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We show that the quadratic inflation can be realized by the phase of a complex field with helicoid
potential. Remarkably, this helicoid potential can be simply realized in minimal supergravity. The
global U(1) symmetry of the Kähler potential introduces a flat direction and evades the η problem
automatically. So such inflation is technically natural. The phase excursion is super-Planckian as
required by the Lyth bound, while the norm of the complex field can be suppressed in the sub-
Planckian region. This model resolves the ultraviolet sensitive problem of the large field inflation,
besides, it also provides a new type of monodromy inflation in supersymmetric field theory with
consistent field stabilization.

Introduction

Inflation [1] as a model of the early Universe plays a
crucial role in modern comology. It beautifully solves
the horizon, flatness, and monopole problems, as well
as explains the density fluctuation observed in the cos-
mic microwave background. Some details on the infla-
tionary process are obtained from recent observations of
the Planck [2] and BICEP2 [3] experiments. It shows
the inflation scale is about 1016 GeV, close to the scale
for Grand Unified Theory (GUT). To generate slow-roll
inflation, the scalar field φ should have sufficiently flat
potential V (φ) so that its mass is hierarchically smaller
than the Hubble constant

η ≡ M2
P

V ′′

V
≃

m2
φ

3H2
≪ 1, (1)

where MP is the reduced Planck scale. At the classical
level, the potential can be set sufficiently flat by hand.
However, the inflaton as a scalar field receives danger-
ous quantum corrections and even serious quantum grav-
ity corrections if there is super-Planckian field excursion.
The crucial challenge for a sensible inflation model is to
protect the flat condition against these dangerous correc-
tions.

At the GUT scale physics is considered to be super-
symmetrical and the quantum corrections on the infla-
ton potential are effectively suppressed by supersymme-
try [4]. However, the flatness of the potential is signif-
icantly changed in supergravity. The F-term scalar po-
tential is proportional to a factor eK , K is the Kähler
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potential and contains a term ΦΦ̄ in minimal supergrav-
ity. The factor eΦΦ̄ generates an inflaton mass close to
the Hubble scale and hence breaks the slow-roll condi-
tion (1). The η problem is absent in no-scale supergrav-
ity [5], in which the Kähler potential is initially designed
to solve the cosmological flatness problem [6]. Alterna-
tively, one can introduce a shift symmetry Φ → Φ + iC
[7] in the Kähler potential so that eK is flat along the
shift direction1.

For single field slow-roll inflation, the Lyth bound
[9] indicates a super-Planckian inflaton excursion ∆φ ∼
10MP for large tensor modes, which makes the effec-
tive theory description of inflation problematic. In the
Wilsonian sense, there are higher dimensional opera-
tors from quantum gravity effects that are suppressed
by the Planck mass MP and irrelevant in the sub-
Planckian region. However, once the inflaton becomes
super-Planckian, inflation is sensitive to the higher di-
mensional operators and the theory is not reliable unless
it is Ultraviolet (UV)-completed [10].

Problems from quantum gravity corrections can be
avoided if the super-Planckian field excursion is effec-
tively realized in the sub-Planckian region. Considering
the phase of a complex scalar field, or the pseudo-Nambu-
Goldstone boson (PNGB) in gauge symmetry breaking
scenario [11–14], the phase can have super-Planckian dis-
placement while the magnitude of complex field remains
sub-Planckian. Besides, the combination of multi sub-
Planckian fields may lead to effective super-Planckian ex-
cursion [15, 16]. Another attractive and widely studied
model is the monodromy inflation [17, 18], in which the

1 The shift symmetry can be slightly broken to get inflationary
models with a broad range of tensor-to-scalar ratio r [8].
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inflaton is an axion obtained from string compactifica-
tion and evolves periodically while all the factors except
the potential remain the same.

In this letter, we present a new inflation model with
helicoid potential. This potential is designed to realize
super-Planckian inflaton excursion with sub-Planckian
fields and the inflation is driven by the phase of a complex
field, so that we can keep away from dangerous quantum
gravity corrections. Remarkably, the helicoid scalar po-
tential can be simply obtained in minimal supergravity,
and the well-known η problem is automatically solved
without any extra symmetry. The phase inflation also
leads to a new type of monodromy in supersymmetric
field theory with strong field stabilization.

Helicoid Potential

Now we give the supergravity realization of the helicoid
potential in the simplest case. We consider two chiral
superfields Φ and X in minimal supergravity, the Kähler
potential is

K = ΦΦ̄ +XX̄ − g(XX̄)2, (2)

where the higher order term g(XX̄)2 is introduced to
stabilize the field X at X = 0 [19, 20]. Besides, we use
the following superpotential

W = a
X

Φ
lnΦ. (3)

The superpotential is singular at Φ = 0 with mon-
odromy2

Φ → Φe2πi, W → W + 2πai
X

Φ
. (4)

In field theory, singularity appears when a massless field
is integrated out. An explicitly realization of this mon-
odromy will be provided based on supersymmetric field
theory in next section.

It is obvious that the Kähler potential preserves the
global U(1) symmetry for Φ, which is broken by the su-
perpotential. Thus, our model is technically natural since
there is a global U(1) symmetry in the a = 0 limit [22].

The F-term scalar potential is determined by the
Kähler potential and superpotential as follows

V = eK(Kij̄DiWDj̄W̄ − 3WW̄ ). (5)

As the field X is stabilized at X = 0, the above potential
is significantly simplified as below

V = eΦΦ̄WXW̄X̄

= a2er
2 1

r2
((ln r)2 + θ2),

(6)

2 An interesting proposal based on multivalueness of complex func-
tion with fractional power is studied in [21].

FIG. 1. The helicoid potential with unit 10−8M4

P . Along
radial direction, the minimum of the potential locates at |Φ| ≡
r = 1, while the phase θ provides a flat direction along the
helix line, from which it is easy to get super-Planckian field
excursion.

FIG. 2. Helix trajectory with r = 1. The red part indicates
the phase excursion for quadratic inflation with Ne = 55.

where Φ ≡ reiθ. The quadratic term θ2 appears in the
potential because of the monodromy (4) with respect to
the origin.

The potential (6) is simple but actually has fancy he-
licoid structure, as shown in Fig. 1. The exponential

factor er
2

does not depend on the phase θ resulting from
the global U(1) symmetry of Kähler potential (2), con-
sequently there is no η problem for this phase inflation.
The complex field magnitude |Φ| ≡ r obtains vacuum ex-

pectation value at 〈r〉 = 1 as both er
2 1

r2 and (ln r)2 reach
minimums at r = 1.
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The mass along the radial direction is

m2
r =

1

2

∂2V

∂r2
|r=1 = (2 +

1

θ2
)VI , (7)

where the factor 1

2
is from the normalization of r, and

VI = ea2θ2 is the potential for inflation. Eq. (7) shows
that the mass of r is larger than the Hubble constant
therefore the radial component is frozen out during infla-
tion, and we realize the quadratic inflation dominated by
VI . The helical inflation path is shown in Fig. 2. The in-
flaton θ has physical mass mθ =

√
ea, at scale 1013 GeV

from observations [2, 3]. It predicts the spectral index
ns ≃ 1− 2

Ne

and the tensor-to-scalar ratio r ≃ 8

Ne

, where
Ne is the e-folding number.

In the PNGB inflation, the phase of the Higgs field also
plays the role of the inflaton [11]. However, the poten-
tial is periodic and a super-Planckian decay constant is
needed. In our model, the inflation path is helical, there
is no limit on the field displacement during inflation, ac-
tually this is a new realization of the monodromy, which
is proposed as stringy axion inflation in a rather different
way [17].

The norm can be stabilized in the sub-Planckian scale
by taking the following superpotential

W = aXΦ− 1

n ln
Φ

Λ
. (8)

The scalar potential becomes

V = a2er
2

r−
2

n ((ln r − ln Λ)2 + θ2). (9)

The minimum of the factor er
2

r−
2

n locates at r0 = 1√
n
(=

Λ). The mass along the radial direction at r0 is

m2
r = (2 +

n

θ2
)VI > H2, (10)

where VI = (en)1/na2θ2, providing a strong stabilization
even r is very small. Giving n > 10 the norm can be
stabilized at r0 ∼ O(10−1)(MP ).

Monodromy from Supersymmetric Field Theory

To realize helical phase inflation, the monodromy (4)
of superpotential (3) is crucial. The monodromy is from
the superpotential

W0 = σXΨ(T − δ) + Y (e−αT − βΨ)+Z(ΨΦ−λ), (11)

in which the coupling constants of the last two terms are
absorbed in the chiral superfields Y and Z, and σ ≪ 1
to provide inflation potential at scale much lower than
that of last two terms. The couplings in (11) consist of
renormalizable perturbative terms and Y e−αT , which is
considered to be an effective description of certain non-
perturbative effect. A reasonable decay constant f is

much smaller than Planck mass, so α ∝ 1

f ≫ 1. In

type II string theory similar non-perturbative term can
be obtained from D-brane instanton effect [23].

The supergravity vacuum is given by the vanishing F-
term conditions

Fz = DzW0 = ∂zW0 +KzW0 = 0, (12)

where z ∈ {X,Y, Z, T,Ψ,Φ}. Combing with Minkowski
vacuum condition W0 = 0, the preferred vacuum is given
by ∂zW0 = 0, and it locates at

〈X〉 = 〈Y 〉 = 〈Z〉 = 0, 〈T 〉 = δ,

〈Ψ〉 = 1

β
e−αδ, 〈Φ〉 = λβeαδ.

(13)

Giving 〈Φ〉 ≫ 〈Ψ〉, near the vacuum Y, Z, T,Ψ obtain
heavy effective masses from the last two coupling terms
while X,Φ are light. During inflation all the heavy fields
are frozen out and can be integrating out, then we get
an effective field theory at inflation scale. To integrate
out the heavy fields, we need to solve the equations of
vanishing F-terms of frozen fields

FY = e−αT − βΨ +KY W0 = 0,

FZ = ΨΦ− λ+KZW0 = 0.
(14)

In minimal supergravity, the Kähler potential is K =
Σzz̄ 3, which gives Kz = z̄. Besides, near the vacuum
Y = Z ≈ 0 ≪ MP , the higher order terms KzW0 in (14)
just give small corrections and we get the approximate
solutions of Eq. (14)

Ψ =
λ

Φ
, T =

1

α
ln

Φ

βλ
. (15)

Substituting above solutions for T and Ψ in the original
superpotentialW0, we get the effective superpotential (3)
during inflation. The parameters should satisfy

βeαδ = λ−1 ≫ 1, a =
σλ

α
∼ 10−5, (16)

which can be easily adjusted to fit with observations.

The singularity of superpotential W at Φ = 0 is clear
from this procedure. When Φ → 0, Ψ ≫ Φ constrained
by (14) and it is illegal to integrate out Ψ, the model
should be studied in another effective field theory. For-
tunately during inflation |Φ| is fixed at VEV and the
phase rotation cannot break the effectiveness of the the-
ory given by W . As to the monodromy, vanishing condi-
tions of FY and FZ fix four directions of three complex
fields T,Ψ and Φ, but allow the transformation

Ψ → Ψe−u−iv

Φ → Φeu+iv

T → T + u/α+ iv/α

(17)

3 Except T , for the reasons shown below, Kähler potential of T

has to be shift invariant under T → T + iC.
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However, because of the supergravity correction on the
scalar potential V ∝ eK , norms of Ψ and Φ are stabilized,
u = 0 in (17). Field stabilization does not fix the phase
rotation4, and for a whole circular rotation, W0 → W0 +
2πσiXΨ/α, which is exact the monodromy in (4).

By integrating out the heavy fields, the supergrav-
ity correction eK should be replaced by the solution of
Eq. (14) as well, which just gives norm-dependent terms
and slightly shifts the fixed norm since K is invariant un-
der phase rotation. Specifically, for T a shift symmetry
in K is needed, otherwise the factor eK contains phase
of Φ and breaks the inflation. Among these phase fac-
tors, the phase of Φ, after canonical field redefinition, has
lightest physical mass and evolves as inflaton.

At quantum level, because of the non-renormalization
theorem for the superpotenital, the loop corrections from
integrating out heavy fields appear in Kähler potential
only, and these corrections just sightly affect the field sta-
bilization but not the phase inflation which is protected
by the U(1) symmetry in Kähler potential.

UV Sensitivity of Large Field Inflation

The crucial challenge for large field inflation is the
higher dimensional operators from quantum gravity cor-
rections [10]. The higher order terms of the inflaton φ

∆V = ciV (
φ

MP
)i + · · · , (18)

are unignorable at the initial stage of inflation when
φ ∼ O(10)MP . They can modify the predictions sig-
nificantly or even destroy slow-roll conditions. In this
model, the inflaton is just the phase of a complex field
like PNGB and admits no polynomial correction at all,
in consequence quantum gravity corrections like (18) im-
mediately disappear without any constraint from extra-
symmetry. So the helical phase inflation is not sensitive
to the quantum gravity effects.

In the bottom-up approach, one can apply axionic shift
symmetry of the inflaton φ → φ+c, which is broken down
to discrete symmetry φ → φ + 2πf by non-perturbative
effect. To fit the experimental observations it requires
super-Planckian axion decay costant f 5, which can be
realized by aligned axions [12] (or equally a S2 symmetry
between two Kähler moduli [25]) or anomalous gauged
U(1)X with large gauge symmetry [26]. The inflation
path of aligned axions has similar helical structure in ax-
ion space [27, 28], and it shows that the alignment mech-
anism is kind of monodromy inflation realized by axions

4 If the Kähler potential of T is minimal, then the supergravity
correction eTT̄ would fix the phase rotation as well!

5 Giving a coupling between the inflaton kinetic term and Einstein
tensor, natural inflation with f ≪ Mp still works [24].

that are plentiful in string compactification. Stringy in-
flation is expected to solve the UV sensitivity of large field
inflation but needs to address several difficult problems
like moduli stabilization, Minkowski or de Sitter vacua,
etc. Our model provides another type of monodromy in-
flation just in supersymmetric field theory, which is more
simpler and controllable. The U(1) symmetry is build-in
the Kähler potential and there is no naturalness problem
in the top-down perspective. Based on the supersym-
metric field realization of inflation, a unified description
of the inflation and the well-known GUT is at hand. A
direct test on the relationship between inflation and GUT
is the reheating process. In our model, a simple guess is
the chiral superfield X is a gauge singlet in certain grand
unification model, like the scenario in [29], then the in-
flaton decays into visible particles through couplings of
X during reheating.

Conclusion

We have shown in this letter that the phase infla-
tion along a single helix trajectory can be realized in
a surprisingly simple way based on minimal supergrav-
ity. The global U(1) symmetry of minimal Kähler po-
tential naturally solves the η problem which appears
generically for supergravity inflation. The radial direc-
tion is strongly stabilized during inflation, and the super-
Planckian phase excursion is fulfilled along a helix path.

The helical phase inflation is not sensitive to the quan-
tum gravity effect as higher order corrections are not
possible for a PNGB like particle. The phase inflation
also admits an effective description on super-Planckian
field excursion within supersymmetric field theory, and
it naturally leads to field monodromy, which relates to
a global U(1) symmetry explicitly breaking at inflation
scale. It is surprising that the supergravity η problem,

field stabilization, puzzle of super-Planckian field excur-

sion and monodromy inflation admit a simple unified so-

lution within a helicoid structure. As will be shown in
[30], the monodromy in (11) can be easily generalized
to obtain supersymmetric field realization of aligned ax-
ions with consistent field stabilization [12, 27, 28], so the
helical phase inflation actually provides a general frame
to realize supergravity inflation with several amazing fea-
tures. However, because inflation is an extraordinary un-
usual and unique event in the history of our Universe, we
are not hesitant in being bold. It will be phenomenal
if nature employed helix structures to promote evolution
from the very early universe to present time organisms.
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