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Using the gauge-gravity duality, we argue that for a certain class of out-of-equilibrium steady-state
systems in contact with a thermal background at a given temperature, the macroscopic physics can
be captured by an effective thermodynamic description. The steady-state is obtained by applying
a constant electric field that results in a stationary current flow. Within holography, we consider
generic probe systems where an open string equivalence principle and an open string metric govern
the effective thermodynamics. This description comes equipped with an effective temperature, which
is larger than the background temperature, and a corresponding effective entropy. For conformal
or scale-invariant theories, certain scaling behaviours follow immediately. In general, in the large
electric field limit, this effective temperature is also observed to obey generic relations with various
physical parameters in the system.

PACS numbers:

I. INTRODUCTION

Thermodynamics is an integral cornerstone of our un-
derstanding of the physical world, where the core prin-
ciples are based on the existence of a thermal equilib-
rium. For systems driven out-of-equilibrium, the govern-
ing principles are much less understood; see e.g. [1, 2].
It is extremely difficult to address such questions in a
strongly coupled quantum system. First, given a micro-
scopic description, conventional perturbative techniques
are inadequate at strong coupling. Second, conceptual
insights that may lead to an effective description are also
lacking.

In recent years, the AdS/CFT correspondence[3], more
generally the gauge-gravity duality[4], has emerged to be
an extremely powerful tool to address aspects of strongly
coupled physics. String theory provides a large class of
concrete examples where this correspondence is precise.
Many of these examples correspond to a strongly coupled
conformal or a scale-invariant field theory and is natu-
rally equipped in describing quantum criticality. How-
ever, criticality is not necessary. The duality works for
generic large-N gauge theories with a running coupling
constant[5], or a confining gauge theory[6].

In this article, we will use the gauge-gravity duality to
explore an emerging principle for a system driven out-of-
equilibrium. We will consider a non-equilibrium steady-
state (NESS) situation within a probe sector which is
kept in contact with a large background at some given
temperature T . The NESS in the probe sector is induced
by introducing a constant external electric field E that
drives a constant current. We will argue that all modes

in this probe sector experience an effective temperature,
denoted by Teff , with respect to which it has a purely
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thermal behaviour. We will also argue that for confor-
mal systems this effective temperature is always larger
than the background temperature: Teff > T . By virtue
of the probe limit, the heat flow between the probe sector
and the background is suppressed. For critical systems,
Teff depends only on three ingredients: (i) dimensionality
d, (ii) the global symmetry group G and (iii) how NESS
is induced, i.e., E. For gapped systems, or systems with
a running coupling constant, there may be additional de-
pendences on the beta function of the gauge coupling or
other dimensionful parameters in the system.
The existence of the unique effective temperature Teff

is, nonetheless, ubiquitous. In generic situations one can
verify that Teff > T . However, there may be special
cases when this is not true, see e.g. [7]. The conse-
quences of this are rather profound: it allows us to de-
fine thermodynamics with an effective entropy, obtain a
fluctuation-dissipation relation and recover an otherwise

thermal physics for the NESS. In this article, we will dis-
cuss the main results for a broader perspective and a
technically detailed account will appear elsewhere[8].

II. HOLOGRAPHY AND THERMAL PHYSICS

In the most familiar example of the AdS/CFT cor-
respondence G ≡ SO(d, 2) for a boundary theory in d
spacetime dimensions[9]. In all known examples, the
gravity description emerges from the closed string sec-
tor. This is typically described by a 10-dimensional ge-
ometry of the Freund-Rubin type: e.g. AdSd+1⊗wM

9−d,
where AdSd+1 denotes the anti-de Sitter space in (d+1)-
dimensions and M9−d denotes a compact manifold. The
symbol ⊗w denotes a warped product geometry. This
geometry and the various matter fields are sourced by
a collection of a large number of branes, which equiva-
lently gives rise to the adjoint sector of the dual large-N ,
SU(N) gauge theory. A finite non-zero temperature is
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realized as the presence of an event horizon in the geom-
etry. The corresponding Hawking temperature can be
obtained by demanding regularity of the Euclidean met-
ric with a compact time direction.
We introduce probe degrees of freedom in the back-

ground of a thermal adjoint sector, which transform un-
der the fundamental representation of the SU(N) gauge
group. In the full 10-dimensional geometry, this can be
achieved by introducing probe branes of appropriate di-
mensions, which amounts to introducing open string de-
grees of freedom in the closed-string background. The de-
tails of the probe embedding depend primarily on three
factors: (i) dimensionality, (ii) stability of the embed-
ding and (iii) the physics we want to realize. This was
pioneered in [14]. Clearly, the full details of the 10-
dimensional background play a crucial role in such em-
beddings and each case needs to be studied individually.
For simplicity, however, we will abstract away from this
detailed constructions and focus on a reduced description
for the probes[15].

A. The Probe Embedding and Fluctuations

Let us begin with a background (d + 1)-dimensional
metric, in the string frame, of the general form

ds2 = gttdt
2 + gxxdx

2 + guudu
2 +

d−2
∑

i=2

giidx
idxi

+ ds2compact , (1)

where we assume that the metric functions depend on
only one co-ordinate u, which is the radial direction. In
our convention, u→ 0 is the boundary of the bulk space-
time. The dual field theory lives in the {t, x, xi}-plane.
Furthermore, we collectively represent the compact man-
ifold by ds2compact. In this background we introduce Nf

number of probe Dp-branes which wrap {t, x, u} and m
of the remaining space-directions (along with (p−m−2)
of the compact directions). The dynamics of these probes
is determined by the Dirac-Born-Infeld (DBI) action[16]

SDBI = −NfTp

∫

dp+1ξe−Φ (−det [P [g] + F ])1/2 ,(2)

= −NfTp

∫

dp+1ξ LDBI , (3)

with 1 = (2πα′) , (4)

where Tp denotes the tension of the Dp-brane, ξ denotes
the collective coordinates on the brane worldvolume (in-
cluding the compact directions), Φ is the dilaton field,
P [g] denotes the pull-back of the background metric:

P [g]ab =
∂Xµ

∂ξa
∂Xν

∂ξb
gµν (5)

and F represents a gauge field on the probe worldvol-
ume. For simplicity, we will assume that P [g] is trivial,

i.e. P [g] = g|worldvolume, which means that we assume

Xa
(0) = ξa (6)

minimizes the probe worldvolume. Here, the subscript
“(0)” denotes the classical profile. Note that we have
implicitly assumed that the background has vanishing
NS-NS two-form. This is chosen for convenience, and a
non-vanishing NS-NS two-form will not modify the qual-
itative physics which we will discuss in this article.
The steady-state physics can be induced by having a

gauge field on the worldvolume

Ax = −E t+ ax(u),

=⇒ F = F (0) = −E dt ∧ dx+ a′x du ∧ dx , (7)

where E denotes the electric field along x-direction and
ax(u) is a function that needs to be determined from the
equation of motion. Since the DBI Lagrangian depends
only on F , it is a functional of a′x(u) only. Thus we
immediately get an integral of motion, which we call j

∂LDBI

∂a′x
= j . (8)

The above definition of j yields the equation of motion
for a′x, which can be solved to obtain

a′2x = −j2 guu
(

gttgxx + E2
)

j2gtt + e−2Φg2tt

(

∏m+1
i=2 gii

) . (9)

Evidently, the solution for a′x has a sign ambiguity. This
can be fixed by demanding an “ingoing” boundary con-
dition at the horizon[17], which means that the energy-
momentum flows into the horizon. Using this, the on-
shell DBI Lagrangian is obtained to be

Los = −
√
gtt

e2Φ

(

m+1
∏

i=2

gii

)





−guu
(

gttgxx + E2
)

j2 + e−2Φgtt

(

∏m+1
i=2 gii

)





1/2

.(10)

In general, because of the square-root expressions, the
on-shell DBI Lagrangian may not be real-valued for all
values of u. The reality condition demands that the nu-
merator and the denominator change sign at the same
radial location u∗. These conditions in turn determine
the constant j as a function of u∗:

E =
√−gttgxx

∣

∣

u=u∗

, (11)

j =
√−gtt

(

m+1
∏

i=2

gii

)1/2

e−Φ

∣

∣

∣

∣

∣

∣

u=u∗

. (12)

Here u∗ is obtained by solving (11) and, as observed by
the bulk geometry, is a completely unremarkable posi-
tion. We will see that this u∗ will play the key role for the
open string degrees of freedom. Following [18] it can be
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shown that the constant j is proportional to the bound-
ary current driven by E and consequently we can define
a conductivity, σ ≡ j/E[19].
So far we have discussed the classical profile of the

probe brane. Let us now discuss the physics of the fluc-
tuation modes on the probe. From the perspective of the
dual field theory, these fluctuations are of three kinds:
(i) scalar, (ii) vector and (iii) spinor. The scalar fluctu-
ations are the transverse fluctuations of the probe brane
embedding:

Xµ = Xµ
(0) + ϕi δµi , (13)

where Xµ
(0) denotes the classical profile of the probe and

ϕi represents the collective transverse fluctuations. The
vector fluctuations correspond to the fluctuations of the
classical gauge field on the probe

Fab = F
(0)
ab + Fab , (14)

where F (0) is the classical gauge field on the probe in
equation (7). Finally, the spinors come from a super-
symmetric counter-part of the DBI action in (2), which
schematically consists of a standard Volkov-Akulov type
term

SVA = −NfTp

∫

dp+1ξe−Φ
(

−det
[

M + iψ̄γ∇ψ
])1/2

,(15)

where M = P [g] + F and the γ matrices satisfy anti-
commutation relation with respect to P [g]:

{γa, γb} = 2P [g]ab . (16)

More precisely, the quadratic fluctuation term on a given
Dp-probe brane can be read of from [20–22].
The computation of fluctuation modes around a par-

ticular classical brane configuration will involve inverting
the matrixM , which can then be decomposed into a sym-
metric and an anti-symmetric part:

Mab ≡
(

(

P [g] + F (0)
)

−1
)ab

= Sab +Aab . (17)

It can be showed that[23]

Sab =

(

1

P [g] + F (0)
· P [g] · 1

P [g]− F (0)

)ab

, (18)

Sab = P [g]ab −
(

F (0) · P [g]−1 · F (0)
)

ab
, (19)

Aab = −
(

1

P [g] + F (0)
· F (0) · 1

P [g]− F (0)

)ab

.(20)

The indices are now raised and lowered with respect
to the effective metric denoted by S, which also deter-
mines the kinetic terms for the corresponding fluctua-
tion modes. Thus, the fluctuations are governed by La-
grangians which take the following schematic form:

Lscalar = −κ
2
e−Φ

√
−detM Sab ∂aϕ

i ∂bϕ
i + . . . , (21)

Lvector = −κ
4
e−Φ

√
−detM SabScdFacFbd + . . . ,(22)

Lspinor = iκe−Φ
√
−detM ψ̄ Sabγ̃a∇bψ + . . . . (23)

In Lspinor we have redefined the gamma matrices by:

γ̃a =
(

Sab +Aab
)

γb

=⇒
{

γ̃a, γ̃b
}

= 2Sab . (24)

Also in (21)-(23), κ denotes an overall constant, the de-
tails of which is not relevant for us. The fields ϕi, F and
ψ represent the various fluctuation modes and the indices
a, b represent the worldvolume coordinates on the probe.
We have shown only the kinetic parts of the fluctuation
Lagrangian; since other potential terms will not affect
our conclusions.
The key observation is that all these modes perceive

an effective metric, denoted by S, which is different from
both the background metric g and the induced metric
P [g]. This is the so called open string metric[23], which
governs the dynamics of open string degrees of freedom
propagating in a background geometry with an anti-
symmetric 2-form. The open string data, in terms of
the closed string data, is given by[23]

Sab = P [g]ab −
(

F (0) · P [g]−1 · F (0)
)

ab
, (25)

Gs = gs

[

−det
(

P [g] + F (0)
)

−detP [g]

]1/2

, (26)

where S and Gs denote the open string metric and the
open string coupling; g and gs denote the closed string
metric and the closed string coupling. The structure
of the fluctuations suggests an open string equivalence

principle[24].
For the background in (1), the embedding in (6) and

the gauge field in (7), the open string metric is given by

ds2osm = Stt dt
2 + Sxx dx

2 + Suu du
2 + 2Sut dudt

+

m+1
∑

i=2

Sii dx
idxi + compact , (27)

where we are suppressing the compact part on purpose.
The various components can be given in terms of the
background metric and the gauge field as

Stt = gtt +
E2

gxx
, Suu = guu +

a′2x
gxx

, (28)

Sut = − E

gxx
a′x , Sii = gii , (29)

Sxx = gxx +
a′2x
guu

+
E2

gtt
. (30)

Clearly, the open string metric is non-diagonal in the
{t, u}-plane. We can diagonalize this block by introduc-
ing a new coordinate system {τ, u}, which is defined as

τ = t+ f(u) , f ′(u) = Sut/Stt . (31)

With this, the open string metric takes the following form

ds2osm = Stt dτ
2 +

(SuuStt − S2
ut

Stt

)

du2 + . . . , (32)
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The zeroes of Stt will now determine the location of an
event-horizon of the open string metric. From the defi-
nition of Stt in (28), we observe that the electric field re-
sults in an event horizon of the open string metric at the
location u = u∗, which is obtained by solving (11). Sub-
sequently, the open string equivalence principle implies
an universal effective temperature in the probe sector.
We can read off this temperature by requiring regularity
of the Euclidean open string metric and compactifying
the τ -direction. Note that, we cannot make Euclidean
g and Euclidean S regular simultaneously since their re-
spective horizons do not coincide, which implies that the
background and the probe sector are not in a thermal
equilibrium.
Carrying out the usual procedure of Euclideanization

of the OSM, periodically identifying the imaginary time-
direction and then demanding regularity yields the fol-
lowing formula for the effective temperature

Teff =
1

4π

(
√

E2g′xx − g2xxg
′

tt

−gttguug2xx

)

×







(

∏m+1
i=2 gii

)

′

(

∏m+1
i=2 gii

) gtt + g′tt − 2Φ′gtt







∣

∣

∣

∣

∣

∣

∣

u=u∗

,(33)

where (. . .)′ ≡ d/du(. . .). Assuming an SO(d − 1) sym-
metry along the R

d−1 directions in the boundary theory,
we can choose gii = gxx = 1/u2. In that case, this effec-
tive temperature, given in terms of the background data
{T,E, β}, can be recast in the following general form

Teff =
1

4π

[

(

2E2u+ g′tt
) (

2E2u(m+ β) + g′tt
)

−gttguu

]1/2
∣

∣

∣

∣

∣

∣

u=u∗

(34)

where β(u) := (dΦ)/(d log u) represents the beta function
corresponding to the running dilaton. Assuming β = 0,
from (34) it is clear that the sufficient condition to violate
Teff > T is to have E2 < 0, which will violate weak en-
ergy condition for the matter field on the classical probe
profile. This is expected intuitively, since maintaining
the steady-state continually pumps energy into the sys-
tem and the resulting Teff should be greater than T . In
the presence of a non-trivial β, this inequality Teff > T
is not always true[7].
The propagation of fluctuations in a DBI-background

can be analyzed using the method of Boillat (see e.g. [25]
and [26] for a more recent discussion). Subsequently, it
can be shown that the open string causal structure is de-
termined by the Boillat metric, which belongs to the same
conformal class as the open string metric. Typically, the
Boillat light-cone lies inside the Einstein light-cone as
long as an weak energy condition is satisfied by the mat-
ter field on the probe[26]. This light cone structure is
another manifestation of the Teff > T inequality.
This effective temperature is accompanied by an effec-

tive entropy as well. In [17] the Helmholtz free energy for

such an NESS probe system was conjectured for a par-
ticular system. Before we generalize the proposal in [17],
let us offer some comments regarding the validity of our
analysis. The basic statement of gauge-gravity duality
can be succinctly phrased as below:

Zbulk = ZQFT , (35)

where Zbulk corresponds to the bulk gravity path integral

and ZQFT is the field theory path integral. The quantity
Zbulk is defined as

Zbulk = eiSbulk , (36)

Sbulk = Sgrav + Sprobe . (37)

Here Sgrav is the 10 or 11-dimensional supergravity action
which gives rise to the metric solution in (1). Gener-
ically, form fields of various ranks will also be present
in the background. However, as we have mentioned be-
fore, these form fields will not affect our conclusions.
On the other hand, Sprobe represents the action of the
probe in (2). In terms of the gravitational description,
Sgrav ∼

(

1/g2s
)

since it originates from the closed string
sector, whereas Sprobe ∼ (Nf/gs), which originates from
the open string sector. Clearly, the total path integral
factorizes into the gravitational part and the probe part.
Following [5], or more recently [27], it can be argued

that stringy physics can be decoupled from a purely (su-
per)gravity one in which one can use the gauge-gravity
duality safely, as long as the curvature scale is sufficiently
small compared to the string scale and the local string
coupling is small enough. It is also argued in [5], that in
the limit the local string coupling grows, one may be able
to use an S-dual description or an M-theory uplift and
subsequently use the corresponding gravitational descrip-
tion to explore the strongly coupled regime of the dual
field theory. At any rate, there exists a range of energy,
for which a classical gravity dual description is valid.
Now, as long as we have a classical gravitational de-

scription, we can certainly probe the geometry provided
Nf ≪ Nc. However this condition may be too naive. In
reality, in order for a brane to be a legitimate probe of
a background, one needs to compute the stress-energy
tensor coming from the probe, denoted by T probe

µν , to the

Einstein tensor of the background, denoted by Eback
µν and

impose:

T probe
µν ≪ Eback

µν . (38)

The non-trivial ingredient that enters the relation in (38)
is the radial-scale of the background geometry, which can
override the Nf ≪ Nc limit.
Now, it can also be checked, e.g. if we place Nf num-

ber of D(p+4)-brane probe in the near horizon geometry
of a stack of Dp-branes[5], the condition in (38) is sat-
isfied, at least in a non-vanishing range of the energy
scale (a detailed account will appear in [8]). This essen-
tially means that we can use the purely classical gravi-
tational description and the probe sector path integral is
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completely determined by the classical Dirac-Born-Infeld
contribution (there may be Wess-Zumino term, but it
would not change our conclusions). By now, this has
become a common practice in gauge-gravity duality, see
e.g. [28, 29].

Now, let us comment on ZQFT. Gauge-gravity duality
states that the gravitational part is dual to the adjoint
sector of the large Nc-gauge theory and the probe sector
corresponds to the fundamental flavour that has been
introduced in the probe limit. Likewise, we have

ZQFT = eiSQFT , (39)

SQFT = Sadj + Sfund . (40)

Here, typically Sadj ∼ N2
c and corresponds to the ad-

joint sector, while Sfund ∼ (NfNc) corresponds to the
fundamental sector. At this point, one can expect that
the fundamental sector is a legitimate probe in the limit
Nf ≪ Nc, however, the legitimacy of the probe limit can
depend on the energy-scale of the theory. Recall, that
the ’t Hooft coupling is generally dimensionful, so it can
set the energy-scale where back-reaction by the flavour
sector becomes important. This is precisely the dual re-
alization of the more stringent condition in (38). And, as
we have argued just below equation (38), for a large class
of examples, there exists at least a non-vanishing energy-
range for which the probe limit is perfectly legitimate.
For such cases, the QFT path integral also factorizes be-
tween the adjoint sector and the fundamental sector.

Now we can introduce the standard trick of thermal
field theory: First Euclideanize the time direction and
then compactify on it. Finally the path integral is iden-
tified with the partition function and the period of the
resulting S1 is identified with the inverse temperature
of the system. Note, here we can impose two different
periodicities for the adjoint and the fundamental sector,
respectively. These two periodicities correspond to regu-
larity condition of the Euclidean closed-string metric in
(1) and the regularity of the open string metric in (18).
Since the modes in (21)-(23) on the probe perceive the
open string metric, we will focus on the latter.

Now we are ready to discuss the resulting thermody-

namic description for the probe. We can generalize the
proposal of [17] for the current situation. Let us work

with the Euclidean action, which we denote by S
(E)
DBI:

S
(E)
DBI = NTeff

∫

duL(E) (a′x, u) , (41)

which can be obtained from (2) after substituting the
ansatz for the gauge field in (7) and then Euclideanizing
the resulting action. Note that, all other constants and
volume factors have been absorbed in the constant NTeff

.
Evidently, variation of this action yields

δS
(E)
DBI = NTeff

[

∂L(E)

∂a′x
δax

∣

∣

∣

∣

boundary

horizon

− EOM

]

, (42)

where “horizon” and “boundary” respectively stand for
the OSM horizon and the conformal boundary. Gener-
ically, we can impose δax(boundary) = 0, and subse-
quently we need to subtract off the boundary contribu-
tion coming from δax(horizon). The boundary-terms-
subtracted on-shell Euclidean action is then given by

S
(E)
DBI

∣

∣

∣

on−shell
= NTeff

[
∫

duL(E) − j

∫

du a′x

]

, (43)

where we have used the definition of j from (8).
Thus the general proposal for the corresponding

Helmholtz free energy is given by

FH ≡ Teff S
(E)
DBI

∣

∣

∣

on−shell

= NfTp

∫ u∗

0

du dpξ (Los − ja′x) , (44)

where Los is given in (10). We have evidently written
down the expression in the full 10-dimensional geome-
try. It can be noted that the conjectured free energy is
essentially a Legendre transformation of the on-shell Eu-
clidean probe action. The associated effective entropy is
now given by

seff = − (∂FH/∂Teff) . (45)

Note that, the boundary term in (44) contributes non-
trivially in the entropy of the system.
Before leaving this section, let us ponder over an inter-

esting observation. Assuming that gtt has a simple zero,
where the closed string event horizon is located, it can
be verified that

j

∫ uH

0

a′x ∼ (j ·E) τ , τ ∼ log ǫ , (46)

where uH denotes the closed string event horizon, τ is a
typical time-scale and ǫ → 0. This time-scale — which
has a logarithmic divergence — can be identified with the
time light rays take to travel from the conformal bound-
ary to the background event horizon. Intriguingly, this
time-scale appears in an Ohmic dissipation term when
the boundary term in (44) is evaluated at the closed
string horizon. By evaluating this boundary term at the
OSM horizon, we are IR-safe in (44).
On the other hand, there is a natural candidate for

a Bekenstein-Hawking type area formula involving the
open string data {Gs,S}. Recall that a probe action
scales as g−1

s , where gs is the closed string coupling.
Thus, the natural area-law candidate is given by

Sosm = α
1

Gs
Area (S)

∣

∣

∣

∣

u=u∗

, (47)

where α is an undetermined constant and Area(S) de-
notes the area of the open string metric event horizon.
Also note that both Gs and Area(S) are functions of
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the radial coordinate u. For a conformal theory be-
yond d = 2, the Bekenstein-Hawking area formula in-
deed is proportional to the thermodynamic entropy ob-
tained from (44). This, however, is a simple consequence
of conformal invariance. In general, (47) does not yield
the thermodynamic entropy obtained from (44). In fact
it has a different scaling behaviour with respect to the
temperature. It will be very interesting to explore and
understand the physical significance of (47) in these gen-
eral situations.

B. Some Special Results

Let us now discuss some special cases. (i) For a system
with Φ = 0, where (45) and (47) are proportional to each
other, the effective entropy is observed to obey a simple
relation with the conductivity

seff ∝ σ(m+1)/(m−1) . (48)

The above relation holds for m > 1.
(ii) If we assume that the dual field theory is Lorentz

invariant, i.e.

lim
u→0

gtt = lim
u→0

gxx = lim
u→0

gii =
1

u2
, (49)

then in the limit of strong electric field (i.e. E ≫ TR,
where T is the background closed-string metric tempera-
ture), we will get E = 1/u2

∗
and subsequently the effective

temperature takes a very generic form

Teff =
E

π





1 + ∂ log σ
∂ logE

∣

∣

∣

T

guu(1/
√
E)





1/2

. (50)

In obtaining the above relation in (50), we have used the
conductivity obtained from (11) and (12). For a given
physical system obeying such relations perhaps bears the
possibility of a holographic dual description.
Let us now briefly discuss some more specific class of

backgrounds. An AdSd+1-Schwarzschild background is
given by

gtt = − 1

u2

(

1− ud

udH

)

= − R2

u4guu
, (51)

gxx = gii =
1

u2
, (52)

where R is the radius of the AdS-space. The dilaton van-
ishes for this background. The closed-string-background
temperature is obtained to be:

T =
d

(4πuHR)
. (53)

In the large and small electric field limits, which can be
obtained by setting TR≪ E and TR≫ E, we get:

Teff ≃ E1/2

√

2(m+ 1)

(2πR)
when TR≪ E , (54)

Teff ≃ T when TR≫ E . (55)

Interestingly, both expressions above are independent of
d. The effective temperature in the intermediate regime
is given by an interpolating function which can be ana-
lytically determined from (34). The limiting scaling be-
haviours are simple consequences of the underlying con-
formal symmetry of the system. Note that, the effective
temperature obtained from (34) by setting d = 4, m = 1
and Φ = 0, we recover the results discussed in [30].
Lifshitz geometry is another special class of geome-

tries that corresponds to a dual field theory with non-
relativistic scale invariance under t→ λzt, x→ λx. Here
z is known as the dynamical exponent of the system.
Such geometries can be viewed as infrared fixed points
that describe low energy quantum criticality, which may
be relevant for condensed matter systems. As u→ 0, the
metric components take the form

gtt = − 1

u2z
, guu =

1

u2
, (56)

gxx = gii =
1

u2
, (57)

where, for convenience, the radius of the background is
set to unity. For such a geometry, in the limit E ≫ T , the
location of the OSM event horizon obeys E = 1/u1+z

∗
and

the analogue of the relation in (50) takes the following
form

Teff =
E(1 + z)

2π





1 + ∂ log σ
∂ logE

∣

∣

∣

T

guu(E−1/(1+z))





1/2

. (58)

For an exact Lifshitz geometry, where the entire bulk is
defined by (57), the effective temperature is given by

Teff =

√

(1 + z)(m+ z)

2π
Ez/(z+1) . (59)

A generalization of the Lifshitz background is the so
called hyper-scaling violation geometry, for which sim-
ilar relations can be obtained as well.

C. Fluctuation-Dissipation Relations

One of the profound consequences of the open string
equivalence principle is the existence of a fluctuation-
dissipation relation involving the effective tempera-
ture. In a system at thermal equilibrium, fluctuation-
dissipation relations connect the linear relaxation re-
sponse of the system to a small perturbation around the
equilibrium configuration. In [30] such a relation was ob-
tained for the current noise in a (2 + 1)-dimensional the-
ory in a steady-state. Because of the open string equiva-
lence principle, here we argue that all open string degrees

of freedom in a holographic theory obey such a relation
with respect to Teff . This claim can be explicitly verified
by calculating the boundary Schwinger-Keldysh two-time
correlator using the holographic description, as outlined
in [31].
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In a quantum field theory, the Schwinger-Keldysh
propagator corresponds to the contour-ordered correla-
tion function. Following the notations in [31], we get

G11 (t, ~x) = −i〈TtimeO1 (t, ~x)O1(0)〉 , (60)

G22 (t, ~x) = −i〈T̄timeO2 (t, ~x)O2(0)〉 . (61)

Here Ttime denotes time-ordering and T̄time denotes re-
verse time-ordering. The subscripts 1, 2 correspond to
the Minkowski part of the contour. On the other hand,
the advanced and the retarded Green’s functions are also
related to the Schwinger-Keldysh correlators via

GR(k) =

∫

dxe−ikxGR(x) , (62)

GR (x− y) = θ
(

x0 − y0
)

〈[O(x),O(y)]〉 , (63)

From the above definitions it follows that

Gsym(k) ≡ 1

2
(G11(k) +G22(k))

= i coth
( ω

2T

)

ImGR(k) , (64)

where T is the corresponding temperature. Taking ω → 0
limit we obtain the fluctuation dissipation relation, which
gives

lim
ω→0

Gsym = 2T

(

− lim
ω→0

ImGR

ω

)

, (65)

where the LHS represents the fluctuation and the
bracket-ed term in the RHS represents the dissipation.
In AdS/CFT the relation in (64) emerges from the
Schwinger-Keldysh formalism, as demonstrated in [31].
The Schwinger-Keldysh computations consist of an-

alyzing analyticity properties of various modes on the
Kruskal patch of the corresponding bulk spacetime. For a
typical black hole geometry, fluctuation-dissipation rela-
tions physically arise from the underlying black hole ther-
modynamics. For the modes in (21)-(23), this underly-
ing thermodynamics is governed by the open string met-
ric event horizon and thus a corresponding fluctuation-
dissipation result is imminent, where the temperature in
(64) is replaced by the effective temperature Teff .

III. CONCLUSIONS

In this article, we have argued that for the holographic
probe systems at NESS the physics remains thermal with
an effective temperature. The corresponding particle dis-
tribution functions nǫ(Teff) at an energy ǫ are expected
to be given by a Bose-Einstein or a Fermi-Dirac statistics
involving this effective temperature. The governing prin-
ciples are the existence of an open string metric event
horizon and an open string equivalence principle. The
origin of this effective temperature is rooted in the com-
bined effect of thermal fluctuation from the background
and a Schwinger pair production which sets off the NESS.

We further note that the thermal nature of a similar sys-
tem was noticed earlier in [32, 33] in describing phase
transitions, and in [34], where it was argued that the
charge transport properties on the probe can be obtained
from a membrane-paradigm-type description on the open
string metric event horizon, further adding to the claim
of the theme of this article.

In [35] similar conclusions were arrived at using probe
branes rotating along the compact directions, which in-
herits an event horizon on the worldvolume. It is known
that for probe brane systems, T-duality symmetry of
string theory transforms a spatial boost of the brane to a
gauge field on the worldvolume. Thus, our NESS is qual-
itatively a T-dual description of [35]. It is interesting to
note that an underlying thermodynamic principle relates
two seemingly unrelated systems by translating the in-
duced metric horizon to an open string metric horizon.
This perhaps also insinuates the deep connection between
geometry and thermodynamics[36] that may go beyond
Einstein gravity. For a recent article involving both an
electric field and a rotation on the worldvolume, see [37].

On the other hand, our analysis suggests that for sys-
tems out-of-equilibrium and at least in a steady-state,
an effective thermal description emerges rather univer-
sally. This is evidently true for a probe sector in a
large-N gauge theory with a holographic dual, irrespec-
tive of any further details of the system. Interestingly,
a thermal nature for an inherently nonequilibrium pro-
cess has also been observed elsewhere: earlier in [38]-[40],
in quantum critical systems, e.g. [41], or in aging glass
system[42]. These observations perhaps suggest a more
ubiquitous presence of an effective thermodynamic de-
scription for systems out-of-equilibrium, even outside the
lore of gauge-gravity duality.

By construction, our holographic analysis is applicable
for a fundamental probe sector in a large-N SU(N) gauge
theory. More recent progress on holography has made it
possible to understand gravitational dual descriptions for
O(N)-type gauge theories, which was originally proposed
in [43]. It is an intriguing question whether such an ef-
fective thermodynamics persists for an analogous NESS
situation there.

Our discussions have also been limited to the probe
limit. Beyond this limit, the probe (fundamental) sector
and the background (adjoint) undergoes heat exchange
since Teff > T . Eventually, after the electric field is
turned off, they will reach a thermal equilibrium. This
should be realized as the open string equivalence principle
merging with the closed string equivalence principle and
having the same event horizon in the end. It will be very
interesting to explicitly construct such a time-dependent
geometric example where this physics is manifest, per-
haps along the lines of [44].
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