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New neutrino degrees of freedom allow for more sources of CP-invariance violation (CPV). We
explore the requirements for accessing CP-odd mixing parameters in the so-called 3 + 1 scenario,
where one assumes the existence of one extra, mostly sterile neutrino degree of freedom, heavier
than the other three mass eigenstates. As a first step, we concentrate on the νe → νµ appearance
channel in a hypothetical, upgraded version of the νSTORM proposal. We establish that the optimal
baseline for CPV studies depends strongly on the value of ∆m2

14 – the new mass-squared difference
– and that the ability to observe CPV depends significantly on whether the experiment is performed
at the optimal baseline. Even at the optimal baseline, it is very challenging to see CPV in 3 + 1
scenarios if one considers only one appearance channel. Full exploration of CPV in short-baseline
experiments will require precision measurements of tau-appearance, a challenge significantly beyond
what is currently being explored by the experimental neutrino community.

PACS numbers: 14.60.Pq, 14.60.St

I. INTRODUCTION

The existence of Standard Model (SM) gauge singlet fermions – sterile neutrinos – is a very simple and attractive
extension to our understanding of fundamental particle physics. Sterile fermions may play a central role when it
comes to addressing several of the current outstanding questions, including the dark matter puzzle and the origin of
nonzero neutrino masses [1].

At the renormalizable level, the only allowed interactions of sterile neutrinos with SM degrees of freedom are
those described by Yukawa operators containing left-handed fermions, the Higgs doublet, and the sterile neutrinos.
Phenomenologically, this implies that observable sterile-neutrino effects are mostly mediated by the mixing between
the active neutrinos (νe, νµ, ντ ) and the sterile neutrino states. If the sterile neutrino masses are very low (say, below
10 eV), their properties can, almost exclusively,∗ be explored via neutrino oscillation experiments.

Over the last couple of decades, distinct experiments have revealed anomalies that are not consistent with the SM
augmented by massive active neutrinos [6–11]. These can be interpreted as evidence for more than three neutrinos,
with a new oscillation length proportional to a new mass-squared difference around 1 eV2 (for recent analyses, see
[12–15]). Given that the number of active neutrinos is known to be three [16], the extra degrees of freedom must
be sterile neutrinos. While our understanding of these so-called short-baseline anomalies remains clouded, there are
several experimental proposals aimed at definitively testing the sterile-neutrino interpretation [17]. It is possible
that, in five to ten years, experiments will reveal, beyond reasonable doubt, the existence of new neutrino degrees
of freedom. Such a monumental discovery would qualitatively impact our understanding of fundamental physics and
would invite a new generation of short-baseline neutrino oscillation experiments capable of exploring the new-physics
sector.

Among the properties of the newly-discovered neutrino states would be their couplings to the SM particles, including
the probabilities that these would act as νe, νµ, ντ , and the relative phases among the new elements of the augmented
leptonic mixing matrix. Even if there were only one new neutrino state, new sources of CP-invariance violation (CPV)
would become accessible. Given our current understanding of CPV and the potential importance of this phenomenon
to some of the basic contemporary particle physics questions, it would be imperative to understand whether, and
under what circumstances, these new CPV phenomena are experimentally accessible.

Here, we discuss the challenges associated with studying CPV in the new-physics sector, assuming that next-
generation short-baseline experiments confirm the existence of new neutrino states with parameters that are approx-
imately consistent with those indicated by the sterile-neutrino interpretation to the current short-baseline anomalies.
We restrict our discussion to the case of only one accessible new neutrino state. According to [14], the assumption
that there are at least two accessible states might be a better fit to the short-baseline data. However, if there are two
(or more) sterile neutrinos, CPV present in the interference between the two (or more) new oscillation frequencies
may already have manifested itself in the current generation of short-baseline experiments [12–15, 18], and is hence

∗ Other options include neutrinoless double-beta decay and precision measurements of β-decay energy spectra. See, for example, [2–5].
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more-or-less straight forward to observe. On the other hand, if only one new neutrino state is accessible, CPV will
manifest itself in the interference between the new mass-squared difference and the known atmospheric and solar ones,
a phenomenon which depends only on a few new-physics parameters and may turn out to be much more challenging
to explore experimentally. These interference effects are very small and virtually impossible to observe in current and
proposed experimental setups, which can safely neglect them. We discuss this further in Sections II and III.

In Sec. II, we discuss 3 + 1 oscillations, concentrating on experimental circumstances where only two of the three
independent oscillation frequencies are accessible. We present the relevant oscillation probabilities and discuss which
parameters can be measured and what are the different sources of CPV. In Sec. III, we discuss the requirements for
observing 3 + 1 CPV in short baseline experiments, and explore the capabilities of a concrete next-next-generation
experimental setup, inspired by the νSTORM proposal [19], to study CPV in a high-statistics, high-resolution short-
baseline experiment. In Sec. IV, we summarize our results and offer some concluding thoughts.

II. NEUTRINO OSCILLATIONS AT SHORT BASELINES

Under the hypothesis that there are four neutrino states νi, i = 1, 2, 3, 4, Pαβ(Eν , L) – the probability that a να
flavor eigenstate with energy Eν is detected as a νβ flavor eigenstate, α, β = e, µ, τ , after it propagates a distance L
– is given by the absolute value squared of the oscillation amplitude Aαβ . For α 6= β,

Aαβ = Uα2U
∗
β2

(
e−i∆12 − 1

)
+ Uα3U

∗
β3

(
e−i∆13 − 1

)
+ Uα4U

∗
β4

(
e−i∆14 − 1

)
. (II.1)

Here, ∆ij ≡ 2.54(∆m2
ij/1 eV2)(L/km)(GeV/Eν) and ∆m2

ij ≡ m2
j − m2

i , where mi are the neutrino masses, i, j =
1, 2, 3, 4. Uαi are the elements of the unitary 4×4 neutrino mixing matrix, α = e, µ, τ, s, where s stands for the sterile
neutrino. Note that the Usi elements are not accessible to experiments, assuming there are no interactions directly
sensitive to the sterile neutrino state.

We presume that the matrix elements Uαi and the values of ∆m2
ij are such that they fit the existing long-baseline

neutrino data for i = 1, 2, 3, α = e, µ, τ [20–22]. We further assume that next-generation short-baseline neutrino
oscillation experiments will confirm the existence of one new mass-squared difference, |∆m14|2 ∼ |∆m2

24| ∼ |∆m2
34| �

|∆m2
13|, ∆m2

12, consistent with the sterile neutrino interpretation of the short-baseline anomalies [12–15]. Hence, we
assume

∆m2
14 ∈ [0.1, 10] eV2, (II.2)

and will only consider the mass ordering where m2
4 � m2

3,m
2
2,m

2
1. The effective mixing angle |Ue4||Uµ4| is assumed

to lie within the range

|Ue4||Uµ4
| ∈ [0.01, 0.15]. (II.3)

Note that this assumption is consistent with |Ue4||Uµ4
| ∼ |Ue3|2 ' 0.02.

We parameterize the elements of the 4×4 unitary transformation U as (ignoring potentially physical, but irrelevant-
for-oscillations, Majorana phases)

Ue2 = s12c13c14, (II.4)

Ue3 = e−iδc14s13, (II.5)

Ue4 = s14e
−iδ1 , (II.6)

Uµ2 = c24

(
c12c23 − eiδs12s13s23

)
− ei(δ1−δ2)c13s12s14s24, (II.7)

Uµ3 = c13c24s23 − ei(δ1−δ2−δ)s13s14s24, (II.8)

Uµ4 = s24c14e
−iδ2 , (II.9)

Uτ2 = c34

(
−eiδc23s12s13 − c12s23

)
− eiδ1c13c24s12s14s34

−eiδ2
(
c12c23 − eiδs12s13s23

)
s24s34, (II.10)

Uτ3 = c13c23c34 − ei(δ1−δ)c24s13s14s34 − eiδ2c13s23s24s34, (II.11)

Uτ4 = s34c14c24, (II.12)

where sij ≡ sin θij , cij ≡ cos θij , (i, j = 1, 2, 3, 4). The matrix elements depend on six mixing angles
(θ12, θ13, θ23, θ14, θ24, θ34) and three CP-odd phases (δ, δ1, δ2). The elements not listed here can be determined by
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imposing unitarity conditions on U .
If one of the new mixing angles – θ14, θ24, θ34 – were to vanish, one of the new CP-odd phases – δ1 and δ2, or

combinations thereof – would become non-physical, as expected. A similar phenomenon would be observed if any of
the mass-squared differences were to vanish. While we know (or assume) that all ∆m2

ij 6= 0, their effects might still

be unobservable. Since the mass-squared differences are quite hierarchical – ∆m2
12 � |∆m2

13| � ∆m2
14 – we examine

this issue in more detail.
We will consider experiments that probe Pαβ when Eν = O(1 GeV) and baselines L = O(1 km), i.e., L/Eν ∼

1 km/GeV, such that ∆14 ∼ 1.† Under these circumstances, ∆12 = O(10−5) and |∆13| = O(10−3). With the above
information in mind, we revisit Eq. (II.1), taking into account that (e−i∆12,13 − 1) ' −i∆12,13. To illustrate the
relative size of terms in Eq. (II.1), we define (Rαβ)ij as the ratio of the “1i” to the “1j” contribution to Aαβ ,‡

(Rαβ)ij ∼
|UαiU∗βi|∆m2

1i

|UαjU∗βj |∆m2
1j

, (II.13)

for i, j = 2, 3, 4. For all α and β, (Rαβ)23 and (Rαβ)24 are small. For example, even though |Ue3| = sin θ13 ' 0.15

is small compared to |Ue2| ' 0.55, the ratio between ∆m2
12 and ∆m2

13 is such that (Reµ)23 ' 0.1. Additionally,
considering a new mass splitting in agreement with Eq. (II.2) and mixing angles in agreement with Eq. (II.3), the
ratio (Reµ)24 ∈ [10−5, 10−2]. Thus, it is practical to set ∆12 = 0, which is an approximation we make henceforth.

Furthermore, since we only consider |Ue4U∗µ4
|∆m2

14 & 8 × 10−3 eV2, which is approximately four times larger than

|∆m2
13|, (Reµ)34 . 10−1 is also small. In summary, if the oscillation interpretation of the short-baseline anomalies

is correct, in experiments performed at L and Eν values where ∆14 ∼ 1, solar contributions are irrelevant and
atmospheric contributions are small, at least in the eµ sector. If |Uτ4| ∼ |Uµ4|, |Ue4|,§ the same is approximately true
of the eτ and µτ sectors, even when one takes into account that |Uτ3| is several times larger than |Ue3|.

In the limit ∆m2
12 → 0, we “lose” the angle θ12 and the CP-odd phase δ,∗ and the oscillation probabilities depend

on five angles (θ13, θ23, θ14, θ24, θ34) and two independent CP-odd phases, which we define as ψs ≡ δ1 − δ and φs ≡
(δ1−δ)−δ2. Taking, in addition, the limit ∆m2

13 → 0, the oscillation probabilities depend on three angles (θ14, θ24, θ34)
and zero physical CP-odd phases.† The latter limit is the one usually considered in the analyses of short-baseline
experiments [12–15, 19].

When assuming there is only one relevant sterile neutrino, therefore, the study of CPV at short-baseline experiments
requires sensitivity to the small ∆13 effects. Since disappearance channels are CP-invariant as a consequence of the
CPT-theorem, we concentrate on the appearance channels.‡ Taking advantage of what is known (or assumed) about
the mixing parameters, we can further simplify the oscillation expressions. In detail, we approximate Uµ3 = c13c24s23

and Uτ3 = c13c23c34, since the subleading terms in Eqs. (II.8) and (II.11) are O(10−2), so the appearance probabilities

† The other possibility is to aim at the atmospheric oscillation, L/Eν ∼ 1000 km/GeV, such that |∆13| ∼ 1. We do not consider this case
here. When |∆13| ∼ 1, the fast oscillations associated with the (mostly) sterile neutrino tend to average out, rendering the study of
CPV very challenging, because the effects of CPV are most apparent when comparing different values of L/E. If the new oscillations do
“average out,” then this does not necessarily remove the possibility of indirectly exploring CPV phenomena; the combination of results
from multiple experiments can be used to measure CPV effects in a 3 + 1 scenario [23, 24].
‡ The approximation ∆14 ∼ 1 implies that the “14” term is of order |Uα4U∗β4| and L/Eν ∼ (∆m2

14)−1.
§ Currently, there is very little experimental information regarding the τ sector.
∗ When ∆12 = 0 in Eq. (II.1), one is not sensitive to any Uα2 and hence the value of θ12. This, in turn, implies that the amplitude is

consistent with any value of θ12, including θ12 = 0. When θ12 = 0, one of the CP-odd phases is unphysical.
† In general, in the limit where j mass-squared splittings vanish, some of the observables that parameterize U become unphysical. The

total number of angles Nθ and phases Nδ that determine Pαβ in this case are

Nθ = n(n− 1)/2− j(j + 1)/2, (II.14)

Nδ = (n− 1)(n− 2)/2− j(j + 1)/2, (II.15)

assuming there are n neutrino states.
‡ One could try to infer that CP-invariance is violated by comparing different disappearance channels and fitting them to the 3 + 1

oscillation hypothesis. We do not explore this possibility here.
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can be written as

Pµτ ' 4c414s
2
24c

2
24s

2
34 sin2

(
∆14

2

)
+ 8c213s23c23c

2
14s24c

2
24s34c34 sin

(
∆13

2

)
sin

(
∆14

2

)
cos

(
∆14

2
+ ψs − φs

)
+ 4c413s

2
23c

2
23c

2
24c

2
34 sin2

(
∆13

2

)
, (II.16)

Peτ ' 4s2
14c

2
14c

2
24s

2
34 sin2

(
∆14

2

)
+ 8s13c13c23s14c

2
14c24s34 sin

(
∆13

2

)
sin

(
∆14

2

)
cos

(
∆14

2
+ ψs

)
+ 4s2

13c
2
13c

2
23c

2
14c

2
34 sin2

(
∆13

2

)
, (II.17)

Peµ ' 4s2
14c

2
14s

2
24 sin2

(
∆14

2

)
+ 8s2

13c13s23s14c
2
14s24c24 sin

(
∆13

2

)
sin

(
∆14

2

)
cos

(
∆14

2
+ φs

)
+ 4s2

13c
2
13s

2
23c

2
14c

2
24 sin2

(
∆13

2

)
. (II.18)

The CP-conjugate and T-conjugate channels are obtained by changing the sign of the CP-odd phases ψs and φs, i.e.,
Pᾱβ̄(φs, ψs) = Pαβ(−φs,−ψs) and Pβα(φs, ψs) = Pαβ(−φs,−ψs). The explicit CPV effects that render Pαβ 6= Pᾱβ̄
are contained in the interference between the ∆13 and the ∆14 terms in Eq. (II.1). In each Pαβ , the “14-squared” term
is dominant, the interference term is the next-to-leading term, followed by the “13-squared” term, which is smallest.
The measurement of two different appearance channels is required in order to determine the two independent CP-odd
phases and, in principle, the measurement of the third appearance channel would serve as a nontrivial test of the 3+1
hypothesis.

We assume that experiments will reveal that neither θ14 nor θ24 is very small, but anticipate learning very little
about θ34, which is linked to Uτ4 and tau-appearance. Furthermore, working with taus is extremely challenging.
It requires “detection” center-of-mass energies larger than the tau mass, and detectors capable of identifying taus
with nonzero efficiency. Henceforth, we utilize exclusively the appearance oscillation probability Peµ, returning to
taus in the concluding statements. In the range of values for θ14 and θ24 satisfying Eq. (II.3), the oscillation prob-
ability in Eq. (II.18) is approximately degenerate under interchange of θ14 ↔ θ24; thus, we choose to simplify the
parameterization by taking θs ≡ θ14 = θ24, and rewrite Eq. (II.18) as

Peµ ' 4s4
sc

2
s sin2

(
∆14

2

)
+ 8s2

13c13s23s
2
sc

3
s sin

(
∆13

2

)
sin

(
∆14

2

)
cos

(
∆14

2
+ φs

)
+ 4s2

13c
2
13s

2
23c

4
s sin2

(
∆13

2

)
, (II.19)

where cs ≡ cos θs and ss ≡ sin θs. Our results are not sensitive to this assumption. Instead, the combined analyses of
νe or νµ appearance and νµ or νe disappearance can distinguish θ14 effects from those of θ24. We do not pursue such
an analysis here. Finally, Eq. (II.19) (and Eq. (II.18)) is invariant under ∆m2

13 → −∆m2
13 and φs → φs + π. For this

reason, we assume henceforth that the sign of ∆m2
13 is positive. Our results are still valid if the mass-hierarchy turns

out to be inverted, but for the shifted value of φs.

III. EXPERIMENTAL SENSITIVITY TO CP-VIOLATING PHASES

We investigate the capability of next-next-generation experimental efforts to see 3 + 1 CPV by simulating short-
baseline experiments based on the νSTORM proposal [19]. According to the discussion in Section II, 3 + 1 CPV
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effects are quite small and therefore require large statistics, excellent control of systematics, and very good energy
resolution. All of these are potentially within reach of future neutrino experiments with beams from muon decay in
flight. Other ideas for future experiments should be explored, including pion-decay-at-rest “beams,” similar to, for
example, DAEδALUS [25].

The νSTORM proposal is designed to measure the values of |Ue4|2|Uµ4|2 and ∆m2
14 in the νe → νµ appearance

channel for a 3 + 1 scenario [19]. Unlike pion-decay-in-flight long-baseline experiments that investigate the process
νµ → νe, νSTORM uses νe and νµ from the decay of stored µ+ to produce two neutrino beams. A detector with
a strong magnetic field allows for O(1%) energy resolution and powerful discrimination between detecting µ+ from
νµ → νµ and µ− from νe → νµ, which dramatically reduces beam-related backgrounds.

First, we reproduce the νSTORM analysis in [19] using similar flux, cross section, detector design, background rate,
signal and background efficiency, and systematic uncertainties (1% and 10% associated with signal and background
normalizations, respectively) [26, 27]. This analysis is performed in the limit ∆m2

13 → 0. Our results, depicted by
the solid line in Fig. 1, agree with those from [19] and illustrate that the νSTORM experiment with a 1.3 kt detector
at L = 2 km would be able to constrain 4|Ue4|2|Uµ4|2 < O(10−4 − 10−3) at 99% CL for ∆m2

14 & 0.5 eV2 after 10
years of running. If instead the 3 + 1 scenario were confirmed by the νSTORM experiment, the precision with which
νSTORM could measure |Ue4|2|Uµ4|2 and ∆m2

14 strongly depends on their physical values, as shown in Table I.

Physical Value
νSTORM νSTORM+

Precision Precision

Point 1
4|Ue4|2|Uµ4|2 = 3× 10−4 O(100%) O(15%)

∆m2
14 = 1.0 eV2 O(100%) O(1%)

Point 2
4|Ue4|2|Uµ4|2 = 4× 10−3 O(25%− 100%) O(5%)

∆m2
14 = 1.0 eV2 O(30%) O(0.5%)

Point 3
4|Ue4|2|Uµ4|2 = 2× 10−2 O(20%) O(1%)

∆m2
14 = 1.0 eV2 O(15%) O(0.1%)

Point 4
4|Ue4|2|Uµ4|2 = 5× 10−2 O(10%) O(1%)

∆m2
14 = 1.0 eV2 O(10%) O(0.1%)

Point 5
4|Ue4|2|Uµ4|2 = 4× 10−3 O(20%) O(1%)

∆m2
14 = 5.0 eV2 O(1%) O(0.05%)

Point 6
4|Ue4|2|Uµ4|2 = 2× 10−2 O(100%) O(5%)

∆m2
14 = 0.35 eV2 O(100%) O(0.5%)

TABLE I: The position of the six colored points in Fig. 1 and the approximate 95% CL expected precisions with which νSTORM
and νSTORM+ can measure 4|Ue4|2|Uµ4|2 and ∆m2

14. While the baseline of νSTORM is 2 km, the baseline of νSTORM+ is
optimized to measure CPV by requiring ∆m2

14L = 11.5 eV2·km with 1000 times more statistics, for the same baseline, than
νSTORM.

To illustrate the effects of CPV at νSTORM, we recalculate the exclusion limits with the full expression in
Eq. (II.19), when φs = −π/2 and π/2.§ These results are depicted by the dashed and dotted lines in Fig. 1, re-
spectively. Small differences in the limits occur; the difference between them is of the same order, around one percent,
as the effects of the systematic uncertainties outlined in [19]. To measure CPV, more statistics and an optimal choice
of the baseline are required.

In order to investigate what is necessary to measure CPV in the 3+1 scenario, we consider a dramatically upgraded
version of the νSTORM proposal, increasing the data sample – for the same baseline – by a factor of 1000 with respect
to [19]. This could be achieved if, for example, the beam flux were ten times larger (∼ 1022 protons on target) over
10 years and the detector mass were 130 kt. We will refer to this experiment as νSTORM+. While the proposed
beam power and detector mass are outside the realm of possibilities today, they are not entirely outlandish. For
comparison purposes, the proposed, and recently approved, India-Based Neutrino Observatory is a 51 kt magnetized
iron calorimeter [28]. On the other hand, the proton driver for the proposed Neutrino Factory is planned to deliver
1022 protons on target per 107 seconds [29]. νSTORM+ would accumulate a large enough data sample such that the
values of |Ue4|2|Uµ4|2 and ∆m2

14 would be measured very precisely, as displayed in Table I, at which point the value
of φs would begin to induce observable changes to the oscillation probability.

§ While we use Eq. (II.19), we convert θs into |Ue4||Uµ4| for comparison purposes: sin2 θs cos θs ≡ |Ue4||Uµ4|.
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FIG. 1: The solid line is the 99% CL sensitivity using the νe → νµ channel at νSTORM, assuming ∆m2
13 = 0, in agreement

with [19]. The dashed and dotted lines correspond to the 99% CL sensitivity if atmospheric effects are taken into account (see
Eq. (II.19)), when φs = −π/2 and φs = π/2, respectively. The six numbered points correspond to values of |Ue4|2|Uµ4|2 and
∆m2

14 used in this analysis to discuss the measurement of the value of φs.

To analyze our simulated data, we make use of the χ2 function

χ2
(
∆m2

14, θs, φs|∆m2?
14, θ

?
s , φ

?
s

)
=

bins∑
i

[
Ndata
i (∆m2?

14, θ
?
s , φ

?
s)−N

hyp
i (∆m2

14, θs, φs)
]2

Nhyp
i (∆m2

14, θs, φs)
, (III.1)

where Ndata
i and Nhyp

i are the measured and expected number of events in energy bin i, respectively, and ∆m2?
14, θ

?
s , φ

?
s

and ∆m2
14, θs, φs are physical (i.e. input) and hypothetical values of the new mass-squared difference, mixing angle,

and CP-odd phase, respectively. Strictly speaking, the χ2 function also depends on θ13, θ23, and ∆m2
13. We assume,

however, that θ13, θ23, and ∆m2
13 will be measured with sufficient precision such that the χ2 function above, once

marginalized over θ13, θ23, and ∆m2
13, is sufficiently indistinguishable from its expression for the best-fit values of

θ13, θ23, and ∆m2
13, which we take to be the ones in [16]. Indeed, if one includes the current central values and

uncertainties on these parameters [20–22], the oscillation probability Peµ and the χ2 function change only at the
sub-percent level. We can safely presume that current and future experiments will increase the precision with which
these parameters are known before νSTORM+ exists. We also considered the possibility that the uncertainties are
significantly larger – 5% and 50% associated with the normalization of the signal and background, respectively. The
effect of inflating the uncertainties, as far as all results presented henceforth, is negligible.

The value of Ni is determined by integrating, over the bin width,

dN

dE
= ∆t · Φ(E) · σ(E) · ε(E) · Peµ(E). (III.2)
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Here Φ, σ, ε, Peµ, and ∆t are the flux, cross section, efficiency, νe → νµ oscillation probability, and the amount of
time the experiment runs, respectively. From Eqs. (III.1) and (III.2), we see that χ2 depends linearly on ∆t, Φ(E),
σ(E), and ε(E).

We can understand, semi-quantitatively, the sensitivity to CPV by analyzing Eq. (III.1) in more detail and making
a few simplifying assumptions. We consider that Ni can be approximated by evaluating dN/dE at the value of the
energy corresponding to the center of bin i, Ei. Taking into account that ∆13 � 1, and, only for the sake of this
discussion, fixing ∆m2

14 and θs to their input values, i.e., setting ∆m2
14 = ∆m2?

14, θs = θ?s ,

χ2 (φs|φ?s) ∝ ∆t

bins∑
i

L2Φ(Ei)σ(Ei)ε(Ei)

(
s2
sc

4
s

s2
s +ALcs cos

(
∆14

2 + φs
)
/ sin

(
∆14

2

)
+BL2c4s

)
fi(φs, φ

?
s), (III.3)

where

fi(φs, φ
?
s) =

[
cos

(
∆14

2
+ φs

)
− cos

(
∆14

2
+ φ?s

)]2

, (III.4)

A ∼ O(10−4 km−1), and B ∼ O(10−8 km−2). Even though we are interested in L . 100 km, we preserve the term
involving B in the event that the L/E-dependent coefficient of A is vanishingly small.

The bins with the largest number of events Ni, and therefore the most statistical power, will contribute the
most to the value of χ2. These correspond to the peaks of Peµ(E), approximately where sin

(
∆14

2

)
= ±1. Fixing

sin
(

∆14

2

)
= ±1, we can further simplify Eq. (III.3) down to its dominant contributions

χ2 (φs|φ?s) ∝ ∆t
∑

s( ∆14
2 )=±1

L2Φ(Ei)σ(Ei)ε(Ei)

(
s2
sc

4
s

s2
s + CLcs +BL2c4s

)
g(φs, φ

?
s), (III.5)

where the sum is restricted to the bins where the approximation sin
(

∆14

2

)
= ±1 is good, |C| . O(10−4 km−1) and

g(φs, φ
?
s) = (sinφs − sinφ?s)

2
. (III.6)

Eqs. (III.3) and (III.5) allow one to conclude the following:

• Because the flux, Φ, scales like 1/L2 and B and C are small numbers, the most significant dependence on L
comes in the product ∆m2

14L. Therefore, the ability to measure φs is, to a good approximation, greatest for
some constant value of the product ∆m2

14L.

• The sensitivity for measuring the value of φs is linearly dependent on the power of the beam, size of the detector,
and the amount of time that the experiment runs.

• The value of φs is easiest to measure when θs ∼ 0.18, i.e., 4|Ue4|2|Uµ4|2 ∼ 4 × 10−3. Around this value,
χ2 falls off slowly for θs > 0.18 and falls off rapidly for θs < 0.10. This is apparent by analyzing the term
(s2
sc

4
s)/(s

2
s +CLcs +BL2c4s), which contains all the θs dependence in Eq. (III.5) and recognizing that B and C

are small numbers.

• It is easiest to measure the CP-odd phase if φs = ±π/2. This can be seen in g(φs, φ
?
s), the maximal variance of

this is for φ?s = π/2 and φs = −π/2, or vice-versa.

We note that these observations do not depend on the details of the beam nor the detector but rather stem from the
form of the oscillation probability.

The best strategy for choosing a baseline L to maximize sensitivity for measuring |Ue4|2|Uµ4|2 and ∆m2
14 is to

require that the highest-energy (first) oscillation maximum is within the energy range associate with the experiment.
If so, the signal yield mostly depends on |Ue4|2|Uµ4|2, and the peak of the measured signal distribution mostly depends
on ∆m2

14. On the other hand, the best strategy for measuring the effects of CPV – the subject of our study – is to
arrange for multiple oscillations to occur within the measured neutrino energy range. These may or may not include
the first oscillation maximum.

Based on the discussion of the χ2 function, the best value of ∆m2
14L can be estimated independent from the

physical value of ∆m2
14. For the νSTORM+ flux shape, signal efficiency, and background rate, we find that choosing

the product ∆m2
14L equal to 11.5 eV2·km optimizes the sensitivity to φs. This result is obtained by calculating the

maximal ∆χ2 for a particular set of parameters and varying L. We find, for all Points 1-6 in the parameter space, that
the greatest sensitivity for measuring the effects of CPV is for a fixed value of ∆m2

14L. If a different beam profile were
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chosen, then this value would change. We illustrate this fact by concentrating on Points 2, 5, and 6, where ∆m2
14 = 1.0

eV2, 5.0 eV2, and 0.35 eV2, respectively. Fig. 2 depicts the “data” corresponding to Points 2, 5, and 6 for L = 11.5
km, 2.3 km, and 33 km, respectively, so ∆m2

14L = 11.5 eV2·km for all three panels, and φs = ±π/2. It is easy to
see that, while the number of events and the relative CPV effects are quite different, the “shapes” corresponding to
the three points are almost identical. As we will show immediately, the sensitivity to φs is almost identical for these
three scenarios.

Our “measurements” of φs are depicted in Fig. 3, for the six values of 4|Ue4|2|Uµ4|2 and ∆m2
14 in Fig. 1 and

Table I, for ∆m2
14L = 11.5 eV2·km and φs = π/2. We make use of Eq. (III.1) and compute ∆χ2 after numerically

marginalizing over ∆m2
14 and θs, for each Point. In the Appendix, we present constant χ2 contours in the two-

dimensional φs × ∆m2
14 and φs × θs planes, for Point 2. As advertised, if θs is not much larger nor smaller than

0.18, i.e., 4|Ue4|2|Uµ4|4 ∼ 4 × 10−3, the value of ∆χ2 changes minimally for different values of ∆m2
14, as long as

∆m2
14L = 11.5 eV2·km is satisfied. Qualitatively, for different values of φs, one obtains similar results, though the

overall sensitivity for measuring φs is reduced. Also depicted in Fig. 3 (dotted line), is the measurement of φs in
the case nature agrees with Point 2 but assuming νSTORM+ is performed at the proposed νSTORM baseline. It is
apparent that the optimal choice of baseline is very significant.
νSTORM+ can establish, for all points defined in Fig. 1, that CP-invariance is violated if the CP-odd phase is π/2

only at the one-sigma level, i.e., it would constrain φs ∈ [0, π] at the one-sigma level and can rule out φs = −π/2 at
around the two-sigma level (Fig. 3). As discussed above, the expected uncertainties are larger for different values of φs.
More power to establish CPV might come from combining other information on ∆m2

14, θs, and φs. Such information
may come from the disappearance channel, combining neutrino running with antineutrino running, or combining
searches for νe → νµ with those for νµ → νe. The latter could be pursued, for example, at different experiments
making use of a well-characterized νµ source, including pion decay at rest [25]. The νSTORM+ disappearance data
from the process Pµ̄µ̄ would be available concurrently with those from Peµ. While they provide no information on θs
– νµ disappearance is mostly dependent on θ24, providing virtually no information on θ14 – they do provide a different
measurement of ∆m2

14, mostly independent from φs. Performing a joint appearance and disappearance analysis is
beyond the scope of this paper.¶ Nonetheless, we estimate the consequences of combining the two data sets by
“measuring” ∆m2

14 using disappearance data and applying the result as a prior to the χ2 analyses described in detail
in this section. For all Points, except Point 6, we find that one can exclude φs = 0 at a level somewhere between
two and three sigma (4 . ∆χ2 . 10, depending on the Point). An improved measurement of θs might prove at least
as fruitful. In this case, however, in order to make use of disappearance data, one needs to combine both νµ and νe
disappearance in order to determine both θ14 and θ24. A precise measurement of νe disappearance would require,
for example, a short-baseline reactor experiment (see, for example, [30]) or a radioactive-source experiment (see, for
example, [31]).

IV. CONCLUSION

The discovery of new, light neutrino degrees of freedom would qualitatively impact our understanding of fundamental
physics. A new wave of oscillation experiments, aimed at exploring the physics at the new oscillation length(s), will
be required in order to explore the new-physics sector.

New neutrino degrees of freedom allow for more sources of CP-invariance violation (CPV). Here, we explore the
requirements for accessing CP-odd mixing parameters in the so-called 3+1 scenario, where one assumes the existence
of one extra, mostly sterile neutrino degree of freedom, significantly heavier than the other three mass eigenstates.
CPV is present in the interference term between the solar and atmospheric oscillation lengths, proportional to ∆m2

12

and ∆m2
13 respectively, and the new shorter oscillation length, proportional to ∆m2

14. We concentrate on short-
baseline experiments, engineered such that ∆m2

14 ∼ Eν/L, and argue that solar effects, due to the fact that θ13 is not
too small, can be safely neglected. We also show that, if new neutrino states are indeed discovered in the next round of
short-baseline experiments, atmospheric effects are small, rendering the study of CPV most challenging. Our results
confirm that, for the on-going and planned short-baseline experiments, it is safe to approximate ∆m2

13 = ∆m2
12 = 0

when discussing the 3 +N oscillation hypotheses, for N ≥ 1.
As a first step towards understanding how to measure CPV in short-baseline experiments, we concentrate on the

νe → νµ appearance channel in a hypothetical, upgraded version of the νSTORM proposal, νSTORM+. Using only

¶ One challenge is that, once appearance and disappearance data are combined, the θ14 = θ24 = θs choice can no longer be made, and
one is required to explore the three dimensional θ14, θ24,∆m2

14 new-physics parameter space. This renders the discussion much more
cumbersome.
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FIG. 2: The differential number of expected νe → νµ events as a function of the neutrino energy at νSTORM+. Shown are the
expected yields when φs = ±π/2. Backgrounds correspond to misidentified charged-current and neutral-current beam-induced
events from νµ → νµ and νe → νe [19]. The three panels correspond to (a) Point 2, at L = 11.5 km, (b) Point 5, at L = 2.3
km, and (c) Point 6, at L = 33 km. See text for detais.
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FIG. 3: The expected values of ∆χ2 at νSTORM+ when φs = π/2 for the six points shown in Fig. 1 and Table I. The dotted
line correspond to Point 2, assuming νSTORM+ is performed at the νSTORM baseline.

appearance data, we establish that the optimal baseline for CPV studies depends strongly on the value of ∆m2
14 and,

in turn, the ability of νSTORM+ to observe CPV depends significantly on whether the experiment is performed at
the optimal baseline.

Our results, assuming a set-up one thousand times more powerful than that of νSTORM (νSTORM+), are depicted
in Fig. 3. Even at the optimal baselines, it will be very challenging to see CPV in 3 + 1 scenarios if one considers only
one appearance channel. Significantly better results are expected if one includes more information. Some is already
accessible at νSTORM+, including more information on ∆m2

14 from the νµ disappearance channel. Other possibilities
include combining the neutrino and the antineutrino appearance channels by changing the charge of the muons in the
storage ring, or combining νe → νµ data with those from a different experiment capable of precision measurements of
νµ → νe, the T-conjugate channel.

Even in the simple 3 + 1 scenario, CPV effects beyond those studied here can be easily accommodated. The study
of the tau-appearance channel (νµ → ντ or νe → ντ ) is required for exploring the second new CP-odd “Dirac”
phase contained in the extended 4 × 4 mixing matrix. As of right now, if there is a new mass-squared difference
of order 1 eV2, very little is known about the ντ content of the fourth neutrino mass eigenstate. Searches for tau-
appearance – let alone precision measurements of tau-appearance – are extremely challenging and will require new,
dedicated experimental efforts that go significantly beyond what is currently being explored by the experimental
neutrino community.
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Appendix A: Determining the New Oscillation Parameters: Point 2

Fig. 4 depicts the experimental sensitivity to the oscillation parameters at the νSTORM+ experiment, outlined
in Section III, for physical values (i.e. input values) of the parameters ∆m2

14 = 1.0 eV2, 4|Ue4|2|Uµ4|2 = 4 × 10−3

(or θs = 0.18), and φs = π/2 (Point 2 in Fig. 1 and Table I). In each plot, the third variable is marginalized over
when calculating ∆χ2 contours. The blue, yellow, and red contours correspond to 68%, 95%, and 99% CL sensitivity,
respectively. Stars indicate the input values of φs, θs, and ∆m2

14.
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FIG. 4: Sensitivity contours corresponding to Point 2 in Fig. 1 and Table I. Blue: 68% CL, Yellow: 95% CL, Red: 99% CL.
“Physical” values are indicated by a star in each plot. The third parameter is marginalized over in each panel.


