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We study a scenario in which the dilaton, a pseudo-Goldstone boson of the spontaneous breaking
of conformal symmetry, provides a portal between dark matter and the visible sector. We consider
the low-energy description of the theory in which the dilaton mixes with the Standard Model Higgs
boson, thereby predicting a second scalar at or above the weak scale. We derive the collider and
dark matter constraints on the corresponding parameter space and find that existing experimental
data point towards the decoupling limit in which the CFT scale is well above the electroweak scale.
Moreover, the thermal production of dark matter implies its mass is likely above the TeV scale.
Upcoming direct detection experiments may allow for the discovery of the dilaton-mediated thermal
dark matter while future collider studies will also be sensitive to the available parameter space.

I. 1. INTRODUCTION

The recently discovered particle at the LHC, with mass
in the vicinity of 125 GeV [1, 2], has properties which
closely resemble those of the Standard Model (SM) Higgs
boson [3, 4]. Nevertheless, it is still possible that this
particle is an impostor, not directly or entirely related
to the breaking of the electroweak symmetry. A moti-
vated example for such a scenario is that of a dilaton,
the (pseudo)-Goldstone boson of a spontaneously broken
conformal symmetry (CFT), with properties similar to
those of the SM Higgs boson. Previous works [5–7] show
that the data collected by the LHC already disfavors the
simple scenario of a pure dilaton, in which all the SM
particles are affected similarly by the strong dynamics.

More generally, both a dilaton and an SU(2)W Higgs
doublet may be present. The two fields can mix at low
energies, resulting in two physical scalars, each with col-
lider production and decay modes similar to those of a
Higgs boson. It is necessary to understand the extent to
which one can experimentally differentiate between the
cases of a pure Higgs, a pure dilaton, and a mixture of
the two.

The dilaton has experimental implications beyond
Higgs phenomenology. In particular, under mild assump-
tions, the dilaton is expected to couple to Dark Matter
(DM) particles in a well defined manner at low energies,
with interaction strength proportional to the DM mass.
Consequently, the dilaton field mediates the different in-
teractions between the dark and the visible sector [8].

We therefore make the following simplifying assump-
tions:

(1) the DM interacts with the visible sector only
through the dilaton field, and

(2) the SM and DM particles are fully embedded in the
strongly coupled sector.

With assumption (1), a prediction for the DM signal
rates in direct and indirect detection experiments may be
obtained. Assumption (2) implies that all SM particles

couple to the dilaton through specific non-renormalizable
interactions, allowing for a minimal set of parameters
which span the theory space. These are:

• mχ, the DM mass,

• α, the dilaton-Higgs mixing angle,

• mH , the heavy scalar mass, and

• f , the CFT breaking scale.

Assumption (2) may be somewhat relaxed, if mixing
arises between a weakly coupled and a strongly coupled
sector. In this case, different SM particles may carry
distinct anomalous dimensions, leading to different cou-
plings to the dilaton. This scenario, which is beyond
the scope of this paper, is less constrained as it encom-
passes a much larger parameter space. (See, for instance,
Ref. [6].)

Under these assumptions, we explore the Higgs-dilaton
mixing scenario as a portal between the visible and the
dark sector (for a pre-LHC study of the dilaton portal,
see [8]). We study the various collider constraints on the
scalar parameter space (masses and mixing), including
LHC Higgs data, ElectroWeak Precision Measurements
(EWPM) and the null searches for new scalars. The ob-
served DM relic density, as well as the searches for DM,
constrain the allowed model parameter space as a func-
tion of DM mass.

We analyze these constraints using two distinct sce-
narios for the DM relic density, that will be described in
more detail below. We further define two limits in which
the light scalar has SM-like properties: (i) the alignment
limit and (ii) the decoupling limit, in which analytical ap-
proximations can be made. We show that existing data
push the theory towards the decoupling limit, with the
CFT scale above the TeV. We further present the pre-
dictions for upcoming direct searches for DM.

The plan of this paper is as follows. In section 2 we
define the framework and specify the model parameter
space. Section 3 is devoted to the experimental data that
restrict the model. Specifically, in section 3.1 we study
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the different collider bounds, while observables related to
the dark sector are analyzed in section 3.2. We conclude
on section 4.

II. 2. FRAMEWORK

We begin with the low-energy description of the SM,
a dilaton and a fermionic dark matter candidate. As
explained in the introduction, the dark sector is assumed
to be secluded from the visible sector, communicating
only via the dilaton portal. We assume that the dilaton
compensator field, φσ = feσ/f , couples uniformly to the
visible sector and the dark sector. This follows from the
assumption that both the SM and the dark sector are
embedded in the same strongly coupled sector and do
not mix with elementary, weakly coupled fields [6].

Under these assumption the Lagrangian takes the form

Lσ =
1

2
∂µσ∂

µσ +
σ

f
Tµµ + . . . , (1)

with [9]

Tµµ =
∑
i

gi(µ)(di − 4)Oi(x) +
∑
i

βi(g)
∂

∂gi
LSM . (2)

The SM Lagrangian, LSM, is a sum of operators L =∑
i gi(µ)O(x) at the scale µ with dimension di = dim[Oi].

We assume the contribution from the beta-functions
above is small except for marginal operators. Moreover,
we determine the energy-momentum tensor in the Elec-
troweak (EW) broken vacuum. Equivalently, the theory
may be written down in the unbroken phase, where no
masses are expected to appear. The two approaches are
equivalent to one another and give the same results.

The physical spectrum contains two mass eigenstates:
a light scalar, h, with mh ' 125 GeV, and a heavy scalar,
H:

h = cαφSM + sασ , H = −sαφSM + cασ , (3)

where φSM is the SM excitation about v = 246 GeV
and sα ≡ sinα, cα ≡ cosα. The precise nature of the
Higgs-dilaton mixing depends on the UV completion of
the theory, whose origin is beyond the scope of this work.
We note, however, that one realization of such a mixing
arises from mixed kinetic term in the Lagrangian.1 In
general, the mixing is dictated by a free parameter from
the low energy perspective, expected to vanish as the
CFT scale decouples.

The effective interaction Lagrangian, below the CFT

1 We thank Brando Bellazzini for this point.

breaking scale and above the top mass is

Lint = Lφ3 − cif
mf

v
φiψ̄fψf − ciχ

mχ

v
φiχ̄χ

+ciV
2m2

W

v
φiW

+
µ W

−µ + ciV
m2
Z

v
φiZµZ

µ

+cig
αs
12π

φi
v
GµνG

µν + ciγ
αem
π

φi
v
AµνA

µν , (4)

where ψf are the SM fermions, φ1,2 = h,H and,

chV = chf = cα + rfsα , chχ = rfsα ,

chg = +
21

2
rfsα , chγ = −11

24
rfsα , (5)

with rf ≡ v/f ≤ 1. The corresponding couplings of
H can be found by taking α → α + π/2 above, i.e.,
cHX(α) = chX(α+π/2). For mH > f CFT violating effects
might induceO (1) corrections to cg and cγ [10, 11], which
cannot be estimated in a model independent manner. At
low-energies the cubic scalar interactions take the form:

Lφ3 = −1

6
λhhhhhh−

1

6
λHHHHHH

−1

2
λhhHhhH −

1

2
λhHHhHH , (6)

where the trilinear couplings are specified in Appendix A,
and include contributions from the derivative interactions
using the scalar equations of motion.

The different couplings presented in Eqs. (5) and (A2)
dictate the Higgs phenomenology, as well as the various
processes which involve DM particles. These depend on
the four parameters

rf , sα, mH , mχ . (7)

Unitarity constraint on the scattering of two DM parti-
cles into a pair of weak gauge boson read mχ <

√
32f (in

the relativistic limit), while the scattering of two heavy
scalars to the same final state dictates mH . 3f . Both of
these limits are consistent with perturbative expansion,
and we consider them in our analysis. (See also [12].)

The SM limit is favored by the recent LHC Higgs data,
see for example [5, 13, 14]. We expect this limit to be
recovered in two distinct cases:

1. The alignment limit, sα � 1, in which no mixing
arises, regardless of the new physics scale [15].

2. The decoupling limit, in which and the CFT scale
is largely separated from the EW scale rf � 1. In
that case one also expects sα � 1.

In the next sections we study the various experimental
constraints on the Higgs-dilaton scenario, concentrating
on these two limits. Out numerical results are shown in
section 4.
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FIG. 1: The allowed parameter space of rf = v/f vs.
sinα. Shown are the 2σ preferred regions by LHC Higgs
searches (blue), EWPM (green), and direct heavy scalar
searches (purple). The constraints from EWPM and heavy
scalar searches are shown for mχ = 300 GeV and mH =
200, 600, 900 GeV. Within the black boundaries are the al-
lowed regions, combining all constraints, for each value of mH .

III. 3. EXPERIMENTAL CONSTRAINTS

In the following we elaborate on the various experi-
mental results which restrict the parameter space of the
Higgs-dilaton model. Whenever possible, we present and
discuss the analytic approximations of these constraints
in the decoupling and alignment limits. Our numerical
results are shown in section 4.

A. 3.1 Collider Constraints

1. Higgs Measurements

Much like electroweak and flavor precision measure-
ments, the LHC Higgs rate measurements have begun
to play an important role in model building. Higgs rate
measurements are reported as a confidence interval on
the event rate relative to the SM prediction, denoted
by µ̂. We consider the measured Higgs decay channels
into W+W−, ZZ, γγ, τ+τ− and bb̄ from ATLAS [16],
CMS [17] and the Tevatron [18], using the SM values as
taken from [19].

Since the gluon-gluon fusion (ggF) process dominates
the Higgs production at the LHC, the bulk of the Higgs
production rates have similar dependence on rf and sα.
In the decoupling and alignment limits, they read

µ̂ggF,h→XX '

{
1 + 23rfsα − s2

α , for X = W,Z, f ,

1 + 22rfsα − s2
α , for X = γ .

(8)
An effectual estimate of the constraints can be made from

a global fit combining all Higgs production channels and
decay modes. One finds, at the 95% C.L.,

−0.01 . rfsα . 0.04 . (9)

This result clearly shows that the LHC Higgs data push
the model parameter space towards the decoupling or
the alignment limits, sα � 1 and/or rf � 1. The Higgs
data constraints on the Higgs-dilaton parameter space
is shown in Fig. 1. Note that these constraints do not
depend on mH nor on the DM mass for mχ ≥ 65 GeV.

2. Electroweak Precision Measurements

In the Higgs-dilaton scenario the couplings of the light
scalar to the EW gauge bosons deviate from the SM pre-
diction at order s2

α. This change, along with the presence
of the extra heavy scalar, modify the prediction for the
oblique EW parameters with respect to their SM val-
ues [20]:

δX =
[
(rfsα + cα)

2 − 1
]
XS(mh)

+ (rfcα − sα)
2
XS(mH) , (10)

where XS is the scalar loop contribution to the parameter
X = S, T , defined in Appendix C of [21]. The values
(and errors) for the oblique parameters obtained from the
Electroweak precision measurement (EWPM) are taken
from Ref. [22].

If rf = tanα is realized, the EWPM are independent
of mH , with δX = r2

f XS(mh). In this case we find that

sα ' rf . 0.4 (11)

is allowed by EWPM regardless of mH . If rf 6= tanα,
EWPM push the parameter space of the model into both
the decoupling and the alignment limits: rΛ, sα � 1.
Interestingly, while the Higgs data is insensitive to rΛ in
the alignment limit, the EW oblique parameters are still
affected by the heavy scalar. The numerical results of
the EWPM restrictions are shown in Fig.1.

3. Heavy Scalar Searches

The heavy scalar has similar production and decay
channels as the light one, and therefore is tightly con-
strained by the LHC Higgs searches. The ATLAS [23]
and CMS [24] collaborations null searches in the W+W−

and ZZ decay mode place stringent bounds on the model
parameter space for mH ≤ 1 TeV. Much as with the EW
precision constraints, these bounds are weakened when
rf = tanα, where the heavy-scalar tree-level couplings
to fermions and EW bosons vanish.

A comment is in order concerning the width of the
heavy scalar. While a heavy Higgs is often predicted to be
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FIG. 2: The allowed region in the mH−mχ plane for Ω
(SM)
χ <

ΩDM, including collider and direct detection constraints. The
lighter gray regions correspond to mH > f , where model-
dependent O (1) corrections may exists. The contours show
the minimal value of rΛ needed to avoid an overabundance
of DM particles in the alignment limit. The narrow region
around mχ ' mH/2 is the result of the resonant s-channel
enhancement of the annihilation cross-section.

rather broad, in the scenario at hand it is not necessarily
so. Indeed, one finds

Γtot
H '

(
cHV
)2

Γtot
SM (mH) + ΓH→χ̄χ + ΓH→hh , (12)

so that the heavier scalar can appear as a wide or a nar-
row resonance. In the numerical analysis described in
section 4 we consider both options (see Ref. [23]).

The hh decay channel brings another interesting pos-
sibility for a direct H search. Both CMS [25] and
ATLAS [26] search for resonances in the X → hh →
bb̄γγ spectrum with null results. However, the resulting
bounds are weak and give no additional constraints.

B. 3.2 Dark Matter Constraints

As described above, the dilaton couples to the DM par-
ticles with interaction strength proportional to its mass,
mχ. Assuming no other mediation between the dark sec-
tor and the visible sector, this determines the expected
interaction rate in direct and indirect DM detection ex-
periments. In this section we specify the constraints aris-
ing from these searches. We further analyze the DM anni-
hilation processes into the visible sector which determine
its relic abundance. We consider two distinct scenarios:

(i) χ may have hidden annihilation channels. χ
constitutes the full DM relic abundance, while it
may annihilate not only to SM particles (via the
dilaton portal) but also to other dark sector states.
Consequently, we assume that its relic density re-
sulting from DM annihilations into SM particles

obeys Ω
(SM)
χ ≥ ΩDM, where ΩDMh

2 = 0.1199 ±
0.0027 [27].

(ii) χ particles annihilate only via the dilaton
portal into the SM. We do not demand that χ
is the only DM particle, but require that it does
not over close the Universe. Consequently, we take

Ωχ = Ω
(SM)
χ ≤ ΩDM as the only demand, and as-

sume that the rest of the dark density arise from
the relic of other, unknown particles.

As before, we first elaborate on the different con-
straints, and give, whenever enlightening, analytic ap-
proximations in the decoupling limit and the alignment
limit. The complete numerical results are given in sec-
tion 4.

1. Relic Abundance

The DM particles are in thermal equilibrium at the
early Universe and annihilate into SM fermions, gauge
bosons and Higgs pairs via p-wave processes. The total
annihilation cross-section, σannv = bv2, yields the follow-
ing approximate relic abundance [28]:(

Ω
(SM)
χ h2

0.12

)
'
(

5.7× 10−36 cm2

b

)
. (13)

The expressions for the different annihilation modes are
presented in Appendix B. When kinematically allowed,
the dark matter predominantly annihilates into W+W−

and Z boson pairs. Off the H resonance,

boff
W + boff

Z '
9r4
fm

2
χ

512v4π(1−m2
H/4m

2
χ)2

(
1− sα

rf

m2
H

4m2
χ

)2

' 6.0× 10−38
( mχ

1 TeV

)2 ( rf
0.1

)4

cm2 . (14)

For the two DM scenarios we consider, we find that

mχr
2
f . 100 GeV , for Ω

(SM)
χ ≥ ΩDM , (15)

mχr
2
f & 100 GeV , for Ω

(SM)
χ ≤ ΩDM , (16)

should be held. The above shows no limit on the first sce-
nario in the decoupling limit. The second case requires
the DM to be rather heavy. When including collider con-
straints, we find that

mχ & 1.2 TeV off the H resonance, (17)

should be maintained in order to avoid an overabundance
of dark matter.

The annihilation via the heavy scalar resonance, mχ '
mH/2, plays an important role when requiring Ω

(SM)
χ ≤

ΩDM. One finds,

bon
W + bon

Z ∼ 9
2048π

m4
H

v4Γ2
H
r2
f (rf − sα)

2

' 1.5× 10−36
( rf

0.1

)2 ( rf−sα
0.1

)2 (
mH

1 TeV

)2 ( 0.1
γ

)2

cm2 ,

(18)
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where γ ≡ ΓH/mH . However, close to the pole and when
γ � 1, one cannot expand the cross-section in small ve-
locity [29]. For all relic abundance calculations, we take
the full, thermally averaged cross-section. The resonant
annihilation can allow for sufficient depletion of the DM
abundance in the early Universe. When annihilating on
resonance, the bound (17) does not hold, and we find
no lower bound on the DM mass from thermal freezeout.
The resonant region is clearly seen in Fig. 2, which shows
our numerical results in the mχ−mH plane. The numer-
ical calculation of the relic abundance is performed using
MadDM [30] with MadGraph5 [31].

A comment is in order regarding possible enhance-
ment of the annihilation processes. Ladder diagrams
with h or H exchange might lead to a large Sommer-
feld enhancement of the different annihilation cross sec-
tions [32–34]. However, in the mass region we consider
here (below 4 TeV) these do not affect our conclusions.
The enhancement can be significantly stronger for higher
masses regime and influence both the relic abundance
and indirect constraints. More details can be found in
Appendix C.

2. Direct Detection

Ongoing direct detection experiments are currently
probing the Higgs-mediated elastic scattering of DM off
nuclei. In the scenario at hand, the elastic scattering is
mediated both by the light and the heavy scalars, allow-
ing for the existing and upcoming experiments to provide
a non-trivial test of the mixed Higgs-dilaton scenario.
Under our assumptions, the effective interactions [35]

Leff
φnn = −mn

f
σn̄n− cn

mn

v
φSMn̄n , (19)

mediate the DM-nucleon (n) spin-independent scatter-
ing, with cn ' 0.3 [36]. (See also [37].) The scattering
cross section is given by

σχn→χn '
1

π

m2
nm

2
χ

v4
µ2
nr

2
f ×[

sα (cncα + rfsα)

m2
h

− cα (cnsα − rfcα)

m2
H

]2

' 1.4× 10−45 cm2
( mχ

1 TeV

)2 ( rf
0.1

)2

×[( sα
0.1

)
+ 0.05

(
1 TeV

mH

)2 ( rf
0.1

)]2

, (20)

where µn = mχmn/(mχ + mn) is the nucleon-DM re-
duced mass. The last approximation is made in the de-
coupling limit.

To date, the strongest constraints arise from the null
results reported by the LUX experiment [38]. Denot-
ing the mass-dependent experimental upper limit on the

101 102 103
10-49

10-48

10-47

10-46

10-45

10-44

10-43

m� [GeV]

� S
I
[c
m
2 ]

LUX

Xenon 1T

LZ

FIG. 3: The allowed region in mχ−σχn→χn plane for Ω
(SM)
χ >

ΩDM (blue) and Ω
(SM)
χ < ΩDM (gray), taking into account the

collider constraints. For each scenario, we show the maximum
scattering cross-section for the general case (upper line, solid)
and for sα = 0 (lower line, dotted). The current LUX bound
(dashed black) and future Xenon 1T (dashed red) and LZ
(dashed blue) bounds are also shown.

cross-section by σLUX
n , one has,

Ω
(SM)
χ

ΩDM
σχn→χn ≤ σLUX

n , (21)

where Ω
(SM)
χ = ΩDM for scenario (i) while it may be

smaller in scenario (ii). As can be seen in Fig. 3, in both
cases current sensitivity adds no additional constraint to
the corresponding parameter space. Upcoming experi-
ments, however, such as Xenon1T [39] and LZ [40] are
expected to probe these models in the near future. We
show these future limits, using the expected sensitivities
discussed in [41].

3. Indirect Detection

We now discuss the constraints arising from the vari-
ous searches for indirect signals of DM. Local χ annihila-
tions into the visible sector can be detected by gamma-
ray telescopes, in particular, by the Fermi-LAT [42] and
the H.E.S.S [43, 44] experiments. However, we find that
for v ' 10−3 the total annihilation cross section is always
smaller than 10−30 cm3/sec for mχ ≤ 4 TeV, implying
no constraints from these searches. The presence of the
Sommerfeld enhancement does not alter this conclusion.
However, the Sommerfeld enhancement does significantly
increase the annihilation rate for heavier dark matter, not
shown here.

Additional constraints, derived from the CMB power
spectrum [27, 45], may arise from the change in the ion-
ization history due to χ annihilations in the early Uni-
verse. We find, however, that no additional bounds are
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imposed due to the velocity-suppressed annihilation rate
and the small DM velocities at the reionization epoch.
For DM lighter than 4 TeV, indirect detection experi-
ments give weak constraints and do not affect the model
parameter space allowed by other experimental bounds.
These conclusions are expected to change significantly for
heavier dark matter.

IV. 4. RESULTS AND DISCUSSION

We analyze the Higgs-dilaton scenario as a portal be-
tween dark matter and the visible sector. Various experi-
mental results, arising from both collider studies and DM
searches, bound the model parameter space and affect its
predictions for future DM searches. Let us summarize
out main findings. Fig. 1 shows the various collider con-
straints in the sα−rΛ plane, for mH = 200, 600, 900 GeV
and mχ = 300 GeV. These are obtained at the 95% C.L.
using a simple χ2 minimization of the LHC Higgs rates,
EWPM and the direct H searches. As discussed pre-
viously, while the Higgs rate observables are insensitive
to the CFT breaking scale in the alignment limit, the
oblique parameters might still deviate from their SM pre-
diction. When combined together, the collider bounds
are satisfied for rf ≤ 0.24, for all values of mH . The best
fit point lies in the extreme decoupling limit, sα, rΛ = 0
(for mH = 1 TeV).

The bounds from collider studies are combined with
the requirement that the χ annihilations to the SM sector

are sufficient to ensure no overclosure, Ω
(SM)
χ h2 ≤ 0.12.

Fig. 2 shows the viable mass range for the DM particle
and the heavy scalar, in this case. We find that mH ≥
900 GeV and mχ ≥ 1.2 TeV should be realized, unless
the DM annihilates via the heavy Higgs resonance. In
the latter case, it is likely that the DM mass scale is
related to the explicit breaking of the CFT. We note that
these conclusions hold both in the alignment limit and for
sα 6= 0.

Opposite to the collider constraints, a lower bound on

rΛ arises when considering Ω
(SM)
χ h2 ≤ 0.12. This bound,

drawn in the mχ−mH plane, can be seen in the contours
of Fig. 2, which show the minimal values of rΛ needed
to avoid an overabundance of DM particles. Away from
the alignment limit, future Higgs precision measurements
will be sensitive to much of the unconstrained parameter
space. Finally, if one allows for other unknown annihi-
lation modes for χ, that deplete the relic abundance, we
find no restrictions for mχ and mH .

Our predictions for the coherent DM scattering off
nuclei, probed in direct detection searches, are presented
in Fig. 3, along with the current LUX bound and future
prospect of Xenon 1T and LZ sensitivities [41]. As
can be seen, the Higgs-Dilaton scenario evades current
direct-detection searches, but future experiments may
allow for the discovery of DM.

Note added: During the preparation of this work

we became aware of Ref. [12] which considers a similar
scenario.
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Appendix A: A. Scalar trilinear couplings

To compute the trilinear coupling, we start from the
following Lagrangian:

Lφ3 = −1

6
λSMφ

3
SM −

1

6
λσσ

3 − m2
SM

f
σφ2

SM , (A1)

where λSM = 3m2
SM/v and λσ = ξm2

σ/f . ξ is a model
dependent parameter expected to be order unity [9]. Ro-
tating to the physical states

λhhh =

(
M2

1

v

)
3c2α (cα + sαrf ) +

(
M2

2

v

)
ξs3
αrf ,

λHHH =

(
M2

1

v

)
3s2
α (−sα + cαrf ) +

(
M2

2

v

)
ξc3αrf ,

λHhh =

(
M2

1

v

)
cα
(
c2αrf − 3cαsα − 2s2

αrf
)

+

(
M2

2

v

)
ξcαs

2
αrf ,

λHHh =

(
M2

1

v

)
sα
(
−2c2αrf + 3cαsα + s2

αrf
)

+

(
M2

2

v

)
ξsαc

2
αrf , (A2)

with

M2
1 ≡ m2

hc
2
α +m2

Hs
2
α , M2

2 ≡ m2
hs

2
α +m2

Hc
2
α .(A3)

For our numerical results we use ξ = 5, and verify that
our final results change only little for other choices of this
parameter. We note that derivative interactions of the
dilaton field contribute to the dilaton trilinear coupling,
introducing order one contributions to ξ.

Appendix B: B. DM annihilation processes

DM annihilation cross section are mediated by the light
and heavy scalars. For all of these processes we find
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a = 0, and the following p-wave coefficients:

bf =
Nf
8π

m4
χm

2
f

v4
β3
f

∣∣∣∣∣chχchfP 2
h

+
cHχ c

H
f

P 2
H

∣∣∣∣∣
2

, (B1)

bV =
gV
64π

m2
χm

4
V

v4

2 +

(
1− 2

2m2
χ

m2
V

)2
2

βV ×

∣∣∣∣∣chχchVP 2
h

+
cHχ c

H
V

P 2
H

∣∣∣∣∣
2

,

(B2)

with,

βX =

√
1−

m2
X

m2
χ

, (B3)

P 2
φ = 4m2

χ −m2
φ + iΓφmφ , (B4)

gW = 1 and gZ = 1/8. As for the scalar modes, the
annihilation processes are mediated via a t, a u and two
s channels. In the limit sα = 0 these obey:

bh =
r4
Λ

128π

m4
hm

2
χ

v4

1

|P 2
H |

2 βh ,

bH =
25r4

Λ

128π

m4
Hm

2
χ

v4

1

|P 2
H |

2 βH . (B5)

Appendix C: C. Sommerfeld Enhancement

The ladder scalar exchange diagrams can largely en-
hance the DM annihilation cross section, via the Som-
merfeld enhancement [32]. For each scalar, there is an
induced Yukawa potential given by V = −αir e

−mφir [32–
34] where

αi =
(mχ

v

)2
(
ciχ
)2

4π
. (C1)

The enhancement depends on two variables

εv ≡
v

α
and εφ ≡

mφ

αmχ
(C2)

and is significant when εv, εφ < 1. Schematically, this
corresponds to requiring that the DM not escape the
Yukawa potential well while the Yukawa range is long
enough to contain the dark-matter. Since the dilaton
coupling scales with mχ, the Sommerfeld enhancement
becomes significant for heavy dark matter. In the pa-
rameter space we consider here, the enhancement can be
as large as 102 for the p-wave annihilation.
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