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Université Denis Diderot-Paris7, F-75252 Paris, France

M. Biasiniab, E. Manonia, S. Pacettiab, and A. Rossia

INFN Sezione di Perugiaa; Dipartimento di Fisica, Università di Perugiab, I-06123 Perugia, Italy
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We present Dalitz plot analyses for the decays of B mesons to D−D0K+ and D0D0K+. We report
the observation of the D∗

s1(2700)
+ resonance in these two channels and obtain measurements of the

mass M(D∗

s1(2700)
+) = 2699+14

−7 MeV/c2 and of the width Γ(D∗

s1(2700)
+) = 127+24

−19 MeV, including

statistical and systematic uncertainties. In addition, we observe an enhancement in the D0K+

invariant mass around 2350–2500 MeV/c2 in both decays B0
→ D−D0K+ and B+

→ D0D0K+,
which we are not able to interpret. The results are based on 429 fb−1 of data containing 471×106 BB
pairs collected at the Υ (4S) resonance with the BABAR detector at the SLAC National Accelerator
Laboratory.

PACS numbers: 13.25.Hw, 14.40.Nd

I. INTRODUCTION

In the B → D(∗)D(∗)K final states [1], where D is a
D0 or a D+, D∗ is a D∗0 or D∗+, and K is a K+ or a
K0, we have the possibility to search for D(∗)D(∗) reso-
nances (charmonium or charmonium-like resonances) as
well as D(∗)K resonances (cs̄ resonances). These final
states have been useful in the past to determine prop-
erties of the Ds1(2536) and ψ(3770) mesons and of the
X(3872) state at BABAR [2] and Belle [3, 4] as well as the
D∗

s1(2700)
+ meson at Belle [4]. These analyses, based on

the studies of invariant mass distributions, were able to
extract properties such as the mass, width, and spin of
the resonances.
The analysis presented here gives useful information

about cs̄ mesons present in these decays. Before 2003
only four cs̄mesons were known and their properties were
consistent with the predictions of potential models [5].
Since then the D∗

s0(2317) and Ds1(2460) states have
been discovered by BABAR and CLEO [6] with widths
and masses in disagreement with the expectations. The
D∗

s1(2700)
+ meson was discovered by BABAR decaying to

DK in inclusive e+e− interactions [7], and confirmed by
Belle in the final state B+ → D0D0K+ [4]. The LHCb
experiment studied the D∗

s1(2700)
+ meson in the D+K0

S

and D0K+ final states [8] and obtained a more precise
determination of its properties. The D∗

s1(2700)
+ meson

was also observed in inclusive e+e− interactions decaying

a Now at: University of Tabuk, Tabuk 71491, Saudi Arabia
b Also at: Università di Perugia, Dipartimento di Fisica, I-06123
Perugia, Italy

c Now at: Laboratoire de Physique Nucléaire et de Hautes Ener-
gies, IN2P3/CNRS, F-75252 Paris, France
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f Now at: University of South Alabama, Mobile, Alabama 36688,
USA

g Also at: Università di Sassari, I-07100 Sassari, Italy
h Now at: Universidad Técnica Federico Santa Maria, 2390123
Valparaiso, Chile

to D∗K [7]. An additional cs̄ state, the D∗

sJ(2860)
+, was

discovered by BABAR decaying to DK and D∗K [7], and
confirmed by LHCb [8]. Recently, LHCb claimed that
the structure at 2.86 GeV/c2 was an admixture of spin-1
and spin-3 resonances [9]. Finally, theDsJ (3040)

+ meson
was observed in the D∗K final state by BABAR [7].
In this study, we perform Dalitz plot analyses for the

channels B0 → D−D0K+ and B+ → D0D0K+ which
contain only pseudo-scalar particles in the three-body
decay. These Dalitz plot analyses allow the interferences
between the different amplitudes which are present in
the final states to be taken into account correctly. This
is the first time that such Dalitz plot analyses have been
performed for these decays.

II. THE BABAR DETECTOR AND DATA
SAMPLE

The data were recorded by the BABAR detector at the
PEP-II asymmetric-energy e+e− storage ring operating
at the SLAC National Accelerator Laboratory. We an-
alyze the complete BABAR data sample collected at the
Υ (4S) resonance corresponding to an integrated luminos-
ity of 429 fb−1 [10], giving NBB = (470.9±0.1±2.8)×106

BB pairs produced, where the first uncertainty is statis-
tical and the second systematic.
The BABAR detector is described in detail else-

where [11]. Charged particles are detected and their mo-
menta measured with a five-layer silicon vertex tracker
and a 40-layer drift chamber in a 1.5 T axial magnetic
field. Charged particle identification is based on the mea-
surements of the energy loss in the tracking devices and
of the Cherenkov radiation in the ring-imaging detector.
The energies and locations of showers associated with
photons are measured in the electromagnetic calorimeter.
Muons are identified by the instrumented magnetic-flux
return, which is located outside the magnet.
We employ a Monte Carlo simulation to study the rele-

vant backgrounds and estimate the selection efficiencies.
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We use EVTGEN [12] to model the kinematics of B
mesons and JETSET [13] to model continuum processes,
e+e− → qq (q = u, d, s, c). The BABAR detector and its
response to particle interactions are modeled using the
GEANT4 [14] simulation package.

III. EVENT SELECTION AND SIGNAL YIELDS

The selection and reconstruction of B0 → D−D0K+ and
B+ → D0D0K+, along with 20 other B → D(∗)D(∗)K
modes, is described in Ref. [15]. We briefly summa-
rize the selection criteria in this section. We recon-
struct D mesons in the modes D0 → K−π+, K−π+π0,
K−π+π−π+, and D+ → K−π+π+. The B candidates
are reconstructed by combining a D (representing either
a D− or a D0), a D0, and a K+ candidate. For the
mode B+ → D0D0K+, at least one of the D0 mesons
is required to decay to K−π+. A mass-constrained kine-
matic fit is applied to the intermediate particles (D0, D+,
π0) to improve their momentum resolution and the reso-
lution of the invariant masses of the studied resonances.
Two kinematic variables are used to isolate the B-

meson signal. The first variable is the beam-energy-
substituted mass defined as

mES =

√

(

s/2 + ~p0.~pB
E0

)2

− |~pB|2, (1)

where
√
s is the e+e− center-of-mass energy. For the mo-

menta in the laboratory frame, ~p0, ~pB, and the energy,
E0, the subscripts 0 and B refer to the e+e− system and
the reconstructed B meson, respectively. The other vari-
able is ∆E, the difference between the reconstructed en-
ergy of the B candidate and the beam energy in the e+e−

center-of-mass frame. Signal events havemES compatible
with the known B-meson mass [16] and ∆E compatible
with 0 MeV, within their respective resolutions.
For the modes B0 → D−D0K+ and B+ → D0D0K+,

we obtain 1.1 and 1.3 B candidates per event on average,
respectively. If more than one candidate is selected in an
event, we retain only the one with the smallest value of
|∆E|. According to Monte Carlo studies, this criterion
finds the correct candidate, when present in the candi-
date list, in more than 95% of the cases for the two final
states. We keep only events with |∆E| < 10 − 14MeV
depending on the D final state [15].
In order to obtain the signal and background yields,

fits are performed on the mES distributions, as described
in detail in Ref. [15]. The probability density function
(PDF) of the signal is determined from Monte Carlo
samples. A Crystal Ball function [17] (Gaussian PDF
modified to include a power-law tail on the low side of
the peak) is used to describe the signal. The background
contribution is the sum of cross-feed events and combina-
torial background. The cross-feed background to a mode
consists of all incorrectly reconstructed B → D(∗)D(∗)K
events. The ratio of cross-feed events to signal events is

11% for B0 → D−D0K+ and 17% for B+ → D0D0K+.
The cross-feed events are described by the sum of an AR-
GUS function [18] and a Gaussian function, where the
latter allows us to take into account the cross-feed events
peaking in the signal region. For both modes, the Gaus-
sian part represents a negligible contribution to the total
cross feed. Since the fit for the yield for one channel
uses as input the branching fractions from other chan-
nels, an iterative procedure using the 22 B → D(∗)D(∗)K
modes is employed [15]. The combinatorial background
events are described by the sum of an ARGUS func-
tion and a Gaussian function, reflecting the fact that a
small fraction of events peaks in the signal region (com-
ing for example from DD0K+ events where one of the
D mesons is not decaying to a studied mode). The fits
performed on the mES distributions using the sum of the
PDFs for the signal and for the background are shown in
Fig. 1. We obtain 635± 47 and 901± 54 signal events for
B0 → D−D0K+ and B+ → D0D0K+, respectively [15].
We impose an additional condition to enhance the pu-

rity for the Dalitz plot analysis. We require 5.275 <
mES < 5.284GeV/c2, obtaining a total number of 1470
events with a signal purity of (38.6±2.8±2.1)% for B0 →
D−D0K+ and obtaining a total of 1894 events with a
signal purity of (41.6± 2.5± 3.1)% for B+ → D0D0K+,
where the first uncertainties are statistical and the second
systematic.

IV. DALITZ PLOT ANALYSES

A. Method

We use an isobar model formalism to perform the Dalitz
plot analysis [19]. The decays are described by a sum of
amplitudes representing nonresonant and resonant con-
tributions:

M =
∑

i

ciAi, (2)

where the ci ≡ ρie
iφi are complex coefficients of modulus

ρi ≡ |ci| and phase φi. The quantities Ai are complex
amplitudes and can be written as:

Ai = Di × Ti(Ω), (3)

where Di represents the dynamical function describing
the ith intermediate resonance, and Ti(Ω) represents the
angular distribution of the final state particles as a func-
tion of the solid angle Ω. For nonresonant events, we
have Ai = 1. The quantity Di is parameterized by a
Breit-Wigner function, whose expression for a resonance
r → AB is given by:

D =
FBFr

M2
r −M2

AB − iΓABMr

, (4)

where FB and Fr are the Blatt-Weisskopf damping fac-
tors for the B meson and for the resonance, Mr is the
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FIG. 1. Fits of the mES data distributions [15] for the modes
B0

→ D−D0K+ (top) and B+
→ D0D0K+ (bottom). Points

with statistical errors are data events, the red dashed line
represents the signal PDF, the blue dashed line represents
the background PDF, and the black solid line shows the total
PDF. The vertical lines indicate the signal region used in the
rest of the analysis.

mass of the resonance, MAB the invariant mass of the
system AB, and ΓAB its mass-dependent width. The
expression for the mass-dependent width is:

ΓAB = Γr

(

pAB

pr

)2J+1 (
Mr

MAB

)

F 2
r , (5)

where Γr and J are the width and the spin of the res-
onance. The quantity pAB is the momentum of either
daughter in the AB rest frame, and pr is the value of
pAB when MAB = Mr. The resonances we study here
have a natural width large enough and we can ignore the
effect of the detector resolutions.
The exact expressions of the Blatt-Weisskopf fac-

tors [20] are given in Ref. [21] and depend on the mo-
menta of the particles involved, on the spin of the reso-
nance, and on the radius of the Blatt-Weisskopf barrier.
For the B meson and for the intermediate resonance, we
use a radius of 1.5GeV−1. The angular term Ti(Ω) is
also given in Ref. [21] and depends on the masses of the
particles involved in the reaction as well as on the spin
of the intermediate resonance.
We extract the complex amplitudes present in the data

(from their modulus ρi and phase φi), and the mass and

width of the D∗

s1(2700)
+ resonance. To obtain these pa-

rameters, we perform an unbinned maximum likelihood
fit where the likelihood function for the event n can be
written as:

Ln = p× εi(m
2
1,m

2
2)×

|M|2
∫

|M|2ε(m2
1,m

2
2)dm

2
1dm

2
2

+(1− p)× B(m2
1,m

2
2)

∫

B(m2
1,m

2
2)dm

2
1dm

2
2

, (6)

where |M|2 =
∑

i,j cic
∗

jAiA
∗

j is calculated for the event
n. In this expression, m1 and m2 represent the invariant
mass of DD0 and D0K+ for the event n. The quantity
p corresponds to the purity of the signal. The function
ε(m2

1,m
2
2) is the efficiency across the Dalitz plot, and

the function B(m2
1,m

2
2) represents the background in the

Dalitz plot. The integrals are computed using Monte
Carlo events: since we use varying resonance parameters,
the integration is performed at each minimization step.
We minimize the total negative log likelihood:

F =
∑

n

−2× log(Ln), (7)

where the index n represents a particular event and the
sum is performed over the total number of events. We
compare the different fits using ∆F = F − Fnominal,
where F is the value of the total negative log likeli-
hood for a given fit and Fnominal is this value for the
nominal fit defined below. We are sensitive only to rel-
ative moduli and phases, which means we are free to fix
one modulus and one phase. We choose the D∗

s1(2700)
+

resonance as the reference amplitude with assignments
|cD∗

s1
(2700)+ | = 1 and φD∗

s1
(2700)+ = 0.

A Monte Carlo simulation is performed using the fit
results, and is superimposed on the data in the Dalitz
plot or on invariant mass projections. In addition to the
value of F , we compute the quantity χ2/ndof , where ndof

is the number of degrees of freedom, computed as the
number of bins in the Dalitz plot minus the number of
free parameters in the fit. We use an adaptative size of
the bins so that each bin contains at least 15 events to
get an approximately Gaussian behavior.
The fit fraction for each amplitude is defined as:

fi =
|ci|2

∫

|Ai|2dm2
1dm

2
2

∑

j,k cjc
∗

k

∫

AjA∗

kdm
2
1dm

2
2

. (8)

The fit fractions do not necessarily add up to 1, due to
the interferences that can take place between the different
final states. The errors on the fit fractions are evaluated
by propagating the full covariance matrix obtained from
the fit.
The initial values of the parameters are randomized

inside their bounds and 250 different fits are performed
with these randomized initial values. We choose the fit
which presents the smallest value of the total negative
log likelihood F , which allows us to avoid local minima
and to obtain the global minimum of the negative log
likelihood.
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B. Efficiency and background determination

As seen in Eq. (6), the efficiency variation over the
Dalitz plot needs to be parameterized. We employ Monte
Carlo simulations of the signal events for each recon-
structed D decay for the modes B0 → D−D0K+ and
B+ → D0D0K+. The signal density is simulated as be-
ing constant over the Dalitz plot. We divide the Dalitz
plot in bins of size 0.36× 0.53 (GeV2/c4)2. For each two-
dimensional bin, we divide the number of simulated sig-
nal events after selection and reconstruction by the gen-
erated number of events. We combine neighboring bins
with low statistics so that each bin has more than ten
simulated events after the reconstruction. We obtain a
mapping of the efficiency for each reconstructed D mode,
and combine these mappings by weighting them together
according to the D secondary branching fractions.
To obtain the function ε(m2

1,m
2
2) of Eq. (6), we use a

bilinear two-dimensional interpolation method applied on
the global efficiency mapping. The interpolation makes
use of the four values from the bins around a given mass
coordinate to compute the efficiency. At the edge of the
mapping, we use the value of the bin without interpola-
tion to avoid bias toward a null efficiency.
The background distribution in the Dalitz plot is de-

scribed by the function B(m2
1,m

2
2) of Eq. (6). We ob-

serve that the Monte Carlo simulation reproduces cor-
rectly the data by comparing events in the mES side-
band (mES < 5.26GeV/c2) between the data and the
simulation. We therefore employ a Monte Carlo simu-
lation of background events, using the same reconstruc-
tion and selection as in the data. We obtain a distri-
bution of the background in the Dalitz plot using bins
of size 0.27 × 0.37 (GeV2/c4)2. The distribution of the
background includes the contribution from the combina-
torial background (including the background which peaks
in the signal region), and we check that the small pro-
portion of cross-feed events has a similar distribution as
the background in the Dalitz plot. The background dis-
tribution is interpolated with a bilinear two-dimensional
method to get the value at any coordinate.

C. Fits of the Dalitz plots

The Dalitz plots for B0 → D−D0K+ and B+ →
D0D0K+ are shown in Fig. 2. The known amplitudes
that could give a contribution in the Dalitz plot for both
modes are:

• nonresonant events,

• the D∗

s1(2700)
+ meson, and

• the D∗

s2(2573)
+ meson, which can decay to D0K+,

but has not been observed in B → D(∗)DK decays.

The D∗

sJ(2860)
+ state decays also to D0K+ but is not

included in the nominal fit. Furthermore, for the mode

B+ → D0D0K+, additional contributions from charmo-
nium states are possible, and are included in the fit:

• the ψ(3770) meson, and

• the ψ(4160) meson.

The χc2(2P ), ψ(4040), and ψ(4415) mesons can also de-
cay to D0D0. However they are not included in the nom-
inal fit, and are treated separately. In the following fits,
the masses and widths of the resonances are fixed to their
world averages [16], except for the D∗

s1(2700)
+ where the

parameters are free to vary. The spin of this resonance
is assumed to be 1.
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5 6 7 8 9 10 11 12
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  (
G

eV
2 )0

D-
M

(D
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)4
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22

+K0D
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FIG. 2. Distributions of the data for the Dalitz plot for B0
→

D−D0K+ (top) and B+
→ D0D0K+ (bottom), where each

dot represents a B candidate.

1. Preliminary fits

We start by a fit to the Dalitz plot with the previously
listed amplitudes in the decays B0 → D−D0K+ and
B+ → D0D0K+. The projections on the D0K+ invari-
ant mass are shown in Fig. 3 (no nonresonant compo-
nent is included for B+ → D0D0K+ as explained be-
low). We see clearly in both cases that the fits are not
satisfactory, with values of χ2/ndof (of ∆F) equal to
82/48 (36) and 265/51 (223) for B0 → D−D0K+ and
B+ → D0D0K+, respectively. In particular, we see that
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the D0K+ region between 2350 and 2500 MeV/c2 is not
well described, especially for B+ → D0D0K+. This re-
gion corresponds to the threshold in the D0K+ phase
space. The Belle experiment has also reported this en-
hancement of data with respect to the background in the
study of the B+ → D0D0K+ decay mode [4].

2. D0K+ low-mass excess

We check that the enhancement is due to the signal and
not the background using two methods to subtract the
background. The first method consists of dividing the
D0K+ invariant mass range into 20MeV/c2 slices and
fitting the mES distribution in each slice. The signal
contribution is extracted from the fit, and plotted as
a function of mass to obtain a background subtracted
D0K+ invariant mass distribution. The second method
is based on the use of the sPlot technique [22], which al-
lows the subtraction of the background in the invariant
mass distribution using other uncorrelated variables so
that the signal is kept with the correct statistical signifi-
cance for the variable to be plotted. The sPlot technique
uses the results of the mES fit described in Sec. III (yields
and covariance matrix) and the PDFs of this fit to com-
pute an event-by-event weight for the signal and back-
ground categories. We obtain a D0K+ invariant mass
distribution free of background by applying the sPlot

weight to each event. Using these two methods of back-
ground subtraction, we observe that the enhancement at
low mass is present in the D0K+ invariant mass distri-
butions for both modes, proving that it originates from
B → DD0K+ final states.
We verify that this effect cannot be explained by the

reflection of a known resonance. A reflection could orig-
inate from cross-feed events. If one of the cross-feed
modes of the mode of interest contains a resonance, then
this resonance can appear as a structure in the mode of
interest, with a smaller magnitude and a shifted mass.
As noted earlier, we observe that the cross feed is small
for the modes B0 → D−D0K+ and B+ → D0D0K+.
We use simulations of B → DDs1(2536), followed by
Ds1(2536) → D∗K, using the branching fractions from
Ref. [2] to estimate the possible pollution from these
cross-feed modes. We observe that this source of pol-
lution is negligible and cannot explain the enhancement.
We also make use of simulations of the cross-feed pro-
cesses B → DD∗

s1(2700)
+, followed by D∗

s1(2700)
+ →

D(∗)K, but we observe that these modes give almost no
contribution to B0 → D−D0K+ and B+ → D0D0K+.
In conclusion, no reflection seems to explain the enhance-
ment seen at low mass in the D0K+ invariant mass dis-
tributions.
This excess at low mass could be explained by an

additional resonance, although none is expected in this
mass range. To test this hypothesis, we refit the data
adding the PDF of a scalar resonance with mass and
width that are free to float. The quality of the fits im-

proves after the addition of the scalar, with values of
χ2/ndof (of ∆F) equal to 58/44 (−2) and 90/49 (−1)
for B0 → D−D0K+ and B+ → D0D0K+, respectively.
The fit for B0 → D−D0K+ returns a mass and width of
the scalar of 2412± 16MeV/c2 and 163± 64MeV and for
B+ → D0D0K+ of 2453± 20MeV/c2 and 283± 45MeV,
respectively (statistical uncertainties only). These two
results are not incompatible (∼1.5σ difference for both
mass and width, where σ is the standard deviation), but
the assumption of such a wide resonance at this mass
would be speculative. We also try fits with a wide vir-
tual resonance below the D0K+ threshold, but these fits
yield widths with uncertainties that are larger than the
corresponding central values. Thus it is not possible to
conclude that a real scalar resonance contributes to the
B → DD0K+ decays. The excess at low mass, although
evident, lacks enough statistics to draw definitive conclu-
sions about its nature. In consequence, since the excess
at low D0K+ mass in this data is not understood, we use
an arbitrary function to describe it.
This function is chosen to be an exponential starting

at the D0K+ mass threshold. The exponential function

takes the form AExpo = e−α(m2
2−m2

2 thr) where AExpo is
the amplitude from Eq. (3), α is a free parameter,m2 the
D0K+ invariant mass of the event, and m2 thr the mass
threshold, corresponding to the sum of the D0 and K+

masses. Another approach, introduced in Ref. [23], con-
sists of integrating an exponential contribution as part
of the nonresonant amplitude, assuming that the non-
resonant amplitude is not necessarily constant over the
Dalitz plot.

3. Nominal fits

For B0 → D−D0K+, the nominal content of the fit in-
cludes the nonresonant, theD∗

s1(2700)
+, theD∗

s2(2573)
+,

and the exponential amplitudes, which makes a total of
nine free parameters in the fit. For B+ → D0D0K+ the
fits are not improved when adding the nonresonant com-
ponent, so we use for the nominal content of the fit the
D∗

s1(2700)
+, the D∗

s2(2573)
+, the ψ(3770), the ψ(4160),

and the exponential amplitudes. This fit has a total of
eleven free parameters.
As stated above, the final fits for B0 → D−D0K+ and

B+ → D0D0K+ are each chosen from among 250 fits
with randomized initial values of the fit parameters. For
B0 → D−D0K+, we observe that the majority of the
fits (60%) converge to the exact same values of the set
of fitted parameters, which we choose as our nominal fit.
However a proportion of fits (23%) converges to a slightly
lower value of F with a sum of fit fractions (Eq. (8))
greater than 250%. This large sum of fractions, which
is unlikely to be physical, originates from large interfer-
ence between the nonresonant and the exponential con-
tributions, which are both ad hoc amplitudes. These fits
return values of the parameter related to the resonances
very close to those of the nominal fit: these differences
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FIG. 3. Projections of the Dalitz plot on the D0K+ axis for the data (dots) and for the result of the preliminary fit (total
histogram) for the modes B0

→ D−D0K+ (left) and B+
→ D0D0K+ (right). The fit includes the background (plain yellow

histogram), the nonresonant (vertical-hatched blue histogram), the D∗

s1(2700)
+ (red histogram), and the D∗

s2(2573)
+ (plain

dark gray histogram) amplitudes. For B+
→ D0D0K+, the additional charmonium contributions consist of the ψ(3770)

(horizontal-hatched light blue histogram) and the ψ(4160) (plain light gray histogram) amplitudes.

are taken into account in the calculation of the system-
atic uncertainties. Moreover, we find a local minimum
for 3% of the fits with ∆F = 1, which we account for in
the systematic uncertainties. We observe that 5% of the
fits have ∆F > 20. For B+ → D0D0K+, one third of the
250 fits converge to the global minimum, chosen as our
nominal fit. We observe four local minima, representing
a proportion of 42% of the fits, situated at ∆F < 4 of the
global minimum. Since these fits are close to the nominal
one, we use them as a contribution to the systematic un-
certainties for the parameters related to the resonances.
We see that 10% of the fits have ∆F > 20, justifying the
use of the procedure of randomizing the initial values of
the parameters.

The nominal fit for B0 → D−D0K+ is shown in
Fig. 4 and returns χ2/ndof = 56/45. The nominal fit
for B+ → D0D0K+ is presented in Fig. 4, and gives
χ2/ndof = 86/48. The high value of the χ2/ndof can be
partly explained by some discrepancies between the data
and our fit located mainly in the ψ(3770) region. We
do not extract any information from this region, and we
consider that the fit gives a satisfactory description of
the data in other regions.

To assess the values found for F for the nominal fit
for each mode, we generate a large number of Monte
Carlo samples based on the PDFs of the nominal fits
with the statistics of the data, and fit these samples with
the same method as in the data. We observe that the
nominal values of F for the two modes are close (0.2σ)
to the central values of the distributions of F obtained
from the Monte Carlo samples. Similarly to the data,
the simulations show the presence of several local minima
close to the global minimum.

Comparing the fit results before and after removing a
resonance with fixed shape parameters allows us to trans-

late directly the difference of negative log likelihood as a
χ2 distribution with two degrees of freedom (modulus
and phase). A difference ∆F of 12 and 29 corresponds
roughly to a statistical significance of 3σ and 5σ, respec-
tively. This significance does not take into account the
systematic uncertainties, and the final significance de-
creases after taking them into account. This property is
used here to estimate the need for the D∗

s2(2573)
+ and

ψ(4160) resonances. In a first stage, we repeat the nom-
inal fit without the D∗

s2(2573)
+ amplitude. We observe

that the minimum log likelihood increases with ∆F = 16
for B0 → D−D0K+ and ∆F = 5 for B+ → D0D0K+,
indicating that the presence of the D∗

s2(2573)
+ resonance

is significant in B0 → D−D0K+. Removing the ψ(4160)
component from the Dalitz plot fit of B+ → D0D0K+

gives ∆F = 23.

Adding an additional amplitude for either the
D∗

sJ(2860)
+ or the DsJ (3040)

+ resonance does not im-
prove the fits (assuming a spin of 1 for these two states).
For B+ → D0D0K+, adding a contribution for either
the χc2(2P ), ψ(4040), or ψ(4415) meson does not im-
prove the fit to a significant level. None of the param-
eters changed by a statistically significant amount when
adding to the fit these extra resonances and no system-
atic error is assigned to for these resonances.

V. SYSTEMATIC UNCERTAINTIES

We consider several sources of systematic uncertainties
in the fit parameters such as the moduli, the phases, the
fit fractions, and the mass and width of the D∗

s1(2700)
+.

Tables I and II give the details of the systematic uncer-
tainties.

To estimate a potential fit bias, we generate a large
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FIG. 4. Projections of the Dalitz plot on the three axes for the data (dots) and for the result of the nominal fit (total
histogram) for the modes B0

→ D−D0K+ (left) and B+
→ D0D0K+ (right). The fit includes the background (plain

yellow histogram), the nonresonant (vertical-hatched blue histogram, present only for B0
→ D−D0K+), the D∗

s1(2700)
+ (red

histogram), the D∗

s2(2573)
+ (plain dark gray histogram), and the exponential (cross-hatched green histogram) amplitudes. For

B+
→ D0D0K+, the additional charmonium contributions consist of the ψ(3770) (horizontal-hatched light blue histogram)

and the ψ(4160) (plain light gray histogram) amplitudes.

number of Monte Carlo samples based on the nominal
fits with the same statistics as in the data. We perform
the Dalitz plot fit on these samples and extract the cen-
tral value and uncertainty of each parameter. We obtain
a distribution of the pull for each parameter, defined as
the difference between the central value from a particular

Monte Carlo sample and the nominal value, divided by
the uncertainty in the fit value from the Monte Carlo
sample. These distributions have a width compatible
with 1 as expected, but their mean is observed to be
shifted with respect to 0, which points toward fit biases
that we correct for in our results. The systematic un-
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TABLE I. Systematic uncertainties for B0
→ D−D0K+ in the moduli, in the phases (◦), in the fractions (%), in the mass

(MeV/c2) and the width (MeV) of the D∗

s1(2700)
+, and in α, the parameter of the exponential function. The labels refer to

systematic uncertainties related to the fit bias (“Bias”), efficiency interpolation (“Eff.”), statistical uncertainty in efficiency
(“Eff. II”), background knowledge (“Bkg”), Blatt-Weisskopf barrier (“BW”), low-mass description (“Low mass”), D∗

s2(2573)
+

amplitude (“D∗

s2”), and other minima (“Min.”). The sign ‘—’ means that no systematic uncertainty has been attributed to
the specific parameter.

Parameter Value Bias Eff. Eff. II Bkg BW Low D∗

s2 Min. Total
mass

Modulus D∗

s2(2573)
+ 0.031 ±0.001 0 ±0.001 0 ±0.001 0 0 ±0.001 ±0.002

Modulus nonresonant 1.33 ±0.09 ±0.03 ±0.05 +0.21
−0.33

+0.39
−0.00 0 +0.04 — +0.46

−0.35

Modulus exponential 6.94 ±0.24 ±0.06 ±0.19 +0.12
−0.21

+0.72
−0.20 0 +0.21 — +0.82

−0.43

Phase D∗

s2(2573)
+ 277 ±4 ±1 ±2 ±2 +0

−8
+2
−0 0 +4

−0
+6
−9

Phase nonresonant 287 ±2 0 ±1 +9
−6

+2
−14 0 0 — +10

−15

Phase exponential 269 ±6 ±1 ±4 +3
−0

+0
−13 0 +15 — +17

−15

Fraction D∗

s1(2700)
+ 66.7 — ±0.2 ±0.6 +2.2

−2.1
+0.4
−2.1

+1.3
−0.0 +0.6 +2.3

−2.3
+3.5
−3.8

Fraction D∗

s2(2573)
+ 3.2 — 0 ±0.2 +0.0

−0.1
+0.0
−0.3

+0.2
−0.0 0 +0.1

−0.0
+0.3
−0.4

Fraction nonresonant 10.9 — ±0.3 ±0.7 +3.3
−4.3

+6.1
−0.0 0 +0.2 — +7.0

−4.3

Fraction exponential 9.9 — ±0.2 ±0.5 +2.9
−1.5

+0.0
−2.9 0 +0.9 — +3.0

−3.3

M(D∗

s1(2700)
+) 2694 ±2 0 ±1 0 +13

−2
+0
−1 0 +3

−0
+13
−3

Γ(D∗

s1(2700)
+) 145 ±8 ±1 ±3 +4

−3
+17
−9

+5
−0 −6 +11

−4
+22
−14

α 1.43 ±0.11 ±0.02 ±0.08 +0.20
−0.26

+0.48
−0.00 0 −0.06 — +0.54

−0.30

certainty related to this bias correction is taken as half
of the bias added in quadrature with the uncertainty in
the bias (the systematic uncertainty related to the bias
is labeled as “Bias” in Tables I and II).

Systematic uncertainties arise from the efficiency cal-
culation. To estimate these we first use the raw efficiency
in each bin of the Dalitz plot instead of the interpolation,
and consider the difference for each parameter as an es-
timate of the systematic uncertainties for the efficiency
(labeled as “Eff.” in Tables I and II). Second, we take
into account the statistical fluctuation on the efficiency
due to the finite number of Monte Carlo events. In each
bin of the Dalitz plot, we randomize the efficiency within
its statistical uncertainty, and produce many new map-
pings of the efficiency. The analysis is performed using
these new efficiency mappings, which gives a distribution
for each parameter from which we extract the systematic
uncertainties (column “Eff. II”).

Another source of systematic uncertainty comes from
the background description. Repeating the analysis using
the raw value of the background in each bin of the Dalitz
plot instead of the interpolation does not change the re-
sults. In addition, the signal purity is varied according
to its total uncertainty (see Sec. III), which allows us to
get the systematic uncertainty related to the signal and
background knowledge (column “Bkg”).

Several systematic uncertainties arise from the fit mod-
eling. The first one comes from the Blatt-Weisskopf bar-

rier, which is not known precisely. Fits of both modes
with this value as a free parameter show that the analysis
is not sensitive to it. To estimate the related systematic
uncertainty, we repeat the analysis changing the value
of the Blatt-Weisskopf barrier radius from the nominal
value 1.5 GeV−1 to 5 GeV−1 and 0 GeV−1. The dif-
ferences for each parameter between the nominal fit and
these fits give the systematic uncertainties (labeled as
“BW” in the tables). Another systematic uncertainty
originates from the description of the low-mass excess.
Since this effect is not understood in the current data, it
is important to estimate the possible influence it induces
on the fit parameters, especially the mass and the width
of the D∗

s1(2700)
+ meson. To compute the systematic

uncertainties associated with this effect, we assume first
that the excess originates from a scalar resonance at low
mass: we repeat the fits replacing the exponential contri-
bution by a scalar resonance with a mass and a width free
to float. Second, instead of the exponential function, we
use an alternative model, AAlt = 1

1+a×(m2
2
−m2

2 thr
)
with

a a free parameter. The maximum deviations with re-
spect to the nominal fit for each of these two alternatives
are used as the systematic uncertainties (column “Low
mass”). We then study the influence of the resonances on
the analyses. Since the D∗

s2(2573)
+ amplitude presents a

low fit fraction, we repeat the fits without this amplitude
and take the difference as a systematic uncertainty (col-
umn “D∗

s2”). The effect of the spin-1 D∗

sJ (2860)
+ has
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TABLE II. Systematic uncertainties for B+
→ D0D0K+ in the moduli, in the phases (◦), in the fractions (%), in the mass

(MeV/c2) and the width (MeV) of the D∗

s1(2700)
+, and in α, the parameter of the exponential function. The labels refer to

systematic uncertainties related to the fit bias (“Bias”), efficiency interpolation (“Eff.”), statistical uncertainty in efficiency
(“Eff. II”), background knowledge (“Bkg”), Blatt-Weisskopf barrier (“BW”), low-mass description (“Low mass”), D∗

s2(2573)
+

amplitude (“D∗

s2”), ψ(3770) amplitude (“ψ”), and other minima (“Min.”). The sign ‘—’ means that no systematic uncertainty
has been attributed to the specific parameter.

Parameter Value Bias Eff. Eff. II Bkg BW Low D∗

s2 ψ Min. Total
mass

Modulus D∗

s2(2573)
+ 0.021 ±0.001 ±0.001 ±0.001 0 +0.003

−0.000
+0.006
−0.000 0 0 +0.005

−0.002
+0.009
−0.003

Modulus ψ(3770) 1.40 ±0.08 ±0.02 ±0.03 +0.05
−0.06

+0.03
−0.10

+0.06
−0.00 +0.07 −0.19 +0.14

−0.00
+0.20
−0.24

Modulus ψ(4160) 0.78 ±0.02 ±0.01 ±0.03 ±0.01 +0.00
−0.10

+0.16
−0.00 +0.06 −0.02 +0.06

−0.08
+0.18
−0.14

Modulus exponential 16.15 ±0.53 ±0.13 ±0.35 +0.57
−0.70

+0.00
−1.44 0 +0.66 −0.18 — +1.09

−1.74

Phase D∗

s2(2573)
+ 267 ±9 ±3 ±3 +7

−8
+1
−3

+5
−0 0 0 +10

−0
+17
−13

Phase ψ(3770) 284 ±5 0 ±2 ±1 +0
−22

+7
−19 −2 −4 +25

−4
+26
−30

Phase ψ(4160) 188 ±6 0 ±2 ±4 +0
−3

+12
−0 −1 +1 +2

−15
+14
−17

Phase exponential 308 ±2 ±1 ±2 ±2 ±4 0 +2 +1 — +6
−5

Fraction D∗

s1(2700)
+ 38.3 — ±0.3 ±0.6 +0.3

−0.0
+0.0
−0.1

+0.0
−2.4 −1.4 0 +0.0

−5.5
+0.8
−6.2

Fraction D∗

s2(2573)
+ 0.6 — ±0.1 ±0.1 0 +0.2

−0.0
+0.3
−0.0 0 0 +0.2

−0.1
+0.4
−0.2

Fraction ψ(3770) 9.0 — 0 ±0.3 +0.3
−0.2

+0.0
−0.5

+0.1
−0.4 +0.1 −0.4 ±0.1 +0.4

−0.8

Fraction ψ(4160) 6.4 — ±0.1 ±0.3 ±0.3 +0.0
−0.7

+1.7
−0.1 +0.4 −0.1 +0.7

−2.3
+1.9
−2.4

Fraction exponential 44.5 — ±0.2 ±0.6 +0.0
−0.2

+0.0
−2.0 0 +1.1 −0.2 — +1.3

−2.1

M(D∗

s1(2700)
+) 2707 ±4 0 ±1 ±3 +7

−2
+0
−4 +1 0 +0

−5 ±8

Γ(D∗

s1(2700)
+) 113 ±5 ±1 ±3 +9

−7
+17
−0

+0
−9 −5 +2 +0

−7
+20
−16

α 0.68 ±0.01 0 ±0.01 ±0.01 +0.02
−0.00 0 −0.02 0 — ±0.02

also been investigated: because the fits return negligi-
ble fractions for this state, the systematic uncertainties
on the other parameters are found to be negligible. For
B+ → D0D0K+, another systematic uncertainty (col-
umn “ψ”) arises from the ψ(3770) parameters fixed to
the world average value [16]. As an alternative, we use
the measurement from the KEDR experiment [24]. This
experiment reports a result which takes into account the
resonance-continuum interference in the near-threshold
region and which agrees well with previous BABAR mea-
surements [2, 25].

As discussed previously, 250 fits are performed for each
mode with randomized initial values of the fit param-
eters, which allows us to find the nominal fit. We find
several minima which are close to the nominal fit, and we
use the largest differences in parameter values (for those
related to resonances) as contributions to their system-
atic uncertainties (column “Min.”).

VI. RESULTS

A. Dalitz plot analysis

The results for the Dalitz plot analysis of the modes
B0 → D−D0K+ and B+ → D0D0K+ are presented
in Tables III and IV. In both modes, we observe
a large contribution of the D∗

s1(2700)
+ resonance via

B0 → D−D∗

s1(2700)
+, D∗

s1(2700)
+ → D0K+ for B0 →

D−D0K+ and via B+ → D0D∗

s1(2700)
+, D∗

s1(2700)
+ →

D0K+ for B+ → D0D0K+. This is the first time the
D∗

s1(2700)
+ is observed in the decay B0 → D−D0K+.

We observe that the D∗

s2(2573)
+ meson contributes a

small fraction to B0 → D−D0K+ whereas it is not sig-
nificant in the other mode. We note that the D∗

s2(2573)
+

meson is expected to be suppressed in B → D(∗)D(∗)K
decays due to its spin value of 2. We observe the decay
B+ → ψ(3770)K+, ψ(3770) → D0D0, which confirms
one of our previous results [2]. We notice that the pro-
cess B+ → ψ(4160)K+ followed by ψ(4160) → D0D0

is needed to improve the description of the data. The
low-mass excess in the D0K+ invariant mass is evident
in B0 → D−D0K+ and is the main contribution in
B+ → D0D0K+. With this data sample it is not possi-
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ble to determine the origin of this excess. The exponen-
tial function used to describe the effect has a parameter
α equal to 1.43 ± 0.71+0.54

−0.30 and 0.68 ± 0.08 ± 0.02 for

B0 → D−D0K+ and B+ → D0D0K+, respectively.

B. Branching fractions

The partial branching fraction Bres for a given resonance
is computed using the fraction fres of the resonance (see
Tables III and IV) and the total branching fraction Btot of
the specific B mode. We use the total branching fractions
measured in a previous publication [15] with the exact
same data sample. The computation is as follows:

Bres = fres × Btot.

The uncertainties for the partial branching fraction are
computed from the quadratic sum of the uncertainties
from the total branching fraction [15] and the uncertain-
ties from the fraction (see Tables III and IV), where we
treat separately the statistical and systematic uncertain-
ties.
The results are presented in Table V. We can compare

these results with previous publications that are avail-
able for the mode B+ → D0D0K+. In BABAR [2], us-
ing an analysis of the D0D0 invariant mass, the result
for the ψ(3770) was B(B+ → ψ(3770)K+ [D0D0]) =
(1.41 ± 0.30 ± 0.22) × 10−4, which is in good agree-
ment with the current result. This present measure-
ment supersedes the previous one. The Belle experi-
ment [4] finds for the partial branching fraction B(B+ →
D0D∗

s1(2700)
+ [D0K+]) = (11.3 ± 2.2+1.4

−2.8) × 10−4 and

B(B+ → ψ(3770)K+ [D0D0]) = (2.2± 0.5± 0.3)× 10−4,
which present a difference with our measurements of 1.7σ
and 1.4σ, respectively.
The significance of the decay of the ψ(4160) charmo-

nium resonance to D0D0 is 3.3σ, including systematic
uncertainties. The significance of the D∗

s2(2573)
+ meson

decay to D0K+ is 3.4σ (for the mode B0 → D−D0K+),
including systematic uncertainties.

C. Properties of D∗

s1(2700)
+

We show in Table VI the result for the mass and width
of the D∗

s1(2700)
+ meson for the two modes obtained

from the Dalitz plot analysis. The measurements in the
two final states agree with each other within their un-
certainties. We combine the measurements for the mass
and width, respectively, calculating the weighted means
and taking into account the asymmetric uncertainties.
This procedure works for uncertainties that are not cor-
related between the measurements. Only the systematic
uncertainty coming from the Blatt-Weisskopf factor is
correlated between the modes: we perform first the com-
bination without this particular systematic uncertainty,
where we obtain M(D∗

s1(2700)
+) = 2699± 7MeV/c2 and

Γ(D∗

s1(2700)
+) = 127±17MeV (including statistical and

systematic). For the uncertainty related to the Blatt-
Weisskopf factor, we use the maximum positive and neg-
ative deviations found in the two modes that we add
quadratically to the total uncertainties.
Finally, the combination of both modes gives :

M(D∗

s1(2700)
+) = 2699+14

−7 MeV/c2, (9)

Γ(D∗

s1(2700)
+) = 127+24

−19MeV,

where the uncertainties quoted are the total uncertainties
(including statistical and systematic).
These values can be compared to the current world

average of M(D∗

s1(2700)
+) = 2709 ± 4MeV/c2 and

Γ(D∗

s1(2700)
+) = 117± 13MeV [16]. Our measurements

are compatible with the world averages.
The Dalitz plot analyses have been performed with the

spin hypothesis J = 1 for the D∗

s1(2700)
+. To test this

hypothesis, we repeat the fits using the hypotheses J = 0
and J = 2. The results are presented in Table VII. We
conclude from this table that J = 0, 2 are not able to
fit correctly the data, and that J = 1 is strongly fa-
vored. Because of parity conservation, we deduce that
the D∗

s1(2700)
+ meson is a state with JP = 1−, which

confirms the measurement performed by the Belle exper-
iment [4].

VII. CONCLUSIONS

We have analyzed 471× 106 pairs of B mesons recorded
by the BABAR experiment and studied the decays B0 →
D−D0K+ and B+ → D0D0K+. Dalitz plot analyses
of these decays have been performed, where we extract
moduli and phases for each contribution to these decay
modes. We observe the D∗

s1(2700)
+ meson in both final

states and measure its mass and width to be:

M(D∗

s1(2700)
+) = 2699+14

−7 MeV/c2, (10)

Γ(D∗

s1(2700)
+) = 127+24

−19MeV,

where the uncertainties include statistical and systematic
uncertainties. We determine its spin-parity to be JP =
1−.
Several possibilities have been discussed to interpret

the D∗

s1(2700)
+ meson. This resonance could be inter-

preted as the n2S+1LJ = 13D1 cs̄ state [26] or as the
first radial excitation of the D∗

s(2112) meson (23S1) [27].
Some authors interpret the D∗

s1(2700)
+ state as a mixing

between the 23S1 and the 13D1 states [28], obtaining a
model which is able to solve some of the discrepancies
with the experimental data. Another possibility would
be that the signal interpreted as the D∗

s1(2700)
+ origi-

nates from two resonances overlapping each other [26].
We observe an enhancement between 2350 and 2500

MeV/c2 in the D0K+ invariant mass that we are not able
to interpret. This enhancement, which has an important
contribution in the B+ → D0D0K+ decay mode, is de-
scribed by an ad-hoc function in the Dalitz plot fit. This
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TABLE III. Results from the Dalitz plot fit (moduli, phases, and fractions) for B0
→ D−D0K+. The different contributions

are listed: the D∗

s1(2700)
+ and D∗

s2(2573)
+ resonances, the nonresonant amplitude and the low-mass excess described by an

exponential. The first uncertainties are statistical and the second systematic.

Contribution Modulus Phase (◦) Fraction (%)

D∗

s1(2700)
+ 1.00 0 66.7 ± 7.8+3.5

−3.8

D∗

s2(2573)
+ 0.031 ± 0.008 ± 0.002 277± 17+6

−9 3.2± 1.6+0.3
−0.4

Nonresonant 1.33 ± 0.63+0.46
−0.35 287± 21+10

−15 10.9 ± 6.6+7.0
−4.3

Exponential 6.94 ± 1.83+0.82
−0.43 269± 33+17

−15 9.9± 2.9+3.0
−3.3

Sum 90.6± 10.7+8.4
−6.7

TABLE IV. Results from the Dalitz plot fit (moduli, phases, and fractions) for B+
→ D0D0K+. The different contributions are

listed: the D∗

s1(2700)
+, D∗

s2(2573)
+, ψ(3770), and ψ(4160) resonances, and the low-mass excess described by an exponential.

The first uncertainties are statistical and the second systematic.

Contribution Modulus Phase (◦) Fraction (%)

D∗

s1(2700)
+ 1.00 0 38.3 ± 5.0+0.8

−6.2

D∗

s2(2573)
+ 0.021 ± 0.010+0.009

−0.003 267± 30+17
−13 0.6 ± 1.1+0.4

−0.2

ψ(3770) 1.40 ± 0.21+0.20
−0.24 284± 22+26

−30 9.0 ± 3.1+0.4
−0.8

ψ(4160) 0.78 ± 0.20+0.18
−0.14 188± 13+14

−17 6.4 ± 3.1+1.9
−2.4

Exponential 16.15 ± 2.26+1.09
−1.74 308± 8+6

−5 44.5 ± 6.2+1.3
−2.1

Sum 98.9 ± 9.2+2.5
−7.0

TABLE V. Summary of partial branching fractions. The
first uncertainties are statistical and the second systematic.
The notation B0

→ D−D∗

s1(2700)
+ [D0K+] refers to B0

→

D−D∗

s1(2700)
+ followed by D∗

s1(2700)
+
→ D0K+.

Mode B (10−4)

B0
→ D−D∗

s1(2700)
+ [D0K+] 7.14± 0.96 ± 0.69

B+
→ D0D∗

s1(2700)
+ [D0K+] 5.02± 0.71 ± 0.93

B0
→ D−D∗

s2(2573)
+ [D0K+] 0.34± 0.17 ± 0.05

B+
→ D0D∗

s2(2573)
+ [D0K+] 0.08± 0.14 ± 0.05

B+
→ ψ(3770)K+ [D0D0] 1.18± 0.41 ± 0.15

B+
→ ψ(4160)K+ [D0D0] 0.84± 0.41 ± 0.33

effect was also seen in the Belle experiment in the study
of the B+ → D0D0K+ final state [4].

It is not clear what could be the cause of this enhance-
ment in the D0K+ invariant mass, although we note that
some Ds excited states are expected in this mass range
in some models [27, 29] and have not been observed yet.
Some authors, as for example in Ref. [23], who have ob-
served the same effect in other channels claim that it
could be a specific form of a nonresonant amplitude.

Finally, we do not observe the D∗

sJ (2860)
+ and

DsJ(3040)
+ resonances in the final states B0 →

D−D0K+ and B+ → D0D0K+.

TABLE VI. Mass and width of the D∗

s1(2700)
+ meson ob-

tained from the Dalitz plot analyses of the modes B0
→

D−D0K+ and B+
→ D0D0K+. The first uncertainties are

statistical and the second systematic.

Mode Mass (MeV/c2) Width (MeV)

B0
→ D−D0K+ 2694 ± 8+13

−3 145± 24+22
−14

B+
→ D0D0K+ 2707 ± 8± 8 113± 21+20

−16
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