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We consider “double-winding” Wilson loops in SU(2) gauge theory. These are contours which wind once

around a loop C1 and once around a loop C2, where the two co-planar loops share one point in common, and

where C1 lies entirely in (or is displaced slightly from) the minimal area of C2. We discuss the expectation value

of such double-winding loops in abelian confinement pictures, where the spatial distribution of confining abelian

fields is controlled by either a monopole Coulomb gas, a caloron ensemble, or a dual abelian Higgs model, and

argue that in such models an exponential falloff in the sum of areas A1 +A2 is expected. In contrast, in a center

vortex model of confinement, the behavior is an exponential falloff in the difference of areas A2 − A1. We

compute such double-winding loops by lattice Monte Carlo simulation, and find that the area law falloff follows

a difference-in-areas law. The conclusion is that even if confining gluonic field fluctuations are, in some gauge,

mainly abelian in character, the spatial distribution of those abelian fields cannot be the distribution predicted

by the simple monopole gas, caloron ensemble, or dual abelian Higgs actions, which have been used in the past

to explain the area law falloff of Wilson loops.

I. INTRODUCTION

Magnetic monopole confinement mechanisms, in either

the monopole plasma [1, 2] or (closely related) dual super-

conductor incarnations [3, 4], provide a durable image of

the mechanism underlying quark confinement in non-abelian

gauge theories. The more recent notion that long-range field

fluctuations in QCD are dominated by caloron gas ensem-

bles [5], [6], fits nicely into the framework of the earlier

monopole plasma conjectures. In view of the ongoing inter-

est in monopole/caloron confinement mechanisms [7–11], it

is reasonable to examine those conjectured mechanisms crit-

ically, at least as they pertain to pure SU(N) gauge theories

defined in either three or four Euclidean dimensions, with no

“small” dimension imposed by compactification [12].

The mechanisms we are discussing have this point in com-

mon: there is some choice of gauge in which the large scale

quantum fluctuations responsible for disordering Wilson loops

are essentially abelian, and are found primarily in the gauge

fields associated with the Cartan subalgebra of the gauge

group. In a caloron ensemble, for example, while the dyon

cores may be essentially non-abelian, there exists a gauge

in which the long range field which diverges from the dyon

cores, and which is responsible for confinement in this picture,

lies entirely in the Cartan subalgebra. For the SU(2) gauge

group, which is sufficient for our purposes, let this abelian

field be the A3
µ color component. Then if all we are inter-

ested in is the area law falloff and corresponding string ten-

sion extracted from large Wilson loops, and not in perimeter

law or short-range contributions from small Wilson loops, we

can make the “abelian dominance” approximation
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where f 3
µν is the corresponding abelian field strength. Now an

expectation value is the average of an observable over a very

large number of samples drawn from some probability distri-

bution. So the expectation value of the abelian Wilson loop is

the average taken over a very large number of sample abelian

configurations A3
µ(x) (or corresponding field strengths) drawn

from some probability distribution P[A3
µ(x)] (or P[ f 3

µν(x)]).
The question we are concerned with is: what do typical con-

figurations drawn from the abelian field distribution look like?

Do they resemble what is predicted by monopole plasma,

caloron gas, and dual superconductor models?

To be clear, we do not challenge the notion that, in some

gauge, most of the confining fluctuations are abelian in char-

acter. This certainly appears to be true in, e.g., maximal

abelian gauge, which forces most of the A-field into the Car-

tan subalgebra. Nor will we venture an opinion on whether

calorons, say, are somehow important to vacuum structure

at near-zero temperature. Our study has a more specific fo-

cus: assuming that the long range fluctuations which disorder

large Wilson loops are mainly abelian in some gauge, which

is an assumption common to monopole, caloron, and dual su-

perconductor pictures of confinement, how are those abelian
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fluctuations distributed in typical vacuum configurations? Ar-

guments in favor of these monopole-related pictures derive a

finite string tension using models which predict a specific spa-

tial distribution of the confining abelian field. The purpose of

this article is to subject a qualitative feature of those predicted

distributions to a numerical test, using an observable to be de-

scribed below.

Let us first illustrate how the probability distribution

P[A3
µ(x)] can be formally defined, using maximal abelian

gauge on the lattice as an example. In this gauge we decom-

pose link variables Uµ into an abelian (or “diagonal”) part uµ ,

defined by

Uµ(x) = a01+ iaaa ·σσσ

uµ(x) =
1√

a2
0 + a2

3

[
a01+ ia3σ3

]

=

[
eiθµ (x) 0

0 e−iθµ (x)

]
, (2)

and an “off-diagonal” part Cµ , where

Uµ(x) =Cµuµ(x)

=




(
1−|cµ(x)|

2
)1/2

cµ(x)

−c∗µ(x)
(

1−|cµ(x)|
2
)1/2




×

[
eiθµ (x) 0

0 e−iθµ (x)

]
. (3)

Then the probability distribution for the abelian (or “photon”)

field is obtained by integrating out the off-diagonal (or “W”)

fields, which are charged under the remaining U(1) symmetry:

P[uµ(x)] =
1

Z

∫
DCµ DcDcexp[−(SW + Sg f )] , (4)

where SW is the Wilson action, Sg f are the gauge-fixing terms

relevant to maximal abelian gauge, and c,c are the ghost

fields. A restriction to the first Gribov region is understood.

Monte Carlo simulations in maximal abelian gauge, followed

by an abelian projection Uµ → uµ , are drawing the abelian

configurations uµ from precisely the above probability dis-

tribution. It should emphasized that the W-bosons are gone.

Whatever contribution they make to the probability distribu-

tion of the abelian fields is fully taken into account in (4), and

they have no further role to play when computing observables,

such as abelian-projected Wilson loops, that depend only on

uµ(x).
In monopole/dyon gas and dual superconductor theories,

the probability function is supplied indirectly for the abelian

field strengths f 3
µν . The idea is that the abelian field strengths

are functions of some other set of variables {v}, such as

monopole/dyon moduli or dual gauge fields, and a probability

distribution P[{v}] is supplied. Then typical abelian vacuum

fluctuations are obtained by drawing {v} from the given prob-

ability distribution, and computing f 3
µν from that.

In section II we will review in more detail what monopole

gas, dyon ensemble, and dual superconductor models have to

say about the distribution of abelian fields in the vacuum. We

will then, in section III, introduce a gauge-invariant observ-

able, called the “double-winding” Wilson loop, and argue that

this observable has a qualitatively different behavior accord-

ing the monopole/dyon/dual-superconductor distributions, as

compared to the predictions of the center vortex theory of con-

finement. The actual behavior of this observable can be deter-

mined by lattice Monte Carlo simulations, which we report

in section IV. The effects of W-bosons are discussed in sec-

tion V. Some of the arguments presented below are actually

quite old, but we feel that those arguments are clarified and

strengthened by consideration of the gauge-invariant double-

winding Wilson loop operators, and their numerical evalua-

tion. We conclude in section VI.

II. ABELIAN FIELDS AND ABELIAN MODELS

We consider several specific proposals for abelian field dis-

tributions.

A. Monopole plasma in D = 3 Euclidean dimensions

The classic example is Polyakov’s demonstration [1] that

compact QED in D = 3 dimensions can be reformulated as a

monopole Coulomb gas on the lattice:

Zmon =
∞

∑
N=0

ξ N

N!
∑
{rn}

∑
{mn=±1}

exp

[
−

2π2

g2a
∑
i6= j

mim jD(ri − r j)

]
,

(5)

where a is the lattice spacing, D(r) is the inverse of the lattice

Laplacian in a subspace orthogonal to the zero modes, and

ξ = exp

[
−

2π2

g2a
D(0)

]
(6)

is the fugacity, with D(0) ≈ 0.253 in lattice units. The num-

ber of monopoles together with their positions and charges

constitute the variables {v} from which the field strength is

determined and, in continuum notation,

fi j = εi jk

1

2

∫
d3r′

(r− r′)k

|r− r′|3
ρ(r′) , (7)

where

ρ(r) =
N

∑
i=1

miδ (r− ri) . (8)

This distribution of abelian field strength results in an area law

for Wilson loops. Essentially the same result is derived in the

continuum, for the D = 3 dimensional Georgi-Glashow model

[2], where an adjoint Higgs field is used to define the abelian

field strength tensor.
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B. Monopole plasma in D = 4 Euclidean dimensions

A straightforward generalization of the monopole plasma to

D = 4 dimensions was put forward by Smit and van der Sijs

[13]. Here the relevant variables {v} are the divergenceless

integer-valued monopole currents kµ(n) which exist on links

of the dual lattice, and the partition function is

Z = (∏
s,µ

∞

∑
kµ (s)=−∞

)(∏
s

δ∂ ′
µ kµ (s),0)exp(−S[k]) , (9)

where

S[k] = ∑
s

m0kµ(s)kµ(s)+
1

2

4π2

g2 ∑
s,s′

kµ(s)D(s− s′)kµ(s
′) .

(10)

Again D(s− s′) is the inverse of the lattice Laplacian (−∇2
L)

on a space orthogonal to the zero modes, and m0 is a monopole

mass. Shiba and Suzuki [14] have made an effort to show

that this form of monopole action describes the distribution of

monopole currents found in abelian-projected configurations

in maximal abelian gauge. The abelian field strength at a pla-

quette, due to the monopole currents, is [13]

fµν (x) = 2πεµναβ ∂ ′
α ∑

y

D(x− y)kβ (y) , (11)

where ∂ ′
α denotes the backward lattice derivative ∂/∂xα .

We are not aware of an analytical result, along the lines of

Polyakov’s discussion in D = 3 dimensions, which demon-

strates an area law starting from this monopole action. In-

stead one can point to the fact that this monopole action can

be derived [13] from compact QED4. The phase in which

monopole currents percolate, at sufficiently large g2, corre-

sponds to the strong-coupling phase of QED4, and Wilson

loops in that phase certainly follow an area law.

C. Dyon Ensemble

In a remarkable paper, Diakonov and Petrov [5] de-

rived analytically a confining quark-antiquark potential from

Polyakov line correlators, and an area law for spacelike Wil-

son loops, from dyon-antidyon configurations in D = 4 di-

mensions, and showed that the string tension was the same in

the two cases. These dyon configurations should dominate the

vacuum at large scales if confinement can be traced to KvBLL

(Kraan and van Baal [15], Lee and Lu [16]) calorons with

maximally non-trivial holonomy (hereafter just “calorons”).

The statistical weight of each dyon configuration is given by

a certain determinant whose details will not concern us here.1

The abelian field strength is, in this case, controlled by vari-

ables vm(x), which appear in the partition function for the

1 Except to note in passing the critical comments in [17].

dyon ensemble. For SU(N) gauge theory this partition func-

tion has the form

Z =
∫

Dχ† Dχ DvDw exp

∫
d3x

{
T

4π

(
∂iχ

†
m∂iχm + ∂ivm∂iwm

)

+ f

[
(−4πµm + vm)

∂F

∂wm

+ χ†
m

∂ 2F

∂wm∂wn

χn

]}
, (12)

where the subscripts (m = 1, ..,N) label the dyon type. For

an explanation of the terms in this expression, see [5]. The

abelian magnetic field Bi =
1
2
εi jk f jk due to the m-th dyon type

is given by

[Bi(xxx)]m =−
T

2
∂ivm(xxx) , (13)

where T is temperature. Note that this expression for Bi does

not include Dirac strings, which have no effect on Wilson

loops, but which are important in showing that ∇ · B = 0.

Diakonov and Petrov were able to find saddlepoint solutions

of the effective action with a spacelike Wilson loop as ex-

ternal source. These solutions generalize the solitonic solu-

tion found by Polyakov for compact QED3, representing a

monopole-antimonopole sheet along the minimal surface of

the loop. The analysis provides a demonstration of the area-

law falloff of a spacelike Wilson loop in the dyon ensemble,

and an explicit calculation of the string tension in group rep-

resentations of N-ality k.

An alternate dyon ensemble, in which non-interacting

dyons are distributed with a uniform positional probability in

the volume, was advocated in [10]. Here also the dyon field

diverging from a dyon core is spherically symmetric around

the center of the dyon. This distribution does not appear to

be amenable to analytic methods, and results for Wilson loops

must be obtained numerically. For this reason, we will not

be able to draw strong conclusions about this ensemble (see,

however, remarks in section V).

D. Dual Superconductivity

In this case the variables {v} which determine the abelian

field strength f 3
µν are the dual gauge potentials Cµ(xxx), whose

distribution is controlled by a dual abelian Higgs model (an

early treatment is [18], for a review, cf. [19]), with Lagrangian

density

L =
1

4
(∂µCν − ∂νCµ)(∂µCν − ∂νCµ)+ |∂µφ − igCµφ |2

+
1

4
λ (|φ |2 − µ2)2 , (14)

and

f 3
µν = εµναβ ∂αCβ . (15)

The massive phase of this theory corresponds to the existence

of a monopole condensate.

Confinement in the dual abelian Higgs model is derived

from the existence of Abrikosov vortices in the dual the-
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FIG. 1. A double winding loop, which runs once around contour C1,

and once around the coplanar loop C2.

ory, connecting sources of opposite abelian electric (rather

than magnetic) charge. String tension is the energy of the

Abrikosov vortex per unit length. It is also worth noting that

there is a close connection between the monopole plasma,

compact QED4 and the dual abelian Higgs model in a certain

limit [13, 20, 21].

Since this article is concerned with only abelian models of

confinement, the non-abelian dual models reviewed in [22] are

outside the scope of our discussion.

III. DOUBLE-WINDING WILSON LOOPS

Wilson loops in the adjoint representation, which have zero

N-ality, do not have an asymptotic area-law falloff. The mech-

anisms summarized above comply with this behavior, since

the abelian projection of an adjoint loop contains a component

which is neutral with respect to the abelian subgroup, and this

fact is sometimes taken as evidence that the mechanisms in

section II are consistent with the dependence of string tension

on N-ality. It is therefore useful to consider a different op-

erator, which we believe is a better probe of the mechanisms

under discussion.

Let C1 and C2 be two co-planar loops, with C1 lying entirely

in the minimal area of C2, which share a point xxx in common.

Consider a Wilson loop in SU(2) gauge theory which winds

once around C1 and once, winding with the same orientation,

around C2, as indicated in Fig. 1. It will also be useful to con-

sider Wilson loop contours in which C1 lies mainly in a plane

displaced in a transverse direction from the plane of C2 by a

distance δ z comparable to a correlation length in the gauge

theory. Such a contour is indicated in Fig. 2. We will refer

to both of these cases as “double-winding” Wilson loops. In

both cases we imagine that the extension of loops C1,C2 is

much larger than a correlation length, so in the latter exam-

ple the displacement of loop C1 from the plane of C2 is small

compared to the size of the loops. Let A1,A2 be the minimal

areas of loops C1,C2 respectively. What predictions can be

made about the expectation value W (C) of a double-winding

Wilson loop, as a function of areas A1 and A2?

FIG. 2. A “shifted” double winding loop, in which contours C1 and

C2 lie in planes parallel to the x−y plane, but are displaced from one

another in the transverse direction by distance δ z, and are connected

by lines running parallel to the z-axis.

A. Sum of areas behavior

In all of the models summarized in the previous section, the

answer for the displaced loops in Fig. 2 is simply

W (C) = exp[−σ(A1 +A2)− µP] , (16)

where P is a perimeter term, equal to the sum of the lengths

of C1 and C2. The argument goes as follows. Begin with

the assumption that the large scale fluctuations are abelian in

character, so that (1) holds, and the distribution of f 3
µν is given

by any of the models discussed. Then

W (C) =
1

2

〈
TrPexp

[
i

∮

C
dxµAa

µ

σa

2

]〉

≈

〈
exp

[
i
1

2

∮

C
dxµA3

µ

]〉

=

〈
exp

[
i
1

2

∮

C1

dxµA3
µ

]
exp

[
i
1

2

∮

C2

dxµA3
µ

]〉
.

(17)

If loops C1 and C2 are sufficiently far apart, then the expecta-

tion value of the product is approximately the product of the

expectation values, i.e.

W (C)≈ 2

〈
exp

[
i
1

2

∮

C1

dxµA3
µ

]〉〈
exp

[
i
1

2

∮

C2

dxµA3
µ

]〉

≈ exp[−σ(A1 +A2)] , (18)

which we refer to as a “sum-of-areas falloff.” Physically, in

a monopole plasma, the setup can be interpreted as inserting

two independent current loops into the the plasma. Monopoles

(or monopole currents) will respond by forming a monopole-

antimonopole layer at the minimal surface of each loop. The

argument in the case of the dual superconductor is similar; we

imagine that loops C1 and C2 are rectangular and oriented par-

allel to the x− t plane, but displaced along the z-axis. In a

time slice, this setup represents a pair of positive charges, a

distance δ z apart, interacting with a pair of negative charges,

also a distance δ z apart, and two electric flux form, as seen in

Fig. 3. The energy is σ(L1 +L2), where L1,L2 are the lengths

of the two flux tubes, and this implies, from the usual rela-

tionship between Wilson loops and static potentials, a sum-

of-areas falloff for the Wilson loop.

Now, what happens as δ z → 0? We would argue that this

limit does not really change the sum-of-areas behavior. For a
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FIG. 3. A timeslice of shifted rectangular timelike loops can be inter-

preted as representing two static particles on one side, and two static

antiparticles on the other. In the dual abelian Higgs model, the pairs

of ± charges are connected by a pair of electric flux tubes.

dual abelian Higgs model with couplings corresponding to a

Type II (dual) superconductor, electric flux tubes tend to repel.

So as the two positive and two negative charges converge, we

would still expect to find two electric flux tubes separated by

roughly the vortex width, and the sum-of-areas rule does not

change qualitatively. It has also been suggested [23] that the

relevant dual abelian Higgs model is weakly Type I, near the

crossover from Type I to Type II behavior. In a Type I dual

superconductor the electric flux tubes would attract, and pre-

sumably merge. The energy per unit length of the merged flux

tubes would then be somewhat less than the sum of energies

per unit length of two flux tubes of minimal electric flux. The

double-winding Wilson loop falloff would then be a little less

than sum-of-areas, but this slight difference would not affect

our argument in any essential way.

In the case of a D = 3 monopole Coulomb gas we can be

a little more explicit, following closely the old arguments of

ref. [24]. We begin with shifted loops, both oriented parallel

to the x− y plane, with C1 at z = 0 and C2 at z = δ z. Then, by

the standard manipulations introduced by Polyakov, we have

〈W (C)〉 =
1

Zmon

∫
Dχ(r) exp

[
−

g2

4π

∫
d3r

(1

2
(∂µ(χ −ηS(C))

2

−M2 cosχ(r)
)]

, (19)

where

−∂ 2ηS(C) = 2πδ ′(z)θS2
(x,y)+ 2πδ ′(z− δ z)θS1

(x,y) , (20)

and θS1(2)
(x,y) = 1 if x,y lie in the minimal area of C1 (C2),

and is zero otherwise. Assuming δ z ≫ 1/M, an approximate

saddlepoint solution is the superposition

χ = signz ·4arctan(e−M |z|)θS2
(x,y)

+sign(z− δ z) ·4arctan(e−M |z−δ z|)θS1
(x,y) . (21)

As δ z → 0 we may still choose the surfaces S1,S2 to be dis-

placed from one another in the z-direction, except near the

loop boundaries. If we take this displacement to be d ≫ 1/M,

then (21) with δ z→ d is still an approximate solution for large

loops, where the areas of S1,S2 are still nearly minimal, and

nearly parallel to the x− y plane. In either case we have two

monopole-antimonopole sheets where the x,y coordinates of

S1,S2 coincide, and one sheet where x,y lies in S2, but not in

S1. The result is a sum-of-areas falloff for the double-winding

Wilson loop. However, at δ z = 0 there is another approximate

solution, with discontinuities only on the minimal areas of C1

and C2, that was found in [24]. For x,y ∈ the minimal area of

C1, and d ≫ 1/M but small compared to the extension of the

loop, the solution is

χ = θ (z)4arctan(e−M(z−d))

+θ (−z)[4arctan(e−M(z+d))− 2π ] , (22)

while for x,y ∈ the minimal area between C1 and C2, the so-

lution is the standard Polyakov soliton for a single-winding

loop

χ = signz ·4arctan(e−M |z|) . (23)

In both cases x,y are far from the loop perimeters. The result

is again a sum-of-areas falloff.

For a monopole plasma in D= 4 dimensions, we can use the

fact that in the confined phase this model can be mapped into

compact QED at strong couplings [13]. It is trivial to calculate

the double-winding Wilson loop in compact QED4 at strong

lattice couplings, and the result is essentially a sum-of-areas

falloff.

The Diakonov-Petrov calculation of spacelike Wilson loops

in D = 3+ 1 dimensions is, as already mentioned, a general-

ization of the Polyakov calculation in D = 3 dimensions. As

in the Polyakov calculation, the analytical solution involves a

soliton peaked at the minimal area of the spacelike loop, and

which falls to zero in either direction transverse to the loop.

The sum-of-areas result follows fairly trivially for the shifted

double-winding loop so long as δ z is greater than the thick-

ness of this soliton.

B. Difference of areas behavior

In the center vortex picture of confinement, and also in

strong coupling lattice gauge theory, the behavior of the

double-winding loops, whether co-planar or slightly shifted,

is

W (C) = α exp[−σ |A2 −A1|] . (24)

The same difference-of-areas law is obtained in SU(3) pure

gauge theory, in the vortex picture and from strong-coupling

expansions, for a Wilson loop which winds twice around loop

C1 and once around the co-planar loop C2 in the directions

indicated in Fig. 1. For simplicity, however, we will restrict

our discussion to SU(2).

It is assumed that the loops are so large that the thickness

of center vortices can be neglected. For co-planar loops, if

a vortex pierces the minimal area of loop A1, it will multi-

ply the holonomy around loop C1 by −1, and also multiply

the holonomy around C2 by −1, producing no effect whatever

on the double-winding loop (unless the vortex crosses a loop

perimeter, which can only result in a perimeter-law contribu-

tion). So the vortex crossing can only produce an effect if it
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pierces the minimal area of C2 but not the minimal area of C1

(difference of areas A2−A1). This supplies an overall factor of

−1 to the double-winding holonomy. By the usual argument

(see, e.g., [25]), this results in a “difference-of-areas” falloff

(24). A slight shift of loop C1 by δ z in the transverse direction

does not make any difference to the argument, providing the

scales of A1 and A2 are so large compared to δ z that a vortex

piercing the smaller area A1 is guaranteed to also pierce the

larger area A2.

The double-winding loop is also easily computed in strong-

coupling SU(2) lattice gauge theory, with the result

W (C) =−
1

2
exp[−σ |A2 −A1|]

σ =− log

[
I2(β )

I1(β )

]
, (25)

which is again a difference-of-areas law. A small shift δ z in

the loop C1 will not affect this answer. The center vortex

model does not pick up the same overall sign, but a model

which only considers center vortex contributions to large Wil-

son loops is not complete enough to pick up either the perime-

ter law behavior or any overall constant, but only the area-law

falloff.

Clearly the strong-coupling expansion and center vortex

model, which both argue for a difference-in-area falloff for the

double-winding Wilson loops, are in conflict with the predic-

tions of monopole/dyon plasmas and the dual abelian Higgs

model. So the next question is which prediction is actually

correct, away from the strong coupling limit. This is a ques-

tion which can be answered by lattice Monte Carlo simula-

tions.

IV. SUM OR DIFFERENCE OF AREAS?

We will begin with a trivial example: the case where loops

C1 = C2 = C are identical, so that the difference in areas is

zero. We can then make use of an SU(2) group identity

Tr[U(C)U(C)] =−1+TrAU(C) , (26)

where the trace on the right-hand side is in the adjoint repre-

sentation. Since, apart from very small loops, 〈TrAU(C)〉≪ 1,

we have, almost independent of loop size,

W (C)≈−
1

2
, (27)

which is obviously consistent with difference-in-area behav-

ior. For center-projected loops, the result is W (C) = 1 ex-

actly, for any loop C, which is again a trivial example of the

difference-in-area law.2 However, if we wish to test this law

in less trivial circumstances, where the difference in areas is

2 The difference in sign compared to the unprojected result can be attributed

to the neglect, in center projection, of fluctuations which make 〈TrAU(C)〉
fall with a perimeter law.

L

δL+2

FIG. 4. A coplanar, double winding contour. The trace of a Wilson

loop around this contour, divided by 2, will be denoted W (L,δL).

non-zero and the loop holonomy does not contain a singlet, it

is necessary to consider contours with C1 6=C2.

Consider the double-winding loop shown in Fig. 4, where

C1,C2 are coplanar, C1 is a square loop of length L, and C2 is

a loop with sides of length L+ δL,L+ 2δL,L+ 2δL,L+ δL.

We will denote the double-winding Wilson loop around this

contour as W (L,δL). Given that a single-winding planar loop

has the behavior W (C) = exp[−σArea− µPerimeter], a sum-

of-areas falloff for the double-winding loop would give us

W (L,δL) = α exp[−AL2 −BL] sum of areas , (28)

while a difference-of-areas behavior gives

W (L,δL) = α exp[−BL] difference of areas , (29)

where

A = 2σ , B = 4σδL+ 8µ . (30)

Because the expectation value of the double-winding loops

turns out to be negative, we will redefine W (C) for double-

winding loops to be

W (C) =−
1

2
〈TrU(C)〉 , (31)

where U(C) is the Wilson loop holonomy. We will also con-

sider center projected and abelian projected double-winding

loops, in maximal center and maximal abelian gauges. These,

however, will be defined in the usual way, without the addi-

tional minus sign.

If logW (L,δL) is linear in L for fixed δL, then the behav-

ior is difference-in-areas. Of course, as L increases at δL > 0,

the loop expectation value falls rapidly into the noise, so some

noise reduction technique is essential. We have therefore ap-

plied one stout smearing step to each of the link variables; the

method is intended to reduce the coefficient µ of the perimeter

falloff.

In Fig. 5 we show our results for W (L,1) (5(a)) and W (L,2)
(5(b)) vs. L, both at β = 2.4 using a standard Wilson ac-

tion on a 204 lattice volume. For comparison, the results

obtained from center projection in maximal center gauge are
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FIG. 5. Wilson loop expectation values W (L,δL) for the double-winding loops of Fig. 4. Note the minus sign convention (31) for full SU(2)

loops with smeared links. For comparison, center-projected loop values are also shown. (a) δL = 1; (b) δL = 2.

also shown. In center projection the only excitations are thin

center vortices which, as already mentioned, must result in a

difference-in-areas falloff, and therefore a linear dependence

of log[W (L,δL)] on L. This linear dependence is clearly seen

in Fig. 5. The data for the smeared, unprojected links also

has a linear dependence, albeit with a different slope.3 The

important point is that the data fits a straight line on a log-

arithmic scale, indicating a difference-in-areas falloff. For a

sum-of-areas falloff, one expects the data to fall away from

the straight line for the larger loops.

Of course one may worry that our loops are not large

enough to see a sum-of-areas falloff, and that the behavior of

the smaller loops is dominated by the perimeter term. To ad-

dress this issue, consider the contour shown in Fig. 6, where

L,L2 are fixed and we vary L1. We denote the Wilson loop

around this contour as W (C1 ×C2), where C1 is the rectan-

gular contour of area L1 ×L2. In this case the perimeter in-

creases, and the sum-of-areas increases, as L1 is increased.

So for a sum-of-areas falloff, W (C1 ×C2) must decrease as

L1 increases. For a difference-of-areas falloff, there are two

competing effects. The perimeter increases, but the difference

of areas decreases as L1 increases. If the area law falloff is

the dominant effect, then W (C1 ×C2) will actually increase

as L1 increases. For loops composed of smeared links, and

for center-projected loops, this is exactly what happens, as we

see in Fig. 7. This increase of loop expectation value with

increasing L1 simply cannot occur for the sum-of-areas be-

havior. Therefore the area-law falloff is the dominant effect,

and the sum-of-areas behavior is definitely ruled out.

3 Two effects can account for the difference in slope. First, for the unpro-

jected links, there may still be a perimeter law contribution, although we

expect this to be reduced by smearing. Secondly, while the string tension

for center-projected Wilson loops in SU(2) gauge theory is known to be

very close to the asymptotic value [26], even for the smallest loops, this

is not the case for unprojected loops, where the string tension (defined by

Creutz ratios), only reaches the asymptotic value for relatively large loops

(roughly 6×6 and larger at β = 2.4).

Another way to illustrate these results is to plot the val-

ues of double-winding smeared SU(2) Wilson loops, of fixed

perimeter P, vs. the difference in area A2 −A1. This is shown

in Fig. 8(b) for contours indicated in Fig. 8(a). Note that the

points seem to cluster around a universal line, regardless of

perimeter. This is another indication that the perimeter contri-

bution for the smeared loops is relatively small, compared to

the area law falloff.

L

L

1

2

δL

δL

FIG. 6. Another coplanar double-winding loop. As L1 increases with

L,L2 fixed, the sum-of-areas law would predict that the magnitude of

the Wilson loop should decrease.
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(c) center projection, δL = 0
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(d) center projection, δL = 1

FIG. 7. Data for loop expectation values on the double-winding loop contours of Fig. 6. Both unprojected SU(2) loops on smeared links

(subfigures (a) at δL= 0,L = 10 and (b) at δL = 1,L = 9), and center-projected loops in maximal center gauge (subfigures (c) at δL = 0,L = 10

and (d) at δL = 1,L = 9) are shown. The fact that Wilson loop values increase in magnitude as the sum of areas increases means that the

sum-over-areas law is ruled out.
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C
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1
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P=26
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(b)

FIG. 8. Wilson loop expectation values W (C1 ×C2) at fixed perimeter P vs. difference in area (subfigure 8(b)), for the rectangular contours

shown in subfigure 8(a). Two sides of loops C1 and C2 overlap on the lattice, although they are drawn as slightly displaced.
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FIG. 9. Results for abelian-projected loop expectation values in maximal abelian gauge. Subfigures (a) and (b) correspond to Figs. 5(a) and

5(b) for unprojected loops, respectively, on contours of the type shown in Fig. 4. The linear dependence of logW (L,δL) on L on suggests a

difference-of-areas behavior. Subfigures (c) and (d) correspond to Figs. 7(a) and 7(b), respectively, on contours of the type shown in Fig. 6. In

contrast to the unprojected and center projected loops, the expectation values of the abelian projected loops mostly decrease with increasing

L1, although we see in 9(c) some indication that the data levels out for L2 > 1 values at increasing L1.
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The next question is whether a difference-of-areas falloff

is also found for abelian-projected loops in Maximal Abelian

Gauge. As already pointed out in the Introduction, abelian-

projected loops directly sample the probability distribution

P(A3
µ) defined in eq. (4), and if these loops would exhibit

a sum-of-areas behavior, whereas unprojected loops have a

difference-of-areas behavior, it would mean that the abelian

dominance assumption in eq. (1) is wrong. The W (L,δL) re-

sults for abelian projection on the contour shown in Fig. 4 are

displayed in Figs. 9(a) and 9(b). The data clearly indicates

a linear dependence in the logarithmic plot, consistent with

the difference-of-areas law. The abelian-projection results for

the contour of Fig. 6 are shown in Figs. 9(c) and 9(d). In this

case, in contrast to the full and center-projected loops, the loop

values initially decrease with increasing L1. Since there is a

competition between perimeter law and area falloff for this

contour, as already mentioned, the result does not necessarily

rule out a difference-of-areas falloff for the abelian projected

loops, and in fact in Fig. 9(c) there is some indication that the

data levels out as L1 increases, at the larger L2 values. There

is no such indication in Fig. 9(d), although we think it is likely

that this data would also level out (and even begin to increase)

for sufficiently large loop contours, as in Fig. 9(c).

 1e-05

 0.0001
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 0  5  10  15  20  25

W
 (
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 ) s

hi
ft

ed

A
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FIG. 10. Planar loops C1 and C2 are parallel, as in Fig. 2, but dis-

placed in a transverse direction by one lattice spacing. The two loops

are of equal area A, so the difference in area is zero. We see that

W (C1 ×C2) for the unprojected SU(2) loops levels off at A ≈ 8.

Finally we consider loops of the type shown in Fig. 2, where

C1 and C2 are displaced from one another in a transverse di-

rection. Fig. 10 shows the results for W (C1 ×C2) vs. area A,

where C1 and C2 have equal minimal area A1 = A2 = A, and

are displaced by one lattice spacing. The difference in areas in

this case is zero, and therefore we would expect W (C1 ×C2)
to fall only with a perimeter law, for sufficiently large loops,

as area A increases. In fact we clearly see this behavior for the

full SU(2) loops, where the data flattens out at A ≈ 8. On the

other hand we do not clearly see a leveling off for the abelian

projection loops in this range of loop area.

FIG. 11. For the same situation depicted in Fig. 3, insertion of a pos-

itively and negatively charged W boson neutralizes the widely sep-

arated positive and negative charges. Then there are only flux tubes

between the positive static charges and the W−−, and (separately) the

negative static charges and the W++, leading to a difference-in-areas

law.

V. THE EFFECT OF W-BOSONS

We draw the obvious conclusion that if confinement can

be attributed, in some gauge, to the quantum fluctuations of

gauge fields in the Cartan subalgebra of the gauge group,

then the spatial distribution of the corresponding abelian field

strength cannot follow any of the models discussed in section

II. On the other hand, the models under consideration ne-

glect the main feature which makes the underlying theory non-

abelian, namely the off-diagonal gluons, also known as “W”-

bosons. W-bosons are often ignored on the apparently reason-

able grounds that these bosons are very heavy, and therefore

cannot have a significant impact on low energy, long-range

phenomena, and in particular cannot affect the spatial distri-

bution of confining fields at large scales.

In fact it is easy to see how the W-bosons could change the

double-winding falloff from a sum to a difference-in-areas be-

havior. The process is illustrated in Fig. 11, where we see that

W-bosons can neutralize the two pairs of positively and nega-

tively charged particles. Granting that point, imagine integrat-

ing out those W-fields. This leaves us with a probability distri-

bution for the abelian fields alone, as we have discussed in the

Introduction. But then, assuming that the difference-in-areas

law is obtained, the resulting probability distribution P[A3
µ ] or

P[ f 3
µν ] for abelian fields in the vacuum must be very differ-

ent from the distributions implied by the various models sum-

marized in section II. This is because those models give the

wrong sum-of-areas result. So in fact the W-bosons, despite

their large mass, must have a dramatic effect on the spatial dis-

tribution of abelian field strength at large scales. Clearly one

cannot use the abelian field distributions of section II to argue

for an area law for ordinary Wilson loops, and then appeal to

some other distribution when confronted with double-winding

loops. The same distribution of abelian fields must be used in

each case. This raises an obvious question: Can we imagine,

even in principle, a set of abelian configurations which dom-

inate vacuum fluctuations on large scales, and which would

result in a difference-of-areas law for double-winding loops?

Abelian configurations which can satisfy that condition

were proposed many years ago in ref. [27], and we recall

them here. Consider the field distribution at a fixed time,

and suppose that, rather than being arranged in a monopole
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FIG. 12. An example of monopole-antimonopole magnetic flux or-

ganized into center vortices.

Coulomb gas, the monopoles and antimonopoles are arranged

in monopole-antimonopolechains, with the magnetic flux col-

limated, from monopole to antimonopole, along the line of

the chain. For the SU(2) example that we are discussing, the

magnetic flux from monopole to antimonopole precisely cor-

responds to the center element −1. In other words, rather

than being a monopole plasma, this is a vacuum consisting

of center vortices, and the difference-in-area law follows. In

D = 4 dimensions the abelian magnetic flux forms the vor-

tex sheet, and monopole/antimonopole currents run along this

sheet. Numerical evidence for this picture, in the context of

abelian projection in maximal abelian gauge, was provided

long ago [27, 28].

If we add double-charged fields (the W-bosons) to any of

the models discussed in section II, is there any other reason

(apart from this possibly appealing picture) to think that the

result is a theory of center vortices? As some evidence that

this is what happens, we recall that compact QED at strong

coupling, in either three or four dimensions, can be reformu-

lated as either a monopole Coulomb gas, or a dual supercon-

ductor in a certain limit [13, 20, 21]. Following closely the

treatment in ref. [26], we can see what happens if we add

a double-charged matter field to the compact QED action at

strong couplings. For simplicity we consider a charged scalar

matter field ρ of fixed modulus |ρ |= 1, and

Z =

∫
DρDθµ exp

[
β ∑

p

cos(θ (p))

+
1

2
λ ∑

x,µ

{
ρ∗(x)e2iθµ (x)ρ(x+ µ̂)+ c.c

}]
, (32)

with β ≪ 1 (confinement) and λ ≫ 1. In this case, rewriting

the theory in monopole variables actually obscures the un-

derlying physics. The confining field configurations are no

longer Coulombic fields emanating from monopole charges.

Rather, the confining configurations are thin Z2 vortices − a

fact which is invisible in the monopole formulation. To see

this, go to the unitary gauge ρ = 1, which preserves a residual

Z2 gauge invariance, and make the field decomposition

exp[iθµ(x)] = zµ(x)exp[iθ̃µ(x)] , (33)

where

zµ(x)≡ sign[cos(θµ(x))] , (34)

and

Z =∏
x,µ

∑
zµ (x)=±1

∫ π/2

−π/2

dθ̃µ(x)

2π

exp

[
β ∑

p

Z(p)cos(θ̃ (p))+λ ∑
x,µ

cos(2θ̃µ(x))

]
.(35)

This decomposition separates lattice configurations into Z2

vortex degrees of freedom (the zµ(x)), and small non-

confining fluctuations around these vortex configurations,

strongly peaked at θ̃ = 0. One can easily show, for

β ≪ 1, λ ≫ 1, that

〈
exp[inθ (C)]

〉
≈ 〈Zn(C)〉

〈
exp[inθ̃ (C)]

〉
, (36)

with

〈Zn(C)〉 =

{
exp[−σA(C)] n odd

1 n even
〈

exp[inθ̃(C)]
〉
= exp[−µn2P(C)] , (37)

where Z(C) is the product of zµ(x) link variables around the

loop C. This establishes that the confining fluctuations, in this

coupling range, are entirely due to thin vortices identified by

the decomposition (33) in unitary gauge. It is clear that the

addition of a charge-2 matter field has resulted in a qualitative

change in the physics of confinement. Yet the transition from

a monopole Coulomb gas mechanism to a vortex dominance

mechanism is essentially invisible if the gauge+matter theory

is rewritten in terms of monopole + electric current variables,

which in this case tend to obscure, rather than illuminate, the

nature of the confining fluctuations.

A final remark is that when a caloron ensemble is subjected

to Laplacian center gauge fixing, certain gauge-fixing singu-

larities appear, and it has been suggested that these singular-

ities should be identified with center vortices [29]. Here we

must point out that in the center vortex theory of confinement,

center vortices are associated with a certain spatial distribution

of confining flux. They are not merely singularities of some

gauge fixing condition, as is evident from the fact there is a

gauge-invariant procedure to insert and numerically simulate

center-vortex and electric flux ensembles in a finite lattice via

’t Hooft’s twisted boundary conditions [30]. In the dyon dis-

tribution advocated in [10] there is no apparent collimation of

abelian fields into vortex structures, instead they diverge in a

spherically symmetric manner from the dyon centers. If this is

a qualitatively accurate representation of the confining fields

of a caloron ensemble, it is unlikely to be consistent with a
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center vortex mechanism. It would be interesting to calculate

double-winding loops numerically in the dyon ensembles ad-

vocated in [10] and also in the caloron ensembles of [6], where

analytical results are not available.

VI. CONCLUSIONS

We have shown that a number of popular models of con-

finement due to abelian fields, namely the monopole plasma,

dyon gas, and dual superconductor (dual abelian Higgs) mod-

els, predict a sum-of-areas falloff for double-winding Wil-

son loops which contradicts the difference-of-areas prediction

of the center vortex model and strong coupling expansions,

and, more importantly, contradicts the results of lattice Monte

Carlo simulations. This means that these abelian models do

not give the correct spatial distribution of confining abelian

vacuum fluctuations. A difference-of-areas result can be ob-

tained if one adds in off-diagonal gluons (“W-bosons”) to the

abelian models, but this also implies that the spatial distribu-

tion of abelian fields in models with W-bosons must be qual-

itatively different from the corresponding distributions in a

monopole plasma, dyon gas, or dual superconductor. We have

suggested that when W-bosons are added to such models, the

result is a theory of center vortices (for some recent develop-

ments, see [31, 32].) At least one must consider, in the con-

text of models in which the confining fields are dominantly

abelian, what sort of distribution of confining abelian field

strength would be compatible with the difference-of-areas re-

quirement for double-winding Wilson loops. A center vortex

distribution is one possibility; at present we are not aware of

any alternative.
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