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Bose symmetry and CPT symmetry are two very fundamental symmetries of Nature. However, the validity
of these symmetries in diverse phenomena must be verified by experiments. We propose new techniques to
probe these two fundamental symmetries in the realm of mesons by using the Dalitz plot of a few three-body
meson decays. Since these symmetries are very fundamental in nature, their violations, if any, are expected
to be extremely small. Hence, observing their violations requires study of a huge data sample. In this context
we introduce a new three-dimensional plot which we refer to as the Dalitz ‘prism’. This provides an innovative
means for acquiring the huge statistics required for such studies. Using the Dalitz plots and the Dalitz prisms we
chart out the way to probe the violations of Bose and CPT symmetries in a significant manner. Since mesons are
unstable and composite particles, testing the validity of Bose symmetry and the CPT symmetry in these cases
are of paramount importance for fundamental physics.

PACS numbers: 11.30.Cp, 11.30.Er, 11.80.Cr

The statement that a state made up of two identical bosons
does not alter under exchange of the two bosons is the dictum
of Bose symmetry [1]. This along with the Fermi statistics [2]
forms one of the cornerstones of modern physics, the famous
spin-statistics theorem. Within the conventional Lorentz in-
variant and local quantum field theory, even a small violation
of Bose symmetry is impossible. There have been therefore
a lot of interest in experiments looking for Bose symmetry
violation as a means of testing the present theoretical frame-
work. Theoretical ideas and experimental investigations for
Bose symmetry violations have looked at the spin-0 nucleus
of oxygen 16O [3, 4], molecules such as 16O2 and CO2 [5–8],
photons [9–14], pions [15] and Bose symmetry violating tran-
sitions [16–22]. Theoretically a scenario where Bose symme-
try is not exact swings open doors to a plethora of avenues for
new physics [23–27]. Like the Bose symmetry, the very nature
of Lorentz invariant local quantum field theory encompasses
another fundamental symmetry of Nature, namely the CPT
symmetry. This symmetry combines the operations of charge
conjugation (C), parity (P) and time reversal (T ). In the con-
ventional settings of quantum field theory, the CPT symme-
try is very closely related to both spin-statistics theorem and
Lorentz invariance [28–47]. However, CPT invariance and
the spin-statistics theorem need not be connected [47–49],
and there are examples of quantum field theories in the litera-
ture [50–52] that explicitly violate the CPT invariance. Under
CPT transformation, a particle becomes its antiparticle and
vice versa with the same three-momentum but with its helic-
ity reversed. The CPT invariance also implies that a parti-
cle and its antiparticle must have the same mass, decay width
and lifetime. It is important to note that if CPT invariance
holds good but CP is violated, then partial rate asymmetries
for a particle and its antiparticle can be different while keep-
ing their total decay rates unchanged [53]. Similarly, the CPT
invariance also implies that the total scattering cross-section
of two particles would be equal to that of their antiparticles,
but the partial scattering cross-sections need not be equivalent
if CP is violated [54]. Though CPT invariance is in concord
with our present theoretical framework of Standard Model of
particle physics, it needs to be thoroughly tested experimen-

tally. The literature is replete with many tests for CPT viola-
tion, such as in anomalous magnetic moments [55, 56], double
beta decay [57], some neutral mesons [58–69], muon [70, 71],
neutrino [72–77], Higgs boson decay [78], neutron [79], pho-
ton [80, 81], Hydrogen atom [82], cosmic microwave back-
ground measurements [83] as well as some space based ex-
periments [84]. A summary of results of many such studies
and more references can be found in Ref [85]. The best test of
CPT inavraiance has come from polarization studies of cos-
mic microwave background radiation [85]. In all these stud-
ies there is no concrete indication of any breakdown of the
CPT invariance. However, if there is even an extremely small
violation of CPT , it would have very significant theoretical
ramifications in various models of new physics. If CP vio-
lation is present in the decay mode, it might overshadow the
signature of CPT violation in the Dalitz plots. Therefore, us-
age of Dalitz plot for observation of CPT violation must be
dealt with deftly. Nevertheless, probing violations of Bose
and CPT symmetries by new methods is of paramount impor-
tance. As was shown in Refs. [46, 86] CPT violation invari-
ably leads to an associated violation of Lorentz invariance in
an interacting field theory. Though very alluring, we do not
dwell upon any signatures of Lorentz violation in the Dalitz
plot; as this is outside the scope of this paper.

In this paper we shall point out methods, in search for the
violations of Bose symmetry and CPT symmetry, in some
three-body meson decays via the Dalitz plot. This is in contin-
uation of our efforts to use Dalitz plot as an experimental tool
to search for violations of some of the fundamental symme-
tries in Nature, such as the CP symmetry [87]. In this work
we shall analyze the observational signatures of violation of
Bose symmetry and CPT symmetry in the Dalitz plot. On the
way we shall elucidate the techniques by considering a few
decay modes in which these searches would be fruitful. Fi-
nally, we shall introduce the concept of and explain the utility
of the Dalitz ‘prism’ which in its simplest form can be realized
as a stacked up pile of numerous Dalitz plots with increasing
center-of-momentum energy. We conclude emphasizing the
importance of these new methods.

Let us consider a general three-body decay process, say
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X → 1 + 2 + 3, where the 4-momentum of the particle i
(i ∈ {X, 1, 2, 3}) is denoted by pi and its corresponding mass is
denoted by mi. Let us also define the following Mandelstam-
like variables: s = (p2 + p3)2 = (pX − p1)2, t = (p1 + p3)2 =

(pX − p2)2 and u = (p1 + p2)2 = (pX − p3)2. It is well known
that s + t + u = m2

X + m2
1 + m2

2 + m2
3 = M2 (say). We can always

construct a ternary plot (see Fig. 1) of which (t, u, s) form
the cartesian coordinates. The ternary plot can also be de-
scribed by a barycentric rectangular coordinate system (x, y)
or a barycentric polar coordinate system (r, θ). For the polar
coordinate system the pole is at the centroid of the equilateral
triangle of the ternary plot and the polar axis passes through
the vertex for which (t, u, s) = (0, 0,M2). It is quite straight-
forward to express the variables s, t, u in terms of r, θ and x, y
as follows:

s =
M2

3

(
1 + r cos θ

)
=

M2

3

(
1 + y

)
, (1)

t =
M2

3

(
1 + r cos

(
2π
3
− θ

))
=

M2

6

(
2 −
√

3x − y
)
, (2)

u =
M2

3

(
1 + r cos

(
2π
3

+ θ

))
=

M2

6

(
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FIG. 1. (Color online) A hypothetical Dalitz plot with Mandelstam-
like variables s, t, u for the decay X → 1 + 2 + 3. The three sides
of the equilateral triangle 4UVW are given by s = 0, u = 0 and
t = 0. At the three vertices we have s = M2, t = M2 and u = M2.
The three vertices in terms of the barycentric rectangular coordinate
(x, y) are given by U = (0, 2), V = (

√
3,−1) and W = (−

√
3,−1).

For the barycentric polar coordinates (r, θ), the angle θ is measured
from the vertical axis. The blobs with 1, 2 and 3 serve as mnemonic
to suggest that the exchanges s↔ t ↔ u are equivalent to the particle
exchanges 1 ↔ 2 ↔ 3 respectively. The sextants of the Dalitz plot
are also shown.

We know that s, t, u take values in the following ranges:
(m2 + m3)2 6 s 6 (mX − m1)2, (m1 + m3)2 6 t 6 (mX − m2)2,
(m1 + m2)2 6 u 6 (mX − m3)2. So when the final particles
are ultra-relativistic, the Dalitz plot tends to occupy the full
region inside the equilateral triangle of Fig. 1. In all cases
the Dalitz plot is inscribed inside the equilateral triangle. The
density of events inside the Dalitz plot is a consequence of the
dynamics driving the decay. Mathematically, if A(r, θ) is the
amplitude of the decay under consideration, the Dalitz plot
density D(r, θ) is directly proportional to |A(r, θ)|2. If the full

Dalitz plot can be constructed (i.e. if 0 6 θ 6 2π), then the
decay amplitude A(r, θ) can be expanded in terms of a Fourier
series as follows:

A(r, θ) =

∞∑
n=0

(
Sn(r) sin(nθ) + Cn(r) cos(nθ)

)
, (4)

where Sn(r) and Cn(r) are the Fourier coefficients. It would
be profitable for us to divide the Dalitz plot into six sectors or
sextants by the medians of the equilateral triangle as shown in
Fig. 1.

It is now easy to explain the idea of observing the violations
of Bose symmetry and CPT symmetry in the Dalitz plot. We
shall first discuss the Bose symmetry part. If particles 2 and 3
were identical mesons, then the final state must remain sym-
metric under their exchange as demanded by Bose symmetry.
This implies that the Dalitz distribution should remain sym-
metric under the exchange t ↔ u. The decay amplitude A(r, θ)
can also be written as A(t, u), such that A(r,−θ) ≡ A(u, t). If
the two particles 2 and 3 are not exactly identical, then the
Bose symmetry would not be strictly obeyed. In such a case,
we can split the decay amplitude into a part which is sym-
metric under t ↔ u exchange and another part which is non-
symmetric under the same exchange:

A(t, u) = AS + AN , (5)

where

AS ≡
1
2

(A(t, u) + A(u, t)) =

∞∑
n=0

Cn(r) cos(nθ), (6)

AN ≡
1
2

(A(t, u) − A(u, t)) =

∞∑
n=0

Sn(r) sin(nθ). (7)

The density of events in the Dalitz plot is proportional to the
amplitude mod-square. Only the interference term which is
proportional to Re

(
AS · AN∗

)
would give rise to an asymme-

try in the Dalitz plot under t ↔ u exchange. Thus, we need
the full Dalitz plot in this case. This can be easily obtained if
we construct the Dalitz plot from those events in which parti-
cles 2 and 3 decay into different and distinct final states. For
example, the following decay modes(

K+,D+,D+
s
)
→ π+(p1)︸ ︷︷ ︸

µ+νµ

π0(p2)︸ ︷︷ ︸
e+e−γ

π0(p3)︸ ︷︷ ︸
γγ

,

(
K+,D+,D+

s
)
→ π−(p1)︸ ︷︷ ︸

µ− ν̄µ

π+(p2)︸ ︷︷ ︸
e+νe

π+(p3)︸ ︷︷ ︸
µ+νµ

,

can be used for such a Bose symmetry violation study, since
the particles with 4-momenta p2 and p3 are the same but are
reconstructed from different final states. The extent of de-
parture from Bose symmetry can be quantified by using the
conventional left-right asymmetry of the Dalitz plot.

It is also possible to analyze three-body decays in which all
the final states are identical mesons, such that the final state
is fully Bose symmetric under the exchange of any two parti-
cles in it. Such a situation would demand invariance under the
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exchange s ↔ t ↔ u. This would imply that all the sextants
of the Dalitz plot would be symmetrical to one another when
we go from one to the other. Thus, if all the three final parti-
cles are reconstructed from identical final states we would be
left with only one of the sextants of the Dalitz plot. For the
Bose symmetry test we need to have more than one sextant in
our Dalitz plot. For this we reconstruct two particles, say 1
and 2, from identical final states and particle 3 from different
final state. In this case we would have sextants VI, I and II
(or equivalently III, IV and V) in our Dalitz plot. If parti-
cles 2 and 3 are identical bosons then these sextants should
map from one to the other. Any asymmetry among these
sextants would be a signature of Bose symmetry violation.
Decay modes such as (η,K0

L,D
0) → π0(p1)︸ ︷︷ ︸

γγ

π0(p2)︸ ︷︷ ︸
γγ

π0(p3)︸ ︷︷ ︸
e+e−γ

,

B0 → K0
S (p1)︸  ︷︷  ︸
π+π−

K0
S (p2)︸  ︷︷  ︸
π+π−

K0
S (p3)︸  ︷︷  ︸
π0π0

, can be profitably used to search

for the Bose symmetry violations in their Dalitz plots.
The invariance under CPT is a characteristic feature of any

Lorentz invariant local quantum field theory. Thus, it applies
equally well to both electro-weak and strong interactions. In
weak interaction, however, CP violation is observed, which,
as emphasized in the introduction, can make the signature of
CPT violation unextractable from the Dalitz plot. Keeping
this in mind, we consider only those decay modes which can
occur via electromagnetic and strong interactions, and thereby
have no contribution from CP violation in them. CP violation
might still occur below the current experimental bounds in
these modes and mimic the signal for possible CPT violation.
It is, nevertheless, extremely interesting to look for any unex-
pected violation of CP or CPT in strong or electromagnetic
interactions. A nice example of such a process, free from CP
violation, is the decay modes J/ψ→ Nπ+π−, where N can be
any of the following: π0, ω, η, φ. The amplitude A(r, θ) for the
process J/ψ → Nπ+π− can be expanded in a Fourier series as
follows:

A(r, θ) =

∞∑
n=0

(
sn(r) sin(nθ) + cn(r) cos(nθ)

)
, (8)

where sn(r) and cn(r) are Fourier coefficients which are in gen-
eral complex. Under CPT the angle θ goes to −θ and the com-
plex Fourier coefficients (sn(r) and cn(r)) transform to their
respective complex conjugates (s∗n(r) and c∗n(r)). Therefore,
CPT invariance implies that A(r, θ) = A∗(r,−θ). Moreover,
for a self-conjugate process the initial and final state must have
the same CP if CP is conserved. Hence, conservation of CP
and CPT jointly implies that all the sn(r) are zero and all the
cn(r) are purely real. This restricts the amplitude in Eq. (8)
and the Dalitz plot density to be symmetric under θ ↔ −θ.
If CP is conserved, any asymmetry in the Dalitz plot under
θ ↔ −θ would therefore be a signature of CPT violation as
discussed below.

The amplitude Ā(r,−θ) for the CP conjugate process, as-
suming CPT violation, is given by:

Ā(r,−θ) =

∞∑
n=0

(
− s̄n(r) sin(nθ) + c̄n(r) cos(nθ)

)
, (9)

where s̄n(r) and c̄n(r) are Fourier coefficients that are complex
and are necessarily different from s∗n(r) and c∗n(r) respectively
unless CPT is conserved [88]. The coefficients sn(r), cn(r),
s̄n(r) and c̄n(r) can be written as

sn(r) =
(
|sn(r)| + ε s

n(r)
)

eiδs
n , s̄n(r) =

(
|sn(r)| − ε s

n(r)
)

eiδs
n ,

cn(r) =
(
|cn(r)| + εc

n(r)
)

eiδc
n , c̄n(r) =

(
|cn(r)| − εc

n(r)
)

eiδc
n ,

where, δs,c
n are the strong phases and ε s,c

n (r) are CPT violating
terms, i.e. for the case of CPT invariance they vanish identi-
cally. Since we have assumed that CP is conserved no explicit
weak phase dependence is retained in sn(r), cn(r), s̄n(r) and
c̄n(r).

Since in our case the process and its CP conjugate process
are the same, the amplitude which comes into picture is the
average of both A(r, θ) and Ā(r,−θ):

A ≡
1
2

(
A(r, θ) + Ā(r,−θ)

)
=

∞∑
n=0

(
ε s

n(r) sin(nθ)eiδs
n + |cn(r)| cos(nθ)eiδc

n
)
. (10)

The logic for the average is easy to realize by observing that
if CPT is conserved, ε s,c

n (r) = 0 and the amplitude in Eq. (10)
reduces to that in Eq. (8) as expected. The Dalitz distribution
is proportional to |A|2 and any asymmetry under θ ↔ −θ ≡
t ↔ u can arise only from the term odd under θ which is
proportional to

∞∑
n,m=0

|cn(r)| ε s
m(r) cos

(
δc

n − δ
s
m
)

cos(nθ) sin(mθ).

This interference term survives only if CPT is violated. We
have thus demonstrated mathematically how CPT violation
leads to asymmetry in the Dalitz plot. It should be noted that
the observation of such an asymmetry would be an unambigu-
ous signature of CPT violation (or CP violation in strong and
electromagnetic interaction) and would demand the presence
of CPT (or CP) violating new physics. The usual left-right
Dalitz plot asymmetry can be used to quantify this asymme-
try in the Dalitz plot. It is possible to look for CPT violation
in any self-conjugate process of the form X → NMM̄ which
proceeds via strong or electromagnetic interactions preserving
CP in the decay.

The Bose and CPT symmetries are expected to hold firmly.
Their violations, if any, would by virtue be extremely small.
In order to possibly observe such tiny numbers, one would re-
quire as large a sample of events as possible. In purview of
this a new concept of Dalitz ‘prism’ is developed here. So far
in the discussions on Bose and CPT symmetries, details of the
initial particle X played no role. In fact the particle X can be
replaced by, say e+e−, such that mX denotes the total energy
in the center-of-momentum frame. In such a situation we are
dealing with continuum production of particles 1, 2 and 3, e.g.
e+e− → π+π−π0. Considering such continuum productions
in association with the decays of several resonances would
provide significantly larger statistics to study the violations of
Bose and CPT symmetry. To facilitate such a study we note
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that the Dalitz plot can be generalized into a three-dimensional
plot, which we call as the Dalitz ‘prism’ (Fig. 2). This prism
is a regular right triangular prism. For a given value of mX one
can slice this ‘prism’ to obtain the Dalitz plot. Decay events
corresponding to all possible values of mX fill up only those
regions of the ‘prism’ which are allowed by conservation of
energy and momentum. This idea of Dalitz prism can be ex-
tended to include cases such as X(pX) → N(p1)M(p2)M̄(p3)
where N can represent more than one particle and p1 is, there-
fore, the total 4-momentum of all those particles denoted by
N. One example of such a mode is X → Nπ+π− where the
initial state X can be a resonance such as J/ψ or even e+e−,
the final state N can be K+K−, π0K+K−, K+K−η, ωπ0, pp̄,
pp̄π0 and nn̄. In such a case, the value of p2

1 is not fixed even
though for a given initial state configuration p2

X = m2
X is fixed

at a constant value. One can also vary both p2
1 = m2

1 as well as
m2

X , such as when X = e+e−. For such cases we can again con-
struct a prism whose z axis denotes M2 = m2

X + m2
1 + m2

2 + m2
3,

such that the M2 value can vary even if either m2
X or m2

1 or both
vary. The xy-plane of the prism is spanned by the various val-
ues of s, t and u as before. When pX , p2 and p3 are precisely
measured, p1 need not be measured, as p1 = pX − p2 − p3
from conservation of 4-momentum. Similarly, one need not
measure pX when p1, p2, and p3 are precisely measured. It
is easy to see that our approach is unaffected by any initial
and final state radiation effects, since these effects can always
be included as part of contributions to N. If we know the to-
tal initial 4-momentum of X (such as e+e−, say), and the two
4-momenta of π+ and π−, the event can be registered in the
Dalitz prism. All the events allowed by conservation of energy
and 3-momentum populate the interior of this general prism.
Even though, slices of this prism do not give any Dalitz plot,
because the recorded events are no longer just three-body de-
cays, we shall nevertheless refer to it as Dalitz prism as well.
The Dalitz prism can, therefore, subsume all cases where m2

X
and/or m2

1 varies. The distribution of events on the z axis is
irrelevant for our discussion. One only needs to take a pro-
jection of all the events recorded in this unified prism onto its
base and look for asymmetry in the resulting triangular plot.
Usage of the Dalitz ‘prism’ as explained above, thus liberates
the methods discussed here from the shackles of branching
fractions and thereby enhances the sensitivity of the search for
violations of Bose and CPT symmetries. It is noteworthy that
the use of Dalitz ‘prism’ in the study of CP violation [87] can
also be advantageous. The Dalitz ‘prism’ in its generalized
form is hence a very significant tool to study the fundamental
symmetries of nature using multibody decays.

The CPT violation proposed in this paper deals with strong
and electromagnetic interactions. This is fundamentally dif-
ferent from the kind of CPT violation already studied in K,
D, and B meson mixing. Hence, it is not possible to make a

meaningful comparison of the CPT violation proposed here
and the studies in K, D, and B meson mixing. The sensi-
tivity of our method increases with the increase in number
of events in the Dalitz prism which can in principle combine
many modes and continuum data from various experiments
taking systematic errors into account. The sensitivity to the
asymmetry that can be probed will naively be inversely pro-

x
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u

t
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V

IV

II

III

mX

FIG. 2. (Color online) The schematic figure of the Dalitz ‘prism’. To
get the Dalitz plot corresponding to a certain value of mX one simply
slices the Dalitz ‘prism’ parallel to the xy plane at that particular
value of mX . The sextants of the Dalitz plots are subsumed into the
six analogously labeled identical wedges of the Dalitz prism.

portional to the square root of the number of events that can
be combined in the Dalitz prism.

We have thus shown how Bose symmetry and CPT symme-
try violations can lead to asymmetries in the Dalitz plot. We
have also developed the new concept of Dalitz ‘prism’ which
can be used to gather the huge statistics needed for an effective
search for the Bose and CPT symmetry violations from stud-
ies of meson decays. Since both Bose symmetry and CPT
symmetry are of fundamental importance to foundations of
modern field theory, it is worthwhile to check their validity
in the realm of unstable and composite particles such as the
mesons.
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