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Abstract

We describe the observed light-baryon spectrum by extending superconformal quantum mechan-

ics to the light front and its embedding in AdS space. This procedure uniquely determines the

confinement potential for arbitrary half-integer spin. To this end, we show that fermionic wave

equations in AdS space are dual to light-front supersymmetric quantum mechanical bound-state

equations in physical space-time. The specific breaking of conformal invariance explains hadronic

properties common to light mesons and baryons, such as the observed mass pattern in the radial

and orbital excitations, from the spectrum generating algebra. The holographic embedding in AdS

also explains distinctive and systematic features, such as the spin-J degeneracy for states with the

same orbital angular momentum, observed in the light baryon spectrum.
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I. INTRODUCTION

The classical Lagrangian of QCD is invariant under scale and conformal transforma-

tions in the limit of massless quarks [1, 2]. However, meson and baryon bound-states have

well-defined ground states and towers of excited states with well defined and measurable

properties such as mass and spin. A simple but fundamental question in hadron physics is

thus to understand the mechanism which endows a nominally conformal theory with a mass

scale, as well as to explain the remarkably similar linear Regge spectroscopy of both mesons

and baryons.

In the quest for semiclassical equations to describe bound states, in the large distance

strongly coupled regime of QCD, one can start by reducing the strongly correlated multi-

parton light-front Hamiltonian dynamical problem to an effective one-dimensional quantum

field theory [3]. This procedure is frame-independent and leads to a semiclassical, relativistic

light-front (LF) wave equation for the valence state (the lowest Fock state), analogous to the

Schrödinger and Dirac equations in atomic physics. The complexities arising from the strong

interaction dynamics of QCD and an infinite class of Fock components are incorporated in

an effective potential U , but its determination from first principles remains largely an open

question.

Thus, a second central problem in the theoretical search for a semiclassical approximation

to QCD is the construction of the effective LF confining potential U which captures the

underlying dynamics responsible for confinement, the emergence of a mass scale as well as

the universal Regge behavior of mesons and baryons. Since our light-front semiclassical

approach is based on a one-dimensional quantum field theory, it is natural to extend the

framework introduced by V. de Alfaro, S. Fubini and G. Furlan (dAFF) [4] to the frame-

independent light-front Hamiltonian theory, since it gives important insight into the QCD

confinement mechanism [5]. Remarkably, dAFF show that a mass scale can appear in the

Hamiltonian without breaking the conformal invariance of the action.

The dAFF construction [4] begins with the study of the spectrum of a conformally in-

variant one-dimensional quantum field theory which does not have a normalizable ground

state. A new Hamiltonian is defined as a superposition of the generators of the conformal

group and consequently it leads to a redefinition of the corresponding evolution parameter

τ , the range of which is finite. This choice determines the quantum mechanical evolution of
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the system in terms of a compact operator with normalizable eigenstates and a well defined

ground state. A scale appears in the Hamiltonian while retaining the conformal invariance

of the action [4]. This remarkable result is based on the isomorphism of the algebra of

the one-dimensional conformal group Conf(R1) to the algebra of generators of the group

SO(2, 1). One of the generators of this group, the rotation in the 2-dimensional space, is

compact. As a result, the form of the evolution operator is fixed and includes a confining

harmonic oscillator potential, thus equally spaced eigenvalues [6, 7]. Since the generators of

Conf(R1) have different dimensions, their relations with the generators of SO(2, 1) imply a

scale, which according to dAFF may play a fundamental role [4, 5].

A third important feature in the construction of semiclassical equations in QCD, is the

correspondence between the equations of motion for arbitrary spin in Anti–de Sitter (AdS)

space and the light-front Hamiltonian equations of motion for relativistic light hadron bound-

states in physical space-time [3, 8]. This approach is inspired by the AdS/CFT correspon-

dence [9] where, in principle, one can compute physical observables in a strongly coupled

gauge theory in terms of a weakly coupled classical gravity theory defined in a higher dimen-

sional space [9–11]. In fact, an additional motivation for using AdS/CFT ideas to describe

strongly coupled QCD follows from the vanishing of the β-function in the infrared, which

leads to a conformal window in this regime [12–14].

The procedure, known as light-front holography [3, 15, 16], allows one to establish a

precise relation between wavefunctions in AdS space and the LF wavefunctions describing

the internal structure of hadrons. As a result, the effective LF potential U derived from

the AdS embedding is conveniently expressed, for arbitrary integer spin representations, in

terms of a dilaton profile which is determined by the dAFF procedure described above [5, 8].

The result is a light-front wave equation which reproduces prominent aspects of hadronic

data, such as the mass pattern observed in the radial and orbital excitations of the light

mesons [16], and in particular a massless pion in the chiral limit.

The light-front holographic embedding for baryons is not as simple as for mesons, since

a dilaton term in the AdS fermionic action can be rotated away by a redefinition of the

fermion fields in AdS [16, 17], and therefore it has no dynamical effects on the spectrum. In

practice, one can introduce an effective interaction in the fermion action, a Yukawa term,

which breaks the maximal symmetry in AdS and consequently the conformal symmetry in

Minkowski space. This leads to a linear confining interaction in a LF Dirac equation for
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baryons whose eigensolutions generate a baryonic Regge spectrum [18, 19]. The confining

interaction term can be constrained by the condition that the square of the Dirac equation

leads to a potential which matches the form of the dilaton-induced potential for integer spin,

but this procedure appears to be ad-hoc.

There are some striking similarities between the spectra of the observed light mesons and

baryons: they are of similar mass, the slope and spacing of the quantum orbital excitations

in L and their daughter spacing in n, the radial quantum number, is the same. This behavior

in the meson sector is related to the introduction of a scale within the framework of the

conformal algebra. This procedure leaves the action invariant [4, 5]. Since supersymmetry

is related with boson-fermion symmetry, it is compelling to examine the properties of the

supersymmetric algebra and its superconformal extension to describe baryons in complete

analogy to the bosonic case, where the confining potential was determined by the confor-

mal algebra of one-dimensional quantum field theory [4, 5]. In fact, it is straightforward to

translate a quantum mechanical model into its supersymmetric (SUSY) counterpart by fol-

lowing Witten’s construction [20]. Superconformal quantum mechanics, the supersymmetric

extension [21, 22] of conformal quantum mechanics [4], then follows from the properties of

the superconformal algebra.

We shall show in this article that the structure of supersymmetric quantum mechanics

is encoded holographically in the AdS equations for arbitrary half-integer spin for any su-

perpotential. Most important for the present discussion, we will show that superconformal

quantum mechanics [22] has an elegant representation on the light front and its holographic

embedding in AdS space. Remarkably, this procedure uniquely determines the form of the

confinement potential for arbitrary half-integer spin. If one extends with Fubini and Rabi-

novici [22], the method of de Alfaro, Fubini and Furlan [4] to the superconformal algebra,

the form of the potential in the new evolution equations is completely fixed. We will also

discuss in this article how the different embeddings of mesons and baryons in AdS space [8]

lead to distinct systematic features of meson and baryon spectroscopy. In particular, we will

show that the integrability methods used to construct baryonic light-front equations [19] are

the light-front extension of the usual formulation of supersymmetric Hamiltonian quantum

mechanics [20, 23]. In fact, a possible indication of a supersymmetric connection was already

mentioned in Ref. [19], but a proof was not actually given there [24].

This article is organized as follows: In Sec. II we review for convenience light-front con-
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formal quantum mechanics and its holographic embedding in AdS space. In Sec. III we

extend supersymmetric quantum mechanics to the light-front and describe its embedding in

AdS space. We show in particular that properly taking the square root of the light-front

Hamiltonian operator leads to a linear relativistic invariant Dirac equation. In Sec. IV

superconformal quantum mechanics is extended to light-front holographic QCD. The appli-

cation of the method to the complex patterns observed in baryon spectroscopy is discussed

in Sec. V. Some final comments and conclusions are given in Sec. VI. In Appendix we

discuss briefly the specific action of the supercharges.

II. LIGHT-FRONT CONFORMAL QUANTUM MECHANICS AND ITS HOLO-

GRAPHIC EMBEDDING

Following Ref. [4] one starts with the one-dimensional action

S[x] =
1

2

∫

dt
(

ẋ2 − g

x2

)

, (1)

where x(t) is a field operator, the constant g is dimensionless, and t has dimensions of length

squared. The action (1) is invariant under conformal transformations in the variable t, thus in

addition to the HamiltonianH there are two more invariants of motion, namely the dilatation

operator D and the operator of special conformal transformations K, corresponding to the

generators of the conformal group Conf(R1) with commutation relations

[H,D] = iH, [H,K] = 2 iD, [K,D] = −iK. (2)

Specifically, if one introduces the new variable τ defined through the relation

dτ =
dt

u+ v t+ w t2
, (3)

it then follows that the operator

G = uH + v D + wK, (4)

generates the quantum mechanical unitary evolution in τ [4]

G|ψ(τ)〉 = i
d

dτ
|ψ(τ)〉. (5)
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One can show that G is a compact operator for 4uw − v2 > 0 [4]. In terms of the fields x

and p = ẋ the new Hamiltonian G is given by

G(x, p) =
1

2
u
(

p2 +
g

x2

)

− 1

4
v (xp + px) +

1

2
wx2, (6)

at t = 0. In the Schrödinger representation x(0) is represented by the position operator and

p→ −i d
dx
. The Hamiltonian is [4]

G=
1

2
u
(

− d2

dx2
+

g

x2

)

+
i

4
v
(

x
d

dx
+

d

dx
x
)

+
1

2
wx2, (7)

= uH + vD + wK,

with

H=
1

2

(

− d2

dx2
+

g

x2

)

, (8)

D=
i

4

(

x
d

dx
+

d

dx
x
)

, (9)

K=
1

2
wx2, (10)

the superposition of the ‘free’ Hamiltonian H , the generator of dilatations D and the gen-

erator of special conformal transformations K in one dimension.

We now compare the dAFF Hamiltonian with the light-front Hamiltonian in the semiclas-

sical approximation described in [3]. A physical hadron in four-dimensional Minkowski space

has four-momentum Pµ and invariant hadronic mass squared HLF = PµP
µ = M2 [25, 26].

In the limit of zero quark masses the longitudinal modes decouple and the LF eigenvalue

equation HLF |φ〉 =M2|φ〉 is a light-front wave equation for φ [3]
(

− d2

dζ2
− 1− 4L2

4ζ2
+ U (ζ, J)

)

φ(ζ) =M2φ(ζ), (11)

a relativistic single-variable LF Schrödinger equation. The boost-invariant transverse-impact

variable ζ [15] measures the separation of quark and gluons at equal light-front time [27],

and it also allows one to separate the bound-state dynamics of the constituents from the

kinematics of their LF internal angular momentum L in the transverse light-front plane [3].

The effective interaction U is instantaneous in LF time and acts on the lowest state of

the LF Hamiltonian. To actually compute U in the semiclasscal approximation one must

systematically express higher Fock components as functionals of the lower ones. This method

has the advantage that the Fock space is not truncated and the symmetries of the Lagrangian

are preserved [28].
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Comparing the Hamiltonian G (7) with the light-front wave equation (11) and identifying

the variable x with the light-front invariant variable ζ , we have to choose u = 2, v = 0 and

relate the dimensionless constant g to the LF orbital angular momentum,

g = L2 − 1

4
, (12)

in order to reproduce the light-front kinematics. Furthermore w = 2λ2M fixes the form of the

confining light-front potential to that of a harmonic oscillator in the LF transverse plane [5],

U ∼ λ2M ζ2. (13)

In contrast to the baryonic case, which is discussed below, one can perform a constant level

shift by adding an arbitrary constant, with dimension mass squared, to the confining term

in the light front potential.

A. Light-Front Holographic Embedding

The next step is to determine the arbitrary constant term in the LF effective potential for

arbitrary integer spin representations. Following Ref. [8] this constant term in the potential

is determined by the embedding of the LF Hamiltonian equations in AdS space. To this end

it is convenient to consider an effective action for a spin-J field in AdSd+1 space represented

by a totally symmetric rank-J tensor field ΦN1...NJ
, where M,N are the indices of the

d+ 1 higher dimensional AdS space with coordinates xM = (xµ, z). The coordinate z is the

holographic variable and the xµ are Minkowski flat space-time coordinates. In the presence

of a dilaton background ϕ the effective action in [8] is

Seff =

∫

ddx dz
√
g eϕ(z) gN1N ′

1 · · · gNJN
′

J

(

gMM ′

DMΦ∗
N1...NJ

DM ′ΦN ′

1
...N ′

J

− µ2
eff (z) Φ

∗
N1...NJ

ΦN ′

1
...N ′

J

)

, (14)

where
√
g = (R/z)d+1 and DM is the covariant derivative which includes the affine connec-

tion (R is the AdS radius). The dilaton ϕ(z) effectively breaks the maximal symmetry of

AdS, and the z dependence of the effective AdS mass µeff allows a clear separation of kine-

matical and dynamical effects. It is determined by the precise mapping of AdS to light-front

physics [8].
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In order to map to the LF Hamiltonian, one considers hadronic states with momentum

P and a z-independent spinor ǫν1···νJ (P ) with polarization components along the physical

Minkowski coordinates. In holographic QCD such a state is described by the product of

a free state with moment P , propagating in physical space-time, and z-dependent wave

function ΦJ

Φν1···νJ (x, z) = eiP ·x ǫν1···νJ (P ) ΦJ(z), (15)

with invariant hadron mass PµP
µ ≡ ηµνPµPν = M2. Variation of the action leads to the

wave equation
[

−z
d−1−2J

eϕ(z)
∂z

(

eϕ(z)

zd−1−2J
∂z

)

+
(µR)2

z2

]

ΦJ =M2ΦJ , (16)

where (µR)2 = (µeff (z)R)
2−Jz ϕ′(z)+J(d−J+1) is a constant determined by kinematical

conditions in the light front [8]. Variation of the AdS action also gives the kinematical con-

straints required to eliminate the lower spin states J−1, J−2, · · · from the fully symmetric

AdS tensor field Φν1...νJ [8]:

ηµνPµ ǫνν2···νJ = 0, ηµν ǫµνν3···νJ = 0. (17)

We now perform the AdS mapping to light-front physics in physical space-time. To this

end we factor out the scale (1/z)J−(d−1)/2 and dilaton factors from the AdS field writing

ΦJ(z) = (R/z)J−(d−1)/2 e−ϕ(z)/2 φJ(z). (18)

Upon the substitution of the holographic variable z by the light-front invariant variable ζ

and replacing ΦJ into the AdS eigenvalue equation (16), we obtain for d = 4 the QCD

light-front frame-independent wave equation (11) with the effective LF potential [8, 29]

U(ζ, J) =
1

2
ϕ′′(ζ) +

1

4
ϕ′(ζ)2 +

2J − 3

2ζ
ϕ′(ζ). (19)

The fifth dimensional AdS mass µ in (16) is related to the light-front internal orbital angular

momentum L and the total angular momentum J of the hadron according to

(µR)2 = −(2− J)2 + L2, (20)

where the critical value L = 0 corresponds to the lowest possible stable solution [30].

From the holographic relation (19) it follows that the harmonic potential is holographi-

cally related to a unique dilaton profile, ϕ = λMz
2 provided that ϕ(z) → 0 as z → 0. From

(19) we find the effective LF potential (13)

U(ζ, J) = λ2Mζ
2 + 2λM(J − 1). (21)
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The term λ2Mζ
2 is determined uniquely by the underlying conformal invariance of the one-

dimensional effective theory, and the constant term 2λM(J − 1) is determined by the spin

representations in the embedding space.

For the effective potential (21) equation (11) has eigenfunctions

φn,L(ζ) = |λM |(1+L)/2

√

2n!

(n+L)!
ζ1/2+Le−|λM |ζ2/2LL

n(|λM |ζ2), (22)

and eigenvalues

M2
n,J,L = 4λM

(

n+
J + L

2

)

, (23)

for λM > 0. The spectral predictions explain the essential features of the observed light

meson spectrum [16], including a zero pion mass in the chiral limit, and Regge trajectories

with the same slope in the quantum numbers n and L. The solution for λM < 0 leads to

a meson spectrum in clear disagreement with observations. Since the effective interaction

is determined from the conformal symmetry of the effective one-dimensional quantum field

theory, which is not severely broken for small quark masses, the method can be successfully

extended to describe, for example, the K and K∗ excitation spectrum [16, 31].

III. LIGHT-FRONT SUPERSYMMETRIC QUANTUM MECHANICS AND ITS

HOLOGRAPHIC EMBEDDING

Supersymmetric quantum mechanics is a simple realization of a graded Lie algebra which

contains two fermionic generators, the supercharges, Q and Q†, and a bosonic generator,

the Hamiltonian H , which are operators in a state space [20]. It closes under the graded

algebra sl(1/1):

1

2
{Q,Q†} = H, (24)

{Q,Q} = {Q†, Q†} = 0, (25)

[Q,H ] = [Q†, H ] = 0. (26)

It is useful to write down the SUSY formulation of quantum mechanics in terms of anti-

commuting spinor operators χ. A minimal realization of the group generators is given in

terms of the one-dimensional representation

Q = χ

(

d

dx
+W (x)

)

, (27)
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and

Q† = χ†

(

− d

dx
+W (x)

)

, (28)

where W (x) is called the superpotential in the context of supersymmetric theories. The

spinor operators χ and χ† satisfy the anti-commutation relation

{χ, χ†} = 1. (29)

Using a representation in terms of 2× 2 Pauli-spin matrices we have

χ =
σ1 + iσ2

2
, χ† =

σ1 − iσ2
2

, (30)

and

[χ, χ†] = σ3. (31)

Thus the Hamiltonian is

H =
1

2
{Q,Q†} =

1

2

(

− d2

dx2
+W 2(x) + σ3W

′(x)

)

. (32)

It can be written in matrix form:

H =
1

2







H+ 0

0 H−






=

1

2







− d2

dx2 + V+(x) 0

0 − d2

dx2 + V−(x)






, (33)

with effective potential

V±(x) =W 2(x)±W ′(x). (34)

Since H commutes with Q and Q† (26), it follows that the eigenvalues of H+ and H− are

identical.

A. Supersymmetric Quantum Mechanics in the Light-Front

To give a relativistic formulation of supersymmetric quantum mechanics it is convenient

to write the anti-commuting spinor operators in terms of a 4 × 4 matrix representation of

the Clifford algebra, which acts on four-dimensional physical space where the LF spinors are

defined. We use the Weyl representation where the chirality operator γ5 is diagonal, and

define the matrices α and β by

iα =







0 I

−I 0






, β =







0 I

I 0






, (35)
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where I a two-dimensional unit matrix. The matrices α and β are hermitian and anti-

commuting

α† = α, α2 = 1, (36)

β† = β, β2 = 1, (37)

{α, β} = 0. (38)

From the product of α and β we construct a third matrix γ5, which corresponds to the usual

chirality operator: γ5 = iαβ

γ5 =







I 0

0 −I






. (39)

The matrix γ5 is also hermitian and anti commutes with α and β

γ†5 = γ5, γ25 = 1, (40)

{γ5, α} = {γ5, β} = 0. (41)

The SUSY LF Hamiltonian HLF is given by the sl(1/1) algebra

{Q,Q†} = HLF , (42)

{Q,Q} = {Q†, Q†} = 0, (43)

but the supercharges Q and Q† are now represented by 4×4 matrices. Furthermore, since the

Hamiltonian operator HLF = PµP
µ = M2 is invariant, it implies that HLF should depend

on a frame independent variable. In impact space the relevant invariant variable is ζ , and

thus the representation:

Q = η

(

d

dζ
+W (ζ)

)

, (44)

and

Q† = η†
(

− d

dζ
+W (ζ)

)

, (45)

where the spinor operators η and η† satisfy the anti-commutation relation

{η, η†} = 1, (46)

and are given by

η =
β + iα

2
, η† =

β − iα

2
, (47)
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in the 4× 4 matrix representation defined above. We also have

[η, η†] = γ5. (48)

The LF Hamiltonian is thus expressed as

HLF = {Q,Q†} = − d2

dζ2
+W 2(ζ) + γ5W

′(ζ), (49)

which is frame independent.

B. A Linear Dirac Equation from Supersymmetric Quantum Mechanics in the

Light-Front

Since γ25 = 1, the LF Hamiltonian (49) can be conveniently expressed as HLF = BB†

where

B =

(

d

dζ
+ γ5W (ζ)

)

, (50)

and

B† =

(

− d

dζ
+ γ5W (ζ)

)

. (51)

The next step is to take the ‘square root’ of the Hamiltonian HLF . For this purpose

we write HLF as a product of Hermitian operators which we label DLF ; thus HLF = D2
LF .

Using the relation iαB = −iB†α and equations (50) and (51), we have

DLF = −iα
(

− d

dζ
+ γ5W (ζ)

)

, (52)

and thus the invariant Dirac equation [19]

(DLF −M)ψ(ζ) = 0, (53)

where ψ(ζ) is a LF Dirac spinor. Premultiplying the linear Dirac wave equation (53) by the

operator DLF +M and using the properties of the Dirac matrices given above, we recover

the LF eigenvalue equation

HLF ψ = D2
LFψ =M2ψ, (54)

where HLF is given by (49). We thus reproduce the results obtained in Ref. [19] using an

operator construction of the light-front Hamiltonian and the Dirac equation, but starting

from light-front supersymmetric quantum mechanics [32].

12



It is convenient to separate the kinematic and dynamic contributions to the superpoten-

tial. We write

W (ζ) =
ν + 1/2

ζ
+ u(ζ), (55)

where ν is a dimensionless parameter representing the LF orbital angular momentum, and

the dynamical effects are encoded in the function u(ζ). From (52) we can express the

LF-invariant Dirac equation (53) for the superpotential (55) as a system of coupled linear

differential equations

− d

dζ
ψ− − ν + 1

2

ζ
ψ− − u(ζ)ψ− =Mψ+,

d

dζ
ψ+ − ν + 1

2

ζ
ψ+ − u(ζ)ψ+ =Mψ−, (56)

where the chiral spinors are defined by ψ± = 1
2
(1± γ5)ψ.

C. Holographic Embedding

We can now determine the LF superpotential u(ζ) in (55) for arbitrary half-integer spin

by embedding the LF results in AdS space. We start with an effective action for Rarita-

Schwinger (RS) spinors in AdS space [ΨN1···NT
]α, which transform as symmetric tensors of

rank T with indices N1 . . . NT , and as Dirac spinors with index α [33]. In presence of an

effective interaction V (z) the effective action is given by [8]

Seff =
1

2

∫

ddx dz
√
g gN1 N ′

1 · · · gNT N ′

T

[

Ψ̄N1···NT

(

iΓA eMA DM − µ− V (z)
)

ΨN ′

1
···N ′

T
+ h.c.

]

, (57)

where
√
g =

(

R
z

)d+1
and eMA is the inverse vielbein, eMA =

(

z
R

)

δMA . The covariant derivative

DM includes the affine connection and the spin connection. The tangent-space Dirac ma-

trices obey the usual anti-commutation relation
{

ΓA,ΓB
}

= 2ηAB. We have not included a

dilaton factor eϕ(z) in (57) since it can be absorbed by redefining the RS spinor according

to ΨT → eϕ(z)/2ΨT [8, 17]. This is a consequence of the linear covariant derivatives in the

fermion action, which also prevents a mixing between dynamical and kinematical effects,

and thus, in contrast to the effective action for integer spin fields (14), the AdS mass µ

in Eq. (57) is constant. Since a dilaton factor has no dynamical consequences, one must
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introduce an effective confining interaction V (z) in the fermion action to break conformal

symmetry and generate a baryon spectrum [18, 19].

It is shown below that the potential V (z), which has been introduced hitherto ad hoc,

is precisely related to the superpotential u (55). Furthermore, in Sec. IV it is shown that,

in analogy with the boson case [5], the form of u is determined in the framework of the

superconformal algebra.

A physical baryon has plane-wave solutions with four-momentum Pµ, invariant mass

PµP
µ = M2, and polarization indices along the physical coordinates. Factoring out the

four-dimensional plane-wave and spinor dependence, as well as the scale factor (1/z)T−d/2,

we have

Ψ±
ν1···νT

(z) = eiP ·x u±ν1···νT (P )

(

R

z

)T−d/2

Ψ±
T (z), (58)

where T = J− 1
2
and the fully symmetric RS chiral spinor u±ν1...νT = 1

2
(1±γ5)uν1...νT satisfies

the four-dimensional chirality equations

γ · P u±ν1...νT (P ) =Mu∓ν1...νT (P ), γ5u
±
ν1...νT

(P ) = ±u±ν1...νT (P ). (59)

Variation of the AdS action (57) leads for d = 4 to the Dirac equation

− d

dz
Ψ−

T − µR

z
Ψ−

T − R

z
V (z)Ψ−

T =MΨ+
T ,

d

dz
Ψ+

T − µR

z
Ψ+

T − R

z
V (z)Ψ+

T =MΨ−
T , (60)

and the Rarita-Schwinger condition [33] in physical space-time [8]

γνΨνν2 ... νT = 0. (61)

By identifying the holographic variable z with the invariant LF variable ζ and the AdS

LF spinors by the mapping Ψ±
T (z) → ψ±(ζ), we can compare (60) with (56). Provided that

the AdS mass µ is related to the parameter ν by

µR = ν +
1

2
, (62)

the specific LF mapping gives a relation between the effective interaction V (z) in the AdS

action (57) and the function u(ζ) in the LF superpotential (55)

u(ζ) =
R

ζ
V (ζ). (63)
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In fact they are identical (modulo a kinematic factor), and this relation thus leads to a J-

independent potential. This is a remarkable result, since independently of the specific form

of the potential, the value of the baryon masses along a given Regge trajectory depends

only on the LF orbital angular momentum L [34]. Thus, in contrast with the vector mesons

(21), there is no spin-orbit coupling, in agreement with the observed near-degeneracy in the

baryon spectrum [36, 37].

IV. LIGHT-FRONT SUPERCONFORMAL QUANTUM MECHANICS

In order to fix the superpotential u (55) we follow Fubini and Rabinovici in Ref. [22],

and consider a one-dimensional quantum field theory invariant under conformal and super-

symmetric transformations. Imposing conformal symmetry leads to a unique choice of the

superpotential W (27), namely

W (x) =
f

x
, (64)

in order for f to be a dimensionless constant. In this case the graded-Lie algebra has, in

addition to the Hamiltonian H and the supercharges Q and Q†, an additional generator S

which is the square root of the generator of conformal transformations K. The enlarged

algebraic structure is the superconformal algebra of Haag, Lopuszanski and Sohnius [22, 38,

39]. Using the one-dimensional quantum-mechanical representation of the operators

Q = χ

(

d

dx
+
f

x

)

, (65)

Q† = χ†

(

− d

dx
+
f

x

)

, (66)

S = χx, (67)

S† = χ†x, (68)

it is simple to verify that the algebraic structure of the enlarged algebra is fulfilled. We find

1

2
{Q,Q†} = H,

1

2
{S, S†} = K, (69)

1

2
{Q, S†} =

f

2
+
σ3
4

−D, (70)

1

2
{Q†, S} =

f

2
+
σ3
4

+D, (71)
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where the operators

H =
1

2

(

− d2

dx2
+
f 2 − σ3f

x2

)

, (72)

K =
1

2
x2, (73)

D =
i

4

(

d

dx
x+ x

d

dx

)

. (74)

satisfy the conformal algebra (2). The anticommutation of all other generators vanish:

{Q,Q} = {Q†, Q†} = {Q, S} = · · · = 0.

In analogy with the dAFF procedure [4], we now define, following Fubini and Rabi-

novici [22], a new supercharge R as a linear combination of the generators Q and S

R =
√
uQ+

√
wS, (75)

and compute a new Hamiltonian G

G =
1

2
{R,R†}. (76)

We find

G = uH + wK +
1

2

√
uw (2f + σ3), (77)

which is a compact operator for uw > 0.

The quantum mechanical evolution operator G (77) obtained by this procedure is analo-

gous to the Hamiltonian (6) obtained by the procedure of de Alfaro, Fubini and Furlan [4].

Remarkably, in the superconformal case there appears beside the confining term wK also

a constant term 1
2

√
uw(2f ± 1) in G, which, as we will describe below, plays a key role in

explaining the correct phenomenology.

A. Superconformal Quantum Mechanics in the Light-Front

The light-front extension of the superconformal results follows from the LF superpotential

W (ζ) =
ν + 1/2

ζ
, (78)

which corresponds to a kinematic term in the LF Hamiltonian. We now extend the new

Hamiltonian G (77) to a relativistic LF Hamiltonian by the method described in Sec. IIIA.
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This amounts to replace the Pauli matrix σ3 in (77) with γ5 in (48). We obtain:

HLF = {R,R†}

= − d2

dζ2
+

(

ν + 1
2

)2

ζ2
− ν + 1

2

ζ2
γ5 + λ2Bζ

2 + λB(2ν + 1) + λBγ5, (79)

where the arbitrary coefficients u and w in (77) are fixed to u = 1 and w = λ2B. Thus the

supercharge R is the superposition

R = Q+ λBS. (80)

In 2× 2 block-matrix form the light-front Hamiltonian (79) can be expressed as

HLF =







− d2

dζ2
− 1−4ν2

4ζ2
+ λ2Bζ

2 + 2λB(ν + 1) 0

0 − d2

dζ2
− 1−4(ν+1)2

4ζ2
+ λ2Bζ

2 + 2λBν






. (81)

The light-front eigenvalue equation HLF |ψ〉 =M2|ψ〉 has eigenfunctions

ψ+(ζ) ∼ ζ
1

2
+νe−λBζ2/2Lν

n(λBζ
2), (82)

ψ−(ζ) ∼ ζ
3

2
+νe−λBζ2/2Lν+1

n (λBζ
2), (83)

and eigenvalues

M2 = 4λB(n + ν + 1). (84)

As a consequence of parity invariance, the eigenvalues for the chirality plus and minus

eigenfunctions are identical. One can also show that the probabilities for both components

ψ+ and ψ− are the same (See appendix )

∫

dζ ψ2
+(ζ) =

∫

dζ ψ2
−(ζ). (85)

For λB < 0 no solution is possible.

V. SYSTEMATICS OF THE BARYON SPECTRUM

To determine how well the superconformal light-front holographic model encompasses

the systematics of the baryon spectrum, we list in Table I the confirmed (3-star and 4-star)

baryon states from the Particle Data Group [40]. The internal spin, light-front internal
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orbital angular momentum and radial quantum number assignment of the N and ∆ exci-

tation spectrum is found from the total angular momentum-parity PDG assignment using

the conventional SU(6) ⊃ SU(3)flavor × SU(2)spin multiplet structure [41], but other model

choices are also possible [42]. Further details can be found in [16].

The lowest possible stable state, the nucleon N 1
2

+
(940), corresponds to n = 0 and ν =

0. This fixes the scale
√
λB = MP/2. The resulting predictions for the spectroscopy of

the positive-parity spin-1
2
light nucleons are shown in Fig. 1 (a) for the parent Regge

trajectory for n = 0 and ν = 0, 2, 4, · · · , L, where L is the relative LF angular momentum

between the active quark and the spectator cluster. Thus the dimensionless constant f in

the superpotential (64) is f = L+ 1
2
for the plus parity nucleon trayectory. The predictions

for the daughter trajectories for n = 1, n = 2, · · · are also shown in this figure. Only

confirmed PDG [40] states are shown. The Roper state N 1
2

+
(1440) and the N 1

2

+
(1710) are

well described in this model as the first and second radial excited states of the nucleon.

The newly identified state, the N 3
2

+
(1900) [40] is depicted here as the first radial excitation

of the N 3
2

+
(1720). The model is successful in explaining the J-degeneracy for states with

the same orbital angular momentum observed in the light baryon spectrum, such as the

L = 2 plus parity doublet N 3
2

+
(1720)−N 5

2

+
(1680), which corresponds to and J = 3

2
and 5

2

respectively (See Fig. 1 (a)).

In Fig. 1 (b) we compare the positive parity spin-1
2
parent nucleon trajectory with

the negative parity spin-3
2
nucleon trajectory. As it is shown in this figure, the gap scale 4λ

determines not only the slope of the nucleon trajectories, but also the spectrum gap between

the plus-parity spin-1
2
and the minus-parity spin-3

2
nucleon families, as indicated by arrows

in this figure. This means the respective assignment ν = L and ν = L+ 1 for the lower and

upper trajectories in Fig. 1 (b), or f = L+ 1
2
and f = L+ 3

2
respectively. The degeneracy

of states with the same orbital quantum number L is also well described, as for example

the degeneracy of the L = 1 minus-parity triplet N 1
2

−
(1650), N 3

2

−
(1700), and N 5

2

−
(1675),

which corresponds respectively to J = 1
2
, 3

2
and 5

2
(See: Fig. 1 (b)).

Baryons with negative parity and internal spin S = 1
2
, such as the N 1

2

−
(1535), as well as

baryon states with positive parity and internal spin S = 3
2
, such as the ∆3

2

+
(1232) are well

described by the assignment ν = L + 1
2
, or f = L + 1. This means, for example, that the

positive and negative-parity ∆ states are in the same trajectory consistent with experimental

observations, as depicted in Fig. 1 (d). The newly found state, the N 3
2

−
(1875) [40], depicted
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TABLE I. Classification of confirmed baryons listed by the PDG [40]. The labels L, S and n refer

to the internal orbital angular momentum, internal spin and radial quantum number respectively.

The even-parity baryons correspond to the 56 multiplet of SU(6) and the odd-parity to the 70.

SU(6) S L n Baryon State

56 1
2 0 0 N 1

2
+
(940)

3
2 0 0 ∆3

2

+
(1232)

56 1
2 0 1 N 1

2

+
(1440)

3
2 0 1 ∆3

2
+
(1600)

70 1
2 1 0 N 1

2
−
(1535) N 3

2
−
(1520)

3
2 1 0 N 1

2

−
(1650) N 3

2

−
(1700) N 5

2

−
(1675)

1
2 1 0 ∆1

2
−
(1620) ∆3

2
−
(1700)

56 1
2 0 2 N 1

2
+
(1710)

1
2 2 0 N 3

2

+
(1720) N 5

2

+
(1680)

3
2 2 0 ∆1

2
+
(1910) ∆3

2
+
(1920) ∆5

2
+
(1905) ∆7

2
+
(1950)

70 3
2 1 1 N 1

2
−

N 3
2
−
(1875) N 5

2
−

3
2 1 1 ∆5

2

−
(1930)

56 1
2 2 1 N 3

2

+
(1900) N 5

2

+

70 1
2 3 0 N 5

2

−
N 7

2

−

3
2 3 0 N 3

2
−

N 5
2
−

N 7
2
−
(2190) N 9

2
−
(2250)

1
2 3 0 ∆5

2

−
∆7

2

−

56 1
2 4 0 N 7

2

+
N 9

2

+
(2220)

3
2 4 0 ∆5

2
+

∆7
2
+

∆9
2
+

∆11
2
+
(2420)

70 1
2 5 0 N 9

2
−

N 11
2
−

3
2 5 0 N 7

2

−
N 9

2

−
N 11

2

−
(2600) N 13

2

−

in Fig. 1 (c) is well accounted as the first radial excitation of theN 3
2

−
(1520). The degeneracy

of the L = 1 minus-parity doublet N 1
2

−
(1535) − N 3

2

−
(1520) for J = 1

2
and 3

2
is also well

described. Likewise, the ∆(1600) corresponds to the first radial excitation of the ∆(1232)
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FIG. 1. Orbital and radial baryon excitation spectrum. Positive-parity spin-12 nucleons (a) and

spectrum gap between the negative-parity spin-32 and the positive-parity spin-12 nucleons families

(b). Minus parity spin-12 N (c) and plus and minus parity spin-12 and spin-32 ∆ families (d). We

have used in this figure the value
√
λB = 0.49 GeV for nucleons and 0.51 GeV for the Deltas.

as shown in Fig. 1 (d). The model explains the degeneracy of the L = 2 plus-parity

quartet ∆1
2

+
(1910), ∆3

2

+
(1920), ∆5

2

+
(1905), and ∆7

2

+
(1950) which corresponds to J = 1

2
,

3
2
, 5

2
and 7

2
respectively (See: Fig. 1 (d)). Our results for the ∆ states agree with those of

Ref. [43]. “Chiral partners” such as the N 1
2

+
(940) and N 1

2

−
(1535) nucleons with the same

total angular momentum J = 1
2
, but with different orbital angular momentum and parity

are non-degenerate from the onset. To recapitulate, the parameter f , has the internal spin

S and parity P assignment given in Table II, which is equivalent to the assignment given

in [44].
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TABLE II. Orbital quantum number assignment for the superpotential parameter f for baryon

trajectories according to parity P and internal spin S.

S = 1
2 S = 3

2

P = + f = L+ 1
2 f = L+ 1

P = – f = L+ 1 f = L+ 3
2

This particular assignment successfully describes the full light baryon orbital and radial

excitation spectrum, and in particular the gap between trajectories with different parity and

internal spin [44]. The assignment ν = L for the lowest trajectory, the proton trajectory,

is straightforward and follows from the stability of the ground state, the proton, and the

mapping of AdS to light-front physics. The assignment for other spin and parity baryons

states, given in Table II, is motivated by the observed spectrum. It is hoped that further

analysis of the different quark configurations and symmetries of the baryon wave function [36,

45, 46] will indeed explain the assignment of the dimensionless parameter f .

If we follow the non-SU(6) quantum number assignment for the ∆5
2

−
(1930) given in

Ref. [36], namely S = 3/2, L = 1, n = 1, we find with the present model the value

M∆(1930) = 4
√
λB = 2MP , also consistent with the experimental result 1.96 GeV [40]. An

important feature of light-front holography and supersymmetric LF quantum mechanics is

the fact that it predicts a similar multiplicity of states for mesons and baryons, consistent

with experimental observations [36]. This property is consistent with the LF cluster de-

composition of the holographic variable ζ , which describes a system of partons as an active

quark plus a cluster of n− 1 spectators [37]. From this perspective, a baryon with 3 quarks

looks in light-front holography as a quark–diquark system.

Another interesting consequence of the supersymmetric relation between the plus and

minus chirality states, is the equal equal probability expressed by (85). This remarkable

equality means that in the light-front holographic approach described here the proton’s spin

Jz = Lz + Sz is carried by the quark orbital angular momentum: 〈Jz〉 = 〈Lz
q〉 = ±1/2 since

〈Sz
q 〉 = 0.
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VI. CONCLUSIONS AND OUTLOOK

In this article we have shown how superconformal quantum mechanics [21, 22] can be

extended to the light-front and how it can be precisely mapped to holographic QCD. We have

also examined the higher half-integer spin representations of the model by embedding the

resulting Dirac invariant light-front wave equation in AdS space. This procedure introduces

a scale in the Hamiltonian equations and completely fixes the light-front potential in the

Dirac equation introduced in Refs. [18, 19]. In this approach the main features of the

observed light-baryon spectrum are described.

The construction procedure is similar to that of bosons [4, 5]. Both are based on the

breaking of conformal invariance within the algebraic structure, by a redefinition of the

quantum mechanical evolution in terms of a superposition of the operators of the conformal

or superconformal algebras. Since the generators have different dimensions this amounts

to the introduction of a scale in the Hamiltonian while maintaining a conformal action.

Compared with the holographic construction for baryons, this unified approach is more

satisfactory. In contrast to the meson case, the dilaton in the fermion action has no effect

on the baryon spectrum. Consequently, a Yukawa potential must be introduced by hand to

break conformal invariance. Here, the same underlying principle is used to introduce a mass

scale and generate the masses for mesons and baryons from a spectrum generating algebra.

For baryons the quantum mechanical evolution is determined from a supercharge which is

a superposition of elements of the superconformal algebra [22]. In fact, the introduction of

the generator S (the square root of the generator of conformal transformations K) is the

key step for extending the dAFF [4, 5] procedure for obtaining a confining potential in the

LF Dirac equation for baryons.

Mapping the results to light-front bound-state equations leads to a linear potential in

the light-front Dirac equation and to a harmonic potential with additional constants in the

quadratic Hamiltonian for fermions. In contrast to the case of mesons, there is no possibility

to shift the energy levels by adding a constant to the linear potential in the light-front Dirac

equation. Therefore superconformal quantum mechanics, together with the introduction of

the scale according to Fubini and Rabinovici [22], fixes completely the fermionic Hamil-

tonian. The equations of motion obtained by following this procedure are equivalent to

the holographic light-front equations obtained from the fermion Lagrangian in AdS5, with a
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Yukawa coupling providing the effective potential. In the bosonic case light-front holographic

QCD yields a J-dependent constant from the holographic embedding – in addition to the

confining harmonic potential obtained from conformal quantum mechanics [4] – which leads

to a J-dependent level shift [5]. Such a level shift is not possible for fermions, and therefore

there is a spin-J degeneracy for states at fixed L and n, an important characteristic which

is actually observed in experiment. The model is also consistent with similar Regge meson

and baryon spectra and similar multiplicity of states for mesons and baryons. In effect, the

light-front Dirac equation for baryons described here is effectively a quark-diquark model.

However, a quark-diquark construction is not imposed, but it is a natural consequence of the

light-front cluster decomposition which follows from the LF embedding in AdS space [37].

In this approach the quark and diquark are both massless.

In this paper we have described a mechanism for the emergence of a confining light-front

Hamiltonian for hadrons. A mass scale
√
λ and confining potentials appear in the light-front

Schrödinger and Dirac equations, consistent with the conformal invariance of the action, by

applying the group-theoretical methods of Refs. [4, 22]. We have given a relation between

the dimensionless quantities L, f or g, and µR occurring in the light-front Hamiltonian, the

quantum mechanical evolution operator in the algebraic approach, and the wave equations in

AdS5, respectively (See Eqs. (12), (20), (62) and Table II). We expect that further analysis

of the different quark configurations and symmetries of the hadron wavefunctions will shed

further light on the detailed relations between these dimensionless parameters.

Even if a supersymmetric connection inspired by the universality of the Regge trajectories

for bosons and baryons was our starting point, in the context of this article the supersym-

metric construction of baryonic states refers to the “supersymmetry” between positive and

negative chirality of light-front spinors. In this case supersymmetry is not broken since

there is a perfect pairing for each baryonic state including the ground state, consistent with

parity invariance. This does not exclude the possible supersymmetric connections between

mesons and baryons which would be manifest as a consequence of confinement dynamics.

In fact, although the form of the potential is fixed in both cases by the dAFF procedure

and its extension to the superconformal algebra, the numerical values of the confining scales

are a priori not related. Nevertheless the values of λ for the coefficient of the confining

potentials come out to be similar in both cases with similar spacing between the orbital and

radial hadronic excitations. This suggests a supersymmetric relation between the underlying
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dynamics of the observed bosonic and fermionic hadrons. In this case, supersymmetry is

broken since the ground state, the pion, is massless in the chiral limit and is not paired. We

shall treat this subject elsewhere.
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Appendix: Supercharges and Ladder Operators

The supercharge operator R (80) in the light-front quantum mechanical representation

discussed in Sect. IV can be expressed as

R = Q+ λS = η b, (A.1)

R† = Q† + λS† = η†b†, (A.2)

where the spinor operators η and η† in a 4× 4 matrix representation are

η =







0 I

0 0






, η† =







0 0

I 0






, (A.3)

with I a two-dimensional unit matrix, and the operators b and b† are given by

bν =
d

dζ
+
ν + 1

2

ζ
+ λζ, (A.4)

b†ν = − d

dζ
+
ν + 1

2

ζ
+ λζ. (A.5)

The LF Hamiltonian HLF (81) is conveniently factorized in terms of the linear operators b

Hν
LF = {R,R†} =







bνb
†
ν 0

0 b†νbν






, (A.6)

and is thus integrable [47, 48].

Consider the eigenvalue equation for bνb
†
ν

(

− d2

dx2
− 1− 4ν2

4x2
+ κ2ζ2 + 2κ(ν + 1)

)

φν(x) = φν(x), (A.7)
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where x = ζM and κ = λ/M . Equation (A.7) is equivalent to bνb
†
ν |ν〉 = |ν〉. It is also simple

to verify that b†ν |ν〉 ∼ |ν + 1〉 or
(

− d

dζ
+
ν + 1

2

ζ
+ λ ζ

)

φν(ζ) ∼ φν+1(ζ). (A.8)

Likewise, one can show that bν |ν〉 ∼ |ν − 1〉.
We now construct a new supercharge T and its adjoint T † as the linear superposition [22]

T = Q† − λS† = η†a, (A.9)

T † = Q− λS = η a†, (A.10)

where

aν = − d

dζ
+
ν + 1

2

ζ
− λζ, (A.11)

a†ν =
d

dζ
+
ν + 1

2

ζ
− λζ. (A.12)

One can show that the operator (A.11) lowers the radial quantum number n by one unit

and raises ν by one unit

a|n, ν〉 ∼ |n− 1, ν + 1〉. (A.13)

For a given ν the lowest possible state corresponds to n = 0. Consequently the state

|n = 0, ν〉 is annihilated by the action of the operator a, a|n = 0, ν〉 = 0, or equivalently

(

d

dζ
− ν + 1

2

ζ
+ λζ

)

φn=0
ν (ζ) = 0, (A.14)

with solution

φn=0
ν (ζ) = Cνζ

1/2+νe−λζ2/2, (A.15)

where Cν is a constant. Writing

φν(ζ) = Cνζ
1/2+νe−λζ2/2Gν(ζ), (A.16)

and substituting in (A.8) we get

2xGν(x)−G′
ν(x) ∼ xGν+1(x), (A.17)

with x =
√
λ ζ , a relation which defines the confluent hypergeometric function U(n, ν+1, x)

in terms of U(n, ν, x) [49]

U(n, ν + 1, x) = U(n, ν, x)− U ′(n, ν, x), (A.18)
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or equivalently

2xU(n, ν + 1, x2) = 2xU(n, ν, x2)− dU ′(n, ν, x2)

dx
. (A.19)

Thus the normalizable solution to the eigenvalue equation bb†φ(ζ) =M2φ(ζ):

φn,ν(ζ) = Cνζ
1/2+νe−λζ2/2Lν

n(λζ
2). (A.20)

The solution also follows from the iterative application of the ladder operators following the

procedure described in [50]. We find

φ(ζ)n,ν ∼ ζ1/2−νeλζ
2/2

(

1

ζ

d

dζ

)n

ζ2(n+ν)e−λζ2, (A.21)

with eigenvalues

M2 = 4λ(n+ ν + 1). (A.22)

Since we know the general solution for the upper component of the spinor wavefunction

φν , it is straightforward to compute the lowest component b†φν , with identical mass, by

applying the supercharge operators. We find

T







φn,ν

0






= 0, (A.23)

R†







φn,ν

0






= Cn,ν







0

φn,ν+1






, (A.24)

with

Cn,ν =

√

λ

n + ν + 1
. (A.25)

Thus the solution

ψ(ζ) = ψ+u+ + ψ−u− (A.26)

= Cz
1

2
+νe−λζ2/2

[

Lν
n

(

λζ2
)

u+ +

√
λζ√

n + ν + 1
Lν+1
n

(

λζ2
)

u−

]

, (A.27)

with normalization
∫

dζ ψ2
+(ζ) =

∫

dζ ψ2
−(ζ). (A.28)

Identical results follow by solving directly the Dirac equation (56) for the conformal super-

potential (55) with u = λζ .
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The light-front quantum mechanical evolution operator Hν
LF (A.6) was constructed in

terms of the supercharges R and R†. We can also construct a light-front Hamiltonian H
ν

LF

in terms of the supercharges T and T † given by (A.9) and (A.10):

H
ν

LF = {R,R†} =







a†νaν 0

0 aνa
†
ν






. (A.29)

The light-front Hamiltonians HLF (A.29) and HLF (A.6) are related by HLF (λ) = HLF (−λ).
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