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The dependence of the QCD coupling constant with a strong magnetic field and the implications
for the critical temperature of the chiral phase transition are investigated. It is found that the
coupling constant becomes anisotropic in a strong magnetic field and that the quarks, confined by
the field to the lowest Landau level where they pair with antiquarks, produce an antiscreening effect.
These results lead to inverse magnetic catalysis, providing a natural explanation for the behavior of
the critical temperature in the strong-field region.
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I. INTRODUCTION

The study of the QCD phase diagram in the tempera-
ture (T ) - density (µ) plane is a topic that has attracted
much attention during many years [1]. The more re-
cent possibility to experimentally reach the high-energy
regions where the quark-gluon plasma is realized has ac-
tivated this research field even more.

Additionally, the effects of strong magnetic fields in
quark matter have also been under active scrutiny for a
long time [2]-[17]. At present, such studies have been
reactivated by the possibility to reach magnetic field
strengths in heavy ion collisions in an energy range which
is beyond the intrinsic QCD scale ΛQCD ∼ 200 MeV.

There are both theoretical and experimental indica-
tions that the colliding charged ions can generate very
strong magnetic fields, estimated to be of order eB ∼
m2

π(∼ 1018G) for the top collision,
√
sNN = 200 GeV,

in non-central Au-Au impacts at RHIC, and even larger,
eB ∼ 15m2

π(∼ 1019G), at the LHC experiments [3]. The
magnetic field generated during those collisions is tran-
sient. It decays to a tenth of its value in a time scale of
order 1/Qs [18], where Qs is the saturation scale at RHIC
[19]. On the other hand, a comprehensive comparison be-
tween the experiments and a hydrodynamic description
of the ultra relativistic collisions done at [20] has pro-
vided very strong arguments for the creation of a well-
developed, thermalized quark-gluon plasma at RHIC just
after 0.5 fm/c of the collision, with a significant lifetime
of about 5-7 fm/c, and an initial energy density which
exceeds the critical value for color deconfinement by at
least an order of magnitude. During this time inter-
val the magnetic field is still very near to its maximum
strength. Furthermore, during the entire Quark-Gluon
plasma (QGP) life-time, the generated magnetic field has
been shown to be a slowly varying function of time, i.e.
approximately stationary [18]. Therefore, it makes sense
to explore the effects of the magnetic field on the gener-
ated QGP assuming a constant field.

In a similar fashion, one can also consider that the
magnetic field interacting with the QGP is approximately
uniform. To understand this, notice that even though

the spatial distribution of the magnetic field is globally
inhomogeneous, in the central region of the overlapping
nuclei, where the QGP is formed, the variation of the
magnetic field in the transverse direction is much weaker
than the variation of the energy density, a fact confirmed
using the hadron-string-dynamics model [21] for Au−Au
collisions at

√
sNN = 200 GeV with impact parameter

b = 10 fm.
Based on the above considerations, it is reasonable to

assume a uniform and constant magnetic field to quali-
tatively study the physical characteristics of the chiral
phase transition in the magnetized QGP produced in
heavy-ion collisions.
It is known that a magnetic field can affect the QCD

chiral phase transition. For massless quarks, a magnetic
field can catalyze the breaking of chiral symmetry be-
cause the attractive interaction between quarks and an-
tiquarks, no matter how weak, is strengthened by the
dimensional reduction of the dynamics of the fermions
in the lowest Landau level (LLL). This phenomenon,
known as magnetic catalysis of chiral symmetry breaking
(MCχSB), leads to the generation of a chiral condensate
that modifies the vacuum properties and induces field-
dependent dynamical parameters. The MCχSB has been
actively investigated during the last two decades [4]-[5].
In the original studies of magnetic catalysis [4], the

phenomenon was assumed to produce only the conven-
tional scalar condensate < ψ̄ψ >, which in turn gives rise
to the generation of a single dynamical parameter: the
fermion mass. In recent years, however, it has been found
[5] - [6], that the same universal mechanism of MCχSB is
also responsible for the formation of a magnetic-moment
condensate < ψ̄Σ3ψ >, with Σ3 = i

2 [γ
1, γ2] the spin-

projection operator along the magnetic field, and the con-
sequential generation of a dynamical anomalous magnetic
moment (AMM) for the quasiparticles. In the case of
quarks, the existence of a magnetic moment condensate
was shown within a Nambu-Jona-Lasinio (NJL) model
with interaction channels consistent with the symmetries
of QCD in the presence of a magnetic field [6]. The
magnetic-moment condensate produces an increase of the
chiral transition temperature.
So far, all the studies of the MCχSB phenomenon in



2

QCD have led to an increase of both the dynamical mass,
(for a review see [7] and references therein), and the
AMM [6] with the magnetic field. Consequently, the chi-
ral transition temperature Tc, which is always of the or-
der of the dynamical mass, has been found to increase
with the magnetic field. Nevertheless, this result is in
sharp contrast with recent QCD-lattice calculations that
showed a decrease of the critical temperature for the chi-
ral/deconfinement transition with the magnetic field [8],
a phenomenon that has been termed ”inverse magnetic
catalysis” (IMC).

Several attempts to address this disagreement already
exist in the literature [9]-[14]. In [9], the authors argued
that IMC is already embedded in the NJL approach be-
cause the effects of neutral mesons (Goldstone bosons)
would suppress the chiral condensate at magnetic fields
stronger than the scale of the hadron structure. However,
this point of view was later challenged by the results of
Ref. [10]. Several authors have argued that the behavior
of Tc in lattice QCD should be connected to the dynam-
ics of confinement. For example, the authors of Ref. [11]
considered the idea that a small number of light quark
flavors should decrease the value of the deconfinement
critical temperature in the large Nc limit, and extrapo-
lated it to the case with magnetic field. Since they could
not explicitly calculate the dependence of the strong cou-
pling with the field, their results were obtained assum-
ing that the expression for Tc would be similar to the
case at zero B, but with the coupling replaced by some
unknown, positive defined function of B. On the other
hand, the analysis in [12] was based on the proposition
that while in the strong field region the chiral condensate
grows linearly with the field [8, 15], the dynamical quark
mass should be however nearly field-independent in this
region. Other efforts [13] introduced the effects of con-
finement in the NJL model through the Polyakov loop,
using the so-called PNJL model, and argued that one
could reproduce the IMC if the lattice data were fitted
by making the critical temperature Tc a parameter of the
PNJL model. In [14], IMC was connected to the running
of the coupling with the magnetic field. However, the
main point of [14] was to propose an ansatz for the NJL
coupling G that assumed a logarithmic dependence with
B, an assumption that is not reliable in the strong-field
region, as we will show below.

In the present paper, we adopt the point of view,
shared by several authors, that the origin of the IMC
should lie in the effects of the magnetic field in the run-
ning of the strong coupling. However, our analysis con-
tains two new fundamental elements. On the one hand,
we show that in the strong field region (qB ≫ Λ2

QCD),
where the infrared dynamics is relevant, the QCD run-
ning coupling becomes anisotropic: the color interaction
in the directions parallel and transverse to the field is
characterized by two different functions of the momen-
tum and the field. On the other hand, we find that
the quarks, confined by the field to the LLL, produce
antiscreening in the parallel coupling, which is the one

entering in the chiral critical temperature. The antis-
creening of the LLL quarks is connected, as will become
clear below, to the color paramagnetic behavior of the
pairs formed by LLL virtual quarks and antiquarks. The
antiscreening produced by the LLL pairs increases with
the magnetic field because the phase space of the LLL in-
creases with the field, allowing more pairs to be formed.
These results naturally lead to IMC and also allow us to
identify the physical mechanism behind the behavior of
TCχ

with the field.
As will be shown below, the antiscreening effect of the

LLL is apparent in the expression of the color Coulomb
potential, because the sign of the contribution coming
from the LLL quarks is the same as the sign of the gluon
contribution. This is quite different from the situation
with no field in the subcritical coupling region where
unpaired quarks always produce screening because their
contribution to the color Coulomb potential is ∼ −Nf

and thus enters with a positive sign in the QCD β-
function, in contrast to the gluons, whose contribution
to the Coulomb potential is (∼ Nc) and thereby nega-
tive in β. As well known, the negative sign of the QCD
β-function is responsible for the color-charge antiscreen-
ing which in turn leads to the phenomenon of asymptotic
freedom.
The paper is organized as follow. In Section II, we

investigate the running of the strong coupling constant
with the magnetic field. We show that at strong magnetic
fields the coupling constant becomes anisotropic giving
rise to noticeable different interactions in the directions
parallel and transverse to the field. Analytical expres-
sions of the parallel and transverse running couplings are
obtained, and the profile of the parallel running coupling
with the magnetic field for various momenta is shown. In
Section III, the critical temperature of the chiral phase
transition is found for a modified NJL model that is in
agreement with the symmetries of QCD in a magnetic
field and incorporates the running of the coupling with
the field in the four-fermion vertex. Taking into account
the running of the coupling with the strong field in the
infrared region, we find that the critical temperature de-
creases with the field, in agreement with the findings in
lattice QCD. In Section IV, we summarize the main re-
sults and discuss the physical origin of the IMC phe-
nomenon.

II. ANISOTROPIC COUPLING CONSTANT

One limitation of the QCD-inspired, effective low-
energy NJL-like models where the MCχSB in QCD has
been found, is that the role of the gluons is reduced to
multi-fermion point-contact interactions, so the model is
not renormalizable and hence does not incorporate the
running of the coupling with the scale. Within this
framework, magnetically catalyzed parameters like the
dynamical mass and the dynamical AMM consistently
increase with the magnetic field. Given that the crit-
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ical temperature TCχ
for the transition to the chirally

restored phase is always of the order of the dynamical
mass, it follows the same pattern behavior with the field
as the mass.
The NJL approach and lattice QCD are both good to

explore the nonperturbative region of QCD, but while the
first considers a strong coupling constant independent of
the momentum and the field, the second automatically
incorporates the effects of confinement and running. It is
then natural to expect that the existence of IMC in lattice
QCD and its absence in the conventional NJL model is
connected to this main difference between these two ap-
proaches. Will IMC emerge if we introduce in the NJL
model the field and momentum dependence of the cou-
pling? The answer is yes, as will be shown below. Now,
it is important to highlight that in order to explore the
magnetic catalysis considering the effect of the field in the
running coupling, we must be sure that we work on a re-
gion of momenta where the mechanism of MCχSB is op-
erative, meaning where the fermions remain mostly con-
fined to the LLL. This implies that the average momenta
exchanged by particles should be smaller than

√
qB. At

the same time, it is known that the most relevant con-
tribution to the magnetically catalyzed parameters come
from momenta in the regionm2

dyn < k2 ≪ |qB| [22], with
mdyn the magnetically catalyzed mass. In this infrared
region, the QCD expansion may begin to show some well-
known problems like infrared poles, lack of convergence,
etc., indicating the inconsistency of the standard pertur-
bation series in this region. To consistently explore the
running of the coupling in this intermediate infrared re-
gion, one needs to incorporate non-perturbative effects
in the perturbative expansion of QCD, a method that
has been developed over the years in a series of seminal
papers [16].
The behavior of the coupling with the magnetic field

and the momentum can be extracted from the color
Coulomb potential calculated in the presence of a mag-
netic field. However, to better understand the physical
effects of the field on the running of the strong coupling,
it is convenient to first recall the case without magnetic
field.
The color Coulomb potential is

V (k) = −4

3

4πα0
s(µ0)

k2 +
α0

s(µ0))
4π (Πg −Πq)

(1)

where α0
s(µ0) = g2(µ0)

4π with µ0 the renormalization en-

ergy scale, and k2 = k21 + k22 + k23 . The functions Πg

and Πq are scalar coefficients associated respectively to
the gluon and quark loops contributing to the gluon self-
energy that dresses the gluon propagator. In standard
perturbation theory they are given by

Πg(k) =
11

3
Nck

2 ln
k2

µ2
0

, Πq(k) =
2

3
Nfk

2 ln
k2

µ2
0

(2)

respectively.

Using (2) in (1), it can be written as

V (k) = −4

3

4πα0
s(µ0)

ǫ(k)k2
(3)

where

ǫ(k) ≡ 1 +
α0
s(µ0)

4π
(
11

3
Nc −

2

3
Nf ) ln

k2

µ2
0

(4)

can be interpreted as the color electric permittivity in
momentum space. As discussed in [23], the relativistic
invariance of the theory requires that the (color) electric
permittivity and the (color) magnetic permeability be
connected through the condition

ǫµ = 1. (5)

Considering k2 < µ2
0, but far from the pole to avoid

the infrared issues of the standard perturbative expan-
sion, we can see from (3) and (4) that ǫ(k) < 1 and
ǫ(k) → 1 when k → µ0, so the effective coupling
α(k) = α0

s(µ0)/ǫ(k) decreases with increasing energy
scale. This is the characteristic behavior of antiscreen-
ing, which leads to asymptotic freedom in QCD. Since (5)
implies that µ = ǫ−1, the magnetic permeability exhibits
the opposite behavior, so in the same region of momenta
one has µ(k) > 1, characteristic of paramagnetism, and
µ(k) tends to 1 as k → µ0, hence decreasing when the en-
ergy scale increases. The connection between color para-
magnetism and asymptotic freedom was first highlighted
in [23].
Notice that the quark and gluon contributions enter in

(4) with opposite signs. Because of this, the quarks tend
to screen the color charge, while gluons tend to antiscreen
it. As the gluon term wins over the quark’s, color charge
is antiscreened in QCD.
Let us consider now the color Coulomb potential in the

presence of a strong magnetic field. As mentioned above,
we are interested in the intermediate infrared region of
momenta where the nonperturbative effects of the QCD
background cannot be ignored. Fortunately, we can take
advantage of existing results [16, 17] that have been able
to consistently incorporate such nonperturbative effects
into the QCD perturbative expansion through the intro-
duction of a nontrivial background of gluon vacuum con-
figurations. Using this background perturbative method
(BPM), the gluon loop contribution to the gluon self-
energy has been shown to be infrared-finite and equal
to

Π̃g(k) =
11

3
Nck

2 ln
k2 +M2

B

µ2
0

, (6)

whereMB ≈ 1 GeV is an infrared mass that can be inter-
preted as the ground-state mass of two gluons connected
by the fundamental string, with string tension τ = 0.18
GeV2 [16, 17].
A magnetic field affects the color Coulomb potential

through quark loops with gluon external legs. If the field
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is strong enough to force the quarks to remain in the
LLL, the loops of these LLL quarks will lead to a sig-
nificant anisotropy in the gluon self-energy and hence
in the coupling because these loops only contribute to
the longitudinal components of the self-energy. The LLL
contribution to the gluon self-energy can be found from
a calculation very similar to the one done in QED [24] to
obtain the LLL electron contribution to the zero compo-
nent of the one-loop photon polarization operator,

α

4π
ΠB

QED(k) = −2α|eB|
π

exp

( −k2⊥
2|eB|

)
T

(
k23
4m2

)
, (7)

where k2⊥ = k21+k
2
2 , m is the renormalized fermion mass,

and

T (z) = 1− 1

2
√
z(z + 1)

ln

√
1 + z +

√
z√

1 + z −√
z

(8)

satisfies 0 ≤ T (z) ≤ 1, with T (z) ≃ 2
3z for z ≪ 1 and

T (z) = 1 for z ≫ 1.
For the QCD case we just have to replace α → α0

s in
(7), and take into account the difference in the electric
charges of different flavors, so that e → qi and we have
to sum in i. The use of the BPM requires in addition
to replace m2 by the string tension τ and use α0

s(µ0) =
12π/[11Nc ln

(
(µ2

0 +M2
B)/Λ

2
V

)
] [17].

For the region of momenta k23 ≪ 4τ , we can approxi-

mate T (k23/4τ) ∼ 2
3
k2

3

4τ to find

α0
s

4π
ΠB

q (k) = k23
α0
s(µ0)

3π

Nf∑

i=1

|qiB|
τ

exp

( −k2⊥
2|qiB|

)
(9)

Using the expressions (6) and (9) in (1), one can readily
find the BPM Coulomb potential in a magnetic field [17],
which can be conveniently written to explicitly show the
field-induced anisotropy,

V (k) =
−16π

3

α0
s(µ0)

C⊥k2⊥ + C‖k
2
3

. (10)

with

C⊥ = 1 +
11α0

s(µ0)Nc

12π
ln

(
k2 +M2

B

µ2
0

)
, (11)

and

C‖ = C⊥ +
α0
s(µ0)

3π

Nf∑

i=1

|qiB|
τ

exp

( −k2⊥
2|qiB|

)
. (12)

The consistency of the LLL approximation requires
k2 ≪ qiB and we assume qiB ≫ Λ2

QCD. Notice that

contrary to the case of an applied electric field [25], a
magnetic field does not change the string tension for a
neutral string [26], which links a quark with an antiquark.
It should be pointed out that a complete formulation

of the infrared behavior of αs(k) is one of the most chal-
lenging problems in QCD. In this sense, the approach fol-
lowed here, which is based on background perturbation

0.0 0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4

QCD=200 MeV
 k3=0.01 QCD

 k3=0.1 QCD

 k3= QCD

 

 

 

log(|qB|/ )

s||

0.0 0.1 0.2
0.40

0.41

0.42

0.43

 

 

FIG. 1. (Color online) Coupling constant α
‖
s , as a function of the

magnetic field at different energy scales. Here we used µ0 = 1.1
GeV and ΛV = 0.385 GeV.

theory and incorporates vacuum nonperturbative config-
urations in the perturbative expansion [16], has the ad-
vantage that it reproduces the asymptotic freedom of the
regular perturbation theory and ensures confinement in
the infrared region.
From (10), a splitting of the couplings for momenta

parallel and transverse to the field follows. They are
given respectively by

α‖
s(k3) =

α0
s(µ0)

C‖(k⊥ = 0)
, α⊥

s (k⊥) =
α0
s(µ0)

C⊥(k3 = 0)
(13)

Notice that the quark contribution to α
‖
s(k3) does not

depend on the momentum. This means that the LLL

quarks do not contribute to the running of α
‖
s(k3) with

k3, a fact that has already been pointed out in [27]. It
is a consequence of the LLL dimensional reduction that
gives rise to finite quark loop terms. On the other hand,

α
‖
s(k3) runs with the magnetic field showing the typical

antiscreening behavior with an energy scale; the larger
the field strength, the smaller the coupling, as seen in
Fig.1. We can also gather from this figure that the de-
crease of the parallel coupling with the magnetic field is
practically unaffected by the infrared energy scale. The
curves basically overlap for k3 = (0.01, 0.1, 1)ΛQCD. In
contrast, α⊥

s (k⊥) does not depend on the magnetic field
because it does not receive any contribution from the
LLL quarks.
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III. BEHAVIOR OF Tc WITH B

As shown in [6], the breaking of the rotational symme-
try by a uniform magnetic field B induces a separation
between longitudinal and transverse fermion modes. This
separation leads to the effective splitting of the couplings
in the one-gluon exchange interactions on which the NJL
models are usually based. This splitting is therefore re-
flected in the four-fermion couplings of a QCD-inspired
NJL model in a magnetic field, and one can use the Fierz
identities in a magnetic field [6], to show that the NJL
Lagrangian in this case should be of the form

L = ψ̄iγµDµψ +
G

2
[(ψ̄ψ)2 + (ψ̄iγ5ψ)2]

+
G′

2
[(ψ̄Σ3ψ)2 + (ψ̄iγ5Σ3ψ)2] (14)

with Dµ = ∂µ + iqAext
µ , Aext

µ = (0, 0, Bx1, 0), for a
constant and homogenous magnetic field B in the x3-
direction, and Σ3 = i

2 [γ
1, γ2] (see [6] for details). The

couplings G and G′ are related to the split gluon-quark
vertex couplings g‖ and g⊥ through G = (g2‖ + g2⊥)/2Λ

2,

G′ = (g2‖ − g2⊥)/2Λ
2, with Λ the energy scale of the effec-

tive NJL theory. We can define G′ = ηG with 0 6 η 6 1.
In the strong-field region, eB/Λ2 ∼ 1, and then η ≃ 1.
In this region, all the fermions are confined to the LLL
and the only modes contributing to the coupling are the
longitudinal ones. Therefore, the separation between lon-
gitudinal and parallel modes induced by the contribution
of the LLL can be seen as the culprit for the anisotropy
manifested in the strong-coupling vertex in the presence
of a magnetic field.
In the mean-field approximation, one can show [6]

that the theory (14) has two separate chiral condensates,
σ = −G〈ψ̄ψ〉 and ξ = −G′〈ψ̄iγ1γ2ψ〉, that minimize the
free-energy and give rise, in the strong-field region, to a
dynamical mass

σ =

(
2GΛ

G+G′

)
exp

[ −2π2

(G+G′)NcqB

]
, (15)

and a dynamical anomalous magnetic moment

ξ =
G′

G
σ (16)

respectively. The nonperturbative character of the NJL
effective-model approach is evident from the way the dy-
namical parameters σ and ξ depend on the couplings G
and G′.
The results (15) and (16) were found using the mean-

field approximation. Would they remain valid beyond
such an approximation? The reliability of the mean-field
approximation to investigate the MCχSB phenomenon
was first addressed in Ref. [22], where it was concluded
that the contribution of the Nambu-Goldstone fluctua-
tions do not affect the condensation that occurs in the re-
duced dimension of the LLL quarks, since the Goldstone

bosons, being neutral, do not feel the dimensional reduc-
tion induced by the magnetic field, hence they are not
subject to the consequences of the Mermin-Wagner theo-
rem [28]. In a recent paper [9], this conclusion was recon-
sidered under the reasoning that although the Nambu-
Goldstone bosons are neutral, they are composite bosons,
formed by a pair of charged fermions each of which is
subject to the dimensional reduction produced by the
field. According to this idea, the dimensional reduction
in the dynamics of the Goldstone bosons would lead to
a decrease of the dynamical mass with the field, in clear
opposition to the mean-field MCχSB results. The au-
thors of [9] called this new mechanism Magnetic Inhibi-
tion. However, a subsequent investigation [10], based on
the functional renormalization group approach- a pow-
erful nonperturbative method to go beyond the mean-
field approximation by fully taking into account thermal
and quantum fluctuations- redeemed the validity of the
MCχSB mean-field solution. As explained in [10], the
problem in the results found in [9] was that they were
obtained ignoring the impact of the anisotropic fluctua-
tions of the neutral Goldstone fields at finite temperature.
Hence, the mean-field approximation has been shown to
be reliable and the results of the MCχSB within this ap-
proximation have been proved to be robust.
Chiral symmetry restoration in NJL models with

MCχSB typically occurs as a second order transition at
a critical temperature TCχ

≃ md ≪ √
qB with md the

dynamical mass of the model considered. The critical
temperature TCχ

can be found from

∂2Ω
TCχ

0

∂σ2 |σ=ξ=0 = 0, (17)

where the one-loop thermodynamic potential in the
strong-field limit corresponding to the Lagrangian den-
sity (14) is given by [6]

ΩT
0 (σ, ξ) = −NcqB

∫ Λ

0

dp3
2π2

[
ε+

2

β
ln
(
1 + e−βε

)]

+
σ2

2G
+

ξ
2

2G′
, (18)

with ε2 = p23 + (σ + ξ)2.
The critical temperature obtained from (17)-(18) is

then

TCχ
= 1.16

√
qB exp

[ −2π2

(G+G′)NcqB

]
. (19)

The same result is obtained if the derivative in (17) is
taken instead with respect to ξ. This is a consequence of
the proportionality between σ and ξ, given in Eq. (16),
which implies that the two condensates evaporate at the
same critical temperature.
In the conventional NJL approach, the couplingsG and

G′ are constants independent of the external conditions,
therefore the critical temperature (19) increases with in-
creasing B. This is what happens in all chiral-model
calculations (for a recent review see [7]).
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However, one can consider an effective NJL model on
which we incorporate the effects of the magnetic field in
the coupling by using the relation G = 4παs/Λ

2 and the
results for the strong coupling found in Section II. Since
in the presence of a strong magnetic field, the effective
coupling entering in the dynamical mass is actually G+
G′, the corresponding relation is then

G+G′ =
g2‖

Λ2
=

4πα
‖
s

qB
, (20)

where we assumed that all the quarks are in the LLL,
so that η ≃ 1, Λ ≃ √

qB, and the momentum transfer
between quarks and gluons is effectively driven by the

longitudinal modes (this is why in (20) we write α
‖
s). In

terms of α
‖
s, the critical temperature (19) can be written

as

TCχ
= 1.16

√
qB exp

[
−π

2Ncα
‖
s

]
(21)

Taking into account the dependence of α
‖
s with the

field shown in Fig. 1 we can readily obtain the profile of
the critical temperature with the magnetic field. This is
shown in Fig. 2, which clearly exhibits an IMC behavior,
in qualitative agreement with the results of lattice QCD

[8]. Here we took α
‖
s from Eq. (13) for Nc = 3 and

considered several energy scales k3 ≤ ΛQCD. As in Fig.
1, we used the string tension τ = 0.18 GeV2 [16, 17] to
normalize the magnetic field in the plot. The strong-field
approximation T ≪ √

qB used here allows to neglect any

T-dependence in α
‖
s . Notice that TCχ

is consistent with
this approximation.

IV. CONCLUDING REMARKS

In this paper we studied the effects of a strong mag-
netic field in the coupling of quarks and gluons in QCD
and used it to investigate the behavior of the chiral transi-
tion temperature with the field. To accomplish this goal,
we considered the phenomenon of MCχSB in a modi-
fied NJL model that incorporates the effects of the field
in the running coupling. To explore the coupling con-
stant behavior in the region of momenta relevant for the
MCχSB mechanism, we extracted the coupling from the
color Coulomb potential calculated within the BPM ap-
proach. The BPM considers the QCD perturbative series
in a background of vacuum nonperturbative configura-
tions [16]. It allows to consistently investigate the behav-
ior of the coupling in the intermediate region of momenta
where the standard perturbative series shows several in-
consistencies. The BPM produces infrared regulators,
avoid infrared renormalons, and have the advantage that
it can describe both confinement and asymptotic freedom
[16].
Using the BMP color Coulomb potential in a magnetic

field, we found that in the strong-field region the coupling
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FIG. 2. (Color online) Critical temperature for chiral symmetry
restoration as a function of the magnetic field at different energy
scales. Here we used the string tension τ = 0.18 GeV2 as a nor-
malization scale for the field and temperature.

of quarks and gluons becomes anisotropic with respect
to the directions parallel and transverse to the magnetic
field. The transverse coupling does not get contributions
from quark loops, so it does not change with the magnetic
field, but the parallel coupling gets contributions from
the quarks and decreases with the field thanks to the
contribution of the LLL quarks.
Recall that in the standard perturbative expansion the

running of the coupling constant in the absence of a mag-
netic field is given by

αs(k) =
α0
s(µ0)

1 +
α0

s(µ0)
4π (113 Nc − 2

3Nf ) ln(k2/µ2
0)
. (22)

The contribution of the quarks enters through the term
− 2

3Nf ln(k
2/µ2), which tends to increase (decrease) the

strength of the coupling at large (small) energies. This is
the usual effect of unpaired quarks on the strong coupling
at small (large) distances, very similar to the screening
effect of the electric charge by charged fermions. In con-
trast, the gluon part, proportional to Nc ln(k

2/µ2), en-
ters with a sign opposite to the quark contribution, so
the tendency from this term is to decrease (increase) the
coupling at large (small) energies, and hence displays an-
tiscreening at large distances.
In a strong magnetic field, the quarks are confined to

their LLL where they pair with antiquark via the MCχSB
mechanism. Contrary to what happens in the absence of
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a magnetic field, the LLL quarks contribute to α
‖
s with a

positive sign (see Eqs. (11)-(13)). Because of this, they
produce antiscreening just as the gluons. The physical
mechanism behind this radical change of the quarks’ ef-
fect on the color charge can be understood as follows. In
the infrared region all the virtual quarks and antiquarks
are paired via the MCχSB. The pairs of LLL quarks and
antiquarks form magnetic dipoles that align themselves
with the external magnetic field. This means that the
LLL behaves as an electromagnetic paramagnet. The
paired LLL quarks are not only magnetic dipoles, but
because the quark and antiquark in the pair have oppo-
site spins and opposite color charges, they are also color-
magnetic dipoles. Once they become aligned with the
magnetic field, they inevitably produce a net alignment
of their chromomagnetic moment too. Hence, the LLL
quarks also behave as a color paramagnet. In a rela-
tivistic theory paramagnetism implies antiscreening and
viceversa [23]. Hence, the color paramagnetism of the
LLL pairs gives rise to color antiscreening. Notice that
the quark-antiquark that pair at the LLL also form color
electric dipoles that will orient, as gluons do, to antis-
creen a test color charge in the parallel direction. The
antiscreening effect of the magnetic field on the paral-
lel coupling constant increases with the field because the
larger the field, the larger the density of states of the
LLL, so more dipoles can be formed.

Looking at the way α
‖
s enters in the critical tempera-

ture (21), it is evident that only if α
‖
s decreases with the

magnetic field, can Tc also decrease with the field and
hence exhibit the same behavior found in lattice QCD.
On the other hand, the magnetic field can only enter in
the running coupling through the quark loops. Therefore,
the inverse magnetic catalysis can be directly linked to
the antiscreening effect of the paired quarks in the LLL
and their alignment in the external magnetic field.

Finally, we call the reader’s attention to the fact that

the behavior of α
‖
s with the magnetic field would be

even sharper if, as recently found in lattice QCD [29],
the string tension would also decrease with the field. A

sharper drop in α
‖
s would lead in turn to a sharper de-

creasing of TCχ
with B, meaning a stronger inverse mag-

netic catalysis effect. An interesting pending task is to
reconcile the results obtained for the string tension in
lattice QCD [29], which those obtained in string theory,
where τ is independent of the magnetic field [26].
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