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Abstract

We analyze fermionic response in the geometry holographically dual to zero-temperature N = 4
Super-Yang-Mills theory with two equal nonvanishing chemical potentials, which is characterized
by a singular horizon and zero ground state entropy. We show that fermionic fluctuations are
completely stable within a gap in energy around a Fermi surface singularity, beyond which non-
Fermi liquid behavior returns. This gap disappears abruptly once the final charge is turned on,
and is associated to a discontinuity in the corresponding chemical potential. We also show that
the singular near-horizon geometry lifts to a smooth AdS3 ×R3, and interpret the gap as a region
where the quasiparticle momentum is spacelike in six dimensions due to the momentum component
in the Kaluza-Klein direction, corresponding to the final charge.
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1 Introduction and summary

1.1 Fermionic response in gauge/gravity systems

Strongly coupled systems are challenging to study theoretically, yet they describe a number of vital

and interesting phenomena in diverse areas of physics. To better understand such systems, it is

valuable to develop alternate theoretical tools in which the physics is presented in a dual descrip-

tion using weakly-coupled variables. One such framework is the gauge/gravity correspondence, in

which strongly-coupled field theories with a large number of degrees of freedom may be realized

holographically as smooth gravity backgrounds in a higher dimension.

Field theory states of nonzero temperature and/or density are realized in the correspondence

as geometries including a black brane horizon, with equilibrium properties determined by black

hole thermodynamics. We will be focused on zero temperature, nonzero density systems, which

correspond to extremal black branes. Generically the event horizon for such an extremal brane

is smooth, and due to the relationship between horizon area and entropy, such geometries are

dual to zero-temperature field theory states with a nonzero, macroscopic entropy density. This

large entropy is somewhat problematic for physical applications, as well as difficult to understand;

explaining and potentially circumventing this feature is an important task.

To characterize the properties of these systems beyond basic thermodynamics, one may study

linear response. Here we will be concerned with the response of the system to probe fermionic

operators; one may identify Fermi surface singularities and study the spectrum of nearby fluctu-

ations. This has been studied substantially from the “bottom-up” perspective, where the gravity

background is not derived directly from string theory or supergravity; for this and other studies

of nonzero-density systems using the gauge/gravity correspondence see [1, 2, 3, 4] and many other

papers [5]-[52]; recent reviews appear in [53, 54]. Depending on parameters, these systems may

manifest Fermi liquid, non-Fermi liquid, or marginal Fermi liquid like behaviors. In a Fermi liquid,

quasiparticles become arbitrarily well defined as one approaches the Fermi surface at zero tem-

perature. In a non-Fermi liquid, this does not happen; instead the width of excitations remains

comparable to or parametrically greater than their energies. Marginal Fermi liquids lie on the

border between the two classes. In the “strange metals” arising in high-Tc cuprates [55, 56] and

in heavy fermion systems [57], Fermi surfaces can be identified from photoemission experiments,

but the associated gapless excitations are not long-lived, suggesting an association with non-Fermi

liquids.

It is natural to wish to embed this kind of calculation in supergravity/string theory; such a

“top-down” construction has the advantages of explicit knowledge of the field theory dual and the

operator map, as well as putting to rest concerns that there might be something unphysical about

the bottom-up construction. Such a top-down study of fermionic response was investigated in [58]

for the four- and five-dimensional geometries dual to the maximally supersymmetric conformal

1



theories in three and four dimensions, respectively ABJM theory and N = 4 Super-Yang-Mills

(SYM) theory, and Fermi surfaces were found. The N = 4 SYM case was studied in much more

detail in [59]. Earlier top-down studies of the gravitino sector, which did not find Fermi surface

singularities, can be found in [60, 61, 62].

N = 4 SYM is characterized by three independent chemical potentials. Extremal black holes

with all three chemical potentials nonzero have nonsingular horizons and the associated nonzero

entropy at zero temperature; we will call these “regular” cases. These were exhaustively studied for

the case of two equal chemical potentials in [59], where the Fermi surface behavior for all spin-1/2

fermionic modes not mixing with a gravitino was obtained. The results were all characterized by

Fermi surfaces with non-Fermi liquid like excitations, with a single case asymptotically approaching

a marginal Fermi liquid like state; no excitations with ordinary Fermi liquid properties were in

evidence.

It is desirable to understand the entropy that shows up in a generic zero-temperature background

of N = 4 SYM. Moreover, it is interesting to consider limits where this zero-temperature entropy

is absent. There is such a class of geometries in the N = 4 SYM family, where one of the chemical

potentials vanishes; the simplest example is when the other two charges are equal, which we will

call the “two-charge black hole” (2QBH). The vanishing entropy for the extremal two-charge black

hole is associated to a zero-area horizon, which is singular [8]. Probe fermions were studied [8] and

the Dirac equation solved exactly in this background in [40]. As with the bottom-up models, Fermi

liquid, marginal Fermi liquid and non-Fermi liquid like cases were all possible in these studies.

Other recent studies of the 2QBH include [43, 44, 46, 51, 52].

However, the full story is more subtle. The 2QBH background is a solution of the 5D gauged su-

pergravity coming from the reduction of type IIB supergravity on AdS5×S5, and hence corresponds

to a specific state in N = 4 super-Yang-Mills. However, the fermion actions studied in [8, 40] were

not deduced directly from supergravity, but instead were postulated to take a simple form with a

constant mass, making them bottom-up excitations in a top-down background. In [59], the proper

top-down fluctuation equations of the fermions of N = 8 supergravity were worked out, and they

displayed a property not covered by the analysis of [40]: the masses depended on the running scalar

field, which diverges at the horizon/singularity. Such scalar couplings are common in supergravity,

and one might imagine that if a zero-entropy extremal geometry always has a singularity, then it

will be generic for fermionic fluctuation equations to have such divergences. Thus, it is possible

that the true nature of fermionic response in such a background can only be uncovered by including

these couplings, and one would like to study them in more detail. This process was begun in [59],

and we continue it here.
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Figure 1: Cartoon comparison between a “regular” extremal black brane background (left) and the
extremal two-charge black hole (right). In the former, fluctuations characteristic of a non-Fermi
liquid surround the Fermi surface; in the latter, they are separated from the Fermi surface by a
gap of size 2∆ wherein the fluctuations are stable.

1.2 The gap in the two-charge black hole

To analyze the fermionic response in finite density systems, we calculate retarded Green’s functions

for gauge-invariant fermionic operators; this is done on the gravity side by solving Dirac fluctuation

equations with suitable infalling boundary conditions at the horizon. A pole in the Green’s function

at the Fermi energy (defined as ω = 0) for some momentum k = kF defines a Fermi surface, and

poles for nonzero ω describe the dispersion relation of nearby fluctuations. For “regular” cases, the

fluctuation energy is complex, ω ≡ ω∗− iΓ, including a real energy ω∗ and a width Γ indicating the

fluctuations are unstable. For Fermi liquids, the imaginary part of the Green’s function vanishes

faster than the real part as one approaches the Fermi surface, and one has Γ/ω∗ → 0. In cases

where the real and imaginary parts scale identically as one approaches the Fermi surface, on the

other hand, one has Γ/ω∗ → constant, indicating a non-Fermi liquid.

The essential novel feature of the extremal two-charge black hole is that there exists an energy

scale ∆ of order the chemical potential, which we call the “gap”, such that fluctuations within

∆ of the Fermi surface have no decay width, and are thus precisely stable.1 This is not a gap

in the conventional sense of the absence of any low energy excitations, but rather a low energy

regime in which excitations mediating decays of the fermionic modes near the Fermi surface appear

to be suppressed. On the other side of the line ω = ±∆, fluctuations reacquire a width and

1The gap we are discussing does not appear to be a manifestation of superconductivity, in that the U(1) gauge
fields under which the black hole is charged remain unbroken by any condensate, as does the final U(1) gauge field
under which the black hole is not charged. Conductivities in these states with respect to the two U(1) gauge fields
were computed in [59], and displayed a soft gap of size ∆σ ∼ 2

√
2 ∆. The conductivity with respect to the U(1) under

which the black hole is charged does exhibit infinite DC conductivity, and while at least some part of this feature is
attributable to unbroken translational invariance in a state with finite charge density, it is nonetheless possible that
the gap we observe is in some sense related to superconductivity.
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behave analogously to excitations near the Fermi surface in regular cases. We find that the real

and imaginary parts of the Green’s functions for N = 4 SYM scale identically in this region,

characteristic of non-Fermi liquids, consistent with the results of [59]; the constant that Γ/ω∗

approaches, however, is zero, matching onto the stable region. This situation is summarized in

cartoon form in figure 1.

A possible qualitative interpretation of this phenomenon runs as follows. In addition to whatever

fermionic fluctuations we create, one postulates that there exists an additional sector with a large

density of states. For a generic background in N = 4 SYM with all charges, this sector is not

gapped and extends down to the Fermi surface, where its states are perceived as the nonzero

ground state entropy. Fermionic fluctuations couple to this sector, and it mediates their ability

to decay. In the special case of the two-charge black hole, however, this sector is gapped, and

cannot be excited by energies less than ∆ away from the Fermi surface. This removes the large

entropy from zero temperature, and simultaneously removes the mechanism by which the fermionic

fluctuations decay, rendering them stable in this energy range. We note that this implies that the

fermionic fluctuations have no intrinsic self-interaction; one might speculate that this is a large-N

effect.

As one moves away from the 2QBH by adding even a tiny amount of the charge Q1 that had

been zero (corresponding to adding a charge density ρ1), the gap disappears entirely. This behavior

is associated to another discontinuous phenomenon: the µ1 chemical potential jumps through zero

from a positive to a negative constant as one varies from infinitessimal positive ρ1 to infinitessimal

negative ρ1 (see figure 4). Such a discontinuity in the chemical potential can be characteristic of

moving through a gap in the density of states, as the lack of states precludes the charge density

from increasing even as the chemical potential is raised.

On the gravity side, the technical explanation for the gapped region is that the solution to the

fluctuation equation becomes purely real. Associated to this, a true infalling boundary condition

at the horizon is no longer possible; instead we impose a regularity condition, as is characteristic

of Euclidean gauge/gravity calculations. We show this is the proper continuation of the infalling

condition.

In the regular cases, the near-horizon and small-ω limits do not commute, necessitating the

introduction of inner and outer regions which are then patched together [4]. The inner region has

the geometry of AdS2 × R3 and determines the universal parts of the fermionic Green’s function,

including the decay width of quasiparticles. For the 2QBH, analogous phenomena occur at |ω| = ∆.

The near-horizon geometry is singular in five dimensions and does not naively resemble anything

as simple as AdS2. However, we show that this geometry lifts to a smooth AdS3 × R3 in six

dimensions, demonstrating that the singularity is of a “good” type and the geometry is sensible.

The Kaluza-Klein charge of the reduction is the charge Q1 turned off in the 2QBH backgrounds,

and the six-dimensional lift provides a new perspective on the gap ∆, which can be understood as
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the minimum energy to turn a momentum vector with a fixed amount of compact momentum (q1

charge) timelike. This suggests that a field theory explanation of the gap in the Green’s functions

of appropriately charged fermionic operators could be developed based on the emergence of a non-

chiral Virasoro algebra in the infrared.

One can also derive consistency conditions on the charges and couplings of fermions that can be

lifted to six dimensions. The discontinuity in the chemical potential µ1 is associated to a failure to

commute of two different paths to the extremal 2QBH in the black hole parameter space, and the

form of the Dirac equation will depend on the path, leading to contradictory expressions, unless

the fermions satisfy these conditions. All the fermions of maximal gauged supergravity satisfy

them, while a generic Dirac action will not, once again suggesting that top-down considerations are

an important ingredient, whereas a purely generic bottom-up fermion action may fail to properly

capture the physics of these backgrounds.

Turning to specific examples, we analyze a number of distinct fermion species corresponding to

specific operators of N = 4 SYM in the 2QBH, and numerically identify the dispersion relations

through the stable region. We find two classes of poles in the Green’s function. When there is a

Fermi surface singularity at ω = 0, one may follow this singularity through the ω-k plane to the

gap on either side. In addition, in some cases new pairs of poles nucleate at a nonzero value of ω,

and move towards the gap. These poles seem to be associated with the presence of an oscillatory

region at ω = ∆ — a region where the Green’s function has log periodic behavior in ω and gapless

excitations for a range of k, arising from an instability towards pair production in the near-horizon

region of the geometry [63, 4]. These new poles generally reach the gap inside the oscillatory region,

at which point they cease to exist, though in some cases one may miss it and survive.

The plan of this paper is as follows. We review five-dimensional supergravity, the black brane

solutions and their thermodynamics, and the fermionic fluctuation spectrum in section 2. The

analysis of fermion fluctuations in regular extremal black holes is recapped in section 3, before

turning to the main subject of the paper in section 4, fermionic fluctuations in the 2QBH. We

apply these results to a number of fermionic operators of N = 4 Super-Yang-Mills in section 5. In

section 6 we present the lift of the 2QBH near-horizon geometry to AdS3 × R3 in six dimensions,

and demonstrate how fermions are constrained by the lift. Some technical details are left for the

appendices.

2 Gravity dual of N = 4 Super-Yang-Mills at finite density

2.1 Supergravity and black brane backgrounds

N = 4 Super-Yang-Mills theory is the most symmetric avatar of four-dimensional gauge theory,

and as such is often the gauge theory most amenable to study, leading it to become the simple
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harmonic oscillator of the twenty-first century study of quantum field theory. We are interested

in states of finite density, associated to global conserved charges. The theory possesses an SO(6)

R-symmetry group; since this group is rank 3, there are three independent associated conserved

quantities, and correspondingly one may turn on three distinct chemical potentials. Following [59],

in what follows we will always simplify matters by taking two of the three chemical potentials equal;

since the major distinct behaviors are associated with whether a given chemical potential is zero

or not, this simplification seems still to capture the most interesting possibilities.

N = 4 SYM with SU(N) gauge group is holographically dual to type IIB string theory compact-

ified on AdS5 × S5 with N units of self-dual five-form flux, with SO(6) manifested as the isometry

group of the five-sphere. The dynamics of the lowest-mass modes arising from the Kaluza-Klein

reduction on S5 are given by five-dimensional maximally supersymmetric (N = 8) gauged super-

gravity, where SO(6) becomes the gauge group. There exists a consistent truncation of the maximal

gauged supergravity to a bosonic sector containing just the three gauge fields corresponding to the

Cartan generators of SO(6), along with the metric and two neutral scalars, the so-called STU model

[64]. Simplifying matters as described above, we set two of the three gauge fields equal; in this case

only one scalar is sourced, and we are left with the effective gravity Lagrangian

e−1L = R− 1

2
(∂φ)2 +

8

L2
e
φ√
6 +

4

L2
e
−2φ√

6 − e
−4φ√

6 fµνf
µν − 2e

2φ√
6FµνF

µν − 2εµνρστfµνFρσAτ . (1)

Here Aµ is the gauge field associated to the two equal charges, and aµ goes with the remaining one.

States of N = 4 SYM on R3,1 with nonzero temperature and chemical potentials are dual to

geometries solving (1) with the black-brane form

ds2 = e2A(r)(−h(r)dt2 + d~x2) +
e2B(r)

h(r)
dr2 ,

aµdx
µ = Φ1(r) dt , Aµdx

µ = Φ2(r) dt , φ = φ(r) ,

(2)

with the functions

A(r) = log
r

L
+

1

6
log

(
1 +

Q2
1

r2

)
+

1

3
log

(
1 +

Q2
2

r2

)
,

B(r) = − log
r

L
− 1

3
log

(
1 +

Q2
1

r2

)
− 2

3
log

(
1 +

Q2
2

r2

)
,

h(r) = 1−
r2(r2

H +Q2
1)(r2

H +Q2
2)2

r2
H(r2 +Q2

1)(r2 +Q2
2)2

, φ(r) = −
√

2

3
log

(
1 +

Q2
1

r2

)
+

√
2

3
log

(
1 +

Q2
2

r2

)
,

Φ1(r) =
Q1(r2

H +Q2
2)

2LrH

√
r2
H +Q2

1

(
1−

r2
H +Q2

1

r2 +Q2
1

)
, Φ2(r) =

Q2

√
r2
H +Q2

1

2LrH

(
1−

r2
H +Q2

2

r2 +Q2
2

)
.

(3)

The solutions are characterized by two charges Q1, Q2 and a horizon radius rH (the latter may be
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Figure 2: Two approaches to the extremal two-charge black hole.

traded for a mass parameter). We refer to these as (2+1)-charge black holes ((2+1)QBHs). The

associated thermodynamics are

T =
2r4
H +Q2

1r
2
H −Q2

1Q
2
2

2πL2r2
H

√
r2
H +Q2

1

, µ1 =
Q1(r2

H +Q2
2)

L2rH

√
r2
H +Q2

1

, µ2 =

√
2Q2

√
r2
H +Q2

1

L2rH
,

s =
1

4GL3
(r2
H +Q2

1)1/2(r2
H +Q2

2) , ρ1 =
Q1s

2πrH
, ρ2 =

√
2Q2s

2πrH
,

(4)

where T and s are the temperature and entropy density, µ1 and ρ1 are the chemical potential

and charge density for the single charge, and µ2 and ρ2 are likewise for the two charges set equal.

Geometries corresponding to zero temperature are extremal, with the constraint on the three pa-

rameters,

2r4
H +Q2

1r
2
H −Q2

1Q
2
2 = 0 (extremal (2 + 1)QBH) , (5)

which has solutions for |Q2| > rH . For Q1, Q2 6= 0, the extremal black holes are “regular”,

possessing a double pole at the horizon in the function h(r) and no singularity. All these geometries

asymptotically approach (the boundary of) AdS5 at r →∞,

e2A → r2

L2
, e2B → L2

r2
, h→ 1 , φ→ 0 , Φi → const . (6)

We will be focused on the special case where we take Q1 → 0 strictly; these are called the two-charge
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has Φ1(rH) = 0; note rH moves left as Q1 → 0. For Q1 = 0, Φ1 degenerates to a nonzero constant.

black holes, or 2QBHs. In this case Φ1 = 0. The 2QBH solution is

A(r) = log
r

L
+

1

3
log

(
1 +

Q2
2

r2

)
, B(r) = − log

r

L
− 2

3
log

(
1 +

Q2
2

r2

)
,

h(r) = 1−
(r2
H +Q2

2)2

(r2 +Q2
2)2

, φ(r) =

√
2

3
log

(
1 +

Q2
2

r2

)
, Φ2(r) =

Q2

2L

(
1−

r2
H +Q2

2

r2 +Q2
2

)
,

(7)

with thermodynamics

T =
rH
πL2

, µ2 =

√
2Q2

L2
, s =

rH(r2
H +Q2

2)

4GL3
, ρ2 =

√
2Q2s

2πrH
, (8)

and µ1 = ρ1 = 0; we will sometimes refer to µ2 simply as µ. Thus extremality occurs for

rH = 0 (extremal 2QBH) . (9)

The order of limits in reaching the extremal 2QBHs we are studying can be somewhat subtle. We

have so far described the 2QBH by first setting Q1 → 0, and then imposing extremality rH → 0.

One may instead consider another path: first achieve extremality for (2+1)QBHs by imposing the

relation (5) between rH , Q1 and Q2, and then tune Q1 to zero while maintaining extremality, which

also requires adjusting rH → 0 (see figure 2). From the field theory point of view, this is tuning

the charge density ρ1 to zero while maintaining T = 0.
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µ1 = 0 (heavy dot at origin).

As discussed in [59], these different limits are not precisely equivalent; the former implies

Q1Q2

r2
H

→ 0 (extremal 2) , (10)

since Q1 is taken strictly to zero first, while the latter instead gives

Q1Q2

r2
H

→
√

2 (extremal 2 + 1) . (11)

This distinction affects only Φ1(r). In the former case, it becomes zero strictly. In the latter case,

however, one finds it approaching the nonzero constant (see figure 3)

Φ1 →
Q2√
2L

. (12)

While this is gauge-equivalent to Φ1 = 0, its form nonetheless affects the thermodynamics. In

general the chemical potential µ1 is realized holographically as (proportional to) the difference in

potential between the boundary and the horizon: µ1 ∝ Φ1(∞) − Φ1(rH). The form (3) for Φ1(r)

is constructed to have Φ1(rH) = 0, so in general we simply have µ1 ∝ Φ1(∞). As Q1 approaches

zero, one finds Φ1(∞)→ Q2/
√

2L with Φ1(rH) = 0; this corresponds to the chemical potential µ1

approaching the value of µ2 from below:

lim
Q1→0, T=0

µ1

µ2
→ 1 . (13)

At Q1 = 0 however, Φ1 degenerates to the constant (12), and no longer satisfies Φ1(rH) = 0;
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see figure 3. Since the difference between the boundary and horizon values is zero, the chemical

potential µ1 vanishes, consistent with the original 2QBH limit. Thus the extremal 2QBH is a state

with µ1 = 0, which nonetheless appears as the limit of a set of extremal geometries approaching

µ1 = µ2. We display this behavior in figure 4, where we plot µ1/µ2 as a function of the charge

density ratio ρ1/ρ2. Note that as one can show

Q1

Q2
=

√
2ρ1

ρ2
, (14)

one can just as easily think of the x-axis as being the black hole charge ratio Q1/Q2 up to a

rescaling.

One can argue that such a jump in a chemical potential as the charge density is varied is

indicative of the presence of a gap in the density of states. As a chemical potential is moved

through the gap between bands in a semiconductor, for example, no new states are filled and the

density remains constant. Only upon reaching the other side of the gap will the density begin

to change again as the nonzero density of states causes new states to be occupied. In studying

fermionic fluctuations around the 2QBH, we will find evidence for a gap from another perspective.

We note in addition that the fact that µ1/µ2 is decreasing as ρ1/ρ2 increases is a signal of a

negative susceptibility, and correspondingly of a thermodynamic instability. Such an instability is

associated with a perturbative instability in the spectrum of bosonic fluctuations. We do not study

such instabilities here, but they were considered originally in [65, 66, 67], and subsequent related

work has included [68, 69, 70, 71].

2.2 Fermion spectrum and Dirac equation

The 5D Dirac equation in the class of backgrounds just reviewed has been studied for general

regular backgrounds in [4], and was solved in the 2QBH background with bottom-up fermions

in [40]. The actual spectrum of fermionic fluctuations in N = 4 SYM was obtained in [59] by

embedding the black brane solutions (2) into N = 8 gauged supergravity and then studying the

fermionic fluctuations of that theory. The spin-1/2 fermions of maximal gauged supergravity that

do not mix with the gravitino all satisfy a linearized equation of the form(
iγµ∇µ −m(φ) + gq1γ

µaµ + gq2γ
µAµ + ip1e

−2φ√
6 fµνγ

µν + ip2e
φ√
6Fµνγ

µν

)
χ = 0 , (15)

where the mass term depends on the scalar,

m(φ) ≡ g
(
m1e

− φ√
6 +m2e

2φ√
6

)
, (16)
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with m1, m2, q1, q2, p1, and p2 rational numbers and g ≡ 2/L. The list of so-called “maximal”

mode fermions found in [59] is

χqaqbqc Dual operator m1 m2 q1 q2 p1 p2

χ( 3
2
, 1
2
, 1
2

) λ1Z1 −1
2

3
4

3
2 1 −1

4
1
2

χ( 3
2
,− 1

2
,− 1

2
) λ2Z1 −1

2
3
4

3
2 −1 −1

4 −1
2

χ̄( 3
2
,− 1

2
, 1
2

) , χ̄( 3
2
, 1
2
,− 1

2
) λ3Z1, λ4Z1

1
2 −3

4
3
2 0 1

4 0

χ( 1
2
, 3
2
, 1
2

), χ( 1
2
, 1
2
, 3
2

) λ1Z2, λ1Z3
1
2 −1

4
1
2 2 1

4 0

χ̄(− 1
2
, 3
2
, 1
2

), χ̄(− 1
2
, 1
2
, 3
2

) λ2Z2, λ2Z3 −1
2

1
4 −1

2 2 1
4 0

χ(− 1
2
, 3
2
,− 1

2
), χ(− 1

2
,− 1

2
, 3
2

) λ3Z2, λ4Z3
1
2 −1

4 −1
2 1 −1

4 −1
2

χ̄( 1
2
,− 1

2
, 3
2

), χ̄( 1
2
, 3
2
,− 1

2
) λ3Z3, λ4Z2 −1

2
1
4

1
2 1 −1

4
1
2

(17)

Fermions are labeled by the three Cartan charges of SO(6), with χ and χ̄ dual to left- and right-

handed spinors in four dimensions. The second column describes the composition in terms of the

N = 4 gaugini λa, a = 1 . . . 4, and adjoint scalars Zj ≡ X2j−1 + iX2j , j = 1, 2, 3; the trace over the

gauge group is implied. Antiparticles with opposite sign charges exist for each row in the table as

well.

We note that, with the exception of the fermion neutral under q2, the fermions come in pairs,

the two having the same charge under one of the gauge fields, and the opposite charges under the

other. It is thus straightforward to imagine how a Fermi surface with ρ1 = 0 but ρ2 6= 0 as in the

2QBH could exist: one can have equal numbers of excitations with opposite charges under aµ but

the same charge under Aµ filling the ground state.

A few relations can be seen to hold for each fermion: q1 is half-integer quantized, the magnitude

of p1 is fixed,

|p1| =
1

4
, (18)

and the parameters m2, q1 and p1 are related,

m2 = −2q1p1 . (19)

In section 6, we will demonstrate that all these relations are required by the consistency of lifting

the fermion to six dimensions, and show that the q1 charge corresponds to Kaluza-Klein momentum

in the sixth dimension.

One may process the Dirac equation as follows. First we rescale the spinor χ as

χ = e−2Ah−1/4e−iωt+ikxΨ , (20)

where ω is the frequency and k is the spatial momentum, chosen to lie in the x-direction, and the

e−2Ah−1/4 factor exactly cancels the spin connection term coming from ∇µ in (15). Next, each field

11



Ψ is a four-component spinor; by suitably choosing the Clifford basis, one may decompose this into

a pair of two-component spinors ψα, α = 1, 2 which decouple from one another [4, 59]. The Dirac

equation for each two-component spinor is then of the form

(∂r +Xσ3 + Y iσ2 + Zσ1)ψα = 0 , (21)

where

X ≡ meB√
h
, Y ≡ −e

B−A
√
h
u , Z ≡ −e

B−A
√
h

((−1)αk − v) , (22)

and we have defined (following [4, 59])

u ≡ 1√
h

(ω + gq1Φ1 + gq2Φ2) , v ≡ 2e−B
(
p1e
− 2φ√

6∂rΦ1 + p2e
φ√
6∂rΦ2

)
. (23)

Let us write each two-component spinor as

ψα =

(
ψα−

ψα+

)
. (24)

It what follows we will suppress the label α on ψ; it is clear from (22) that the solution for one

two-component spinor will be identical to that for the other with k → −k.

We will now pass to decoupled second-order equations, in a fashion outlined in [40].2 Define

the combinations

U± ≡ ψ− ± iψ+ . (25)

The first order equations then take the form

U ′− + iY U− = (−X + iZ)U+ ,

U ′+ − iY U+ = (−X − iZ)U− ,
(26)

and lead to the second-order equations

U ′′− + pU ′− + (iY ′ −X2 + Y 2 − Z2 + iY p)U− = 0 ,

U ′′+ + p̄ U ′+ + (−iY ′ −X2 + Y 2 − Z2 − iY p̄)U+ = 0 ,
(27)

where

p ≡ −∂r log(−X + iZ) . (28)

To calculate a retarded Green’s function, one solves this equation with infalling boundary conditions

imposed at the horizon. The response is then read off from the behavior of solutions near the

2For the numerical solutions of section 5 we used a different, equivalent second-order equation, derived in [59] and
discussed in appendix A. The choice given here is more convenient for the analysis of sections 3 and 4.
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boundary r →∞,

ψ+ ∼ A(ω, k)rmL +B(ω, k)r−mL−1 , ψ− ∼ C(ω, k)rmL−1 +D(ω, k)r−mL , (29)

with mL ≡ 2(m1 + m2). For m > 0, A is the source term, and D the response (the case m < 0

exchanges their roles, corresponding to a dual fermion of opposite chirality). The Green’s function

is then defined as the ratio of the response to the source,

GR =
D

A
. (30)

A Fermi surface is identified as the momentum kF where there is a pole in the retarded Green’s

function at zero ω,

A(ω = 0, k = kF ) ≡ 0 . (31)

To make progress, one should study the near-horizon behavior of the Dirac equation, where the

infalling condition is imposed. We first review the well-known “regular” cases in the next section,

before turning to the 2QBH case in the section following.

3 Green’s functions for regular extremal black holes

In this section we review the near-horizon analysis of the Dirac equation in “regular” extremal

black holes, the calculation of the IR Green’s function and using it to obtain an expression for the

full Green’s function, and the extraction of the dispersion relation for fluctuations. This will be

useful as a warm-up to the case of the two-charge black hole. This analysis was originally performed

from a bottom-up perspective by [4], and was extended to the maximal gauged supergravity Dirac

equation (15) in [59].

Generic (2+1)-charge extremal black holes are “regular”, having a double pole at the horizon

but no singularity there. One has in the near-horizon limit r → rH ,

eA → k0 , eB → τ0L2

k0
, h→

(
τ0

k0

)2

(r − rH)2 , Φi → βi(r − rH) , φ→ φ0 , (32)

where k0, τ0, L2, βi and φ0 are all constants defined in [59], leading to the near-horizon geometry

AdS2 × R3 [4],

ds2 = −τ2
0 (r − rH)2dt2 +

L2
2dr

2

(r − rH)2
+ k2

0d~x
2 . (33)

We see in the metric everything is regular and approaches a constant except for the horizon function

h; the gauge fields have a single zero. The second-order Dirac equation (27) then has the form as

13



r → rH :

U ′′ +

(
1

r − rH
+ . . .

)
U ′ +

(
L4(Q4

2 − r4
H)ω2

16(2Q2
2 − r2

H)(r − rH)4
+

#ω

(r − rH)3
− ν2

(r − rH)2
+ . . .

)
U = 0 ,

(34)

where we have neglected terms of order ω2/(r− rH)3 and ω/(r− rH)2 as well as (r− rH)−1 in the

no-derivative term, # is a constant whose form we will not record, and ν2 is given as

ν2 =
(m1(1− µR)2 +m2µ

2
R)2

(1− µ4
R)

+
k̃2

µ2
2

1

2(1 + µ2
R)
−

(
√

2q1µ
3
R + q2(1− µ2

R))2

4(1− µ2
R)(1 + µ2

R)2
, (35)

with µR ≡ µ1/µ2 and where3

k̃ ≡ k − (−1)α(2p1µ1 +
√

2p2µ2) . (36)

One sees that near the horizon, the terms involving ω are dominant. This is a sign that interesting

physics happens near ω = 0. We may study the small ω limit, but for any fixed, tiny ω there

will always be values of r sufficiently close to the horizon that the first two terms in parentheses

dominate. Thus the small-frequency and near-horizon limits do not commute. Yet, we must

understand the behavior of a mode near the horizon to impose infalling boundary conditions. For

this reason, we must consider inner and outer regions.

Consider the inner region first. This is the region designed to take into account the values of the

radial coordinate that are so close to the horizon that ω cannot be ignored, even though it is small.

For the inner region, we scale ω and r − rH at the same time: r → rH , ω → 0 with ω/(r − rH)

held fixed. The inner region equation then takes precisely the form of (34) with all neglected terms

scaled to zero:

U ′′ +
1

r − rH
U ′ +

(
L4(Q4

2 − r4
H)ω2

16(2Q2
2 − r2

H)(r − rH)4
+

#ω

(r − rH)3
− ν2

(r − rH)2

)
U = 0 . (37)

In the inner region we then solve this equation for all r with fixed ω. In general there is a solution

in the inner region that is purely infalling as r → rH ; this can be obtained explicitly in terms of

Whittaker functions, but we will not record the form here.

The near-boundary limit of AdS2 is where the inner region glues onto the outer region, corre-

sponding to r − rH large (with ω kept fixed), which becomes

U ′′ +
1

r − rH
U ′ − ν2

(r − rH)2
U = 0 . (38)

3Note there is an overall sign typo in the second line of (123) in [59].
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This equation has power law solutions,

U ∼ (r − rH)−
1
2
±ν . (39)

In general the solution of the whole inner region that is infalling at small r − rH can be expanded

at large r − rH in some linear combination of (39),

U ∼ (r − rH)−
1
2

+ν + G(ω)(r − rH)−
1
2
−ν , (40)

where the relative weighting G(ω) between the two solutions depends on k and the other parameters

as well; thinking of the two terms in (40) as the source and response in an AdS2 fluctuation, we

may consider G(ω) to be an AdS2 Green’s function. Since the AdS2 region corresponds to the IR

part of the full geometry, this is also called the IR Green’s function. Note that the only dependence

on ω in (40) is in G(ω). The full form of G(ω) is recorded in [4]; for small ω it takes the form,

G(ω) = |c(k)|eiγk(2ω)2ν , (41)

for real quantities |c(k)| and γk.

Now consider the outer region. Here by definition r − rH is large enough that the ω terms in

(34) can be neglected. The near-horizon equation for the outer region is then

U ′′ +
1

r − rH
U ′ − ν2

(r − rH)2
U = 0 , (42)

which precisely matches (38); the two regions have the same solutions on the overlap region. Thus

in the outer region we have in general ω → 0 solutions η0
± with near-boundary behavior

η0
± → (r − rH)−

1
2
±ν , (43)

and thus the solution that has infalling boundary conditions in the outer region takes the form

U ∼ η0
+ + G(ω)η0

− . (44)

In general as we move away from ω → 0 we will have corrections

η± = η0
± + ωη1

± + . . . , (45)

and thus the small-ω solutions are

U ∼ η+ + G(ω)η− . (46)

Both components of the two-component spinors take this generic form. Thus passing from U±
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to ψ± and expanding near the boundary, we obtain a general expression for the retarded Green’s

function near ω = 0 as

G =
D

A
=

b0+ + ωb1+ + . . .+ G(ω)(b0− + ωb1− + . . .)

a0
+ + ωa1

+ + . . .+ G(ω)(a0
− + ωa1

− + . . .)
, (47)

where the ai± and bi± are k-dependent. Calculating the coefficients ai± and bi± in general requires

numerical solution of the Dirac equation over the entire space, but the IR Green’s function G(ω)

and the associated parameter ν may be determined solely from the IR physics.

The quantity ν2 may be positive or negative depending on the parameters, including k, and

thus ν may be real or imaginary. When ν is imaginary, the boundary conditions (43) become

complex, and it is not possible to find a Fermi surface as one cannot make the denominator of

the Green’s function (47) vanish at ω = 0 while keeping k real; in general Im GR(ω = 0, k) 6= 0.

In this regime, called the oscillatory region, the Green’s function is periodic in logω, and one has

gapless excitations for a range of k [4]. This behavior is associated to an instability in the IR of

the geometry towards pair production due to the strong electric field [63], and the corresponding

behavior in scalars leads to unstable modes.

When ν is real, on the other hand, we may find a Fermi surface at a particular Fermi momentum

k = kF ; determining kF requires solving the Dirac equation out from the horizon to the boundary

to find (31), and thus the value of the Fermi momentum requires knowledge of the UV physics.

One then has a0
+(kF ) = 0, and near the Fermi surface the Green’s function takes the form

GR(k, ω) ∼ h1

k⊥ − 1
vF
ω + . . .− h2e

iγkF (2ω)2νkF
. (48)

Here k⊥ ≡ k − kF , and we have plugged in the form (41) for G(ω). The real constants h1, h2 and

vF are more difficult to compute, but once kF is known some physics can be extracted just from

knowledge of νkF and γkF .

The dispersion relation for excitations near the Fermi surface is defined by the values of (k⊥, ω)

for which the denominator of (48) vanishes, and thus has the form

k⊥ =
1

vF
ω + . . .+ h2 cos γkF (2ω)2νkF + ih2 sin γkF (2ω)2νkF . (49)

Since vF is real, the properties of the IR Green’s function G(ω) determine the leading imaginary

part in the dispersion relation to scale as ω2νkF ; if we have νkF < 1/2 this is the leading real part

as well, beating the ω/vF term. For νkF > 1/2 we have a Fermi liquid; for νkF < 1/2, a non-Fermi

liquid, with marginal Fermi liquid sitting in between.

For a Fermi liquid, fluctuations near the Fermi surface become asymptotically stable as the

fluctuation energy goes to zero. For a non-Fermi liquid, on the other hand, the ratio of the width
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Γ to the energy ω∗ of a fluctuation near the Fermi surface approaches the constant

Γ

ω∗
= tan

γνF
2νF

. (50)

The residue of the (would-be) quasiparticle pole is then a constant for a Fermi liquid, and for the

non-Fermi liquid scales as

Z ∼ (k⊥)
1

2νkF
−1

. (51)

In [59], the fermionic fluctuations of all spin-1/2 modes not mixing with the gravitino were studied

for all values of µR in the extremal (2+1)QBH backgrounds. A number of Fermi surface singularities

were discovered, all associated to non-Fermi liquid like states.

4 Green’s functions for the extremal two-charge black hole

We now turn to our main interest, the extremal two-charge black hole (2QBH). The horizon in this

case is at r = 0, but this case is different because it is singular as r → 0 as well. The functions X,

Y and Z that appear in the Dirac equation, expanded near r → 0, are

X =
a

r2
+ b , Y =

cω

r2
+ dω + f , Z =

P

r
, (52)

where a, b, c, d, and f are constants depending on the background and the type of fermion,

a = m2µL
2 , b =

1

µL2

(
2m1 +

3

2
m2

)
, c = −L

2

2
, d = − 1

2µ2L2
, f = − q2√

2

1

µL2
, (53)

and P includes the spatial momentum,

P = −(−1)α
k

µ
+
√

2p2 . (54)

We are neglecting terms of O(r2) from X and Y , and O(r) from Z. One can show that the quantity

p defined in (28) is

p =
2

r
+
iP

a
+O(r) , (55)

which implies that

iY ′ + iY p = −cωP
ar2

+O
(

1

r

)
, (56)

where two terms of O(r−3) canceled. We then find that the near-horizon second-order equation

(27) takes the same form for either U±, with differences subleading in r, and thus can also be
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written as an equation for either ψ±, as

ψ′′ +

(
2

r
+ . . .

)
ψ′ +

(
c2(ω2 −∆2)

r4
+

1
4 − 4ν2 +O(|ω| −∆)

r2
+ . . .

)
ψ = 0 , (57)

where we have defined the scale ∆, closely related to the chemical potential,

∆ ≡
∣∣∣a
c

∣∣∣ = 2|m2|µ , (58)

and the quantity ν2 is

ν2 ≡ 1

4

(
P − 1

2
sgn(ωm2)

)2

+
1

4
m2

2 +m1m2 −
sgn(ωm2)

2
√

2
q2m2 . (59)

This quantity has been given the same name as (35) for the (2+1)QBH case; as we shall see, they

will play an analogous role, and even coincide in the appropriate limit.

The equation (57) has obvious similarities to the (2+1)QBH case (34), but differences as well.

Most salient is that both share 1/(r−rH)4 terms that dominate near the horizon, but are suppressed

by factors of energy. For the (2+1)QBH case, it was near ω = 0 that the 1/(r − rH)4 terms were

suppressed, leading to the need for inner and outer regions there. For the extremal 2QBH, this

happens instead at |ω| = ∆. This difference lies at the heart of the novel structure for this case.

4.1 Solutions away from |ω| = ∆

As long as ω2 − ∆2 is not small, the first term in parentheses in (57) dominates over all other

zero-derivative terms at small r, and we get

ψ′′ +
2

r
ψ′ +

c2(ω2 −∆2)

r4
ψ = 0 . (60)

There is no need in these cases to worry about inner and outer regions. The solutions of (60) were

considered in [59]. Let us define the quantity ε which measures the deviation of |ω| away from ∆,

ε2 ≡ ω2

∆2
− 1 . (61)

Then for |ω| > ∆, we have the complex solutions

ψ ∼ exp

(
± i∆L

2ε

2r

)
, (62)

corresponding to infalling and outgoing waves at the horizon. In this case the usual infalling

boundary conditions are easy to impose, and since the infalling wave is complex, the corresponding

fluctuation is complex as well.
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On the other hand, for |ω| < ∆ we have instead growing and dying solutions,

ψ ∼ exp

(
±∆L2|ε|

2r

)
. (63)

As was noted in [59], there is no obvious solution here corresponding to an infalling wave. Instead,

it was suggested there to adopt the standard boundary condition of Euclidean AdS/CFT, keeping

the regular solution at the horizon, corresponding to keeping the dying exponential and removing

the diverging exponential. Choosing the non-diverging solution is a real boundary condition, and

since the differential equation is real, we will in this case have purely real solutions to the fluctuation

equations. The Fermi surface can be defined as usual (31) as the vanishing of the retarded Green’s

function at ω = 0; however, since this lies in the |ω| < ∆ region, to do this we must accept this

modified prescription for the boundary conditions. It appears that the Fermi surface is surrounded

by an energy gap of size 2∆, within which the modes are purely real; as we shall describe, the

corresponding fluctuations have no decay width and so are stable. In the next subsection we look

at the region |ω| ≈ ∆, where this unusual behavior crosses back over to more typical behavior.

4.2 Solutions near |ω| = ∆

Looking at the near-horizon equation (57), it is evident that the kind of “interesting” behavior that

showed up in the regular case (34) at ω = 0 happens here instead at |ω| → ∆; this is the case for

which the first term in parentheses is suppressed except for very close to the horizon. The analog

of studying small ω for the regular cases is to study small ε, that is, to study energies near ∆.

Recall that ω = 0 already corresponds to fluctuations at the Fermi surface εF = q2µ; so we are now

discussing fluctuations around a scale ∆ = 2|m2|µ above or below the Fermi energy.

Let us analyze (57) for energies near ∆. As with regular cases near ω = 0, we have the issue

that for fixed small ε there will always be sufficiently small r where the 1/r2 term dominates, and

again we can solve this with inner and outer regions. For the outer region, r is large enough that

the relevant term can be neglected, and we set ω = ∆ — that is, ε = 0. The second-order equation

in the outer region then has the near-horizon limit,

ψ′′ +
2

r
ψ′ +

1
4 − 4ν2

r2
ψ = 0 . (64)

The solutions to (64) are power laws,

ψ ∼ r−
1
2
±2ν . (65)

Meanwhile the inner region is defined by taking r → 0, ε→ 0, with ε/r fixed. We obtain the inner

region equation,

ψ′′ +
2

r
ψ′ +

(
a2ε2

r4
+

1
4 − 4ν2

r2

)
ψ = 0 . (66)
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The near-boundary limit of the inner region involves r → ∞ with ε fixed, and results in the same

equation (64) as the near-horizon limit of the outer region; as expected there is a match in the

transition region.

We can solve the inner region equation in general, obtaining r−1/2 times Bessel functions. For

|ω| > ∆ we have

ψ ∼ 1√
r
J2ν

(
∆L2ε

2r

)
,

1√
r
Y2ν

(
∆L2ε

2r

)
, ω > ∆ . (67)

while for ω < ∆, we have imaginary ε, and the above become modified Bessel functions,

ψ ∼ 1√
r
K2ν

(
∆L2|ε|

2r

)
,

1√
r
I2ν

(
∆L2|ε|

2r

)
, ω < ∆ . (68)

For ω > ∆, one may impose infalling boundary conditions at the horizon by choosing the combi-

nation of (67) to be the Hankel function of the first kind,

ψ =
1√
r
H

(1)
2ν

(
∆L2ε

2r

)
→
√

2

επ
e−

iπ
4
− 2πiν

2 exp

(
i∆L2ε

2r

)
, (69)

which indeed takes in the infalling form at r → 0, matching (62). We can take this solution and

examine the inner region near-boundary (r →∞) behavior and extract the “IR Green’s function”

G.4 Consider for simplicity the case of non-integral 2ν; this will be generic except for special values

of the momentum. As x→ 0 we have,

H
(1)
2ν (x) = − iΓ(2ν)

π

(x
2

)−2ν
+ . . .− iΓ(−2ν)

π
e−2πiν

(x
2

)2ν
+ . . . , (70)

where each leading term is corrected by a power series in even powers of x; since 2ν is non-integral

here these do not overlap. Thus we see that

ψ = − i
π

(
Γ(2ν)

(
∆L2ε

4

)−2ν

r2ν− 1
2 + . . .+ Γ(−2ν)e−2πiν

(
∆L2ε

4

)2ν

r−2ν− 1
2

)
. (71)

These power laws indeed match the two solutions for the near-boundary limit of the inner region

from (65). The ratio between the r−2ν− 1
2 and r2ν− 1

2 terms is

G+(ε) = e−2πiν Γ(−2ν)

Γ(2ν)

(
∆L2ε

4

)4ν

= e−2πiν Γ(−2ν)

Γ(2ν)

(
L4(ω2 −∆2)

16

)2ν

,

(72)

4In the regular case, the term IR Green’s function was well-motivated by the fact that the near-horizon region
was AdS2 and hence had its own holographic interpretation. We will continue to use the terminology; later we will
discuss the relation of this near-horizon region and AdS3.
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where we use the label + to indicate ω > ∆. For the case of ν real, we take ν > 0 and then the

r2ν− 1
2 term always dominates over r−2ν− 1

2 , so we may think of them as the source and the response

respectively; then G(ε) may usefully be thought of as the IR Green’s function.

For |ω| −∆ small, we have

G+(ε) ≈ e−2πiν Γ(−2ν)

Γ(2ν)

(
L4∆(|ω| −∆)

8

)2ν

. (73)

Comparing this to the form (41) for the regular cases, we see both scale like the deviation from the

“special energy” to the 2ν power. Furthermore, in this case for real ν the phase of G is simply

γ ≡ arg G = −2πν . (74)

Consider now the case of ω < ∆, so ε is imaginary; here we will give results in terms of |ε| =√
1− ω2/∆2. Now the solutions (68) are purely real, and consequently they do not show in-

falling/outgoing behavior at the horizon; instead, one solution is regular there and one is divergent.

Not having the infalling prescription available, we will instead follow the prescription used for

Euclidean AdS/CFT and choose the regular solution, which is

ψ =
1√
r
K2ν

(
∆L2|ε|

2r

)
. (75)

The expansion near the boundary is

ψ =
Γ(2ν)

2

(
∆L2|ε|

4

)−2ν

r2ν− 1
2 + . . .+

Γ(−2ν)

2

(
∆L2|ε|

4

)2ν

r−2ν− 1
2 + . . . , (76)

and so now the IR Green’s function is

G−(ε) =
Γ(−2ν)

Γ(2ν)

(
∆L2|ε|

4

)4ν

=
Γ(−2ν)

Γ(2ν)

(
L4(∆2 − ω2)

16

)2ν

, (77)

which for ∆− |ω| small is

G−(ε) ≈ Γ(−2ν)

Γ(2ν)

(
L4∆(∆− |ω|)

8

)2ν

. (78)

We are now in a position to further justify the regular prescription: it is the continuation of the

infalling prescription as |ω| moves past ∆, corresponding to imaginary ε. This can be seen using

the Bessel function identity:

K2ν(x) =
π

2
i2ν+1H

(1)
2ν (ix) , (79)

showing the expressions for G+(ε) and G−(ε) are the same formula, with ε continued from real to

21



imaginary values; we drop the distinction from here on. This provides further confidence in our

choice of boundary condition for the |ω| < ∆ region.

As in the regular cases, the outer region solution will match to the inner solution on their

overlap, and thus the continuation of our boundary condition to the outer region gives solutions

ψ = η+ + G(ε)η− , (80)

where η± ∼ r−
1
2
±2ν and as in the regular case, the solutions can be extended away from ε = 0 in a

power series in ε2; for small deviations ε2 is proportional to the linear deviation,

ε2 ≈ 2(|ω| −∆)

∆
. (81)

Meanwhile the outer region near-boundary behavior still has the form (29), and since both compo-

nents have the same near-horizon behavior, we get for the full Green’s function near |ω| = ∆:

GR =
D

A
=

b
(0)
+ + ε2b

(2)
+ + . . .+ G(ε)(b

(0)
− + ε2b

(2)
− + . . .)

a
(0)
+ + ε2a

(2)
+ + . . .+ G(ε)(a

(0)
− + ε2a

(2)
− + . . .)

. (82)

Thus the IR Green’s function G(ε) plays the same role near |ω| = ∆ as its cousin G(ω) does near

ω = 0 in the regular case.

As with the regular case, there are different situations depending on the sign of ν2 (59). Note

that the momentum dependence of ν2 enters in the positive-definite term (P ± 1/2)2; this is played

against a constant term depending on the fermion in question, which may be negative. If ν2 < 0,

the power law solutions (65) are not real, and we again find an oscillatory region where there are

no Fermi surface singularities. For ν2 > 0, Fermi surfaces may be found.

Note that the form (82) is not useful near ω = 0, so it does not tell us anything about fluctuations

near the Fermi surface. Instead, it tells us about dynamics near the gap ∆. The denominator may

vanish for a particular value of k ≡ k∆, corresponding to a pole in the Green’s function at ω = ∆.

(One may also define a k−∆ where the denominator vanishes for ω = −∆, and k∆ and k−∆ need

not coincide.) The spectrum of nearby fluctuations may then be worked out.

For |ω| > ∆, the case of complex fluctuations, the behavior of the Greens function near k = k∆

is

GR ∼
h1

(k − k∆)− |ω|−∆
vF

+ . . .− h2e
−2πiνk∆ (|ω| −∆)2νk∆

, (83)

and we find a story very similar to the regular case (48). The energy dependence scales with the

quantity ν in an identical fashion, justifying our choice for the analogous notation. The phase

is determined by ν as well, and once again we will have a Fermi liquid like state if νk∆
> 1/2,

non-Fermi liquid behavior for νk∆
< 1/2, and marginal Fermi liquid like features for νk∆

= 1/2.
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For the non-Fermi case, the ratio of the width to the energy is

Γ

ω∗
= tan

−2πν∆

2ν∆
= 0 . (84)

Thus unlike the generic regular case, we find that even for cases with ν < 1/2, the dispersion of

the modes vanishes as the special energy is approached. We can still consider these most similar

to non-Fermi liquids, as the real and imaginary parts of the Green’s function denominator scale

with the same power law, and other quantities such as the residue consequently keep the non-Fermi

liquid form

Z ∼ (k − k∆)
1

2ν∆
−1

. (85)

One might say that Γ/ω∗ approaches a constant as with other non-Fermi liquids, but the constant

in this case is zero.

For ω < ∆, we have instead the form for the Green’s function,

GR ∼
h1

(k − k∆) + |ω|−∆
vF

+ . . .− h2(∆− |ω|)2νk∆

, (86)

which is just the continuation of the first form to negative |ω| − ∆. The primary difference is

that everything is real. As a result, the energy ω of the fluctuation has no imaginary part; the

correpsonding modes are stable everywhere for |ω| < ∆. This connects smoothly to the result (84)

for |ω| > ∆.

4.3 Connection with extremal (2+1)-charge black holes

In this subsection, we show how the boundary of the stable region |ω| ≈ ∆ can be probed by

studying the limit of Fermi surfaces at ω ≈ 0 in extremal (2+1)-charge black holes. When we

study results for specific fermions of maximal gauged supergravity in 2QBH backgrounds in the

next section, this will connect those results to the results of [59].

As described in section 2, approaching the extremal 2QBH via extremal (2+1)QBHs shifts Φ1

by a constant (12). This constant shift, while not a true shift in the chemical potential, does

correspond to a simple shift in the zero point of the energy for q1-charged particles. Consider the

Dirac equation, approaching the 2QBH via extremal (2+1)QBHs. Φ1 enters in both u and v (23),

but because the shift (12) is constant, only u is affected. Indeed, one may absorb the resulting shift

into a redefinition of the zero point of the energy ω by gq1Φ1,

ω = ω2+1 +

√
2q1Q2

L2
,

= ω2+1 + q1µ2 .

(87)
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Here ω is the energy as defined by the Dirac equation that approaches the 2QBH directly, while

ω2+1 is the energy in the Dirac equation approaching via extremal (2+1)QBHs. Since µ1 → µ2 in

this limit, we may interpret the shift as

ω = ω2+1 + q1µ1 , (88)

which is precisely the shift in the energy that would accompany a particle of charge q1 with the

first chemical potential shifted from 0 to µ1 = µ2.

One may also interpret this shift in terms of the gap ∆. Given the relations (18), (19) (which

we will show are necessary for the lift to six dimensions in section 6), we have

|q1| = 2|m2| . (89)

Consequently, the shift between the two scales of energy is precisely the magnitude of the gap:

ω = ω2+1 + sgn(q1)∆ . (90)

In [59], many fermions were analyzed in (2+1)QBHs for various values of 0 ≤ µR ≡ µ1/µ2 ≤ 1,

at what we are now calling ω2+1 = 0. What we have now learned is that the µR → 1 limit of

those results should match on to the results found here for the 2QBH. Moreover, ω2+1 = 0 implies

ω = ±∆; thus the “Fermi surface” results found there match up with the physics not in the middle

of the stable region, but at one of its edges. Thus the edge of the gapped region coincides with the

limit of a series of Fermi surfaces.

The gapped region is unusual in the way it appears suddenly for the 2QBH, with energy width

2∆, while if one turns on any nonzero amount of Q1 to give a (2+1)QBH, this region vanishes

entirely. The results of this section relate this “sudden” appearance of the band to the order of

limits issue in the parameter space. By choosing how one approaches the 2QBH, one can choose

to “zoom in” on the energy region at the center of the stable region (if Q1 = 0 is taken first), or

instead one may “zoom in” on the edge of this band by approaching via the extremal (2+1)QBHs.

A limit of Q1, Q2 and rH that lies in between can presumably be taken to approach some other

energy location in the middle of the band.

The sudden disappearance of the gap under the addition of Q1 charge is notable in that for any

non-zero Q1, the vanishing of the gap is accompanied by a finite zero-point entropy density in the

dual field theory state. This non-vanishing entropy at zero temperature is a well known feature of

states dual to geometries with AdS2 regions in the infrared, and is challenging to interpret. From

the point of view of N = 4 SYM, one possible explanation is that the shift in energy in (90) is

suggesting that the gauge theory state dual to the extremal 2QBH can be interpreted as a zero

temperature, zero entropy state characterized by an intermediate energy scaling regime which can
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be matched to the infrared physics of certain states dual to (2+1)QBHs. This interpretation is

similar in spirit to the semi-local quantum liquid picture advocated for extremal black holes with

regular horizons in [27].

Given that the Dirac equations coincide, various related quantities should coincide also. We

can see this for ν2. The definition of this quantity in the (2+1)QBHs is (35). We are interested in

the µR → 1 limit; expanding we find

k̃

µ2
→ k

µ2
− (−1)α(2p1 +

√
2p2) = −(−1)α (P + 2p1) , (91)

and thus

ν2 → 4m2
2 − q2

1

16(1− µR)
+

1

4

(
(P + 2p1)2 + 4m1m2 +

7q2
1

8
− 5m2

2

2
− q1q2√

2

)
+O(1− µR) . (92)

We see there is a leading term that apparently diverges in the limit. However, this term is absent

for all our fermions, given the relation (89). Using this relation to eliminate q1 in favor of sgn(q1)

and m2, we find

ν2 → 1

4

(
(P + 2p1)2 + 4m1m2 +m2

2 − sgn(q1m2)
√

2q2m2

)
. (93)

The relation (19) also implies a relationship between signs:

sgn(m2) = − sgn(q1) sgn(p1) . (94)

Thanks to (90), we may take sgn(ω) = sgn(q1) in this limit. Putting these together with (18), we

have

ν2 → 1

4

(
(P − 1

2
sgn(ωm2))2 + 4m1m2 +m2

2 − sgn(ωm2)
√

2q2m2

)
, (95)

which exactly matches the expression (59) for the 2QBH version of ν2. Thus the dispersion relation

for fluctuations has the same scaling in both cases, as it must.

Another quantity providing information about the fluctuation spectrum is γk ≡ arg(G). For the

(2+1)QBHs, this was determined by [4] to be

γk ≡ arg
(

Γ(−2νk)
(
e−2πiνk − e−2π(qe)eff

))
, (96)

with (qe)2
eff given by the last term in (35) without the sign:

(qe)2
eff =

(
√

2q1µ
3
R + q2(1− µ2

R))2

4(1− µ2
R)(1 + µ2

R)2
. (97)

It is easy to see that this goes to infinity as µR → 1 (as long as q1 6= 0, which holds for all our
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modes; in fact it is necessarily half-integer quantized by the lift to 6D). For real νk we then have

γk → −2πνk , (98)

which indeed matches the phase (74).

It is interesting that the limit is only sensible for fermions that can be lifted to six dimensions.

The apparent divergence in (92) at µR → 1 is related to a term in the Dirac equation: if one takes

the limit via extremal (2+1)QBHs with ω2+1 = 0, one expects to get the 2QBH equation (57) with

|ω| = ∆, which should have no r−4 term and thus should coincide with the outer region equation

(64). However, one finds an extra term

ψ′′ +
2

r
ψ′ +

(
q2

1 − 4m2
2

2r4
+

1
4 − 4ν2

r2

)
ψ = 0 , (99)

which vanishes only for fermions obeying (19). Thus we learn that a generic fermion action, not

derived from maximal gauged supergravity, is not consistent throughout the parameter space;

approaching the same extremal 2QBHs in two different ways it acquires two inequivalent equations

unless (89) is obeyed.

5 Fermions in N = 4 Super-Yang-Mills

We turn now to studying a number of fermionic fluctuations of maximal gauged supergravity, dual

to operators in N = 4 Super-Yang-Mills, in the 2QBH backgrounds. The Dirac equations for all

spin-1/2 fields were worked out in [59].

Here we work out the dispersion relation between k and ω in the entire stable region for each

fermion. The Fermi surface is at ω = 0; we find such a surface and the corresponding kF , and then

vary ω away from zero and find the k giving a pole in the Green’s function in each case. Close to the

Fermi surface pole the dispersion is linear, and primarily deviates from this behavior in the vicinity

of |ω| = ∆. At |ω| = ∆, the results match on to the µR → 1 limit of the study of (2+1)QBHs at

ω2+1 = 0 in [59], as described in the last section.

In addition to the poles connected to the Fermi surface singularity, we also find other pairs

of poles nucleating at nonzero ω. These additional fluctuations always seem to appear near an

oscillatory region living at the gap, and generically the poles fall into the region and cease to exist.

In a few cases, however, they miss the oscillatory region and survive as excitations at the gap,

which also match with Fermi surfaces seen in the (2+1)QBHs in [59].

5.1 Fermion A

Consider first the pair of distinct fermions [59]
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Figure 5: Poles in the retarded Green’s function from ω = 0 to ω = ±∆ (red dashed lines) for
fermion A.

s

χqaqbqc Dual operator m1 m2 q1 q2 p1 p2

χ( 1
2
, 3
2
, 1
2

), χ( 1
2
, 1
2
, 3
2

) λ1Z2, λ1Z3
1
2 −1

4
1
2 2 1

4 0

χ̄(− 1
2
, 3
2
, 1
2

), χ̄(− 1
2
, 1
2
, 3
2

) λ2Z2, λ2Z3
1
2 −1

4 −1
2 2 −1

4 0

(100)

In the 2QBH background, where q1 and p1 are irrelevant, these fermions have the same Dirac

equation with (m1,m2) = (1/2,−1/4) and (q2, p2) = (2, 0). In this case ∆ is just half the chemical

potential,

∆ ≡ 2|m2|µ =
µ

2
. (101)

It was found in [59] that there is a Fermi surface (imposing the regular boundary condition) at

kF
µ
≈ 0.83934 . (102)

Continuing to use the regular boundary condition, we can numerically solve for poles in the Green’s

function from ω = 0 up to ω = ±∆; in so doing k varies continuously from kF up to k±∆. The

result of this procedure is depicted as the blue dots in figure 5. The dispersion is approximately

linear at small values of ω/µ, with the form

ω ≈ vF k⊥ , vF ≈ 0.724 , (103)

which is about 5/4 times larger than the speed of sound cs = 1/
√

3 in this (conformal) background.

27



Figure 6: Fermi surfaces in (2+1)-charge black holes as a function of µR from [59]; on the left is
case 3, on the right case 1. The µR → 1 limits (purple dashed lines) match onto the left and right
edges of the gapped region in figure 5.

At ω = −∆, we have
k−∆ − kF

µ
≈ −0.92513 , (104)

with

νk−∆
= 0.33211 , (105)

associated to non-Fermi liquid like behavior. For ω = ∆

k∆ − kF
µ

≈ 0.743052 , (106)

implying
k∆

µ
= 1.58239 , (107)

at which point

νk∆
= 0.08211 . (108)

For fluctuations above ω = ∆, we again have properties characteristic of a non-Fermi liquid. Outside

the stable region, ω will develop an imaginary part as well, and move off into the complex plane.

The behavior at ω = ±∆ should match on to results from the extremal (2+1)QBHs found in

[59]. Here the two fermions in (100) behave differently according to (90) since they have opposite

signs of q1: the first line in the table, called case 1 in [59], has ω = ω2+1 + ∆ and thus the extremal

(2+1)QBH limit “zooms in” on the ω = ∆ side of the gapped region, while the second line in the

table, case 3 in [59], zooms in on the ω = −∆ side.

We reproduce the plots from [59] showing locations of Fermi surfaces at various values of 0 ≤
µR ≤ 1 for cases 3 and 1 in figure 6. The values of kF at the µR → 1 limit must match to values

of k−∆ and k∆ in figure 5, respectively, and indeed the Fermi surfaces indicated by blue dots do in
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each case. Values of νk match as well.

There is a new feature here, however: case 1 has two distinct Fermi surfaces, one on each side of

an oscillatory region. (Since the oscillatory region is defined by ν2 < 0, and ν necessarily matches

between the two limits, the oscillatory region is also present in the 2QBH case, and is indicated

by a green line in figure 5.) Thus there ought to be another pole in the 2QBH Green’s function at

ω = ∆, one not connected to the pole at ω = 0.

Indeed we find this is the case. Near ω = 0, the only pole in the Green’s function is the one

connected to the Fermi surface pole at ω = 0. But at a certain value 0 < ω < ∆, a new pair of

poles nucleates. As ω is increased further, they spread apart with different values of k. One pole

(indicated in red in figure 5) reaches the ω = ∆ line just below the oscillatory region, and matches

the red pole from figure 6. This pole has

k∆

µ
≈ −0.58239 , (109)

and the same value of νk∆
as the other pole at ω = ∆ (108). Meanwhile, the partner pole, indicated

in figure 5 in purple, reaches the ω = ∆ axis inside the oscillatory region, and does not survive.

Thus the overall picture is consistent between the (2+1)QBHs from [59] and the current work.

As one moves even closer to ω = ∆, several further pairs of poles nucleate, all of which disappear

into the oscillatory region; these continue to appear to the limits of our numerical precision. These

pairs lie very close to ω = ∆ and are not indicated in the figure. Thus there appears to be an

accumulation of additional states near the oscillatory region.

5.2 Fermion B

Consider now a second pair of fermions whose charges coincide when q1, p1 are neglected:

χqaqbqc Dual operator m1 m2 q1 q2 p1 p2

χ(− 1
2
, 3
2
,− 1

2
), χ(− 1

2
,− 1

2
, 3
2

) λ3Z2, λ4Z3
1
2 −1

4 −1
2 1 −1

4 −1
2

χ̄( 1
2
,− 1

2
, 3
2

), χ̄( 1
2
, 3
2
,− 1

2
) λ3Z3, λ4Z2

1
2 −1

4
1
2 1 1

4 −1
2

(110)

These behave the same for the 2QBH and in [59] a Fermi surface was found at

kF
µ
≈ 0.05202 . (111)

Again ∆ = µ/2, we can follow the pole away from ω = 0 all the way to ω = ±∆; this is plotted

in figure 7. As with fermion A, the dispersion at small ω/µ is linear, and the corresponding Fermi

velocity vF ≈ 0.678 is similar. At ω = ∆, the pole hits the axis at

k∆

µ
≈ 0.79289 , (112)
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Figure 7: Poles in the retarded Green’s function from ω = 0 to ω = ±∆ (red dashed lines) for
fermion B.

resulting in

νk∆
= 0.22855 , (113)

yet another non-Fermi liquid like region. Approaching ω = −∆, however, the line of poles reaches

the axis inside an oscillatory region, and there is no solution at ω = −∆ precisely.

Again we expect a match to results from [59] for (2+1)QBHs. The first fermion listed in the

table (110) has q1 < 0, and hence zooms in on ω = −∆, where we found no pole. Indeed, no Fermi

surfaces were found for this fermion in [59]. For the second fermion in the table, q1 > 0 and it

zooms in on ω = ∆. This fermion was called case 4 in [59], and its Fermi surfaces are reproduced

in figure 8. We again see that the value of kF /µ at µR → 1 matches the pole at ω = ∆ in figure 7.

There are oscillatory regions on both sides of the gap ω = ±∆. Again we find a proliferation of

additional poles near the ω = ∆ oscillatory region; the first such pair is plotted in figure 7 and lies

almost on top of the region. No such poles are found for the ω = −∆ oscillatory region.

5.3 Neutral fermion

One may also consider the fermion

χqaqbqc Dual operator m1 m2 q1 q2 p1 p2

χ̄( 3
2
,− 1

2
, 1
2

) , χ̄( 3
2
, 1
2
,− 1

2
) λ3Z1, λ4Z1 −1

2
3
4

3
2 0 −1

4 0
(114)

called case 5 in [59]. This case is neutral as far as the 2QBH is concerned, with ∆ = 3µ/2, and

no Fermi surface was found at ω = 0. However, the results of [59] shown in figure 8 indicate there
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Figure 8: Fermi surfaces in (2+1)-charge black holes as a function of µR from [59] for cases 4 and
5. The µR → 1 limit (purple dashed lines) matches onto the right edges of the gapped region in
figures 7 and 9, respectively.

should be a singularity at ω = ∆ to match the Fermi surface at µR → 1. This can occur if a pair of

singularities nucleate at some nonzero ω, one makes it to the edge of the gap while the other falls

into the oscillatory region. This is indeed what we find in figure 9, where the lower pole falls into the

oscillatory region while the upper pole escapes, matching the pole in figure 8. Due to the vanishing

of all gauge couplings for this case, the Dirac equation is symmetric under (k, ω)→ (−k,−ω), and

we find identical behavior at ω = −∆.

The sole remaining fermion for which a Fermi surface was found in [59], there called case 2, was

characterized by the charges

χqaqbqc Dual operator m1 m2 q1 q2 p1 p2

χ( 3
2
, 1
2
, 1
2

) λ1Z1 −1
2

3
4

3
2 1 −1

4
1
2

(115)

While this fermion has Fermi surface singularities for many values of µR, the line of Fermi surfaces

falls into the oscillatory region before reaching µR = 1. Thus we expect no singularity at ω = ∆

for this case; in fact we find no Fermi surface at ω = 0, either.

6 Six-dimensional lift

One concern about the 2QBH is its singularity at the horizon. One may also wish to understand

the geometrical nature of the inner region a little better. Here we show that in the near-horizon

limit, the geometry can be lifted to AdS3 × R3. Moreover, the fermions lift to six-dimensional

fermions as well; this lift identifies the charge q1 as Kaluza-Klein momentum in the sixth direction,

and places relations amongst the parameters q1, m2 and p1.

The six-dimensional lift we demonstrate cannot be considered the full picture, as several as-

pects of the fermion are subleading (in the near-horizon expansion) and do not appear, in particular
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Figure 9: Poles in the retarded Green’s function from ω = 0 to ω = ±∆ (red dashed lines) for the
neutral fermion.

m1 and q2. Presumably including more subleading terms would provide a complete picture, ul-

timately recovering the intermediate compactification between the (squashed) AdS5 × S5 lift and

the five-dimensional reduction. The lift we display, however, elegantly resolves the singularity and

establishes the parameter relations, and so is sufficient for our purposes.

6.1 Kaluza-Klein Oxidation of Metric

The near-horizon (r → 0) limit of the 5D extremal 2QBH metric is

ds2 = − 2r8/3

L2Q2/3
dt2 +

r2/3Q4/3

L2
d~x2 +

L2

2r4/3Q2/3
dr2 , (116)

and the scalar diverges as

e
φ

2
√

6 =

(
Q

r

)1/3

. (117)

We now claim that this metric can be obtained as the dimensional reduction of a 6D metric. Using

a hat for the 6D metric, the Kaluza-Klein reduction ansatz is

dŝ2 = e2αφds2 + e2βφ(dz +A)2

= e
φ√
6ds2 + e

− 3φ√
6 (Ldϕ3 +A)2 ,

(118)

where we defined z ≡ Lϕ3, and

α =
1

2
√

6
, β = −3α = − 3

2
√

6
. (119)
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The 6D metric is then AdS3 × R3:

dŝ2 = −2r2

L2
dt2 +

L2

2r2
dr2 +

r2L2

Q2
dϕ2

3 +
Q2

L2
d~x2 . (120)

One can calculate the sechsbeins and spin connections; we present them in Appendix C. The

dimensional reduction of the Einstein-Hilbert action then gives

LEH =
√
−ĝR̂ =

√
−g
(
R− 1

2
(∂φ)2 − 1

4
e
−4φ√

6 F2

)
, (121)

and the action for the KK gauge field matches that for the 1Q gauge field aµ (the one not turned

on in the 2QBH background) if we define

aµ ≡
1

2
Aµ . (122)

Thus the charge q1 is identified with Kaluza-Klein momentum.

We may also obtain the leading term in the five-dimensional potential as a reduction of a

six-dimensional cosmological constant. Consider a cosmological term in 6D,

LΛ =
√
−ĝΛ̂ , (123)

and dimensionally reduce it, leading to

LΛ =
√
−ge

φ√
6 Λ̂ . (124)

The potential terms in the 5D theory are

Lpot =
√
−g
(

8

L2
e
φ√
6 +

4

L2
e
−2φ√

6

)
, (125)

and the first term will dominate near the horizon. We can match the 6D cosmological constant to

the leading term if we choose

Λ̂ =
8

L2
, (126)

and in 6D we have the term

LΛ =
√
−ĝ 8

L2
. (127)

Note that there is no obvious way to get the subleading term in this limit, since in 6D φ is part of

the metric and one cannot simply write down terms with arbitrary powers of it.
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6.2 Oxidation of gauge field

The gauge field aµ is the 6D graviphoton; the other 5D gauge field Aµ must have another source

in six dimensions. In six dimensions, one can consider a 1-form gauge field or a 2-form gauge field.

For the one-form case, the reduction from six dimensions to five is

−1

2
F̂2 ∧ ∗̂F̂2 = −1

2
e−2αφF2 ∧ ∗F2 −

1

2
e6αφF1 ∧ ∗F1 , (128)

where

F2 ≡ dA1 − dA0 ∧ A1 , F1 = dA0 . (129)

Meanwhile, reducing a 6D 2-form potential we have

−1

2
Ĥ3 ∧ ∗̂Ĥ3 = −1

2
e−4αφH3 ∧ ∗H3 −

1

2
e4αφH2 ∧ ∗H2 , (130)

where

H3 ≡ dB2 − dB1 ∧ A1 , H2 = dB1 . (131)

Thus we see that in order to match the gauge field Aµ in five-dimensions, we need to reduce a 6D

two-form, and identify

Bµ ∝ Aµ . (132)

Details of the coefficient of the kinetic term depend on whether we take H3 to be self-dual or not;

both matching the 5D Chern-Simons term, and the presumed ten-dimensional origin of this H3 in

the five-form F5, suggest that it should be. The normalization will not be needed for the arguments

we make.

6.3 Probe scalar reduction and interpretation of gap ∆

Although we are ultimately interested in fermions, it is edifying to consider the simpler case of a

6D complex scalar η̂ first. Starting with the six-dimensional action

Sη ≡ −
∫
d6x
√
−ĝĝMN∂M η̂∂N η̂ , (133)

we assume the KK ansatz

η̂(x̂M ) = einϕ3η(xµ) , (134)

and arrive at the five-dimensional action

Sη → −2πL

∫
d5x
√
−g

(
gµνDµηDνη + e

4φ√
6
n2

L2
|η|2
)
, (135)
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where the covariant derivative is

Dµ ≡ ∂µ − i
n

L
Aµ = ∂µ − ignaµ , (136)

having used g ≡ 2/L. We see that the KK momentum n is also the charge q1. Moreover there is

an effective mass,

m = ±n
L
e

2φ√
6 . (137)

This matches the leading term in the mass function (16) provided 2m2 = ±q1. This relation will

hold for the fermions as well.

With the relation between m2 and the KK momentum n in hand, we can provide a new inter-

pretation of the gap ∆. Consider a six-dimensional momentum vector in the KK/time directions

kM ≡ (kϕ3 , kt, 0, 0, 0, 0) = (n, ω, 0, 0, 0, 0). The norm of this vector is

kMkM =
Q2

r2L2
n2 − L2

2r2
ω2 ,

=
L2

2r2
(∆2 − ω2) ,

(138)

where we used n2 = 2m2
2 and that ∆2 = 8m2

2Q
2/L4. Thus the gap represents the minimum energy

required for the six-dimensional momentum to be timelike; fluctuations of lesser energy, in the

gapped region, correspond to spacelike 6D momenta due to the contribution of the momentum in

the compact direction.

The emergence of an AdS3 region suggests aspects of the IR physics are controlled by a dual

CFT2. A further understanding of the associated non-chiral Virasoro algebra could lead to greater

insight concerning the nature of the gap.

6.4 Fermion reduction

Turn now to the fermionic case. The five-dimensional spinors in maximal gauged supergravity are

four-component symplectic Majorana pairs. These descend from eight-component Majorana-Weyl

fermions λa in six dimensions:

Γλa = ελa , λa = B6Ωab(λ
b)∗ . (139)

Here ε = ±1 gives the chirality, B6 is the six-dimensional conjugation matrix, and Ωab is an

antisymmetric matrix in the space of spinors; details are relegated to Appendix B. The kinetic

term in the 6D Lagrangian is

L =
√
−ĝ i

2
λ̄aΓM êNM∇̂Nλa , (140)
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and a mass term is forbidden by the Weyl condition. The covariant derivative is

∇̂N = ∂N −
1

4
ω̂

PQ

N ΓPQ . (141)

Let us reduce the kinetic term to five dimensions. Because of the symplectic Majorana condition,

if we take one 6D spinor to depend on ϕ3 ≡ z/L as a complex exponential, the other must depend

on the conjugate. Furthermore, we will allow a rescaling by a power of the scalar φ. We choose a

basis for Γ-matrices where the Weyl condition for one chirality is solved by spinors of the form

λ1(z, xµ) ≡ einϕ3e
η√
6
φ

(
χ1(xµ)

0

)
, λ2(z, xµ) ≡ e−inϕ3e

η√
6
φ

(
χ2(xµ)

0

)
, (142)

where the χa are 4-component spinors that are symplectic Majorana in a 5D sense, and 0 stands

for vanishing 4-component spinors. The other chirality would have the χi below the 0. Here n is

half-integer quantized since the fields are fermionic.

Performing the reduction (see Appendix C), we find we can obtain a canonical 5D kinetic term

with the choice η = −1/4. Our total 5D Lagrangian becomes

e−1L =
i

2
χ̄γµ∇µχ+

1

2
χ̄
(nε
L

)
e

2φ√
6 τ3χ+

1

2
χ̄

(
2n

L

)
γµaµτ3χ+

i

2
χ̄
(ε

4

)
e
−2φ√

6 γµνfµνχ , (143)

where the τ3 Pauli matrix acts in the the symplectic Majorana space (details in the appendices).

Comparing to the canonical form of the Lagrangian,

L =
1

2
(iχ̄γµ∇µχ−mχ̄τ3χ+ qχ̄γµaµτ3χ+ ipχ̄γµνfµνχ) , (144)

and using that in the 2QBH we have masses of the form

m(φ) = g

(
m1e

−φ√
6 +m2e

2φ√
6

)
≈ 2m2

L
e

2φ√
6 + . . . , (145)

we identify an effective mass, gauge coupling and Pauli coupling,

m2 = −nε
2
, q1 = n , p1 =

ε

4
. (146)

Thus these three five-dimensional quantities are determined by two six-dimensional ones: the KK

momentum n, and the chirality ε. Since n is half-integer quantized, we expect q1 to be likewise, and

m2 to be quarter-integer quantized; we also find |p1| = 1/4. Since three quantities are determined

from two underlying parameters, we have a relation, which we can express as

m2 = −2q1p1 , (147)
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which is a result we advertised previously as equation (19).

Let us now compare these results to the fermions we know in five dimensions. Below is the table

from [59].5 One may verify that all the implied properties are present: q1 is half-integer quantized

(|q1| = 1/2 or |q1| = 3/2), m2 is correspondingly quarter integer quantized, |p1| = 1/4, and the

relation (19) is satisfied. One can thus derive the associated KK charge n and 6D chirality ε, and

they are added in the last two columns of the table. We find various modes involving the two lowest

half-integer quantized charges, as well as both chiralities:

χqaqbqc Dual operator m1 m2 q1 q2 p1 p2 n ε

χ( 3
2
, 1
2
, 1
2

) λ1Z1 −1
2

3
4

3
2 1 −1

4
1
2

3
2 −1

χ( 3
2
,− 1

2
,− 1

2
) λ2Z1 −1

2
3
4

3
2 −1 −1

4 −1
2

3
2 −1

χ̄( 3
2
,− 1

2
, 1
2

) , χ̄( 3
2
, 1
2
,− 1

2
) λ3Z1, λ4Z1

1
2 −3

4
3
2 0 1

4 0 3
2 1

χ( 1
2
, 3
2
, 1
2

), χ( 1
2
, 1
2
, 3
2

) λ1Z2, λ1Z3
1
2 −1

4
1
2 2 1

4 0 1
2 1

χ̄(− 1
2
, 3
2
, 1
2

), χ̄(− 1
2
, 1
2
, 3
2

) λ2Z2, λ2Z3 −1
2

1
4 −1

2 2 1
4 0 −1

2 1

χ(− 1
2
, 3
2
,− 1

2
), χ(− 1

2
,− 1

2
, 3
2

) λ3Z2, λ4Z3
1
2 −1

4 −1
2 1 −1

4 −1
2 −1

2 −1

χ̄( 1
2
,− 1

2
, 3
2

), χ̄( 1
2
, 3
2
,− 1

2
) λ3Z3, λ4Z2 −1

2
1
4

1
2 1 −1

4
1
2

1
2 −1

(148)

We note in passing that certain 5D spin-1/2 fields that mix with the gravitini do not satisfy all the

rules derived from this dimensional reduction; they do satisfy the relation (147), but while they

have |q1| = 1/2, they also have |m2| = |p1| = 5/12. This indicates that those fields do not descend

from a normal spin-1/2 kinetic term in 6D. The most natural explanation is that they are actually

modes of the 6D gravitino, polarized in the z-direction, though this has not been checked.

We have not yet obtained the coupling of the fermion to the gauge field Aµ. One can consider

a Pauli term in six dimensions,

LPauli =
i

2

√
−ĝλ̄aΓMNPHMNPλa , (149)

and reduce this to five dimensions. Consider the case where one of the indices is polarized in the

z-direction. (If the field strength is indeed self-dual, the other case will contribute similarly.) We

then obtain schematically

LPauli ∼ −
iε

2
e
φ√
6
√
−gχ̄aγµνFµνχa , (150)

which is the right scaling of the scalar for the 5D Aµ Pauli term. Thus one can obtain p2 simply

by choosing the undetermined coefficient of the 6D Pauli term appropriately, since this is not fixed

by anything else.

5In [59], for all the fields whose near-boundary mass came out negative (indicated as χ̄ in the first column), we
flipped the signs of the gamma-matrix basis, thus flipping the signs of mi and pi. We have undone those flips here.
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6.5 Validity of the six-dimensional lift

This lift, while valuable, does not include all information. In particular, the quantities m1 and

q2 associated to each fermion, which are subleading near the horizon, do not arise. m1 is the

subleading term in the potential and seems to be invisible. There also does not seem to be any 6D

coupling that generates q2, the ordinary gauge coupling in 5D: there is no canonical coupling of a

fermion to a 2-form field that reduces to this. (It does come from the reduction of a 6D one-form;

but then one cannot produce the Pauli term, which is more important in the near-horizon limit.)

If one takes the 6D fermion or its 5D reduction and calculates the resulting Dirac equation, one

gets a truncation of the equation analyzed in previous sections. In general, the first-order equations

for r → 0 are (
∂r +

( a
r2

+ b
)
σ3 +

(cω
r2

+ dω + f
)
iσ2 +

P

r
σ1

)
ψ = 0 , (151)

where the various constants are defined in (53); all these terms are required to obtain the correct

limit of the Dirac equation. The 6D fermion, however, gives the equation with b, d and f dropped.

While this might seem valid since they are all O(r0) while the remaining terms are O(r−1) or

higher, it is actually not consistent; in generating the second-order equations there are cross terms

ab/r2 that are no smaller than P 2/r2. Thus we are not entitled to keep P if we drop b, d and f .

The ultimate source of this subtlety is that the two components of ψ can be of different orders in

the expansion in r. This is reflected in the fact that there is no rigorous scaling we can perform as

r gets small that lets us keep only P as a subleading term.

The effect of b, d and f in our analysis is to provide a constant term containing m1, m2 and q2 in

the expression for ν, which can play against the momentum-dependent P term (see equation (59).)

We are thus only honestly entitled to neglect b, d and f when they are much smaller than P . In

the limit of large P we get for ν,

ν(|P | � 1)→ |P | ∓ 1

2
≈ |P | . (152)

Thus the six-dimensional lift is only fully self-consistent, with no additional terms required, in this

limit. However, even though this limit does not in general obtain for the values of k we examine,

the lift is nonetheless useful for the resolution of the singularity, for the proof of the relations

between m2, q1 and p1, and for the intuition that excitations below the gap correspond to spacelike

momenta. Subleading terms in r presumably can be introduced to resolve these issues, at the cost

of giving up the simple AdS3 × R3 form.
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Appendix A: A note on second-order decoupled Dirac equations

In sections 2-4 we use the second-order equations (27) associated to U±, as described in [40]. In

our previous work [59], as well as the numerical solutions in section 5, we use ψ± directly, and the

associated second-order equations,

ψ′′± − F±ψ′± +
(
∓X ′ −X2 + Y 2 − Z2 ±XF±

)
ψ± , (153)

where

F± ≡ ∂r log (∓Y + Z) . (154)

The two formulations are rather similar, and both are correct. The main difference, other than

the introduction of a few factors of i, is that the formulation in terms of U± involves X and Z

in the coefficient of the first-order term (28), while the formulation in terms of ψ± has Y and Z

instead (154). Because the energy ω is contained in Y , this distinction is relevant when taking a

small-ω limit. The definition of F± puts ω in the denominator, and near-horizon expansions come

with extra powers of (r − rH)/ω. Such terms cannot be ignored; in the inner region they are of

order one, while in the outer region they actually diverge. This ruins the near-horizon expansion

for (2+1)-charge black holes at ω 6= 0. Thus it is preferred to work with the quantities U±. The

analysis of [59] remains correct, however; the inner region was solved using the first-order equations

only, and was matched to [4]. In the outer region, ω = 0 was taken strictly before the near-horizon

limit, which gives correct expressions.

One may ask whether the ψ± formulation affects the 2-charge black hole. For that case one

finds

F± = −2

r
∓ P

cω
+O(r) , (155)
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which implies that

∓X ′ ±XF± = − aP

cωr2
+O

(
1

r

)
, (156)

and one ends up with the equation (57) but with one term flipped:

cωP

a
→ aP

cω
. (157)

Interestingly, this does not affect the near-horizon analysis. For solutions away from |ω| = ∆, this

term is dropped as subleading. For solutions at |ω| = ∆, the two terms (157) are the same.

Appendix B: Five- and six-dimensional spinor conventions

We use a mostly plus signature metric, but a “mostly-minus”-type Clifford algebra, meaning that

{γµ, γν} = −2ηµν , (158)

where we use the underline to denote flat-space indices. Five-dimensional gamma matrices are

4× 4, and since we are in odd dimension there is a relation,

γ4 = γ0γ1γ2γ3 . (159)

One can define conjugation/transpose matrices B and C obeying

BγµB−1 = (γµ)∗ , CγµC−1 = (γµ)T . (160)

and satisfying

B−1 = B , BT = B∗ = −B , C−1 = CT = −C , C∗ = C . (161)

One choice is B ≡ iγ4, C ≡ iγ0γ4 which makes γ0, γ1, γ2 and γ3 imaginary, while γ4 is real; γ0

and γ4 are antisymmetric while γ1, γ2 and γ3 are symmetric.

Define 8× 8 gamma matrices in six dimensions via

Γµ = γµ ⊗ σ1 , Γ5 = I⊗ iσ2 , (162)

and the six-dimensional chirality matrix is

Γ ≡ Γ0Γ1Γ2Γ3Γ4Γ5 = I⊗ σ3 , (163)
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obeying as usual

Γ2 = 1 , {Γ,Γµ} = 0 . (164)

We also have 6D conjugation/transpose matrices,

B6ΓMB−1
6 = (ΓM )∗ , C6ΓMC−1

6 = (ΓM )T , (165)

defined as

B6 = B ⊗ I2×2 , C6 = C ⊗ σ1 . (166)

which in the particular basis mentioned above take the form B6 ≡ −iΓ4Γ5Γ, C6 = Γ0B6 =

−iΓ0Γ4Γ5Γ. Since σ1 is real and symmetric, the Γµ inherit the same reality/symmetry proper-

ties as the γµ. Thus Γ0, Γ1, Γ2 and Γ3 are imaginary, while Γ4 and Γ5 are real, while Γ0, Γ4 and

Γ5 are antisymmetric while Γ1, Γ2 and Γ3 are symmetric. In addition, the chirality matrix Γ is real

and symmetric.

The fermionic reduction is complicated by the presence of symplectic Majorana spinors in five

and six dimensions. The index a, b, . . . runs over multiple spinors, and these will be related in pairs

by the symplectic Majorana condition. We raise and lower symplectic Majorana spinor indices with

the antisymmetric matrix Ωab,

χa = Ωabχ
b , χa = Ωabχb , (167)

where Ωab is the inverse of Ωab, ΩabΩbc = δac ; we may take conventions where Ω12 = −Ω12 = 1 for

each pair of spinors. The symplectic Majorana condition is expressed in terms of the reality matrix

B,

χa = B(χa)
∗ = BΩab(χ

b)∗ . (168)

Defining the barred spinor as

χ̄a ≡ (χa)
†γ0 , (169)

we may also express the symplectic Majorana condition as

χ̄a = (χa)TC . (170)

We can use the latter form to prove the bilinear “Majorana flip” expression for symplectic Majorana

spinors,

χ̄aγµ1 · · · γµnψb = ψ̄bγµn · · · γµ1χa . (171)

This constrains possible terms in the Lagrangian for symplectic Majorana spinors; some terms

require a relative sign between the two spinors of the pair in order to end up nonzero. It is useful to
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use a Pauli matrix notation for the symplectic Majorana space of each spinor pair to denote this.

If we agree that χ̄ stands for χ̄a and χ for χb, the allowed terms are

L =
1

2
(iχ̄γµ∇µχ−mχ̄τ3χ+ qχ̄γµAµτ3χ+ ipχ̄γµνFµνχ) , (172)

leading to the Dirac equation,

(iγµ∇µ −mτ3 + qγµAµτ3 + ipγµνFµν)χ = 0 . (173)

Here we use τ to stand for Pauli matrices in the symplectic Majorana space, to distinguish them

from the σ which are Pauli matrices in the Clifford algebra space. The factor of τ3 in the mass and

gauge coupling terms makes up for the antisymmetry of the spinor contraction. The kinetic and

Pauli terms do not need such a factor due to the minus signs from integrating the derivative by

parts and from the antisymmetry of Fµν , respectively.6

Completely analogous expressions to (168), (170) hold for six-dimensional symplectic Majorana

spinors. In that case we also have

[B6,Γ] = 0 , (174)

which along with Γ∗ = Γ implies that the symplectic Majorana condition is compatible with a Weyl

condition

Γλ = ±λ , (175)

allowing symplectic Majorana-Weyl spinors. In these conventions, a 6D Weyl spinor is simply an

8-component spinor with only the top four or bottom four components nonzero; if it is symplectic

Majorana-Weyl, then thanks to (166) the four nonzero components obey precisely the 5D symplectic

Majorana condition.

Appendix C: Details of fermionic Kaluza-Klein reduction

Here we provide the details of the reduction of the 6D Majorana-Weyl spinor to five dimensions

discussed in section 6. Given the ansatz for the decomposition of the 6D metric,

dŝ2 = e2αφds2 + e2βφ(dz +A)2 (176)

the sechsbeins are

ê
µ
ν = eαφe

µ
ν , ê

µ
z = 0 , ê zz = eβφ , ê zν = eβφAν , (177)

6In the literature symplectic Majorana Lagrangians are typically expressed in terms of a non-diagonalized basis
for the spinors, with τ2 instead of τ3. We are concerned with matching to our already-diagonalized eigenvectors, so
we use the form above. The transformation from one basis to the other preserves the symplectic Majorana condition.
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where e
µ
ν is the 5D fünfbein. The inverse sechsbeins are

ê µν = e−αφe µν , ê µz = 0 , ê zz = e−βφ , ê zν = −e−αφe µν Aµ . (178)

The spin connection is then

ω̂
νρ
µ = ω

νρ
µ + α

(
e νµ∂

ρφ− e ρµ∂νφ
)
− 1

2
e2(β−α)φAµFνρ ,

ω̂ νz
µ =

1

2
e(β−α)φF ν

µ − βe(β−α)φAµ∂νφ ,

ω̂
νρ
z = −1

2
e2(β−α)φF νρ ,

ω̂ νz
z = −βe(β−α)φ ∂νφ ,

(179)

where all flat indices on the right-hand side are obtained from the curved-space indices with the

5D fünfbein. We notice that due to the origin of the spin connection terms from êz = eβφ(dz+A),

we can write the last terms of the first and second lines as

ω̂
νρ
µ = ω

νρ
µ + α

(
e νµ∂

ρφ− e ρµ∂νφ
)

+Aµω̂
νρ
z

ω̂ νz
µ =

1

2
e(β−α)φF ν

µ +Aµω̂ νz
z .

(180)

This will be useful in what follows.

Consider the reduction of the 6D fermion kinetic term (140) with the fermion ansatz (142).

In all of our reductions below, we will end up with I2×2 or σ3 in the extra two-component space,

and the 8-component inner product between spinors will collapse to a 4-component inner product;

because the fermion bilinears will be diagonal in the two-component space, the factors of e±inϕ3

will cancel between the fermion and its conjugate. Since Γ = I4×4 ⊗ σ3, the appearance of σ3 will

give us a factor of the chirality ε.

First consider the terms involving the partial derivative. There are three such terms:

L∂ =
√
−ĝ i

2
(λa)

†Γ0
(

Γµ êν µ∂ν + Γ5êzz∂z + Γµ êz µ∂z

)
λa , (181)

where no fourth term appears since êνz = 0. These three terms will become the 5D kinetic term,

mass term and KK gauge coupling term, respectively. Consider first the kinetic term. We have

Γ0Γµ = γ0γµ ⊗ I2×2 , (182)

and so the 8-component Weyl spinors reduce to four-component spinors as described above. The
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e±inϕ3 factors cancel. We get one term where the partial derivative acts on the χa,

Lkin = e
φ√
6
√
−g i

2
e

2ηφ√
6 (χa)

†γ0γµe
−φ
2
√

6 eνµ∂νχa + . . . =
√
−ge

(1+4η)φ

2
√

6
i

2
χ̄aγµ∂µχa + . . . . (183)

Thus to get the canonical kinetic term, we need to pick η = −1/4. Another term results when the

derivative acts on the exponential before it cancels, so the total result coming from the first term

in (181) is

Lkin =
√
−g
(
i

2
χ̄aγµ∂µχa −

i

8
√

6
χ̄aγµ(∂µφ)χa

)
. (184)

The latter part will be canceled by the spin connection.

For the other two terms in (181) we will need ∂z derivatives of the spinor,

∂zλ1 =
in

L
λ1 , ∂zλ2 = − in

L
λ2 , (185)

or in Pauli matrix notation

∂zλ =
in

L
τ3λ . (186)

Using the gamma matrix identity

Γ0Γ5 = −γ0 σ3 , (187)

we obtain for the middle term in (181),

Lmass = e
φ√
6
√
−g n

2L
e
− φ

2
√

6 (χa)
†σ3γ

0e
3φ

2
√

6 (τ3) b
a χb ,

= e
2φ√

6
√
−g nε

2L
χ̄a(τ3) b

a χb ,
(188)

where the σ3 got us a factor of the chirality ε.

Consider now the final term in (181). This gives

LKKgauge =
√
−ĝ i

2
(λa)

†Γ0Γµ êz µ∂zλa ,

=
√
−g n

2L
χ̄aγµAµ(τ3) b

a χb ,
(189)

or in terms of the 1Q gauge field aµ = Aµ/2,

LKKgauge =
√
−g1

2
χ̄

(
2n

L

)
γµaµτ3χ . (190)

Assembling these together, we get for the total terms (181) coming from the partial derivative in

the 6D spinor kinetic term,

L∂ =
√
−g
(
i

2
χ̄γµ∂µχ+

1

2
χ̄

(
nε

L
e

2φ√
6

)
τ3χ+

1

2
χ̄

(
2n

L

)
γµaµτ3χ−

i

8
√

6
χ̄γµ(∂µφ)χ

)
. (191)
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Consider now the spin connection terms. We will need to evaluate

Lω = − i
8

√
−ĝλ̄aΓM êNM ω̂

PQ

N ΓPQλa . (192)

We have

ΓM êNM ω̂
PQ

N ΓPQ = Γµ êν µω̂
PQ

ν ΓPQ + Γµ êz µω̂
PQ

z ΓPQ + Γz êz zω̂
PQ

z ΓPQ

= σ1e
−αφγµ

(
ω̂

PQ
µ −Aµω̂

PQ
z

)
ΓPQ + iσ2e

−βφω̂
PQ

z ΓPQ .
(193)

Note that in the term in parentheses, the Aµω̂
PQ
z piece entirely cancels against terms in the ω̂

PQ
µ

piece due to the relations (180). The first term in (193) then gives us

σ1e
−αφγµ

(
ω̂

PQ
µ −Aµω̂

PQ
z

)
ΓPQ = σ1e

−αφ
(
γµω

νρ
µ γνρ − 8αγµ∂µφ− σ3e

(β−α)φγµνFµν
)
,

(194)

where to get the coefficient in the middle term we used the 5D Clifford identity

γµγµν = −4γν . (195)

Meanwhile the second term in (193) becomes

iσ2e
−βφω̂

PQ
z ΓPQ = −2βσ1e

−αφγµ∂µφ−
i

2
σ2e

(β−2α)φγµνFµν , (196)

and combining these and using β = −3α we get

ΓM êNM ω̂
PQ

N ΓPQ = σ1e
−αφ

(
γµω

νρ
µ γνρ − 2αγµ∂µφ−

1

2
σ3e

(β−α)φγµνFµν
)
. (197)

Now plug this in to the reduction of the Lagrangian (192). The reduction of the metric determinant

and the two λ’s into χ’s give a factor eαφ. The Γ0 inside λ̄a gives a factor σ1. We thus find the

terms

Lω =
√
−gχ̄a

(
− i

8
γµω

νρ
µ γνρ +

i

8
√

6
γµ∂µφ+

iε

16
e(β−α)φγµνFµν

)
χa . (198)

Finally we combine these with the rest of the terms we already found from the partial derivative

pieces (191). The first new term simply gives the 5D spin connection, promoting the 5D partial

derivative to a covariant derivative. The second new term nicely cancels the extra γµ∂µφ term

generated by rescaling the spin-1/2 field to get a canonical kinetic term (184). The last term

provides a Pauli coupling to the KK gauge field, which we rewrite using aµ = Aµ/2. Our total 5D

Lagrangian is now

e−1L =
i

2
χ̄γµ∇µχ+

1

2
χ̄
(nε
L

)
e

2φ√
6 τ3χ+

1

2
χ̄

(
2n

L

)
γµaµτ3χ+

i

2
χ̄
(ε

4

)
e
−2φ√

6 γµνfµνχ , (199)
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as given in (143).
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