain the growth equation of state, but with the value

wgrow,RSD = −0.760± 0.085, (31)

which is clearly far from the ΛCDM value of −1.
The RSD data clearly pull the combined constraints

away from the wgeom = wgrow line, as a simple visual
inspection of Fig. 5 shows. The fully marginalized com-
bined constraints from all cosmological probes, including
the discrepant RSD, are

Ωgeom
M = 0.283± 0.011

Ωgrow
M = 0.311± 0.017

wgeom = −1.13± 0.06

wgrow = −0.77± 0.08

(ΩM and w both split)

(32)
and those on all other parameters can be found in the last
column of Table VII. Note also that the overall goodness
of fit with or without RSD is satisfactory: with RSD
χ2/dof = 728/699 = 1.04, while when the redshift space
distortions are removed, χ2/dof = 719/686 = 1.05.

We can easily quantify the significance of the pull away
from the wgeom = wgrow line by calculating the fraction
of the likelihood for wgeom > wgrow, which is the p-value
defined as

p =

∫
wgeom>wgrow dw

geomdwgrowL(wgeom, wgrow)∫
dwgeomdwgrowL(wgeom, wgrow)

. (33)

The p-value is 0.0010 for the combined constraints, cor-
responding2 to an inconsistency with wCDM at 3.3σ.

VI. DISCUSSION

Let us consider possible reasons for the pull of redshift-
space distortions toward wgrow > −1. This result is qual-
itatively not new: a number of recent investigations have
already been established that the RSD data are in some
conflict with ΛCDM, suggesting less growth at recent
times than predicted by the standard model [61]. For
example, Beutler et al. [62] have measured a > 2-σ ten-
sion in measurements of the growth index γ = 0.772+0.124

−0.097

relative to the ΛCDM (and, for that matter, also wCDM)
prediction γ ' 0.55. Similarly, Samushia et al. [48], using
DR11 CMASS sample, and the more precise results by
Reid et al. [63] that utilized smaller spatial scales by do-
ing extensive halo occupation distribution modeling, have
obtained similar results, indicating that growth is sup-
pressed relative to ΛCDM prediction at approximately

2 To convert this p-value to “sigmas”, we assumed the p-value rep-
resents one tail of a two-sided Gaussian distribution: we would
have been equally surprised to obtain the opposite result, namely
wgeom > wgrow, and so this more conservative number of sigmas
seems appropriate.
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FIG. 6. Dependence of our results on the RSD data and their analyses. Left panel: Combined constraints for the case where
we replace the z = 0.57 RSD measurement from [56] with the alternative BOSS measurement that uses the same raw data but
a different analysis [48]; see Fig. 2. The combined constraints are now only slightly less discrepant with the wgeom = wgrow

line. Right panel: Combined constraints, but without the RSD data employed. The combined contour is now larger in the
growth direction; however it is still somewhat discrepant with the wgeom = wgrow line, though less so than with the RSD data
included. See text for details.

the 2-σ level. Moreover, Beutler et al. [64] find a ∼2.5σ
evidence for nonzero neutrino mass, again a signature
of the hints of the departure from the standard model.
Finally, Salvatelli et al. [65] utilize the combined cosmo-
logical probes (including the RSD) in the context of a
model where vacuum energy interacts with dark matter,
and interpret the results as detection of nonzero interac-
tions between dark matter and dark energy — another
possible interpretation of the departure from the stan-
dard ΛCDM model.

Degeneracy with optical depth may play an important
role here: our RSD measurement is combined with the
early-universe prior, whose crucial input is the measure-
ment of the optical depth to reionization τ which has
been most accurately measured by WMAP’s polariza-
tion data. The higher the τ , the higher the primordial
fluctuation amplitude A or, roughly equivalently, ampli-
tude of mass fluctuations σ8 at low redshift, and thus the
larger the discrepancy. Recall from Fig. 2 that all RSD
data, except perhaps the higher-redshift WiggleZ mea-
surement, pull toward low values of fσ8 relative to those
predicted by the standard model. Therefore, the anoma-
lous RSD results may perhaps partly be explained by
a high WMAP-polarization estimate of τ . Forthcoming
Planck polarization measurements will provide more ac-
curate constraints on the optical depth and should clarify
this issue.

Perhaps of most interest is investigating how our re-
sults depend on the choice of RSD analyses. Even within
BOSS, different analyses make different assumptions and
give somewhat different results; this is clearly shown for

the z = 0.57 measurements shown in Fig. 2. We do our
best to avoid the a posteriori bias of hand-picking anal-
yses that give results that are closer, or further away,
from the concordance ΛCDM model. To that extent, we
keep our original choice of the RSD data from Fig. 2 and
Table IV as fiducial but, as an alternative, choose to in-
vestigate what happens in the combined analysis when
the measurement at z = 0.57, which clearly is most re-
sponsible for the discrepancy with the standard model, is
replaced by the alternative analysis of the same data [48].
That alternative determination of (F, fσ8) at z = 0.57 is
less discrepant with the ΛCDM model; see Fig. 2. The
results are shown in the left panel of Fig. 6. Clearly,
the combined constraints (RSD + everything else) are
now slightly closer to the geometry=growth line, but the
p-value is still small (0.0020), indicating a 3.1-σ discrep-
ancy with the standard geometry=growth assumption.
The constraints on cosmological parameters with the al-
ternate RSD z = 0.57 measurement from BOSS are

Ωgeom = 0.279± 0.011

Ωgrow = 0.319± 0.021

wgeom = −1.14± 0.06

wgrow = −0.81± 0.08

(w/ alternate RSD). (34)

The goodness-of-fit for this case is also satisfactory,
χ2/dof = 724/699 = 1.04.

The RSD results are therefore reasonably stable with
respect to the choice of data. However, while the data
in the RSD analyses that we employed typically include
information from large scale (roughly 10-30h−1Mpc .
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Right panel: Posterior likelihood onmν for when ΩM and w are split (wider curve), and when growth = geometry correspondence
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√
r2
‖ + r2

⊥ . 150-200h−1Mpc) — scales considered well

modeled by theory — some analyses are subject to con-
tributions from shorter scales perpendicular to the line
of sight (small r⊥), making those measurements subject
to increased theory systematics [66]. Therefore, it is pru-
dent to be cautious in interpreting the RSD observations
at this early stage.

We next investigate the implications of completely re-
moving the RSD in the combined constraints in the right
panel of Fig. 6. In this case, the combined constraints are
more consistent with the geometry=growth expectations,
though the p-value is still somewhat small at 0.0204,
corresponding to a discrepancy of 2.3σ. As mentioned
earlier, the goodness-of-fit is entirely satisfactory both
with and without the RSD data. Clearly, RSD currently
provide by far the strongest constraint on the growth of
structure.

It is also interesting to study the effect of the neu-
trino mass. So far, cosmology has provided rather strin-
gent upper limits to the sum of neutrino masses, roughly
mν . 0.3 eV [e.g. 67]. Recently several papers have
claimed evidence for the positive neutrino mass in order
to alleviate the discrepancy between the RSD data and
the standard ΛCDM model [64], or the twin tensions be-
tween the local measurements of the expansion history
and Planck data [68–71], and Planck and BICEP2 con-
straints on the amplitude of gravitational waves [69, 72].

To test the effect of neutrino mass sum on our com-
bined constraints (including RSD), we allow it to vary
within the range mν ∈ [0, 1] eV. We compare the com-
bined results to our fiducial case of fixing the mass sum to

mν = 0.06 eV, the results of which can be seen in the left
panel of Fig. 7. Allowing the combined masses of neutri-
nos to vary results in a significant increase in the range of
values allowed by the combined data, and the constraints
become fully consistent with the growth=geometry ex-
pectation:

Ωgeom
M = 0.289± 0.012

Ωgrow
M = 0.319± 0.018

wgeom = −1.11± 0.06

wgrow = −1.10± 0.28

(mν marginalized over). (35)

Neutrino mass therefore relieves tension between ge-
ometry and growth. It is then of particular interest to
report what neutrino mass sum is favored by the data.
The posterior probability on mν is shown in the right
panel of Fig. 7. In the case where both ΩM and w
are split, mν = 0.45 ± 0.21 eV, higher than our fidu-
cial, normal-hierarchy value (which assumes the massless
lightest-mass eigenstate) of mν = 0.06 eV by ∼ 2-σ. As
a further test, we place constraints on mν in the case
of unsplit parameters (i.e. enforcing Ωgeom

M = Ωgrow
M and

wgeom = wgrow), obtaining mν = 0.45± 0.12 eV. Our re-
sults are in good agreement with Beutler et al. [64] who
favor similar neutrino mass, mν = 0.36± 0.10 eV, using
the combined BAO+RSD+Planck data.

From Fig. 5 and Eq. (32) we see that the geometric
equation of state is also somewhat incompatible with
the ΛCDM value, since the combined data mildly pre-
fer a value wgeom = −1.13 ± 0.06. We find that most
of the pull toward such negative values is provided by
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the BAO. The fact that wgrow > −1 while wgeom < −1
clearly exacerbates the disagreement between geometry
and growth, leading to the 3.3σ incompatibility calcu-
lated above; growth however clearly exhibits the more
pronounced tension with the standard value.

Finally, we investigate whether there is something
about the Planck early-universe prior that pushes the
combined constraints away from the standard assump-
tion that geometry=growth. To that effect, we replace
the Planck prior in Table VI with the equivalent based on
WMAP nine-year data [73]. Runs with this prior indicate
that wgeom = −1.13 ± 0.06, wgrow = −0.78 ± 0.08, with
wgrow > wgeom now favored at 3.1σ (p-value=0.0017).
These constraints with WMAP9 are very similar to those
obtained with Planck, so differences between the two
CMB probes’ measurements are not responsible for the
tensions we observe.

VII. CONCLUSIONS

In this paper we have carried out a general, weakly
model-dependent test of the consistency of the wCDM
cosmological model using current cosmological data from
Type Ia supernovae, CMB peak location, baryon acous-
tic oscillations, redshift space distortions, cluster counts,
and weak lensing. We split each late-universe parameter
that describes the effects of dark energy into two param-
eters, one that comes from observed quantities that are
governed by geometry of the cosmological model, and one
that is determined by the growth of structure. Assuming
flat universe, we first assume the dark energy equation of
state of −1 and constrain the parameters determining the
matter density relative to critical, Ωgeom

M and Ωgrow
M . We

then consider the case when, in addition to the matter
density, the equation of state of dark energy can vary and
hence wgeom and wgrow can be constrained. We marginal-
ize over five additional early-universe parameters includ-
ing the neutrino mass, plus several nuisance parameters
that are specific to individual cosmological probes. As a
check, we show constraints projected on popular param-
eter combinations (ΩM , σ8) and (ΩM , w) in Fig. 3.

The main results — constraints on the geometry and
growth components of ΩM and w — are shown in Figs. 4
and 5, respectively. The complementarity of various
probes is impressive; this is especially visually evident
in the Ωgeom

M − Ωgrow
M plane in Fig. 4 which shows that

SNIa, BAO and CMB peak location determine distance;
the remaining three probes are sensitive to both geometry
and growth – RSD and cluster counts are largely sensi-
tive to growth, while weak lensing mostly constrains the
geometry. The overall goodness of fit is satisfactory, and
the constraints on the late-universe parameters of inter-
est, given in Eqs. (30) and (32) and summarized in Table

I, are very tight.
One surprise are the redshift-space distortions, which

are in a ' 3-σ conflict with wCDM. The RSD prefer less
growth at late times than in the standard model; this
can visually be seen in the RSD data — Fig. 2 shows
preference for a lower fσ8 than in the standard Planck
ΛCDM model. The tension is most clearly seen in the w-
split plane, Fig. 5, which shows that RSD alone prefers
wgrow,RSD = −0.760 ± 0.085, and in fact pulls the com-
bined constraint from all probes to wgrow = −0.77±0.08.
We quantify the tension with wCDM to be 3.3σ (p-value
of wgeom ≥ wgrow is 0.0010). This tension brought about
with current RSD measurements has already been no-
ticed and discussed in the literature. In the Discussion
section, we demonstrate that the discrepancy remains at
the still-significant 3.1σ level once the most discrepant
RSD measurement is replaced by one from an alterna-
tive analysis. The discrepancy may be resolved with a
higher value of the sum of the neutrino masses than what
is expected in the normal hierarchy between the mass
eigenstates with the lightest eigenstate being massless,
mν = 0.45 ± 0.12 eV; see Fig. 7. However, systematics
may play a role in resolving the discrepancy; more work
in this area is needed to determine which of these effects
is responsible.

On the whole, our results demonstrate very explic-
itly how the diverse cosmological probes complement
each other and not just break degeneracy in the multi-
dimensional parameter space, but also effectively special-
ize in constraining geometry, growth, or both. The re-
sulting combined constraints on the geometry and growth
are impressively tight. The next generation of surveys —
Stage III and IV in the language of the Dark Energy Task
Force — are sure to improve them further.

Over the past few years, as the cosmological con-
straints improved, we and others hoped that nature will
be kind enough to provide hints for departure from the
standard ΛCDM model in order to help reveal the dy-
namics of dark energy. We already see those hints, and
it will be interesting to see whether they are cracks in
the cosmic egg3 or perhaps systematics in data and ob-
servations.
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FIG. 8. Top: Number of galaxy clusters within a given rich-
ness bin in the MaxBCG dataset. Errors shown are the diag-
onal parts of the covariance matrix. The step function shown
uses the parameter values from the best fit ΛCDM model
(Column 2 of Table VII). The data are summarized in Table
VIII. Bottom: Mean mass of galaxy clusters within the given
richness bin in the MaxBCG dataset. The step function uses
the same parameter values as the top figure. The data are
summarized in Table IX.

Appendix A: Cluster analysis details

Here we give more details regarding the cluster anal-
ysis, which closely followed one given in the Rozo et al.
[39] MaxBCG cosmological constraints paper.

The analysis is based on assigning “richness” to each
cluster; this is defined as the number of galaxies in R200,
the radius at which the average density of the cluster
is 200 times that of the critical density of the universe.
Moreover, the mass is determined from richness via the
richness-mass relation which has been calibrated using
weak gravitational lensing measurements by Johnston
et al. [41]. The cluster numbers in each richness bin are
shown in Table VIII, while the clusters’ mean mass per
bin is shown in Table IX and in Fig. 8.

In addition to the data in Table VIII, there are also 5
clusters which have N200 > 120. Due to the high richness
of these clusters, they are not analyzed with a standard
χ2 approach, and are instead included in the analysis on
an individual basis.

http://dx.doi.org/10.1093/mnras/282.3.877
http://arxiv.org/abs/astro-ph/9605017
http://arxiv.org/abs/astro-ph/9605017
http://dx.doi.org/10.1086/310290
http://arxiv.org/abs/astro-ph/9604142
http://dx.doi.org/10.1103/PhysRevD.81.043512
http://dx.doi.org/10.1103/PhysRevD.81.043512
http://arxiv.org/abs/0910.3834
http://dx.doi.org/10.1038/281358a0
http://dx.doi.org/10.1111/j.1365-2966.2012.21136.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21136.x
http://arxiv.org/abs/1204.4725
http://arxiv.org/abs/1312.4889
http://arxiv.org/abs/1312.4889
http://dx.doi.org/ 10.1111/j.1365-2966.2012.21473.x
http://dx.doi.org/ 10.1111/j.1365-2966.2012.21473.x
http://arxiv.org/abs/1204.3674
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://www.stat.columbia.edu/~gelman/research/published/itsim.pdf
http://www.stat.columbia.edu/~gelman/research/published/itsim.pdf
http://arxiv.org/abs/1408.4742
http://dx.doi.org/10.1103/PhysRevLett.111.161301
http://arxiv.org/abs/1303.6583
http://arxiv.org/abs/1303.6583
http://dx.doi.org/10.1093/mnras/stu1051
http://arxiv.org/abs/1312.4611
http://dx.doi.org/ 10.1093/mnras/stu1391
http://arxiv.org/abs/1404.3742
http://dx.doi.org/10.1093/mnras/stu1702
http://arxiv.org/abs/1403.4599
http://dx.doi.org/ 10.1103/PhysRevLett.113.181301
http://arxiv.org/abs/1406.7297
http://dx.doi.org/ 10.1088/1475-7516/2014/12/005
http://arxiv.org/abs/1407.2257
http://arxiv.org/abs/1407.2257
http://dx.doi.org/10.1088/1475-7516/2006/10/014
http://dx.doi.org/10.1088/1475-7516/2006/10/014
http://arxiv.org/abs/astro-ph/0604335
http://dx.doi.org/10.1088/0004-637X/782/2/74
http://arxiv.org/abs/1212.6267
http://arxiv.org/abs/1212.6267
http://dx.doi.org/ 10.1103/PhysRevD.90.083503
http://arxiv.org/abs/1403.8049
http://arxiv.org/abs/1403.8049
http://dx.doi.org/10.1088/0004-637X/799/2/214
http://dx.doi.org/10.1088/0004-637X/799/2/214
http://arxiv.org/abs/1407.2942
http://dx.doi.org/ 10.1088/1475-7516/2014/10/081
http://dx.doi.org/ 10.1088/1475-7516/2014/10/081
http://arxiv.org/abs/1407.8338
http://dx.doi.org/10.1088/1475-7516/2014/06/031
http://arxiv.org/abs/1404.1794
http://dx.doi.org/10.1088/0067-0049/208/2/19
http://dx.doi.org/10.1088/0067-0049/208/2/19
http://arxiv.org/abs/1212.5226
http://dx.doi.org/10.1086/345846
http://arxiv.org/abs/astro-ph/0203169


19

Richness bin No. of Clusters

11-14 5167

14-18 2387

19-23 1504

24-29 765

30-38 533

39-48 230

49-61 134

62-78 59

79-120 31

TABLE VIII. The number of clusters with a richness within
the given bin.

Richness bin No. of Clusters 〈M200b〉[1014M�]

12-17 5651 1.298

18-25 2269 1.983

26-40 1021 3.846

41-70 353 5.475

71+ 55 13.03

TABLE IX. Mean mass (and their number) of clusters with a
richness within the given bin.

As already implied, the overdensity of ∆ = 200 is
adopted to define cluster masses. In addition, the masses
measured have been assumed to be in cosmology with
ΩM = 0.27. For other cosmologies, this leads to an over-
density of ∆v = 200(0.27/ΩM ). To correctly account for
this, we rescale the quoted masses from Rozo et. al. for
each tested cosmology using the equations from Hu and
Kravtsov [74] for mass rescaling

Mh

Mv
=

∆h

∆v

1

c3

(
rh
rs

)3

(A1)

where r is the radius of the halo for a given overdensity,
c the concentration factor, and ∆ is the overdensity. The
ratio of radii can be written as

rs
rh

= x

(
∆v

∆h
f

(
1

c

))
(A2)

where

f(x) = x3
[
ln(1 + x−1)− (1 + x)−1

]
(A3)

and its inverse can be approximated as

x(f) =

[
a1f

2p +

(
3

4

)2
]−1/2

+ 2f (A4)

where p = a2 + a3 ln f + a4(ln f)2, and ai =
{0.5116,−0.4283,−3.13 × 10−3,−3.52 × 10−5}. Finally,

the concentration can be expressed in terms of the mass
as

c(Mv) = 9(1 + z)−1(Mv/M∗)
−0.13, (A5)

where M∗ is calculated at the present day.
As mentioned in Section III D, the probability weight-

ing functions are

〈ψ|M〉 =

∫
dN200P (N200|M)ψ(N200), (A6)

〈φ|z〉 =

∫
dzphotoP (zphoto|z)φ(zphoto). (A7)

Here P (N200|M) is a log-normal distribution with an un-
known variance σ2

NM = Var(lnN200|M) and an expected
value

〈lnN200|M〉 = (A8)

log10

(
M
M1

)
〈lnN200|M2〉 − log10

(
M
M2

)
〈lnN200|M1〉

log10

(
M2

M1

)
where M1 = 1.3 × 1014M�, M2 = 1.3 × 1015M�, and
〈lnN200|M1〉, 〈lnN200|M2〉, and σ2

NM are nuisance pa-
rameters, which are marginalized over during the analy-
sis of the cluster data. Likewise, the probability weight-
ing function P (zphoto|z) is a Gaussian distribution with
standard deviation σz = 0.008 and an expectation value
〈zphoto|z〉 = z. ψ(N200) and φ(zphoto) are once again bin-
ning functions, where the zphoto bin is [0.1, 0.3] from the
range of photometric data from the SDSS survey.

The cluster likelihood consists of two parts [39]; the
main part is defined via

− 2 logLmain = ∆xTC−1∆x (A9)

where ∆x = (xdata−xtheory). The x vector of observables
is

x = {N1, ..., N9, (NM̄)1, ..., (NM̄)5}. (A10)

where N1 though N9 are the cluster counts in the respec-
tive richness bins, while (NM̄)1 through (NM̄)5 are the
total mass of clusters in bins.

The covariance C of the cluster data takes into ac-
count uncertainties due to shot noise, sample variance,
the stochasticity of the mass-richness relation, measure-
ment error of the weak lensing masses, and uncertainties
in the purity and completeness of the sample. For more
information regarding these uncertainties, see Rozo et al.
[39] from where we adopt the prescription for calculating
the covariance matrix.

As previously stated, there are 5 clusters in the
MaxBCG dataset which have N200 = 126, 139, 156, 164,
and 188. These clusters are added on a individual basis
to the analysis with the likelihood

logLtail =
∑

N200>120

〈N〉 −
∑

N(N200)=1

〈N〉+ log〈N〉 (A11)
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where the first sum is over all richnesses > 120, which is
subtracted by the second sum, which is for those richness
bins that contain a cluster. This additional piece is com-
bined with the main part to obtain the full likelihood of
observing a set of cluster counts and their masses

Lcluster = LmainLtail. (A12)

Appendix B: RSD analysis details

1. RSD correlation matrices

For completeness, in Tables X and XI we present the
correlation matrices for the BOSS Low-z, BOSS CMASS,
and WiggleZ measurements used for the analysis. The
square roots of the diagonal uncertainties for these mea-
surements can be found in Table IV.

z = 0.32 H(z) DA(z) fσ8

H(z) 1.00 −0.32 0.35

DA(z) — 1.00 0.51

fσ8 — — 1.00

z = 0.57 H(z) DA(z) fσ8

H(z) 1.00 −0.67 0.05

DA(z) — 1.00 0.40

fσ8 — — 1.00

TABLE X. Correlation matrices for the BOSS LOWZ (left)
and CMASS (right) samples of our RSD dataset.

Fa Fb Fc (fσ8)a (fσ8)b (fσ8)c

Fa 1.00 0.52 0.00 0.73 0.35 0.00

Fb — 1.00 0.50 0.38 0.74 0.43

Fc — — 1.00 0.00 0.43 0.85

(fσ8)a — — — 1.00 0.51 0.00

(fσ8)b — — — — 1.00 0.56

(fσ8)c — — — — — 1.00

TABLE XI. Correlation matrix for the WiggleZ sample of our
RSD dataset. Terms with subscript a are values at z = 0.44,
subscript b at z = 0.60, and subscript c at z = 0.73.

2. From (DA, H) covariance to error in F

In order to make the error bars in Fig. 2 for the two
BOSS samples (LOWZ and CMASS), we need to project

the 3 × 3 covariance matrix in fσ8, H and DA into the
2×2 space (fσ8, F ). Recall, F is defined in Eq. (22) and
is essentially proportional to the product of the Hubble
parameter and the angular diameter distance.

Doing this is a short exercise in statistics. First of all,
note that we only really need the variance in F , although
computing the covariance between fσ8 and F would be
equally straightforward.

Let us assume that we would like to calculate the vari-
ance of the product of two Gaussian random variables x
and y. Let X and Y be the mean of these two variables,
and δx ≡ x−X and δy ≡ y − Y . Then

Var(xy) = Var[(X + δx)(Y + δy)]

= Var[Xδy + Y δx+ δxδy]
(B1)

where we dropped the non-contributing variance of a con-
stant. Dropping the three-point correlations that vanish
for Gaussian variables, this evaluates to

Var(xy) = X2Var(δy) + Y 2Var(δx) + 2XY Cov(δx, δy)

+ Var(δxδy)

= X2Var(δy) + Y 2Var(δx) + 2XY Cov(δx, δy)

+ Var(δx)Var(δy) + Cov(δx, δy)2,

(B2)

where in the last expression we evaluated Var(δxδy) using
Wick’s theorem. This is the expression that we need.
Denoting for clarity DA and H to be the means, and DA
and H to be fluctuations around the mean in the angular
diameter distance and Hubble parameter, in our case we
have

(1 + z)−2Var(F ) = H2Var(DA) +D2
AVar(H)

+ 2HDACov(DA,H) (B3)

+ Var(DA)Var(H) + Cov(DA,H)2.

With this equation we can evaluate the error in F , given
the covariance matrix in the angular diameter distance
and Hubble parameter.

Appendix C: Plots with separated contours

In Figures 9, 10, and 11, and 12, we include alternate
versions of Figs. 3a, 3b, 4, and 5. Here, for clarity, each
probe’s constraints have been shown separately. In each
case the combined constraint has also been shown.
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FIG. 9. Same as the left panel of Fig. 3, but the various probes have been separated for easier viewing. The smaller, dark set
of contours corresponds to all probes combined.
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FIG. 10. Same as the right panel of Fig. 3, but the various probes have been separated for easier viewing. The smaller, dark
set of contours corresponds to all probes combined.
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FIG. 11. Same as Fig. 4, but the various probes have been separated for easier viewing. The smaller, dark set of contours
corresponds to all probes combined.
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