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In technicolor theories using an SU(NTC) gauge group, the value of NTC is not, a priori, de-
termined and is typically chosen by phenomenological criteria. Here we present a novel way to
determine NTC from the embedding of a one-family technicolor model, with fermions in the fun-
damental represention of SU(NTC), in an extended technicolor theory, and use it to deduce that
NTC = 4 in this framework.
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The possibility that electroweak symmetry breaking
(EWSB) may occur dynamically, as in technicolor (TC)
theories [1] remains, although the Higgs-like scalar bo-
son discovered at the Large Hadron Collider (LHC) with
mass mH ≃ 125 GeV [2, 3] is consistent with being the
Standard Model (SM) Higgs. A TC theory features an
asymptotically free, vectorial TC gauge symmetry and a
set of massless TC-nonsinglet, SM-nonsinglet fermions,
{F}. The TC theory becomes strongly coupled at the
TeV scale, confining and producing technifermion con-
densates 〈F̄F 〉, with associated spontaneous chiral sym-
metry breaking (SχSB) and dynamical EWSB. Three of
the resultant Nambu-Goldstone bosons (NGBs) are ab-
sorbed to give masses to the W± and Z. To give masses
to SM fermions, one embeds the TC theory in a larger,
extended technicolor (ETC) theory [4]. Reasonably ul-
traviolet (UV)-complete ETC theories have been con-
structed as asymptotically free chiral gauge theories that
self-break [5] in stages down to the (vectorial) TC sub-
sector, yielding the generational hierarchy of SM fermion
masses, including light neutrino masses [6]-[8].

Viable TC theories exhibit a squared gauge coupling
αTC(µ) = gTC(µ)

2/(4π) that grows to O(1), but runs
very slowly (walks) over a substantial interval of Eu-
clidean momenta µ and an associated large anomalous
dimension γm ∼ O(1) for the bilinear technifermion op-
erator [9]-[10]. These properties of a walking TC (WTC)
theory follow naturally if the theory has an approximate
infrared (IR) zero in the TC beta function βTC at a value
αIR that is slightly larger than the critical minimal value,
αcr,F̄F , for the formation of the 〈F̄F 〉 condensates [11]-
[12]. Since αcr,F̄F ∼ O(1), it is useful to calculate βTC

and αIR to higher-loop order [13]. Indeed, lattice stud-
ies have shown that walking behavior can occur nonper-
turbatively even if the perturbative beta function does
not exhibit an IR zero [14, 15]. These 〈F̄F 〉 conden-
sates spontaneously break the approximate scale invari-
ance of the TC theory, giving rise to a light pseudo-NGB
(PNGB), the technidilaton (TD), φ [9, 16, 17]. Using
holographic methods, it has been shown that WTC the-
ories may yield a light TD [18, 19]. These holographic

studies extend earlier analyses using Schwinger-Dyson
and Bethe-Salpeter equations [20]. Recent lattice studies
of (vectorial) SU(3) gauge theories with Nf = 8 Dirac
fermions (which is the value of Nf in the one-family TC
(1FTC) model discussed here) have observed walking be-
havior and a light composite TD-like scalar [14, 21] (see
also [22, 23]). The technidilaton in a WTC theory ap-
pears to be consistent, to within theoretical and experi-
mental uncertainties, with currently measured properties
of the Higgs-like scalar discovered at the LHC [18, 19],
[24]-[27] (although these properties are also consistent
with the SM Higgs). Future data from the LHC will
constrain the TC/TD scenario for the Higgs-like scalar
further.

In addition to the requirement that the composite TD-
like scalar in technicolor must be consistent with the ob-
served Higgs-like scalar, TC/ETC theories are also sub-
ject to a number of phenomenological constraints, includ-
ing those from precision electroweak data [28], limits on
flavor-changing neutral current (FCNC) processes, etc.
Both continuum (e.g., [18, 29, 30]) and lattice studies
[15],[21]-[23] have shown that TC corrections to the W
and Z propagators (in particular, the S parameter [28])
can be substantially reduced in a theory with walking
and, moreover, via ETC effects [30]. Further, explicit
calculations in a reasonably UV-complete ETC theory
showed that residual approximate generational symme-
tries suppress FCNC processes [8].

The simplest embedding of the TC theory in ETC is
obtained if one takes the technifermions to comprise one
SM family [31], since in this case the ETC gauge bosons
are SM-singlets and [GETC , GSM ] = ∅. A common choice
for the TC gauge group is SU(NTC). Further, the sim-
plest models in this class of TC/ETC theories have tech-
nifermions transforming according to the fundamental
representation, , of the SU(NTC) TC gauge group, since
in this case one just extends the TC gauge indices on var-
ious fields to be ETC gauge indices (see Eq. (2)). There-
fore, we shall consider here a 1FTC model with TC gauge
group SU(NTC) and technifermions in the fundamental
representation. (We do not consider topcolor or higher-
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dimensional TC fermion representations.) The value of
NTC is typically determined by phenomenological crite-
ria, such as minimizing technifermion loop corrections to
the W and Z propagators or fitting the properties of the
Higgs-like scalar.
Here we determine NTC from the embedding of a

1FTC theory, with technifermnions in the fundamental
representation of SU(NTC), in a specific ETC theory. We
find NTC = 4 in this framework, which agrees with the
value preferred by the fit to the Higgs-like scalar in this
type of theory [18, 24]. In addition to its phenomenologi-
cal application, this provides a novel example of how the
structure of a low-energy effective field theory is deter-
mined by its ultraviolet completion [32].
The natural embedding of the TC theory in ETC is

SU(NTC) ⊂ SU(NETC) . (1)

The ETC theory gauges the SM generation index and
combines it with the TC gauge index in such a way that
each generational multiplet of SM fermions of a given
type is combined with the 1FTC fermions with the same
SM quantum numbers into a fundamental representation
of SU(NETC). Hence, with Ngen. denoting the number
of SM fermion generations,

NETC = Ngen. +NTC . (2)

This determines NETC in terms of the known Ngen. =
3 and a given value of NTC based on the embedding
(1). This procedure was used with the minimal value,
NTC = 2, to construct SU(5) ETC theories in [6–8]. In
[6–8], given the value NTC = 2, the fermion content of
the ultraviolet completion was chosen to yield the known
Ngen. = 3 [33].
We proceed to show how the embedding (1) of a 1FTC

model, with technifermions in the fundamental represen-
tation of the TC gauge group, in a specific ETC theory
with Eq. (2) determines that NTC = 4. The key to
our result is the specification of the fermion content of
the ETC theory and the use of the requirement that the
ETC theory must be free of chiral gauge anomalies. In-
terestingly, our result is independent of Ngen. (where it
is implicitly understood that Ngen. is small enough so
that SU(3)c and SU(NETC) are asymptotically free.) To
make this manifest, we will keep Ngen. general in our
derivation.
The gauge group at the ETC scale is SU(NETC) ⊗

GSM , where GSM = SU(3)c⊗SU(2)L⊗U(1)Y is the SM
gauge group, with Qem = T3L + (Y/2). The fermion
content of the ETC theory is composed of two sec-
tors, namely SM-nonsinglets and SM-singlets. The SM-
nonsinglet sector is determined by our 1FTC theory and
the embedding (1) with (2). The fields are indicated be-
low in Young tableaux notation, where a is a color SU(3)c
index, i = 1, ..., NETC is the ETC index, and the repre-
sentation is R = (RETC , Rc, RI)Y , with I and Y the
weak isospin and hypercharge:

Qai
L =

(

uai

dai

)

L

: ( , , )1/3 (3)

uaiR : ( , , 1)4/3 , daiR : ( , , 1)−2/3 (4)

Li
L =

(

νi

ℓi

)

L

: ( , 1, )−1 (5)

νiR : ( , 1, 1)0 , ℓiR : ( , 1, 1)−2 . (6)

The indices i = 1, ..., Ngen. are SM generation indices
and Ngen.+1 ≤ i ≤ NETC are TC indices; the a = 1, 2, 3
are color SU(3)c indices. Thus, for example, ua1 ≡ ua,
ua2 ≡ ca, ua3 ≡ ta for the charge 2/3 quarks, and so
forth for the other SM fermions.
The minimal set of SM-singlet, ETC-nonsinglet

fermions (written as right-handed) is as follows:

ψij
R = ψ

[ij]
R : ( , 1, 1)0 (7)

and

χi,s,R : ( , 1, 1)0 , 1 ≤ s ≤ NETC − 4 . (8)

where s labels each of the NETC − 4 copies (flavors) of
χi,s,R. We denote the contribution of a chiral fermion
of representation R of SU(N) to the triangle anomaly as
Anom(R). Since

Anom( ) = (N − 4)Anom( ) , (9)

our ETC theory is anomaly-free. One can also add a
vectorlike SM-singlet, ETC-nonsinglet fermion subsector;
here we restrict ourselves to the minimal version of the
model.
For a given gauge groupG, we denote the beta function

βG = dαG/d lnµ = −2αG

∑∞

ℓ=1 b
(G)
ℓ (αG/(4π))

ℓ. The
ETC theory is asymptotically free, with one-loop beta
function coefficient

b
SU(NETC)
1 =

1

3
(9NETC − 10) , (10)

so as the scale µ decreases from the UV toward the IR, the
ETC squared coupling αETC(µ) grows. As µ decreases
through a scale that we denote Λ1, αETC(µ) increases
through the minimal critical value for the formation of a
bilinear fermion condensate. Using a vacuum alignment
argument [34], we infer that this forms in the channel

× → , (11)

breaking SU(NETC) to SU(NETC − 1). The associated
condensate is

〈
NETC
∑

j=2

ψ1j T
R C χj,1,R〉 , (12)

where C is the Dirac charge-conjugation matrix, and, by
convention, we have taken the ETC gauge index i = 1 in
ψij
R and the copy index s = 1 in χj,s,R. The fermions ψ1j

R
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and χj,1,R with 2 ≤ j ≤ NETC involved in this conden-
sate gain dynamical masses of order Λ1 and are integrated
out of the low-energy effective theory (LEET) applica-
ble at scales µ < Λ1. Of the fermions in Eqs. (7) and
(8), the remaining nonsinglet ones in this SU(NETC − 1)

LEET are ψ2j
R with 3 ≤ j ≤ NETC ; and χj,s,R with

2 ≤ j ≤ NETC and 2 ≤ s ≤ NETC −4. The (2NETC −1)
ETC gauge bosons in the coset SU(NETC)/SU(NETC−1)
gain masses of order gETCΛ1 ≃ Λ1. Diagrams involving
exchanges of these massive ETC vector bosons connect-
ing SM fermions with technifermions produce masses for
the first generation (i = 1) of SM fermions [35].
This SU(NETC−1) theory is again asymptotically free

(with b
SU(NETC−1)
1 = (1/3)(9NETC − 19)) so the gauge

coupling (inherited at Λ1 from the SU(NETC) theory)
grows, and we infer that at a somewhat lower scale, Λ2,
there is again condensation in the channel (11), break-
ing SU(NETC − 1) to SU(NETC − 2). The associated
condensate is

〈
NETC
∑

j=3

ψ2j T
R Cχj,2,R〉, (13)

where, by convention, we have taken the gauge index
i = 2 in ψij

R and the copy index s = 2 in χj,s,R. The

fermions ψ2j
R and χj,2,R with 3 ≤ j ≤ NETC involved in

this condensate gain dynamical masses of order Λ2 and
are integrated out of the SU(NETC − 2) LEET operative
at µ < Λ2. Of the fermions in Eqs. (7) and (8), the
remaining ones that are nonsinglets in the SU(NETC−2)

LEET are ψ3j
R with 4 ≤ j ≤ NETC ; and χj,s,R with 3 ≤

j ≤ NETC and 3 ≤ s ≤ NETC−4. The (2NETC−3) ETC
gauge bosons in the coset SU(NETC − 1)/SU(NETC − 2)
gain masses of order Λ2. Diagrams involving exchanges of
these massive vector bosons connecting SM fermions with
technifermions produce masses for the second generation
of SM fermions [35].
This sequential self-breaking of the SU(NETC) the-

ory continues iteratively in NETC − 4 stages, using the
NETC − 4 copies of χj,s,R fermions, so that the original
SU(NETC) (chiral) gauge symmetry is finally reduced to
the (vectorial) SU(NTC) subgroup, with the indices cor-
responding to the broken ETC symmetries being the SM
generation indices. Hence,

Ngen. = NETC − 4 . (14)

Substituting this expression for Ngen. into Eq. (2), we
obtain the result

NTC = 4 . (15)

This is our main result. We have determined NTC from
the structure of the specific ETC theory in which our
1FTC theory is embedded. A particularly intriguing as-
pect of our result is that, although Eq. (2) connects
NETC and NTC , it does so in a manner that involves
Ngen., but our result is actually independent of Ngen.,

provided that Ngen. is sufficiently small that the ETC
theory is asymptotically free and breaks in the indicated
manner, and also that SU(3)c is asymptotically free.
Very interestingly, our resulting value NTC = 4 agrees
with the value inferred from a fit to the properties of the
Higgs-like scalar in a 1FTC theory [18, 24, 32, 36].
Henceforth, we set Ngen. equal to the known value,

Ngen. = 3. Combining this with Eqs. (2) and (15),
we infer that the the ETC gauge group is SU(7)ETC .
As discussed above, this breaks in three stages to the
(vectorial) SU(4)TC group: SU(7)ETC → SU(6)ETC →
SU(5)ETC → SU(4)TC . The theory naturally accounts
for the mass hierarchy in the SM fermion generations,
since the SM fermion masses in the i’th generation result
from exchange of ETC vector bosons with mass Λi and,
in the ETC boson propagators, Λ−2

1 ≪ Λ−2
2 ≪ Λ−2

3 .
The fermion content in the SU(4)TC theory consists of

the SM-nonsinglet fermions in Eqs. (3)-(6) and the SM-
singlet fermions in Eqs. (7)- (8) with 4 ≤ i, j ≤ 7. This

TC beta is again asymptotically free (with b
(TC)
1 = 26/3).

Hence, the TC coupling αTC(µ) inherited from the lowest
ETC theory, SU(5)ETC at Λ3, continues to grow as µ
decreases below Λ3 [37].
For a fermion condensation channel (Ch) R1 × R2 →

RCh, a measure of the attractiveness is (∆C2)Ch =
C2(R1)+C2(R2)−C2(RCh), where C2(R) is the quadratic
Casimir invariant [5]. A rough estimate of αcr,Ch is

αcr,Ch ≃ 2π/[3(∆C2)Ch]. The field is self-conjugate
in SU(4)TC and, at a scale ΛAA (where A denotes the

antisymmetric rank-2 tensor, ) forms a condensate in

the most attractive channel × → 1, of the form

〈
∑7

i,j,k,ℓ=4 ǫijkℓψ
ij T
R Cψkℓ

R 〉, with (∆C2)AA = 2C2( ) =

5. This is invariant under both SU(4)TC and GSM . The
next most attractive channel is × → 1 in TC, with
(∆C2)F̄F = 15/4, forming at the scale ΛF̄F and involv-
ing the condensates 〈F̄F 〉 = 〈F̄LFR〉+ 〈F̄RFL〉 with the
F technifermions in (3)-(6). The 〈F̄ F 〉 condensates pro-
duce EWSB. One has the rough estimate

ΛAA

ΛF̄F

≃ exp

[

2π

b
(TC)
1

(α−1
cr,AA − α−1

cr,F̄F
)

]

. (16)

This yields ΛAA/ΛF̄F ≃ 1.5. In general, a TD-like scalar
in this theory contains F̄F , AA, a techni-glueball com-
ponent, etc.; the F̄F component plausibly dominates be-
cause of the ΛAA/ΛF̄F ratio and the walking behavior,
which implies that the TD mass is ≪ mTC,had, where
mTC,had denotes the mass scale of techni-vector mesons
and techni-glueballs.
Neglecting ETC and SM gauge interactions, the 1FTC

theory has a (non-anomalous) global flavor symmetry in-
volving SM-nonsinglet fermions, SU(8)FL

⊗ SU(8)FR
⊗

U(1)V . This is broken to SU(8)V ⊗ U(1)V by the 〈F̄F 〉
condensate. In addition to the three NGBs absorbed by
the W± and Z, this yields 60 PNGBs. Taking account
of walking and the strong ETC interactions, it appears
possible that their masses could be >∼ O(1) TeV, above
current LHC limits [38].
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Although 1FTC with NTC = 4 has a large perturba-
tive value of S, viz., Spert. = 8/(3π), it is well-known that
the perturbative estimate of S is not reliable because TC
is strongly coupled at the scale of mW and mZ . Here,
motivated by the results of [18, 29, 30], we will assume
that the walking and ETC effects can suppress S suffi-
ciently to obey experimental constraints. Ongoing and
future lattice calculations will further test this assump-
tion. A constraint on TC/ETC models is that the spec-
trum of technihadrons must be consistent with current
limits from the LHC. We have already commented on
the PNGBs. It also appears to be possible that the 1FTC
techni-vector meson masses may lie above the LHC limits
of a few TeV [39]. Additional ingredients are needed to
fully explain the spectrum of quark and lepton masses,
in particular, t-b mass splitting.
In summary, we have presented a novel way to deter-

mine NTC from the embedding of a one-family SU(NTC)
technicolor theory having technifermions in the funda-
mental representation, in a particular SU(NETC) ex-

tended technicolor theory, with the SM fermions com-
bined with technifermions into fundamental representa-
tions of SU(NETC) as specified in Eqs. (3)-(6) and have
shown that this yields the value NTC = 4. This value is
the same as one inferred from a fit to the 125 GeV scalar
boson in TC [18, 24]. Our result motivates lattice studies
of SU(4) gauge theory with Nf = 8 Dirac fermions. Fu-
ture LHC data will yield stringent tests of this model. In
addition to this phenomenological application, our result
is of general interest for the insight that it provides on
how the structure of a low-energy effective field theory -
here the TC theory - is determined by its embedding in
an ultraviolet completion, the ETC theory.
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