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Abstract

We study heterotic Calabi-Yau models with hypercharge flux breaking, where the visible E8 gauge group

is directly broken to the standard model group by a non-flat gauge bundle, rather than by a two-step

process involving an intermediate GUT theory and a Wilson line. It is shown that the required alternative

E8 embeddings of hypercharge, normalized as required for gauge unification, can be found and we classify

these possibilities. However, for all but one of these embeddings we prove a general no-go theorem which

asserts that no suitable geometry and vector bundle leading to a standard model spectrum can be found.

Intuitively, this happens due to the large number of index conditions which have to be imposed in order

to obtain a correct physical spectrum in the absence of an underlying GUT theory.
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1 Introduction

Particle physics model building in the context of the E8 × E8 heterotic string [1–4] on smooth Calabi-Yau

manifolds (see [5–20] for example) has, traditionally, been based on intermediate GUT theories, typically

with gauge group SU(5) or SO(10), and subsequent GUT breaking by a Wilson line. A crucial benefit of

this approach is the relative ease with which a quasi-realistic particle spectrum can be obtained – a single

index condition has to be imposed at the GUT level in order to guarantee three chiral families and this

chiral asymmetry is preserved by the Wilson line.

In this letter, we would like to study a different model-building approach where the visible E8 gauge

group is broken to the standard model group directly by flux, without an intermediate GUT theory and

a Wilson line. This approach, based on direct flux breaking, is popular in the context of F-theory models

(see Refs. [21–23] and also the recent progress in [24–27]) but has also been considered in the heterotic

context [5–7] (including in the context of heterotic orbifolds, e.g. [28]).

Here, we would like to study such models systematically. We assume that the non-Abelian part of the

standard model group is embedded into E8 via the maximal subgroup SUW (2) × SUc(3) × SU(6) ⊂ E8.

Further, we assume that the structure group of the (visible) bundle resides in SU(6) and is of the general

split type S(U(n1) × · · · × U(nf )) ⊂ SU(6), where n1 + · · · + nf = 6. In this case, the low-energy gauge

group is SUW (2)× SUc(3)× S(U(1)f ) and hypercharge has to be embedded into S(U(1)f ).

After setting out the general structure of these models in the next section, we study their detailed

properties in two steps. In section 3 we focus on group-theoretical aspects. Specifically, we classify the

possible embeddings of hypercharge which can lead to a viable physical spectrum and which have the

correct normalization to be consistent with the standard picture of gauge unification. In section 4, we

analyse the underlying Calabi-Yau geometries and bundles which might lead to such models.

2 Basic structure of models

To begin, we describe the general structure of the models we would like to consider in this paper. We are

studying compactifications of the E8×E8 heterotic string on Calabi-Yau manifolds with holomorphic, poly-

stable bundles. We will require that the two E8 factors remain hidden from each other, so the entire standard

model group and all standard model multiplets should originate from one E8 only. The non-Abelian part

of the standard model group is embedded into this E8 factor via the sub-group chain SUW (2) × SUc(3) ⊂

SUW (2) × SUc(3) × SU(6) ⊂ E8 while hypercharge, UY (1), resides in the SU(6) factor. The conventional

model building approach would be to embed the whole standard model group into E8 via an intermediate

(GUT) SU(5) group. Here we do not demand this - after having fixed the embedding of SUW (2)× SUc(3)

as described above the embedding of hypercharge is left arbitrary.

The structure group, H, of the bundle in the observable sector can be at most SU(6) since we require

that SUW (2) × SUc(3) is contained in the commutant of H within E8. Here we will study the different

possible unitary splittings of this maximal structure group, that is, we will consider structure groups

H = S(U(n1)× · · · × U(nf )) ,

f∑

a=1

na = 6 , (2.1)

which are classified by the partitions of 6. There are 11 such partitions which, in terms of the vector

n = (n1, . . . , nf ), are given by

n =(6), (5, 1), (4, 2), (3, 3), (4, 1, 1), (3, 2, 1), (2, 2, 2),

(3, 1, 1, 1), (2, 2, 1, 1), (2, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1) .
(2.2)
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The low-energy gauge group is then

G = SUW (2)× SUc(3)× S(U(1)f ) , (2.3)

with hypercharge embedded into S(U(1)f ), in a way to be specified. The additional U(1) symmetries

in eq. (2.3) will generically be Green-Schwarz anomalous with associated super-massive gauge bosons.

However, for specific choices they can be non-anomalous and massless, a situation which we need to engineer

for hypercharge. We will state the required conditions for this in the next section. To work out the possible

low-energy multiplets we start with the branching

248E8
→

[
(3,1,1) ⊕ (1,8,1) ⊕ (1,1,35)⊕ (1,3,15)⊕ (1,3,15)⊕ (2,3,6) ⊕ (2,3,6)⊕ (2,1,20)

]
(2.4)

of the adjoint of E8 into SUW (2)×SUc(3)×SU(6) representations. To further decompose the SU(6) repre-

sentations into representations of H we introduce the notation Fa and Adja for the fundamental and adjoint

of SU(na), respectively, and also write S(U(1)f ) charges as vectors q = (q1, . . . , qf ) subject to the identifi-

cation q ∼ q′ ⇔ q−q′ ∈ Zn. With this notation, the SU(6) representations in the decomposition eq. (2.4)

further decompose as follows

6 →
⊕f

a=1(Fa)ea

6 →
⊕f

a=1(F̄a)−ea

15 →
⊕f

a=1(∧
2Fa)2ea ⊕

⊕
a<b(Fa ⊗Fb)ea+eb

15 →
⊕f

a=1(∧
2F̄a)−2ea ⊕

⊕
a<b(F̄a ⊗ F̄b)−ea−eb

20 →
⊕f

a=1(∧
3Fa)3ea ⊕

⊕
a6=b(∧

2Fa ⊗Fb)2ea+eb ⊕
⊕

a<b<c(Fa ⊗Fb ⊗Fc)ea+eb+ec

35 →
⊕f

a=1(Adja)0 ⊕
⊕

a6=b(Fa ⊗ F̄b)ea−eb ,

(2.5)

where the subscript denotes the S(U(1)f ) charge and ea are the six-dimensional standard unit vectors. To

parametrize the embedding of hypercharge into S(U(1)f ) we introduce a vector

y = (y1, . . . , yf ) , n · y = 0 , (2.6)

such that Y (F ) = y · q(F ) is the hypercharge of a multiplet F with S(U(1)f ) charge q(F ).

The vector bundle with the required structure group H has the general form

V =

f⊕

a=1

Ua , (2.7)

where Ua is a rank na bundle with structure group U(na) and we require that c1(V ) =
∑

a c1(Ua)
!
= 0.

The number of multiplets in the low-energy theory can be determined from the first cohomology of certain

associated bundles which are constructed from the vector bundle, eq. (2.7). This information, together with

the various group-theoretical details, is summarised in Table 1. In the last two rows of this table we have

also listed the hypercharge of the multiplets in terms of the embedding vector eq. (2.6) and the physically

required hypercharge. Finding hypercharge embeddings y and associated patterns of multiplets which do

indeed lead to the correct values of hypercharge for all standard model multiplets - and no additional

multiplets with exotic charges - is a strong model-building requirement which will be analysed in detail

below.
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(SU(2) × SU(3))q (1,1)ea−eb (1,3)−ea−eb (1,3)ea+eb (2,3)ea (2,3)−ea (2,1)ea+eb+ec

constraint a ≤ b a ≤ b a ≤ b ≤ c

particle, F ea,b, Sa,b d̃a,b, ũa,b da,b, ua,b Qa Q̃a La,b,c, Ha,b,c, H̄a,b,c

bundle Ua ⊗ U∗
b U∗

a ⊗ U∗
b Ua ⊗ Ub Ua U∗

a Ua ⊗ Ub ⊗ Uc

∧2U∗
a ∧2Ua ∧2Ua ⊗ Ub,

Ua ⊗ ∧2Ub, ∧
3Ua

contained in V ⊗ V ∗ ∧2V ∗ ∧2V V V ∗ ∧3V

Y (F ) ya − yb −ya − yb ya + yb ya −ya ya + yb + yc

Yphys(F ) 2, 0 −2/3, 4/3 2/3, −4/3 1/3 −1/3 −1, −1, 1

Table 1: Particle content of models with bundle structure group H a unitary split of SU(6). The multiplicity

of each type of multiplet is determined by the first cohomology of the associated bundle. The indices a, b, . . .

label the summands of the bundle, eq. (2.7), and are in the range a, b, . . . = 1, . . . , f .

3 Embedding of hypercharge

As explained above, the embedding of hypercharge UY (1) into S(U(1)f ) is described by a vector y as in

eq. (2.6). Using the decomposition eq. (2.4) and eq. (2.5), the normalization of UY (1) can be computed as

g2

g2Y
=

1

120
Tr(Y 2) =

1

2
|y2| =

1

2

f∑

a=1

na y
2
a (3.1)

The standard normalization of hypercharge which is appropriate for gauge unification in its conventional

form and which is realized for the usual embedding of hypercharge into SU(5) is given by g2/g2Y = 5/3.

Hence, if we wish to implement the conventional picture of gauge unification we should require that

f∑

a=1

na y
2
a ≃

10

3
(3.2)

is satisfied for our hypercharge embedding, either exactly or to sufficient accuracy.

We can now ask the following, purely group-theoretical question. For which embedding vectors y can

we assign S(U(1)f ) charges to one standard model family such that we obtain the correct hypercharge for

all multiplets and such that the unification condition eq. (3.2) is satisfied? If we require the unification

condition eq. (3.2) exactly, it turns out there is a very limited range of possibilities which is summarised in

Table 2.

A few remarks about this table are in order. First, note that certain splitting types in eq. (2.2) are

excluded right away and, hence, do not appear in the table. Clearly, n = (6) which corresponds to a bundle

structure group SU(6) is excluded since no U(1) symmetry which could account for hypercharge is left

over in this case. Further constraints on the splitting type arise as follows. The first Chern classes of the

constituent bundles Ua have to satisfy

f∑

a=1

c1(Ua) = 0 ,

f∑

a=1

yac1(Ua) = 0 , (3.3)
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splitting type n allowed y vectors

(4, 1, 1) (1/3, 1/3,−5/3)

(3, 2, 1) (1/3, 1/3,−5/3), (−2/3, 1/3, 4/3)

(2, 2, 2) no solution

(3, 1, 1, 1) (1/3, 1/3, 1/3,−5/3), (−2/3, 1/3, 1/3, 4/3)

(2, 2, 1, 1) (1/3, 1/3, 1/3,−5/3), (1/3,−2/3,−2/3, 4/3)

(2, 1, 1, 1, 1) (1/3, 1/3, 1/3, 1/3,−5/3), (1/3,−2/3,−2/3,−2/3, 4/3), (−2/3,−2/3, 1/3, 1/3, 4/3)

(5/6,−7/6,−2/3,−1/6, 1/3), (−5/21,−17/21,−11/21, 1/3, 31/21)

(1, 1, 1, 1, 1, 1) (1/3, 1/3,−5/3, 1/3, 1/3, 1/3),(1/3, 4/3,−2/3,−2/3,−2/3, 1/3)

(1/3, 5/6,−7/6,−1/6,−2/3, 5/6),(1/3, 7/12,−17/12, 1/12,−5/12, 5/6), . . .

Table 2: All embedding vectors y (modulo re-ordering) for the various splitting patterns eq. (2.2) which can

lead to the correct hypercharge for one family and satisfy the unification condition eq. (3.2) exactly. The

crossed-out vectors correspond to the conventional embedding of hypercharge into SU(5).

where the first equation simply states that c1(V ) = 0 and the second equation is the condition for the

hypercharge gauge boson to be massless.1 Now consider the splitting types n = (n1, n2) into two summands.

In this case, both first Chern classes, c1(U1) and c1(U2), must vanish since the conditions eq. (3.3) are

independent. But with c1(U1) = c1(U2) = 0 the bundle structure group reduces and is no longer of the type

eq. (2.1). Hence, these cases have been discarded in Table 2.

Embedding vectors of the form y = (1/3, . . . , 1/3,−5/3), together with eq. (3.3), imply that c1(Uf ) = 0

and, hence, also lead to a reduced structure group outside the class specified by eq. (2.1). In fact, these cases

correspond to the conventional embedding of hypercharge into an intermediate SU(5) GUT which is then

broken by a Wilson line. This is the standard heterotic model-building route which is, of course, perfectly

viable. However, in this paper we are focusing on a direct flux breaking to the standard model without any

intermediate GUT theory and, hence, these embedding vectors have been crossed out in Table 2.

This leaves us with a fairly limited number of possibilities, one for each for the splitting types n =

(3, 2, 1), (3, 1, 1, 1), (2, 2, 1, 1) and four for the splitting type n = (2, 1, 1, 1, 1). Only the Abelian case, n =

(1, 1, 1, 1, 1, 1), where the vector bundle is a sum of line bundles comes with a large number of possibilities,

indicated by the dots in the last row of Table 2, although with increasingly complicated fractions. In fact,

the general solution for the Abelian case can be written in the form

y =

(
1

3
, α, α − 2,

2

3
− α,

1

2
(1− α− s),

1

2
(1− α+ s)

)
, s =

1

3

√
−63α2 + 114α − 31 (3.4)

where α is a free parameter which should be chosen such that the resulting y vector is rational.

Evidently, the above classification of hypercharge vectors is fairly restrictive. We can slightly relax our

requirements by asking the unification condition, eq. (3.2) to be satisfied approximately, within 5%, rather

than exactly and then redo the classification. For simplicity we will only carry this out for the simplest

splitting type, the Abelian splitting into a sum of line bundles with n = (1, 1, 1, 1, 1, 1). To be precise, we

are asking the following question. For the Abelian splitting type, n = (1, 1, 1, 1, 1, 1), which hypercharge

1Note that the second condition in eq. (3.3) guarantees that the one-loop contribution to the mass of the hypercharge gauge

boson explored in Refs. [7, 29] vanishes.
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embeddings y allow for a pattern of S(U(1)6) charge assignments such that we obtain the correct hyper-

charges for all multiplets in one standard model family and the unification condition, eq. (3.2), is satisfied

approximately, to within 5%? The answer to this question is the following four families of embedding

vectors,

y1(α, β) =

(
−
5

3
,
1

3
,
1

3
,
1

3
− α,

1

3
− β,

1

3
+ α+ β

)
,

y2(α) =

(
−
2

3
,
1

3
,
1

3
,
4

3
, −

2

3
− α, −

2

3
+ α

)
,

y3(α, β) =

(
−
5

3
,
1

3
,
1

3
− α,

1

3
+ α,

1

3
− β,

1

3
+ β

)
,

y4(α, β) =

(
1

3
, −

5

3
− α,

1

3
− α,

1

3
+ α,

1

3
− β + α,

1

3
+ β

)
,

(3.5)

which depend on one or two parameters. Again, this is a fairly restrictive result.

We end this section with a remark related to gauge unification. Normally, for models with hypercharge flux,

one would expect threshold corrections to the gauge kinetic function. These might spoil “natural” gauge

unification just as an incorrect normalization of hypercharge would. In Ref. [29], Eqs. (5.14) and (5.19),

the difference between the UY (1) and the SUW (2)× SUc(3) gauge kinetic functions has been calculated as

δfab ∼ T i dijk c
j
1(Ua) c

k
1(Ub) , (3.6)

where T i are the Kähler moduli. In general, this expression is non-vanishing but we have to specialize the

gauge field to the hypercharge direction ya. However, from the second condition in eq. (3.3) which guarantees

that hypercharge is massless, we have yaci1(Ua) = 0. This implies that the correction eq. (3.6) vanishes if

at least one of the gauge fields corresponds to hypercharge. Hence, there is neither an additional threshold

correction for hypercharge nor kinetic mixing of hypercharge with any of the other U(1) symmetries.

To summarise, we conclude that hypercharge can be embedded into E8 in a number of non-standard

ways, such that the physically correct hypercharges for the standard model fields can be obtained and

“natural” gauge unification is realised. We emphasise that our viewpoint so far has been purely group-

theoretical. In other words, the viable hypercharge embeddings we have found allow for patterns of S(U(1)f )

charges such that all values for hypercharge come out correctly. Whether such patterns can actually be

realised by an underlying geometry and vector bundle is another question to which we now turn.

4 A no-go argument

Conventionally, heterotic standard models are built based on an “intermediate” GUT theory, typically

with SU(5) or SO(10) gauge group, which is subsequently broken by a Wilson line. For such models

hypercharge is of course embedded into the GUT group, in the usual way. This approach requires a Calabi-

Yau manifold with a non-trivial first fundamental group or, equivalently, a Calabi-Yau manifold with a

freely-acting discrete symmetry, so that a Wilson line can indeed be introduced. Calabi-Yau manifolds with

freely-acting discrete symmetries are relatively rare (see for instance Refs. [30, 31]) and, in addition, such

discrete symmetries are often not easy to find, so this may be considered a disadvantage of the conventional

model-building route. A considerable advantage of this approach is the relative ease with which a physically

promising particle spectrum can be obtained. Let us briefly discuss this for the case of an intermediate

SU(5) GUT. One standard model family can be grouped into the SU(5) representations 10 and 5̄ and, at

the GUT level, the chiral asymmetry of these representations is given by the indices ind(V ) and ind(∧2V ),
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respectively, where V is the relevant vector bundle with SU(5) structure group (or a rank four sub-group

thereof). In fact, for SU(5) bundles these indices are equal, ind(∧2V ) = ind(V ). Hence, to obtain a

promising model at the GUT level, the only index condition we need to require is ind(V ) = −3|Γ|, where

|Γ| is the order of the freely-acting symmetry group Γ. Taking the quotient by Γ will reduce this to precisely

three GUT families and, since the Wilson line does not affect the chiral asymmetry, this will lead to three

chiral standard model multiplets of each type. In other words, a promising spectrum with three chiral

families is obtained by imposing a single index condition on the vector bundle.

Let us now compare this situation to the one for the models discussed in this paper, where E8 is broken

to the standard model directly through flux, without the need for an intermediate GUT and Wilson lines. A

clear advantage of pure flux-breaking is that we do not require a non-trivial first fundamental group for the

Calabi-Yau manifold - such models can in principle be built on any Calabi-Yau manifold. The disadvantage

becomes apparent from Table 1. A physically promising three-family spectrum with the correct values of

hypercharge requires satisfying a large number of index conditions on the many bundles in Table 1, so that

all standard model multiplets appear in the right S(U(1)f ) charge sector to produce the correct physical

hypercharge for a given embedding y and also to avoid the appearance of multiplets with exotic hypercharge.

This is to be compared with just one index condition which needs to be imposed on models with underlying

GUT symmetry.

Guided by this observation, we would now like to analyse the index constraints which should be imposed

to obtain physically promising spectra in more detail. For now, we will do this for the simplest, Abelian

split pattern with n = (1, 1, 1, 1, 1, 1) and later extend our results to the general case.

We begin with a line bundle sum

V =

6⊕

a=1

La (4.1)

and also introduce the notation xa = c1(La) for the first Chern classes of the constituent line bundles.

Further, we fix a specific hypercharge embedding y = (y1, . . . , y6), for example one of the cases found in

the previous section. Then, the requirements of c1(V ) = 0 and vanishing hypercharge mass translate into

the conditions
6∑

a=1

xa = 0 ,
6∑

a=1

yaxa = 0 . (4.2)

A glance at Table 1 indicates the conditions we need to require for a physical spectrum. In order to obtain

three chiral families of quarks with the correct hypercharges we need

∑

a:ya=1/3

ind(La) = −3 ,
∑

a<b:ya+yb=2/3

ind(La ⊗ Lb) = −3 ,
∑

a<b:ya+yb=−4/3

ind(La ⊗ Lb) = −3 . (4.3)

To avoid quarks with exotic hypercharges we also must impose that

ind(La) = 0 if ya 6= 1/3 (4.4)

ind(La ⊗ Lb) = 0 if a < b and ya + yb /∈ {2/3,−4/3} . (4.5)

Finally, a chiral asymmetry with the wrong sign - which would lead to mirror quarks - should be avoided

in each line bundle sector so that we require

−3 ≤ ind(La) ≤ 0 , −3 ≤ ind(La ⊗ Lb) ≤ 0 , (4.6)

for all a, b = 1, . . . 6. For the leptons, we cannot impose an overall constraint on the index (the relevant

bundles are real and, hence, their index vanishes) but we still need to ensure the absence of leptons with
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exotic hypercharges. This amounts to the vanishing conditions

ind(La ⊗ Lb ⊗ Lc) = 0 if a < b < c and ya + yb + yc /∈ {−1, 1} (4.7)

ind(La ⊗ L∗
b) = 0 if ya − yb /∈ {−2, 0, 2} . (4.8)

How many independent conditions the above equations amount to depends on the structure of the hy-

percharge embedding y. As a rule of thumb, the more complicated y, the more conditions have to be

satisfied.

To see if the above physical conditions can be satisfied, we now express the various indices in terms of

the underlying topological data, so that

ind(La) =
1

6
x3a +

1

12
xac2(TX) (4.9)

ind(La ⊗ Lb) =
1

6
(xa + xb)

3 +
1

12
(xa + xb)c2(TX) (4.10)

ind(La ⊗ Lb ⊗ Lc) =
1

6
(xa + xb + xc)

3 +
1

12
(xa + xb + xc)c2(TX) (4.11)

ind(La ⊗ L∗
b) =

1

6
(xa − xb)

3 +
1

12
(xa − xb)c2(TX) . (4.12)

Hence, all relevant line bundle indices depend on the six first Chern classes xa and the second Chern class of

the Calabi-Yau tangent bundle c2(TX). However, two of the six quantities xa can be eliminated from these

index expressions in favour of the remaining four by using the linear relations, eq. (4.2). For definiteness we

assume that x5, x6 have been eliminated and that all index expressions are written in terms of xα, where

α = 1, . . . , 4 and c2(TX). To further parametrise our ignorance of the underlying geometry we introduce

the variables Xαβγ = xαxβxγ and Zα = xαc2(TX), where α ≤ β ≤ γ and α, β, γ = 1, . . . , 4. All index

expressions, eq. (4.9)–eq. (4.12), can then be written as linear functions of the 24 variables Xαβγ and Zα.

Combined with the physical conditions on the indices listed above this leads to a system of linear equations

(and inequalities) for Xαβγ and Zα.

We can now ask if this linear system has a solution, for a given hypercharge embedding y. It turns out

that for all possible y vectors satisfying the unification condition, eq. (3.2), exactly (as given in the last row

of Table 2 or more generally by using an arbitrary rational vector of the form eq. (3.4)) the answer to this

question (by direct computation) is “no”. Hence, remarkably, we have shown that heterotic models with

pure flux breaking of a single E8 and exact unification normalization of hypercharge can never lead to a

physically acceptable particle spectrum. We emphasise that this conclusion does not rely on any particular

Calabi-Yau manifold or class of Calabi-Yau manifolds (since we have absorbed the relevant topological data

of the Calabi-Yau manifold into the variables Xαβγ = xαxβxγ and Zα = xαc2(TX)) but is completely

general.

This argument can be repeated for the hypercharge embeddings y from eq. (3.5) which lead to approx-

imate unification. We find that the associated systems of linear equations have no solutions in all cases

but one.2 The single remaining case which cannot be excluded in this way is based on the hypercharge

embedding

y =

(
1

3
,
1

3
,
1

3
, −

5

3
,
1

3
− α,

1

3
+ α

)
, (4.13)

2To be precise, for y vectors not in the family, eq. (4.13), we have confirmed that the the Diophantine system for Xabc and

Za has no solutions if the parameters α and β in eq. (3.5) take the form k/l, with −50 ≤ k, l ≤ 50, such that the unification

condition, eq. (3.2), is satisfied approximately to within 5%.
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a common sub-case of the three two-parameter families in eq. (3.5) with α → 0, β → α (and suitably

re-ordered). Moreover, this case leads to an essentially unique solution for the index conditions which reads

ind(L1) = ind(L2) = ind(L3) = −1 → Q1, Q2, Q3

ind(L1 ⊗ L4) = ind(L2 ⊗ L4) = ind(L3 ⊗ L4) = −1 → u1,4, u2,4, u3,4

ind(L5 ⊗ L6) = −3 → 3 d5,6

ind(L4 ⊗ L5 ⊗ L6) = −ind(L1 ⊗ L2 ⊗ L3) = −3 → 3L4,5,6 (4.14)

ind(L1 ⊗ L∗
4) = ind(L2 ⊗ L∗

4) = ind(L3 ⊗ L∗
4) = −1 → e1,4, e2,4, e3,4

ind(L1 ⊗ L∗
2) = −ind(L2 ⊗ L∗

1) = 2−X112 → S1,2 or S2,1

ind(L1 ⊗ L∗
3) = −ind(L3 ⊗ L∗

1) = 2 +X111 +X112 → S1,3 or S3,1

ind(L2 ⊗ L∗
3) = −ind(L3 ⊗ L∗

2) = 6−X112 +X222 → S2,3 or S3,2

Finally, we should discuss the other splitting types in eq. (2.2). Those splitting types require non-Abelian

constituent bundles, Ua, so that the analogues of the index relations, eq. (4.9)–eq. (4.12), also depend on

higher Chern classes, c2(Ua), c3(Ua), in addition to c1(Ua). However, the splitting principle3[32] asserts that

the total Chern class of V can be expressed as

f∏

a=1

c(Ua) =

f∏

a=1

na∏

i=1

(1 + xai) (4.15)

for suitable classes xai of the second cohomology. When expressed in terms of xai the index relations assume

precisely the same form as in the Abelian case and the above no-go argument can be applied in the same

form, provided the hypercharge embedding y in the non-Abelian case is split into an Abelian counterpart

accordingly (so that, for example the embedding y = (−2/3, 1/3, 4/3) for n = (3, 2, 1) becomes y =

(−2/3,−2/3,−2/3, 1/3, 1/3, 4/3) in the Abelian case). Based on this argument the hypercharge embeddings

which satisfy the unification condition exactly, as listed in Table 2, cannot lead to a standard model spectrum

and are, hence, ruled out. Further, all hypercharge embeddings with approximate unification which split

into one of the vectors in eq. (3.5) - with the exception of eq. (4.13) which we have not excluded - are ruled

out on the same grounds.

We have checked the above no-go argument by constructing explicit models for the Abelian case, based

on the splitting type n = (1, 1, 1, 1, 1, 1) and rank six line bundle sums eq. (4.1), generalising the model

building approach described in Refs. [33–35]. We have indeed not found a single model, both for hypercharge

embeddings with exact and approximate unification, consistent with a standard model spectrum.

In addition, we have carried out a dedicated search for models based on the hypercharge embed-

ding eq. (4.13), the one case we were not able to exclude from general arguments. The same scanning

techniques and Calabi-Yau geometries used in Refs. [33–35] were employed for an extensive search. Un-

fortunately, no viable models were found for this case either. The problem seems to be one of integrality.

It is difficult to satisfy the two conditions eq. (4.2) for the y vector eq. (4.13), together with the index

conditions eq. (4.14) for all xa being integral – as required if these quantities are to represent first Chern

classes of line bundles. We do not currently know if this problem is general or related to the specific class

of models we have studied.
3It should be briefly noted here that the splitting principle must be applied with care. It is not the case that non-Abelian

bundles can be split over the Calabi-Yau manifold. Rather, for any bundle V → X there exists a Flag space and a map

s : F (V ) → X such that s∗(V ) decomposes as a direct sum of (complex, not necessarily holomorphic) line bundles and

ck(s
∗(V )) = s∗(ck(V ))). We are fortunate that the list of conditions in eq. (4.9) - eq. (4.12) do not depend explicitly on either

holomorphy of the bundle or the Calabi-Yau condition on the base, thus the no-go results of the Abelian case continue to hold

here as well.
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5 Conclusion

In this letter, we have studied E8 × E8 heterotic Calabi-Yau models based on flux breaking of the visible

E8 group down to the standard model group, without an intermediate GUT theory and Wilson lines. The

non-Abelian part of the standard model group has been embedded into E8 via the maximal sub-group

SUW (2) × SUc(3) × SU(6) ⊂ E8 which leads to the correct SUW (2) × SUc(3) representations required for

a standard model spectrum. We have used bundle structure groups S(U(n1) × · · · × U(nf )) ⊂ SU(6),

where
∑f

a=1 na = 6, so that the low-energy gauge group is SUW (2) × SUc(3) × S(U(1)f ) and hypercharge

embedding into S(U(1)f ) is described by a vector y = (y1, . . . , yf ).

We have studied these models in two steps. First, we have considered the purely group-theoretical

aspects of model building. In this context, we have classified all hypercharge embeddings y which can lead

to the correct standard model hypercharges and have the standard normalization required for “natural”

gauge unification. The results are given in Table 2 (for y vectors satisfying the unification condition eq. (3.2)

exactly) and in eq. (3.5) (for y vectors satisfying the unification condition approximately).

In a second step, we have then attempted to build explicit models for these hypercharge embeddings. It

turns out that obtaining a realistic spectrum in these cases leads to a highly constrained problem, whereby

many index conditions have to be imposed on the internal bundle and its various tensor powers. We have

shown for all hypercharge embeddings y which satisfy the unification condition eq. (3.2) exactly, that these

conditions have no solution for any underlying Calabi-Yau manifold and bundle thereon. Further, for the

case of approximate unification we have obtained a similar no-go result for all hypercharge embeddings

except for a single case given by eq. (4.13). These results have been checked by explicit model building,

based on the approach outlined in Refs. [33–35].

In summary, we have shown that heterotic E8×E8 models with flux breaking of the visible E8 group to

the standard model and “natural” gauge unification can never lead to a realistic particle physics spectrum -

barring one marginal case with approximate unification. Intuitively, obtaining the standard model directly

requires many topological index conditions, in fact, too many to be satisfied by any underlying geometry

and bundle. This result highlights the benefits of heterotic model-building based on an intermediate GUT

theory and Wilson line breaking. In this case, a promising spectrum with three chiral families can be

obtained by imposing a single index condition at the GUT level while the subsequent Wilson line breaking

preserves the chiral asymmetry for each standard model multiplet.

There are several generalisations and modifications of the models studied in this letter which we have

not discussed explicitly. Firstly, it is possible to consider other embeddings of SUW (2) × SUc(3) into E8,

although these tend to lead to exotic representations in the branching of the adjoint of E8. Further, it

is possible to consider general hypercharge embeddings into E8 × E8, as has been done in Ref. [5] (see

also [36–38]), rather than into a single E8. In this case, the second E8 is not truly hidden and this gives

rise to a range of additional model-building problems. For this reason, we have not considered such models

but we expect that the approach presented in this letter - and quite possibly some of the no-go results -

will extend to these cases.

Finally, we can speculate about the possible relevance of our results for other model-building approaches.

Essentially, we have found that the standard model spectrum can be too complicated and fragmented to

result from string theory directly. We require the organising principle of an intermediate GUT theory,

broken by a Wilson line in order to preserve chiral asymmetries, for successful model building. Hypercharge

flux remains the preferred breaking mechanism in F-theory models and it is conceivable that similar no-go

results (or at least constraints) can be obtained in global F-theory models in this context. We hope to

return to this problem in a future publication.
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