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We study the symmetries of non-relativistic systems with an emphasis on applications to the
fractional quantum Hall effect. A source for the energy current of a Galilean system is introduced
and the non-relativistic diffeomorphism invariance studied in previous work is enhanced to a full
spacetime symmetry, allowing us to derive a number of Ward identities. These symmetries are
smooth in the massless limit of the lowest Landau level. We develop a formalism for Newton-Cartan
geometry with torsion to write these Ward identities in a covariant form. Previous results on the
connection between Hall viscosity and Hall conductivity are reproduced.

I. INTRODUCTION

The fractional quantum Hall (FQH) [1, 2] effect is one of the most difficult problems in condensed matter physics.
In the integer quantum Hall effect, interactions do not play a large role and one can make much progress by studying
the dynamics of free electrons moving in a uniform magnetic field in the presence of impurities. The FQH effect on the
other hand, relies crucially on the interactions of particles within a single Landau level and cannot be analyzed using
perturbative techniques. The lowest Landau level (LLL) constraint is especially difficult to deal with; the majority
of proposed theoretical schemes break this constraint at some stage. For example, in the popular Chern-Simons field
theories (in both the bosonic [3] of fermionic [4] varieties) the operation of flux attachment mixes states in different
Landau levels. The consequence of this breaking is that many physical quantities which should depend only on the
Coulomb (or interaction) energy scale, appear to be sensitive to the cyclotron energy. Schemes have been developed
within the Chern-Simons field theory, to evade this unphysical sensitivity to the cyclotron energy, at the cost of
introducing phenomenological elements into the theory. Some other theoretical approaches have been developed to
deal with the LLL constraint explicitly (see, for example, Refs. [5, 6]), but most have only limited scope.
This paper proposes a new approach that emphasizes the symmetries of the LLL. In recent work we have demon-

strated that non-relativistic particles moving in an external electromagnetic field possess a far larger degree of sym-
metry than was previously realized, namely invariance under arbitrary time-dependent diffeomorphisms of space [7, 8]
which may further be enlarged to full spacetime diffeomorphism invariance by introducing a background source coupled
to the energy current [9, 10].
In section II we recap this story, demonstrating how diffeomorphism invariance may be obtained by introducing a

number of different sources. The source for the energy density was first introduced by Luttinger [11]; including a source
coupled to the energy flux allows for local time reparameterizations. For specific interactions, most importantly for a
delta-function contact interaction between bosons, this action is also Weyl invariant. We then demonstrate in section
III how a regular massless limit may be taken after a special choice of parity breaking parameters. The resulting
theory contains only particles confined to the LLL. Physical results of this limit will be considered in upcoming work.
In section IV we consider the complete set of one-point Ward identities that follow from non-relativistic diffeo-

morphism invariance. Spatial diffeomorphisms give rise to local momentum conservation in the presence of external
electromagnetic and dilaton fields whereas temporal diffeomorphisms lead to the work-energy equation. In trivial
backgrounds, these Ward identities were considered in Refs. [10, 12]. Here we present them in their full generality
for nonzero spin and g-factor. In section V we rederive the viscosity-conductivity relations that were first found in
Ref. [13].
Spacetime diffeomorphism invariance can be naturally treated using the formalism of Newton-Cartan geometry with

torsion, which we present in section VI. In section VII we present a fully covariant treatment of the one-point Ward
identities. The stress tensor and energy current as traditionally defined do not transform covariantly under general
diffeomorphisms and need to be modified. We define these covariant currents and derive their Ward identities. The
spacetime transformation properties of the new covariant stress, charge and energy densities both facilitate streamlined
calculations and place strong constraints on the allowed response. Section VIII contains concluding remarks while
various technical details are contained in the appendices.
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II. SYMMETRIES

At it’s most basic level, the FQH problem is that of particles moving in 2 + 1 dimensions in the presence of a
magnetic field

S =

∫

d3x

(

iψ†D0ψ − 1

2m
|Diψ|2 − λ|ψ|4

)

. (1)

Here Dµ = ∂µ − iAµ is the gauge covariant derivative and the theory is gauge invariant

ψ → eiαψ Aµ → Aµ + ∂µα. (2)

We have chosen a contact interaction for simplicity though more general interactions will be consistent with the
symmetries we are about to discuss. Strictly speaking, the contact interaction requires a cutoff to be well-defined in
2 + 1 dimensions due to the logarithmic running of the coupling constant λ. In the LLL limit m→ 0 that we will be
especially interested in, the running of λ disappears. We thus will ignore the dependence on the cutoff altogether.
When the magnetic field B = ǫij∂iAj is large (here ǫij is the antisymmetric symbol with ǫ12 = 1), the spectrum is

stratified into Landau levels of energy B
m
(n+ 1

2 ) that are well-separated compared to the intra-Landau level spacing
(we choose units where ~ = c = 1). Since we are only concerned with the LLL, we would like to integrate out all
states for which n ≥ 1. One possible way of doing this is to take the m → 0 limit in which the higher Landau levels
tend to infinity and decouple from the theory. Unfortunately, this limit is not regular due to the infinite shift in the
zero-point energy, but we shall see there is an easy way around this.

A. The g-factor

We will now systematically introduce a number of generalizations to the basic action (1) that will not affect the
physics at the end of the day but are essential for our later analysis. In the process we introduce a number of external
probes used to define response currents. Begin with an intrinsic angular momentum parameterized by a g-factor g

S =

∫

d3x

(

iψ†D0ψ − 1

2m
|Diψ|2 +

gB

4m
|ψ|2 − λ|ψ|4

)

. (3)

In GaAs, this factor is close to zero (there g is the product of the Lande g-factor g∗ [14]) and the ratio of the band
mass m to the bare electron mass: g = g∗m/me ≈ −0.03), but it is easy to see, at least for constant B, that it’s
actual value is irrelevant. In this case the new term merely gives rise to a constant shift to the Hamiltonian, which
has no physical significance.
When B is not uniform, the situation is somewhat more involved but not insurmountable. Notice that g enters the

action in the combination A0 +
g
4mB. Defining a new electric potential

A′
0 = A0 +

g − g′

4m
B (4)

maps the action to itself, but with a new g-factor

Sg[A0] = Sg′ [A′
0]. (5)

We may just as well perform calculations with any g we like, so long as we use the shifted gauge field A′
0. In section

III we shall see that when we select g = 2, the LLL is shifted to zero energy even in a non- uniform field and curved
space. The massless limit is then regular and the projection onto the LLL proceeds without difficulty. This feature
was exploited in Ref. [7] in the construction of an effective field theory for FQH states.

B. Curvature

Next introduce a nontrivial background metric gij

S =

∫

d3x
√
g

(

i

2
ψ†↔D0ψ − gij

2m
Diψ

†Djψ +
gB

4m
|ψ|2 − λ|ψ|4

)

(6)
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where ψ†
↔
D0ψ = ψ†D0ψ −D0ψ

†ψ. The magnetic field is now B = εij∂iAj where εij = 1√
g
ǫij is the natural spatial

volume element associated to the metric. There is some ambiguity in how we choose to couple the theory to geometry;
we could for example have included higher curvature terms. These terms would change the equations of motion on
curved backgrounds but leave the flat space dynamics unaltered. If at the end of the day one is only interested in flat
space, we may choose the coupling however we like without fear of altering the physics. In the above we have chosen
to couple the theory in the minimal way.
If the field ψ has spin s, even minimal substitution requires the introduction of a zweibein eai that diagonalizes the

metric

gij = δabe
a
i e

b
j eai e

bi = δab. (7)

The covariant derivative is then

Dµ = ∂µ − iAµ + isωµ (8)

where ωµ is the spin connection

ω0 =
1

2
ǫabe

aj∂0e
b
j

ωi =
1

2
ǫabe

aj∇ie
b
j =

1

2
ǫabe

aj∂ie
b
j −

1

2
εjk∂jgik. (9)

Here ∇i represents the spatial covariant derivative defined by gij . Under a local rotation of the zweibein by an angle
θ(x), the spin connection transforms as a U(1) gauge field

ωµ → ωµ + ∂µθ (10)

canceling the spin rotation of the field ψ → e−isθψ. We notice that the same minimal coupling to gravity through
spin connection was recently used in Ref. [15] to modify the conventional flux attachment procedure to derive the
Hall viscosity and Wen-Zee term from the Chern-Simons gauge theories.
Even if one does not care about curved space dynamics and plans to set gij = δij , introducing a metric is a useful

intermediate step for several reasons. First, it gives a natural definition of a symmetric stress tensor as the response
of the action to geometric perturbations in the same way that the charge current is a response to electromagnetic
perturbations

δS =

∫

d3x
√
g

(

1

2
T ij
ncδgij + jµncδAµ

)

, (11)

as is done in relativity theory. The subscript “nc” (as in “non-covariant”) is to differentiate this notion of stress from
the spacetime covariant one that we shall introduce later. In the usual case g = s = 0 in flat space, these are the
familiar expressions

j0nc = |ψ|2 jinc = − i

2m
ψ†

↔
Diψ

T ij
nc =

1

m
D(iψ†Dj)ψ +

( i

2
ψ†↔D0ψ − 1

2m
Dkψ

†Dkψ − λ|ψ|4
)

gij (12)

The spin is often set to zero in the literature, although for spin polarized electrons in two spatial dimensions, the
actual value would be 1/2. However, as with g, there is a simple mapping between theories of different spin. Like
before, a redefinition

A′
µ = Aµ + (s′ − s)ωµ (13)

sends the action to itself, but with s replaced by s′

Ss[Aµ] = Ss′ [A
′
µ]. (14)

In what follows we will find the selection s = 1 to be particularly convenient. Note a pure zweibein rotation A′
µ → A′

µ,
ωµ → ωµ + ∂µθ of the new theory now corresponds to a zweibein rotation of angle θ plus a gauge transformation
Aµ → Aµ − (s′ − s)∂µθ of the original theory. Thus in this new picture the field ψ has spin s′ and local rotation
invariance is still manifest.
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The redefinitions (4) and (13) will affect the stress and charge current. In appendix B we derive the relationship
between the primed and unprimed currents, which we present here in flat space for simplicity. If we imagine doing an
experiment on a system with say g′ = s′ = 0 and change to our preferred values g = 2, s = 1, the new currents are

j0nc = j′0nc jinc = j′inc +
1

2m
ǫij∂jj

′0
nc

T ij
nc = T ′ij

nc − ǫk(i∂kj
′j)
nc − 1

2m

(

Bj′0ncδ
ij +

(

∂i∂j − gij∂2
)

j′0nc
)

. (15)

The primed currents are to be evaluated at the physical fields E′
i, B

′, whereas the unprimed currents are at

Ei = E′
i −

1

2m
∂iB

′ B = B′. (16)

One of the main reasons for introducing gij is that it makes the symmetry of the action more apparent. The index
structure makes clear that the theory is invariant under time-independent spatial diffeomorphisms ξk = ξk(x)

δψ = −ξk∂kψ
δAµ = −ξk∂kAµ −Ak∂µξ

k

δgij = −ξk∂kgij − gjk∂iξ
k − gik∂jξ

k. (17)

In Refs. [7–9] it was found that this invariance may be extended to time-dependent diffeomorphisms ξk(t,x) by adding
a non-covariant part to the transformation of the vector potential

δψ = −ξk∂kψ

δA0 = −ξk∂kA0 −Ak ξ̇
k +

g − 2s

4
εij∂i(gjk ξ̇

k)

δAi = −ξk∂kAi −Ak∂iξ
k −mgij ξ̇

j

δgij = −ξk∂kgij − gjk∂iξ
k − gik∂jξ

k (18)

which they called non-relativistic general coordinate invariance. The s part has not been considered in previous work.
Note that for g = 2, s = 1, these transformations take a particularly simple form. Taking s = 1 is mostly a choice
made to make the formulas easier to work with, whereas using g = 2 is crucial to ensure that the regularity of the
m→ 0 limit.

C. A Source for the Energy Current

This symmetry may be enlarged further to show that the microscopic action is not only invariant under time-
dependent spatial coordinate reparameterizations, but completely general changes of coordinates on spacetime. This
allows for a fully spacetime covariant treatment of non-relativistic physics just as in relativity theory. To do so
however, we begin with a seemingly unrelated question: how to define an energy current for our theory.
In general relativity, charged fields couple to both a vector potential and a Lorentzian metric and we can consider

the system’s response to infinitesimal variations in these quantities. As in (11) this defines a charge current jµ and
a stress-energy tensor T µν that collects both the energy current T 0i and the stress T ij into a single object. It’s
well-known that in non-relativistic physics, we have an independent energy current which we will denote as εµnc that
is not tied to the stress T ij

nc in any way [16].
A source for the energy current was considered in Refs. [9, 10]. This involves dilaton Φ and a spatial vector Ci in

the following way

S =

∫

d3x
√
ge−Φ

(

i

2
eΦψ†↔D0ψ − 1

2m

(

gij +
ig

2
εij
)

D̃iψ
†D̃jψ − λ|ψ|4

)

(19)

where D̃i = Di+CiD0. The Hamiltonian now appears in the action with a factor e−Φ and Φ is essentially the source
introduced by Luttinger [11]. Note that we have also collected the magnetic momentum term into the kinetic term.

Upon integration by parts, this merely becomes the gB
4m |ψ|2 coupling considered before, plus boundary terms that go

as the derivatives of the new fields Φ and Ci.
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Finally, for the symmetries we are about to consider to hold, we must also modify the spatial Christoffel symbol to
be

Γk
ij =

1

2
gkl
(

∂̃igjk + ∂̃jgik − ∂̃kgij

)

. (20)

In our action this only affects the spin connection

ωi =
1

2
ǫabe

aj∇ie
b
j =

1

2
ǫabe

aj∂ie
b
j −

1

2
εjk∂̃jgik. (21)

For Φ = Ci = 0, this is just the action (6) and so we have not altered the dynamics in these backgrounds, but we can
now define εµnc via

δS =

∫

d3x
√
ge−Φ

(

1

2
T ij
ncδgij + jµncδAµ + ε0ncδΦ + εincδCi

)

. (22)

One might also wish to introduce a source for the momentum current, but in a Galilean invariant theory, the momentum
is entirely determined by the charge current, so we do not include any further sources. We will see this in section IV
and again in section VIIB where we find a unique way to demonstrate this using Newton-Cartan geometry.
To motivate our placement of Φ and Ci, consider the energy current so defined for g = s = 0 and a trivial background

Φ = Ci = 0, gij = δij

ε0nc =
1

2m
Diψ

†Diψ + λ|ψ|4

εinc = − 1

2m

(

D0ψ
†Diψ +Diψ†D0ψ

)

. (23)

We immediately recognize ε0nc as the total energy of the system. One may also check using the equation of motion
that the work-energy equation holds

∂0ε
0
nc + ∂iε

i
nc = Eij

i
nc, (24)

so it is clear that εinc is indeed the energy flux.
The energy current is also altered upon a change of the parity breaking parameters g and s. As before, translating

from g′ = s′ = 0 to g = 2, s = 1 in the trivial background gives

ε0nc = ε′0nc −
1

2
ǫij∂ij

′
jnc −

1

2m
Bj′0nc

εinc = ε′inc +
1

2
ǫij∂0j

′
jnc −

1

2m

(

Bj′inc + ǫijEjj
′0
nc

)

. (25)

We again refer the reader to appendix B for details as well as the case for general g′, s′, g, s and a curved metric.

D. Spacetime Coordinate Invariance

Our placement of these new sources does much more than give a convenient definition of the energy current, it
allows us to enlarge the group of spacetime symmetries by properly selecting the transformations of Φ and Ci. The
action is invariant under arbitrary spacetime diffeomorphisms ξλ(t,x)

δψ = −ξλ∂λψ
δΦ = −ξλ∂λΦ+ ∂λξ

λ − ∂̃iξ
i

δCi = −ξλ∂λCi − Cj ∂̃iξ
j + ∂̃iξ

0

δeai = −ξλ∂λeai + eak∂̃kξ
i

δgij = −ξλ∂λgij + ∂̃iξj + ∂̃jξi

δεij = −ξλ∂λεij + εik∂̃kξ
j − εjk∂̃kξ

i

δA0 = −ξλ∂λA0 −Aλ∂0ξ
λ +

g − 2s

4

(

εij ∂̃i(gjk ξ̇
k) + εijĊiξ̇

j
)

δAi = −ξλ∂λAi −Aλ∂iξ
λ −meΦgij ξ̇

j − g − 2s

4
Ci

(

εjk ∂̃j(gklξ̇
l) + εjkĊj ξ̇

k
)

(26)
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where λ now includes the temporal index 0. This is the full set of symmetries of a non-relativistic spacetime corre-
sponding to infinitesimal coordinate transformations (see section VIB).
We stress once more that this represents full spacetime coordinate reparameterization invariance. From (18) it was

clear that the theory was invariant under arbitrary time-dependent coordinate changes on spatial slices. Now we see
that the theory is also unaffected by local time reparameterizations ξ0(t,x). In particular, we may choose a new
spatial foliation of spacetime. This is another way to see that the new sources are not essential modifications to the
physics. Even if Ci was zero initially, in these new slicings, it may not be (for example if the temporal shift is not
constant – ∂iξ

0 6= 0), just as the metric δij may not look flat in some other randomly chosen curvilinear coordinate
system. Hence we see allowing for nonzero Ci is necessary to make the full spacetime symmetry of the initial theory
manifest, even if we are considering a trivial background that merely reduces the problem to the original action (3)
in the end.
There is a minor complication to this story. One could imagine that given some background Ci that there is no

slicing where it vanishes. It turns out that a Ci = 0 slicing exists if and only if

εij ∂̃iCj = 0. (27)

This is in fact a coordinate representation of the Frobenius’ condition that a local spatial slicing exists. When Ci = 0,
coordinates have been chosen so that constant time surfaces coincide with spatial slices. In the discussion below
equation (78), we show from causal considerations that (27) must in general be satisfied. Coordinates where Ci = 0
are called global time coordinates (GTC). Since we shall always assume GTC exist, in what follows we will take Ci = 0,
only restoring it when necessary to compute the energy current.
Gauge invariance and spatial diffeomorphisms are not the only local symmetries of the action (19). For each Ω(t,x),

the theory also exhibits Weyl invariance

δψ = Ωψ, δΦ = 2Ω, δgij = −2Ωgij , δCi = 0

δA0 = − 1

2m

(

1− g2

4

)(

1√
g
∂̃i

(

e−Φ√g∂̃iΩ
)

+ e−ΦĊi∂̃
iΩ

)

δAi =
g − 2s

2
εij ∂̃

jΩ. (28)

This is of course specific to the point interaction λ|ψ|4 where scale invariance is well known to be violated quantum
mechanically [17]. In the massless limit however, λ does not run and the LLL theory is truly conformally invariant.
Note that for g = 2, s = 1, the vector potential does not transform.
This concludes the complete set of generalizations of the initial problem that are relevant for this paper. We are

now considering particles of arbitrary spin and g-factor moving in the presence of an electromagnetic field Aµ, a
curved metric gij , a dilaton Φ and a spatial vector Ci. g and s may be chosen at will so long as we remember to
translate back to their physical values using (15), (16) and (25). In section VI we present a manifestly coordinate
invariant treatment of this symmetry from which the anomalous transformation laws (26) follow naturally. This is
the Newton-Cartan geometry first considered in Ref. [7] in the context of the FQH effect. There we shall find that
properly defining the energy current requires a generalization of this formalism to include nonzero torsion.

III. THE MASSLESS LIMIT

We now perform the massless limit discussed earlier. In GTC the action is

S =

∫

d3x
√
ge−Φ

(

i

2
eΦψ†↔D0ψ − 1

2m

(

gij +
ig

2
εij
)

Diψ
†Djψ − λ|ψ|4

)

,

and the quantum partition function is given by

Z =

∫

Dψ†DψeiS . (29)

The matrix εij has eigenvalues ±i and so the value g = 2 is distinguished for the matrix gij + iεij is degenerate. In
terms of the zweibein eai we have

εij = ǫabe
aiebj . (30)
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The eigenvectors of εij are the chiral basis vectors

ei =
1√
2
(e1i + ie2i ), ēi =

1√
2
(e1i − ie2i ) (31)

in terms of which we have the convenient formulas

gij = eiēj + ēiej εij = i(eiēj − ēiej) gij + iεij = 2ēiej . (32)

Hence the g = 2 action may be written as

S =

∫

d3x
√
ge−Φ

(

i

2
eΦψ† ↔

D0ψ − 1

m
(ēiDiψ

†)(ejDjψ)− λ|ψ|4
)

. (33)

In flat space, eiDiψ = Dz̄ψ and we see the degeneracy direction corresponds precisely to particles in the LLL. Using
a Hubbard-Stratonovich transformation, we write this as

S =

∫

d3x
√
ge−Φ

(

i

2
eΦψ† ↔

D0ψ − χ(ēiDiψ
†)− χ̄(eiDiψ) +mχ̄χ− λ|ψ|4

)

. (34)

The m → 0 limit is manifestly regular and the higher Landau levels are now completely trivial to integrate out as χ
and χ̄ simply become Lagrange multipliers enforcing the constraint

eiDiψ = 0 (35)

which is the curved space equation for the LLL wave function. The many-body problem of particles confined to the
LLL thus can be understood as a system of interacting particles with no kinetic energy

S =

∫

d3x
√
g

(

i

2
ψ† ↔
D0ψ − e−Φλ|ψ|4

)

(36)

for which path integration is only carried out subject to the holomorphic constraint (35). This theory inherits all the
symmetries discussed above. In particular, one may check that both Eqs. (35) and (36) are preserved by spacetime
diffeomorphisms and Weyl transformations.
We note briefly that for s = 1 the transformation laws are especially simple in the massless limit. In particular, Aµ

is just a one-form

δAµ = −ξλ∂λAµ −Aλ∂µξ
λ (37)

and is unchanged under Weyl transformations.

IV. NON-COVARIANT WARD IDENTITIES

In this section we derive the complete set of Ward identities that follow from the symmetries above. The Ward
identities are a result of only the symmetries of the problem and are valid in arbitrary backgrounds so long as (26)
is not anomalous. We begin however with a slight change of viewpoint however. In section II we used a model
microscopic action S to motivate the introduction of sources and demonstrate the symmetry of the problem. The full
quantum dynamics is however determined by the effective action W obtained from integrating out the field ψ and is
a functional only of the external fields

eiW = Z W =W [Aµ, gij ,Φ, Ci]. (38)

The currents defined fromW are then the 1-point expectation values of the microscopic ones defined above. To simply
notation we drop the brackets 〈〉 and simply denote them as

δW =

∫

d3x
√
ge−Φ

(

1

2
T ij
ncδgij + jµncδAµ + ε0ncδΦ + εincδCi

)

. (39)

Let’s begin with gauge invariance, which is the simplest of the symmetries considered above. The gauge variation
of the electromagnetic potential is δAµ = ∂µα

δW =

∫

d3x
√
ge−Φjµnc∂µα = 0 =⇒ 0 = −

∫

d3x∂µ
(√
ge−Φjµnc

)

. (40)
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Since α is an arbitrary function of space and time, we conclude ∂µ(
√
ge−Φjµnc) = 0 or

1√
g
∂0
(√
ge−Φj0nc

)

+∇i

(

e−Φjinc
)

= 0 (41)

which is simply the continuity equation on a curved background with dilaton Φ.
The remaining Ward identities follow in like manner. Spatial diffeomorphisms ξk imply stress conservation

eΦ√
g
∂0

(√
g
(

mjinc −
g − 2s

4
εij∇j(e−Φj0nc)

)

)

+ eΦ∇j

(

e−ΦTi
j
nc

)

= j0ncEi + εijj
j
ncB + ε0nc∇iΦ. (42)

Note that nonrelativistic diffeomorphism invariance completely determines the momentum current

pinc = mjinc −
g − 2s

4
εij∇j(e

−Φj0nc)

as mentioned previously. In particular, the mass leads to a momentum along the direction of charge flow while the
parity breaking terms give rise to an intrinsic angular momentum density

l = −g− 2s

2
e−Φj0nc

as may be seen by computing the flat space total angular momentum L =
∫

d2xǫijxipj . Note that the dilaton exerts
an external force on the system just as the electromagnetic field does.
Temporal diffeomorphisms ξ0 result in the work-energy equation

1√
g
∂0
(√
gε0nc

)

+ eΦ∇i(e
−Φεinc) = Eij

i
nc −

1

2
T ij
ncġij . (43)

Eij
i is the familiar work done by the electric field whereas the metric term corresponds to the work done on the

walls of a volume element as it expands or contracts due to the internal forces of the system. The Ward identities
of a system with a conserved particle number thus reproduce the full set of hydrodynamic equations of motion for a
non-relativistic fluid [16].
Finally, Weyl invariance gives rise to a generalization of the tracelessness of the stress-energy tensor

ε0nc =
1

2
T ij
ncgij +

1

4m

(

1− g2

4

)

eΦ∇i

[

e−Φ∇i
(

e−Φj0nc
)]

− g − 2s

4
eΦεij∇i

(

e−Φjjnc
)

. (44)

Note that the Ward identities take a particularly simple form for the LLL theory: the momentum vanishes and the
energy is simply the trace of the stress tensor

eΦ∇j

(

e−ΦTi
j
nc

)

= j0ncEi + εijj
j
ncB + ε0nc∇iΦ, ε0nc =

1

2
T ij
ncgij . (45)

It’s worth pointing out that the quantum conservation laws in curved space contain the full information on Ward
identities. By taking functional derivatives of these equations with respect to the sources one obtains higher order
Ward identities which relate the n-point correlation functions to δ-function terms involving lower order correlators.

V. VISCOSITY-CONDUCTIVITY RELATION

As an illustration, here we will give two Ward identities for two- point functions and show how they can be used
to extract the independent viscosity coefficients from the conductivities at all frequencies. Our work provides an
alternative field-theory approach to the previous result [13] based on a microscopic Hamiltonian and generalize it to
the nonvanishing g-factor and spin.
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A. Ward identities on closed time path

To discuss the real-time response functions, let us invoke the closed time-path formalism [18–20] and double Eq. (42)
on two time branches

∂t

[

g±ij

(

mGj
± − g − 2s

4
ǫjk∂k

Gt
±√
g±

)]

+ 2∂k(g±ijG
jk
± )− ∂ig±jkG

jk
± − E±iG

t
± − ε±ijBG

j
± = 0, (46)

The non-equilibrium current and tensor (density) are defined by

Gµ
± ≡ δW

δA±µ

, Gij
± ≡ δW

δg±ij

.

The dilaton has been set to zero since it has no effect on the results of this section.
Taking variation of Eq. (46) with respect to sources Al and gjk on two branches, we obtain four identities. Their

linear combinations give

0 = (mδij∂t − ǫijB)Gj,l
ra (x)−

g − 2s

4
δijǫ

jk∂t∂kG
t,l
ra (x) + 2δij∂kG

jk,l
ra (x) + δliG

t∂tδ(x), (47)

0 =
(

mδil∂t − ǫilB
)

Gl,jk
ra (x) − g − 2s

4
ǫin∂t∂nG

t,jk
ra (x) + 2∂nG

in,jk
ra (x) (48)

+
g − 2s

8
ǫinGt∂t∂nδ(x)δ

jk +

[

(

δikδjm + δijδkm
)

∂nδ(x) −
1

2

(

δkmδ
j
n + δjmδ

k
n

)

∂iδ(x)

]

Gmn,

where the correlators Gra(x) are defined by the second variation of the generating functional with respect to the
sources in physical presentation [20]. It can be split as the retarded Green’s function and the contact term

GB,A
ra (x) ≡ δ2W

δJB
a (x) δJA

r (0)
= iθ(t)〈

[

ϕB(x), ϕA(0)
]

〉+ 〈δϕ
B
r (x)

δJA
r (0)

〉, (49)

where ϕA denotes the conjugate operator of the source JA. One can also define the advanced correlators

GB,A
ar (x) ≡ δ2W

δJB
r (x) δJA

a (0)
= iθ(−t)〈

[

ϕA(0), ϕB(x)
]

〉+ 〈δϕ
B
a (x)

δJA
a (0)

〉.

Note that after the variation, we have put everything on the unperturbed background, which is assumed as a trans-
lationally invariant state with a uniform magnetic field and a vanishing electric field on the flat spacetime.
Keeping in mind the symmetry

GB,A
ra (x) = GA,B

ar (−x), (50)

and the variation of the continuity equation

∂µG
µ,ν(x) = 0, ∂µG

µ,ij(x) = 0, (51)

one can combine Eq. (47) and Eq. (48) as

(

mδnl ∂t − ǫnlB +
g − 2s

4
ǫnm∂m∂l

)(

mδji∂t − ǫjiB − g − 2s

4
ǫ k
i ∂j∂k

)

Gl,j
ra (x) (52)

= 4δij∂k∂mG
nm,jk
ra (x) + 2δni ∂k∂lδ(x)G

kl − (mδni ∂t − ǫniB) ∂tδ(x)G
t.

In momentum space, this can be recast as a relation at all frequencies

4Gj(i,k)l
ra (ω) + 2δljGik (53)

=
1

2
m2bjm

∂2

∂qi∂qk
Gm,n

ra (q)

∣

∣

∣

∣

~q→0

bnl − g − 2s

4
im
[

ǫj(kGi),n
ra (x)bnl + bjnGn,(k

ra (x)ǫi)l
]

,

where

bij = ωδij − iωcǫ
ij , ωc = B/m.
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B. Linear response tensor

In the following, we study the structure of the correlators, which allows us to transform Eq. (53) into a relation
between the independent viscosity coefficients and the conductivity. Define the non-equilibrium current

〈Jµ(x)〉r ≡
1√
g

δW

δAaµ(x)
, (54)

from which we have

δ〈Jµ(x)〉r
δArν(0)

= Gµ,ν
ra (x). (55)

The deviation in the current from its equilibrium value can be formally expanded in time derivatives

δ〈Jµ(x)〉r = −
∫

d3x′σµν
1 (x− x′)δArν(x

′)−
∫

d3x′σµν
2 (x− x′)∂′tδArν(x

′) + · · · . (56)

In linear response theory, one usually is interested in the case

δ〈J i(x)〉r =
∫

d3x′σij(x− x′)δErj(x
′). (57)

Its variation gives

δ〈J i(x)〉r
δArj(0)

= −∂tσij(x). (58)

Combining Eqs. (55) and (58), the correlator of currents can be expressed as the conductivity tensor

Gi,j
ra (x) = −∂tσij(x). (59)

Similarly, define the non-equilibrium stress tensor

〈T ij(x)〉r =
2√
g

δW

δgaij(x)
.

Then we have

δ〈T ij(x)〉r
δgrkl(0)

= 2Gij,kl
ra (x)− 1

2
δkl〈T ij〉δ(x).

Vary the spatial components of the metric and define the elastic modulus and viscosity tensors by the expansion

δ〈T ij(x)〉r = −1

2

∫

d3x′λijkl(x− x′)δgrkl(x
′)− 1

2

∫

d3x′ηijkl(x− x′)∂′tδgrkl(x
′) + · · · .

In other words

δ〈T ij(x)〉r
δgrkl(0)

= −1

2
λijkl(x) − 1

2
∂tη

ijkl(x).

By comparison, we obtain

Gij,kl
ra (x) =

1

4
δkl〈T ij〉δ(x)− 1

4
λijkl(x)− 1

4
∂tη

ijkl(x). (60)

C. Elastic modulus

The tensor λijkl(x) is the stress response up to the zeroth-order in time derivatives. However, it is also enough to
treat it at zeroth- order in space derivatives, since our final goal is to obtain the viscosity at all frequencies and zero
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wave number. In other words, we can use the approximation of the perfect fluid. For a system without magnetic field,
the hydrodynamic expansion is given by Ref. [21]

δ〈T ij(x)〉r = −
(

Pδikδjl +
1

2
δijδklκ−1

)

δgkl(x), (61)

where κ−1 ≡ −V (∂P/∂V )S,N is the inverse compressibility. The case of the system with a magnetic field is sim-
ilar. Since the stress density in a rotationally invariant system with volume V includes both the pressure P and
magnetization M [13]

〈T ij〉 = δijPint, Pint = P − MB

V
,

the constitutive equation at leading order can be written as

T µν = ǫuµuν + Pint (u
µuν + gµν) .

This result is consistent with the one obtained in Refs. [22, 23] both for relativistic and non-relativistic systems,
though B is taken there as first order in derivatives.
Consider the energy of the system as E(N, V,B) = V ε(ν,B), where ν is the filling factor. One can define the

internal inverse compressibility

κ−1
int ≡ −V ∂Pint

∂V

∣

∣

∣

∣

ν,N

= B2 ∂
2ε(ν,B)

∂B2

∣

∣

∣

∣

ν

. (62)

Thus, the elastic modulus can be decomposed as

λijkl(x) =
[

Pint

(

δikδjl + δilδjk
)

+ δijδklκ−1
int

]

δ(x). (63)

D. Irreducible decomposition of response tensors

Any rank-2 tensor can be decomposed as a symmetric trace, a symmetric traceless and an antisymmetric part, so
we have

σij(x) = σL(x)δ
ij + σij

T (x) + σH(x)ǫij , (64)

in which the Hall and longitudinal conductivities

σH ≡ 1

2

(

σ12 − σ21
)

, σL ≡ 1

2

(

σ11 + σ22
)

are frequently used in references. Also consider the tensor ηijkl(x) divided into its symmetric and antisymmetric parts
in the pairs of indices ij and kl

ηijkl(x) = ηijklS (x) + ηijklA (x).

We restrict our interest to the systems with rotational invariance. Then the symmetric part has only two independent
components

ηijklS (x) = ζ(x)δijδkl + ηsh(x)
(

δikδjl + δilδjk − δijδkl
)

, (65)

and the antisymmetric part has one

ηijklA (x) = ηH(x)
(

δjkǫil − δilǫkj
)

. (66)
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E. Viscosity and conductivity

Now combing Eqs. (59), (60) and (63), we can recast Eq. (53) as

η̄ijkl(ω)− 1

2iω

(

δijδkl + δkjδil
)

κ−1
int (67)

=
m2

2
bjm

∂2σmn(q)

∂qi∂qk

∣

∣

∣

∣

~q→0

bnl − g − 2s

4
im
[

bnlǫj(iσk)n(ω) + bjnσn(i(ω)ǫk)l
]

.

where the “−” denotes

η̄ijkl =
1

2

(

ηijkl + ηkjil
)

.

Note that all the contact terms exactly cancel, up to the term with κ−1
int .

Plugging Eqs. (64), (65) and (66) into Eq. (67), we can extract respectively the bulk, shear and Hall viscosities
from the conductivities at all frequencies

ζ − 1

iω
κ−1
int =

m2

2

(

ω2 − ω2
c

) ∂2

∂q21

[

σ11(q)− σ22(q)
]

∣

∣

∣

∣

~q→0

+
g − 2s

2
im [iωcσL(ω)− ωσH(ω)] , (68)

ηsh(ω) =
m2

2

∂2

∂q21

[

ω2σ22(q) + ω2
cσ

11(q) + 2iωcωσH(q)
]

∣

∣

∣

∣

~q→0

− g − 2s

2
im [iωcσL(ω)− ωσH(ω)] , (69)

ηH (ω) =
m2

2

∂2

∂q21

[(

ω2 + ω2
c

)

σH(q)− 2iωωcσL(q)
]

∣

∣

∣

∣

~q→0

− g − 2s

4
im [ωσL(ω) + iωcσH(ω)] . (70)

Note that the above four equations recover Eqs. (4.11-4.14) in Ref. [13] when g − 2s = 0.
In the limit of m→ 0, we have the regular identities

η̄ijkl(ω)− 1

2iω

(

δijδkl + δkjδil
)

κ−1
int (71)

= −1

2
B2ǫjmǫnl

∂2σmn(q)

∂qi∂qk

∣

∣

∣

∣

~q→0

− g − 2s

4
B
[

ǫnlǫj(iσk)n(ω) + ǫjnσn(i(ω)ǫk)l
]

,

and

ζ − 1

iω
κ−1
int = −1

2
B2 ∂2

∂q21

[

σ11(q)− σ22(q)
]

∣

∣

∣

∣

~q→0

− g − 2s

2
BσL(ω), (72)

ηsh(ω) =
1

2
B2 ∂

2σ11(q)

∂q21

∣

∣

∣

∣

~q→0

+
g − 2s

2
BσL(ω), (73)

ηH (ω) =
1

2
B2 ∂

2σH(q)

∂q21

∣

∣

∣

∣

~q→0

+
g − 2s

4
BσH(ω). (74)

A number of interesting identities of this type were recently found for nonzero g in Ref. [24].

VI. NEWTON-CARTAN GEOMETRY WITH TORSION

The derivation of the Ward identities in the previous sections is quite straightforward, but the diffeomorphism
invariance of the resulting equations can be verified only by rather cumbersome direct calculation. We now develop
a formalism in which the diffeomorphism invariance is explicit at each stage of the calculation. That formalism is a
version of Newton-Cartan geometry, which has been previously applied to the quantum Hall problem was developed
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first in the context of non-relativistic gravity by Cartan [25, 26] and may be viewed as the natural structure preserved
by a gauging of Galilean symmetry [27, 28].
This section differs from our previous work in that we consider torsionful backgrounds. Torsionful geometries are

generally necessary in the presence of a nontrivial dilaton field and have for example been considered in Ref. [29], where
it is shown that boundary theory corresponding to a z = 2 Lifschitz spacetime is set in a torsionful Newton-Cartan
setting. We now describe this torsionful version of Newton-Cartan geometry.
A Newton-Cartan geometry is a manifold endowed with a one-form nµ, a degenerate metric tensor with upper

indices gµν for which nµ is a zero eigenvector and a vector vµ whose projection onto nµ is 1

gµνnµ = 0 nµv
µ = 1. (75)

From (g, n, v) one can uniquely define a metric tensor with lower indices gµν by requiring

gµλgλν = δµν − vµnν , gµνv
ν = 0. (76)

We define a connection by

Γλ
µν = vλ∂µnν +

1

2
gλρ(∂µgνρ + ∂νgµρ − ∂ρgµν). (77)

It is easy to see that under coordinate reparameterizations Γλ
µν transforms as required for a connection.

In the simplest version of the Newton-Cartan geometry, nµ is assumed to be a closed one-form. In this case the
connection (77) is torsionless: Γλ

[µν] = 0. We shall not assume that this is the case; instead, we only assume the
weaker condition

n ∧ dn = 0. (78)

By the Frobenius theorem, nµ then locally defines a unique spatial slicing to which nµ is normal, giving us a preferred
notion of space. This condition was also imposed in Ref. [29] so that connection on these slices is the usual, torsionless
Riemannian connection. However, we note that this is in fact generally required by the causality of a non-relativistic
theory. One may show that if n ∧ dn 6= 0 at a point x, there is a neighborhood of x in which every point may be
reached by a future directed curve (one in which the tangent uµ satisfies nµu

µ > 0) [30]. In particular, an observer
may with sufficient speed intersect his own past.
In the case that dn 6= 0 the connection has nonzero torsion

T λ
µν ≡ 2Γλ

[µν] = 2vλ∂[µnν]. (79)

The torsion has the following property: it vanishes when all indices are lowered or raised,

Tλµν ≡ gλαT
α
µν = 0, T λµν ≡ gµαgνβT λ

αβ = 0. (80)

The first equation comes from gλαv
α = 0. To see the second equation, one can work in the coordinate system where

ni = 0. This condition assumes no spatial torsion, which in the condensed matter context corresponds to a nontrivial
Burgers vector density, and may be relaxed if one wishes to study material defects. The torsion (79) on the other
hand is temporal, and finds its origin in the presence of a nontrivial gravitational potential −Φ (see (89)).
The connection Γλ

µν has some further interesting features. It is compatible with the metric gµν and with nµ,

∇λg
µν = 0, ∇νnµ = 0. (81)

On the other hand, the covariant derivatives of gµν and vµ are nonzero. They can be expressed in terms of the Lie
derivative of the metric along vµ,

∇λgµν = −τλ(µnν), ∇νv
µ =

1

2
τναg

αµ (82)

τµν ≡ £vgµν = vλ∂λgµν + gλν∂µv
λ + gµλ∂νv

λ (83)

Using vµτµν = 0 one can show that

gα[µ∇ν]v
α = 0 ∇αv

[µgν]α = 0 gµαgνβ∇λgαβ = 0

vλ∇λgµν = 0 vλ∇λv
µ = 0. (84)

In fact, it is possible to show that the connection (77) is uniquely determined from equations (80), (81), and the first
equation in (84). The connection of course also defines a unique volume element by

∇ρεµνλ = 0. (85)
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A. Conservation Laws with Torsion

The way the connection is defined introduces one subtlety which is important for our further discussion. Namely,
in a Newton-Cartan theory current conservation

∂µ(e
−Φ√g jµ) = 0 (86)

does not have the familiar form ∇µj
µ = 0, but instead is

(∇µ −Gµ)j
µ = 0 where Gµ = T ν

νµ. (87)

We will find this combination of ∇µ and Gµ recurring often. This is because the usual formula for integration by
parts is modified on a torsionful manifold. Because 1√

ge−Φ ∂µ
(√
ge−Φ

)

= Γν
νµ − T ν

νµ, in addition to the usual minus

sign, we must also take ∇µ → ∇µ −Gµ upon an exchange of the derivative.
Furthermore, (87) is consistent with time independence of total charge on a torsionful manifold. By Stokes’ theorem

∫

Σ1

nµj
µ −

∫

Σ2

nµj
µ =

∫

εµνλ∂µjνλ

=

∫

(

εµνλ∇µjνλ − T ν
νµj

µ
)

=

∫

(∇µ −Gµ)j
µ = 0, (88)

where Σ1 and Σ2 are spatial slices, nµj
µ is the charge density and jµν = 1

2εµνλj
λ is the dual of jµ.

B. Coordinate Expressions

To gain some intuition for the above objects and to connect this discussion with the non-covariant presentation of
the previous sections, we introduce a parameterization of the geometry by going into coordinates. In some coordinate
patch, we have without loss of generality

nµ =
(

e−Φ, −e−ΦCi

)

vµ =

(

eΦ(1 + Cjv
j)

eΦvi

)

. (89)

As we shall see, this is the same Ci introduced previously to couple to the energy current. Because n∧dn = 0, we may
always choose coordinates where Ci = 0. Writing out n ∧ dn = 0 in coordinates gives (27), so such coordinates are
indeed the global time coordinates discussed before. From the Newton-Cartan perspective, this condition is elegant
and physically motivated.
However, it is often necessary to work outside of GTC, at least to first order, in order to calculate the energy

current. Given (89), the following coordinate expressions follow straightforwardly

gµν =

(

C2 Cj

Ci gij

)

gµν =

(

v2 −vj − v2Cj

−vi − v2Ci gij + viCj + vjCi + v2CiCj

)

. (90)

The transformation laws (26) for Φ, Ci and gij can now be derived from the above expressions as natural consequences
of the covariant transformations

δnµ = −ξλ∂λnµ − nλ∂µξ
λ δvµ = −ξλ∂λvµ + vλ∂λξ

µ

δgµν = −ξλ∂λgµν + ∂µξν + ∂νξµ. (91)

We also have

εµνλ =
√
ge−Φǫµνλ τij = eΦ (∇ivj +∇jvi + ġij) . (92)

Here ǫµνλ is the antisymmetric symbol with ǫ012 = 1. The remaining components of τµν are specified by the transverse
condition τµνv

ν = 0. We see that τµν is a spacetime covariant form of the fluid shear.
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C. The Velocity v
µ and the Covariant Vector Potential

In the above, gµν and nµ play essential roles with clear physical interpretations. nµ gives an absolute notion of
space via it’s integral submanifolds. gµν restricts to a Riemannian metric on space and supplies an invariant notion of
distance. The “velocity” vector vµ on the other hand is the odd man out, what is it supposed to represent? Indeed,
for a general non-relativistic theory there can be no preferred vector field since it’s integral curves would define a
distinguished family of observers. Only in the presence of a background medium that breaks non-relativistic boost
invariance (an “ether”) would this be physically acceptable.
For us, vµ is merely a convenience, an inessential structure that we use to help define a partial metric inverse and

a connection. It may be selected at will only subject to the constraint nµv
µ = 1. In the presence of a fluid one useful

choice is for vi to simply be the fluid velocity. In this paper however we prefer not to assume anything about the
system beyond diffeomorphism invariance, and so do not have any preferred notion for vµ. We will rather be more
concerned with demonstrating the vµ independence of our treatment.
If we were to leave it at that vµ may be more trouble than it’s worth: whenever it appears we need to worry if

the physics depends on an arbitrary choice. However, in the presence of a vector potential Aµ, having v
µ around is

crucial. In GTC, the vector potential obeys an anomalous transformation law

δA0 = −ξλ∂λA0 −Aλ∂0ξ
λ +

g − 2s

4

(

εij ∂̃i(gjk ξ̇
k) + εijĊiξ̇

j
)

δAi = −ξλ∂λAi −Aλ∂iξ
λ −meΦgij ξ̇

j − g − 2s

4
εijCi∂i(gjk ξ̇

k) (93)

to first order in Ci. Extending the discussion Ref. [7] to arbitrary g and s, we may use the components of vµ to define
a modified gauge field

Ã0 = A0 −
1

2
meΦv2 − g − 2s

4
εij
(

∂̃ivj + Ċivj
)

Ãi = Ai +meΦvi +
1

2
meΦv2Ci +

g − 2s

4
Ciε

jk∂jvk (94)

that transforms covariantly under diffeomorphisms

δÃµ = −ξλ∂λÃµ − Ãλ∂µξ
λ. (95)

All transformations (26) then follow by representing a Newton-Cartan background in a system of coordinates, except
for the transformation of the non-covariant vector potential, which also relies on the decomposition (94).
Thus we may use vµ to take any invariant effective action phrased in terms of the components gij , Φ, Ci and the

vector potential Aµ and present it as a functional of only covariant objects

W [gij ,Φ, Ci, Aµ] =W [gµν , nµ, Ãµ, v
µ]. (96)

Since the original action carried no vi dependence, the covariant version must have the following special property:
it is invariant under changes to vµ and Ãµ that leave the physical vector potential Aµ unchanged. In section VIIB,
we use this to provide another demonstration that the momentum of a nonrelativistic system is determined by the
charge flow.
It is easy to now write down our microscopic action in a manifestly covariant form using Newton-Cartan geometry

S =

∫

d3x
√
ge−Φ

( i

2
vµψ†↔Dµψ − 1

2m

(

gµν +
ig

2
εµν
)

Dµψ
†Dνψ − λ|ψ|4

)

(97)

where the covariant derivative involves the modified vector potential and the Newton-Cartan spin connection

ωµ =
1

2
ǫabe

aν∇µe
b
ν . (98)

Plugging in the coordinate expressions of the geometry, we find this action reduces to the microscopic action considered
previously with all sources present. Indeed, for g = s = 0, it was shown in Ref. [28] that one may generally promote
a Galilean invariant theory to a diffeomorphism invariant one via the simple prescription

D0 = vµDµ Da = eµaDµ (99)

which is all that we’ve done here.
Note that in the LLL limit, the physical vector potential is already a one-form and need not be modified. In this

simple case vµ is truly unnecessary and can be discarded

WLLL[g
ij ,Φ, Ci, Aµ] =WLLL[g

µν , nµ, Aµ]. (100)
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VII. COVARIANT WARD IDENTITIES

In section IV we derived Ward identities by considering the variation of Aµ, Φ, Ci and gij under nonrelativistic
diffeomorphisms. In this approach, the physical meaning of the currents jµnc, ε

µ
nc, and T

ij
nc is clear, and the resulting

Ward identities take the form of the fluid dynamical equations of motion [16]. However from the Newton-Cartan point
of view, the above approach is somewhat unnatural. Φ, Ci, and g

ij are merely the components of covariant objects
nµ and gµν in some choice of coordinates and Aµ is not even a one-form. Similarly, the above currents do not form
spacetime vectors and tensors in an obvious way.
In what follows, we reformulate the previous work in a fully geometric fashion. We begin with an effective action

written as a functional of the geometry and the modified gauge field

W [nµ, g
µν , vµ, Ãµ] (101)

and then define currents jµ, εµ and T µν that transform as spacetime tensors. Covariant Ward identities are derived.
In section VIIB we impose the vi independence of the action as well as demonstrate the relationship between the
covariantly defined currents and the “nc” currents considered previously.

A. Variation of the Action

Defining covariant currents requires some care as not all components of the background fields nµ, g
µν and vµ are

independent. Since the geometry is constrained to satisfy nµv
µ = 1 and gµνnν = 0, an arbitrary variation is not

allowed. Rather, the most general change may be parameterized in terms of an arbitrary δnµ, a transverse velocity
perturbation δuµnµ = 0 and a transverse metric perturbation δhµνnν = 0

δnµ δvµ = −vµvλδnλ + δuµ δgµν = −vµδnν − δnµvν − δhµν . (102)

δnµ, δu
µ and δhµν are then completely independent and the currents defined by

δW =

∫

d3x
√
ge−Φ

(1

2
T µνδhµν + jµδÃµ − εµδnµ − pµδu

µ
)

(103)

where T µν and pµ are fixed to be transverse

T µνnν = 0 pµv
µ = 0. (104)

The only new current in this collection is pµ. We shall find that it is related to the momentum density of the system
and is completely fixed by the vµ independence of the effective action.
Under spacetime diffeomorphisms, the background fields change as

δnµ = −nλ∇µξ
λ + T λ

µνnλξ
ν δgµν = ∇µξν +∇νξµ +

(

T µ
λ
ν + T ν

λ
µ
)

ξλ

δvµ = −ξλ∇λv
µ + vλ∇λξ

µ − T µ
νλv

νξλ δÃµ = −ξλ∇λÃµ − Ãλ∇µξ
λ + T λ

µνÃλξ
ν , (105)

where we have exchanged the coordinate derivatives appearing in (93) and (95) for covariant derivatives. These
immediately give expressions for δuµ = Pµ

νδv
ν and δhµν = −Pµ

λP
ν
ρδg

λρ. Gauge transformations are of course
unchanged

δÃµ = ∇µα. (106)

Proceeding as before, we find the Ward identities corresponding to gauge invariance and diffeomorphism invariance
are

(∇µ −Gµ)j
µ = 0

∇ν(pµv
ν) + pν∇µv

ν + (∇ν −Gν)Tµ
ν − nµ(∇ν −Gν)ε

ν = F̃µνj
ν −Gµνε

ν (107)

where we have defined the following notation: F̃µν = (dÃ)µν is the Newton-Cartan analogue of the electromagnetic
field strength and Gµν = (dn)µν is similarly a “torsional field strength.”
Equations (107) are unfamiliar enough to deserve a few comments. We first observe that current conservation no

longer takes the form ∇µj
µ = 0, but rather (∇µ − Gµ)j

µ = 0 as discussed in section VIA. To bring the second
equation into a more enlightening form, we first project it onto spatial slices by raising the index

∇ν(p
µvν) + pν∇µvν + (∇ν −Gν)T

µν = F̃µ
νj

ν −Gµ
νε

ν . (108)
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This simply expresses momentum conservation in the presence of external forces. F̃µ
νj

ν is of course the usual Lorentz
force, but along with the pµ terms, also makes contributions to the momentum current due to the modifications

necessary to make Ãµ covariant. For now, merely note that the torsion also exerts a “Lorentz force,” but one that
couples to the energy current rather than the charge current.
Finally, projecting (107) onto vµ, we obtain the Newton-Cartan analogue of the work-energy equation

(∇µ −Gµ)ε
µ = −F̃µνv

µjν +Gµνv
µεµ − 1

2
τµνTµν . (109)

The first two terms on the right hand side represent the work done on the system by the external fields in a frame
moving with velocity vµ. In the case that vµ represents a fluid velocity, the physics of the final term is relatively clear:
it accounts for energy dissipated due to viscous forces.

B. Comparison with the Noncovariant Approach

Unfortunately, the currents defined in (103) differ from the standard currents T ij
nc, ε

µ
nc and jµnc found in the non-

covariant Ward identities. To see how, express δnµ, δh
µν , δuµ and δÃµ, in terms of δΦ, δCi, δg

ij , δvi and δAµ and
set (103) equal to

δW =

∫

d3x
√
ge−Φ

(1

2
T ij
ncδgij + jµncδAµ + ε0ncδΦ + εincδCi

)

. (110)

The absence of δvi terms is equivalent to the vµ independence of the original action. This procedure then completely
fixes pµ to be

pµ = mjµ − g − 2s

4
εµν∇ν

(

nλj
λ
)

. (111)

So long as pµ takes this value, the identities (107) are guaranteed to be independent of changes to vµ and Ãµ that
leave Aµ fixed, despite appearances to the contrary. Note that since jµ = gµνj

ν , the ith component of jµ is not
ji = gijj

j , but rather ji − vij
0.

The remaining relationships are

T ij
nc = T ij +meΦ

(

vijj + vjji − j0vivj
)

+
g − 2s

4
eΦ
(

j0Ωgij − 2v(iεj)keΦ∂k(e
−Φj0)

)

ε0nc = e−Φε0 +meΦ
(

jiv
i − 1

2
j0v2

)

εinc = e−Φεi + T ijvj + eΦvivjpj +
1

2
meΦjiv2 +

g − 2s

4

(

Ωji + εijvje
Φ∂0(e

−Φj0)
)

jµnc = jµ (112)

where Ω = εij∂ivj . Importantly, note that it is the non-covariant currents that are vi independent. The covariant
versions will change with the choice of vi, but the above combinations will not.
For nonvanishing charge density, one convenient choice is vi = ji/j0. We then have

T ij
nc = meΦj0vivj + T ij jµnc = jµ

ε0nc =
1

2
meΦj0v2 + e−Φε0 εinc =

1

2
meΦj0viv2 + e−Φεi + T ijvj (113)

where we have taken g = 2 s = 1 for simplicity. We thus see that in this frame the covariant currents have a clear
physical interpretation: T ij and εµ are the internal stress and energy currents of the system, that is, the currents
that do not arise due to the motion of material from one place to another.
Let’s express the covariant Ward identities in terms of the non- covariant currents to check their vi independence.

First decompose the Newton-Cartan field strength F̃µν into the usual electromagnetic field strength plus the modifi-
cations necessary to make a spacetime tensor.

F̃µν = Fµν

+





0 m
(

∂0(e
Φvj) +

1
2∇j(e

Φv2)
)

+ g−2s
2 ∇jΩ

)

−m
(

∂0(e
Φvi) +

1
2∇i(e

Φv2)
)

− g−2s
2 ∇iΩ

)

m
(

∇i(e
Φvj)−∇j(e

Φvi)
)



 . (114)
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We also require the formula

Tµ
ν =

(

0 −vkT kj

0 Ti
j

)

, (115)

which follows from the transverseness of the stress tensor. Then expanding out the 0th and ith components of (107),
we obtain

1√
g
∂0(

√
ge−Φj0nc) +∇i(e

−Φjinc) = 0

1√
g
∂0
(√
gε0nc

)

+ eΦ∇i(e
−Φεinc) = Eij

i
nc −

1

2
T ij
ncġij

eΦ√
g
∂0

(√
g
(

mji −
g − 2s

4
εij∇j(e−Φj0)

)

)

+ eΦ∇j(e
−ΦTnci

j)

= j0ncEi + εijj
j
ncB + ε0nc∇iΦ. (116)

The result is independent of vi and in perfect agreement with the non-covariant Ward identities found previously.

VIII. CONCLUSION

In this paper we have proposed a new approach to studying the FQH effect. The effort here has been essentially
formal and will serve as the foundation of later work where physical consequences are addressed. We’ve shown that
by a special choice of spin and gyromagnetic ratio, a smooth massless limit is obtained and we exactly integrate out
all higher Landau levels. This choice can always be made by virtue of a translation formula that tells one how to
convert results for one g and s to any other value.
Furthermore, we have derived the complete set of Ward identities that follow from spacetime symmetries in arbitrary

backgrounds. These Ward identities are the usual fluid equations of motion: stress conservation and the work-energy
equation, which can be viewed as the consequence of a spacetime symmetry as in relativity. Finally, a covariant
treatment of these Ward identities is then developed that makes that symmetry manifest.
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Appendix A: From Relativistic to Non-Relativistic Conservation Equations

In this appendix, we motivate the conservation laws (41), (42) and (43) from the relativistic point of view. This
also makes the physical significance of the dilaton field Φ clearer: it arises as the relativistic lapse function. We begin
with the relativistic continuity equation and conservation of stress-energy

∇µj
µ = 0 ∇µTν

µ = Fνµj
µ (A1)

with the metric ansatz

gµν =

(

−e−2Φ 0
0 gij

)

(A2)

The Christoffel symbol is then

Γ0
00 = −Φ̇, Γ0

ij =
1

2
e2Φġij , Γk

00 = −e−2Φgkl∂lΦ

Γ0
0i = −∂iΦ, Γk

0i =
1

2
gklġli, Γk

ij =
1

2
gkl (∂iglj + ∂jgil − ∂lgij) .
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Plugging this in, we find the continuity equation reads

∂µ
(√
ge−Φjµ

)

= 0 (A3)

whereas the time and space components of stress-energy conservation are

1√
g
∂0
(√
gT0

0
)

+∇iT0
i + e−2ΦT0

i∂iΦ− 1

2
T ij ġij = F0µj

µ (A4)

1√
ge−Φ

∂0
(√
ge−ΦTj

0
)

+ eΦ∇i

(

e−ΦTj
i
)

+ T0
0∂jΦ = Fjµj

µ (A5)

To bring this into a form closer to that which appears in the main text, we define the energy density ε0nc, energy
flux εinc and momentum density pinc as

T0
µ = −εµ Tj

0 = pj .

The conservation equations (A4) and (A5) now read

1√
g
∂0
(√
gε0
)

+ eΦ∇i

(

e−Φεi
)

= −F0µj
µ − 1

2
T ij ġij (A6)

eΦ√
g
∂0
(√
ge−Φpj

)

+ eΦ∇i

(

e−ΦTj
i
)

= Fjµj
µ + ε0∇jΦ. (A7)

matching our non-covariant ward identities. Of course, the momentum and energy currents are not independent in a
relativistic theory, but they are in the non-relativistic case.

Appendix B: Current Redefinitions – Noncovariant Version

In section II we remarked that how we choose to couple the system to curved geometry is largely arbitrary for flat
space physics. For example, one can imagine adding additional curvature terms to the microscopic action. In curved
geometry, we would of course have different dynamics, but the flat space equations of motion would be unchanged.
At the same time, non-minimal couplings would in general alter the definition of the stress tensor, even in flat space.
However, there is another class of modifications that do not affect the dynamics even in a curved background. This

freedom has great utility: it allows us to choose the parity breaking couplings g and s at will. In particular, we may
always choose g = 2 and s = 1. The LLL limit then exists and upon taking m→ 0, the momentum density vanishes.
We now demonstrate how this works in detail.
Let’s begin with s. Consider, as above, a theory of a single field ψ with charge 1 and spin s so that the covariant

derivative takes the form

Dµψ = (∂µ − iAµ + isωµ)ψ. (B1)

Assuming that Aµ and ωµ only appear in the action in this way, we may absorb part of ωµ into Aµ

(∂µ − iAµ + isωµ)ψ = (∂µ − iA′
µ + is′ωµ)ψ

where A′
µ = Aµ + (s′ − s)ωµ. (B2)

The dynamics of the system is unchanged, but the point of view different; we now have a new spin and externally
applied electromagnetic field.
For simplicity take Φ = 0, Ci = 0. We have two effective actions, Ss and Ss′ , satisfying

Ws[Aµ, gij] =Ws′ [Aµ + (s′ − s)ωµ, gij ]. (B3)

Under a metric perturbation, choose a gauge where δeai = 1
2δgije

aj and δeai = 1
2δg

ijeaj . The perturbed spin connection
is then

δω0 =
1

4
εjkġ

kiδgij δωi = −1

2
εjk∇jδgik. (B4)
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Setting
∫

d3x
√
ge−Φ

(1

2
T ij
ncδgij + jµncδAµ

)

=

∫

d3x
√
ge−Φ

(1

2
T ′ij
nc δgij + j′µncδA

′
µ

)

, (B5)

we find a relation between the stress tensors defined in the two different pictures

jµnc = j′µnc T ij
nc = T ′ij

nc + (s′k(i∇kj
′j)
nc +

1

2
(s′ − s)ġk(iε

j)
kj

′0
nc. (B6)

We are free to choose the spin however we like, so long as we use this stress tensor and the modified electromagnetic
field (B2).
The same procedure allows us to redefine g as well, though the formulas are more cumbersome. Recall the full

microscopic action for arbitrary g and s is

Sgs =

∫

d3x
√
ge−Φ

( i

2
eΦψ†↔D0ψ − 1

2m

(

gij +
ig

2
εij
)

(D̃iψ)
†(D̃jψ)− λ|ψ|4

)

. (B7)

We must briefly work outside of GTC, at least to first order, since our modifications will affect the energy current.
Explicitly accounting for all appearances of the vector potential in the microscopic action we have

S =

∫

d3x
√
ge−Φ

(

i

2
eΦψ†

↔
∂̃0ψ − 1

2m
∂̃iψ

†∂̃iψ − i

2m

(

Ãi − sω̃i +
g

4
εij(Ċj − ∂̃jΦ)

)

ψ†
↔
∂̃iψ

+eΦ
(

A0 − sω0 +
g

4m
e−Φ

(

F − εij(Ãi − sω̃i)(Ċj − ∂̃jΦ)
)

− 1

2m
e−Φ(Ãi − sω̃i)(Ã

i − sω̃i)
)

|ψ|2 − λ|ψ|4
)

(B8)

where for convenience we have defined F = iεijD̃iD̃j =
(

B − s
2R + εij

(

Ei − s
2Ri

)

Cj

)

. Here Ãi denotes not the

modified vector potential but Ai + CiA0. R and Ri are the curvature equivalents of the magnetic and electric fields

2 (∂µων − ∂νωµ) =

(

0 −Rj

Ri εijR

)

. (B9)

R is simply the spatial Ricci scalar and Ri = εjk∇j ġik measures change in the geometry with time.
We seek a transformation that sends the third and fourth terms of (B8) to themselves but with g → g′ and s→ s′.

The algebra is somewhat prohibitive, but is greatly simplified if we only work to leading order in Ci and Φ, which
gives us enough information to access the currents at least for the torsionless case. The transformation

A′
0 = A0 + (s′ − s)ω0 +

g − g′

4m
e−ΦF − g′(g′ − g)

16m
e−Φ

(

∇iĊi −∇2Φ
)

A′
i = Ai + (s′ − s)ωi +

g − g′

4
ε j
i (Ċj − ∂̃jΦ)−

g − g′

4m
e−ΦFCi (B10)

does the trick. When Φ = 0, the electric and magnetic fields in the new picture are

B′ = B +
1

2
(s′ − s)R

E′
i = Ei +

1

2
(s′ − s)Ri +

g − g′

4m
∇iB. (B11)

We have shown then that at the level of the effective action we have

Wgs[gij ,Φ, Ci, Aµ] =Wg′s′ [gij ,Φ, Ci, A
′
µ]. (B12)

To relate the one-point correlators in the two conventions, proceed as before. Set
∫

d3x
√
ge−Φ

(1

2
T ij
ncδgij − εµncδnµ + jµncδAµ

)

=

∫

d3x
√
ge−Φ

(1

2
T ′ij
nc δgij − ε′µncδnµ + j′µncδA

′
µ

)

. (B13)



21

The resulting translation formulas for Φ = 0 are

j0nc = j′0nc

jinc = j′inc +
g − g′

4m
εij∇jj

′0
nc

ε0nc = ε′0nc −
g − g′

4
εij∇ij

′
jnc −

g − g′

4m
Bj′0nc +

g′(g′ − g)

16m
∇2j′0nc

εinc = ε′inc −
1

2
(s′ij ġjkj

′k
nc +

g − g′

4
εij∂0j

′
jnc −

g − g′

4m

(

Bj′inc + εij
(

Ej −
s

2
Ri

)

j′0nc

)

− g − g′

8m
s
(

gijgkl − gilgjl
)

ġkl∇jj
′0
nc −

g′(g′ − g)

16m

1√
g
∂0
(√
g∇ij′0nc

)

T ij
nc = T ′ij

nc + (s′k(i∇kj
′j)
nc +

s′ − s

2
ġk(iεj)kj

′0
nc

− g − g′

4m

(

Bj′0ncg
ij + s

(

∇i∇j − gij∇2
)

j′0nc

)

(B14)

If we merely restricted ourselves to the microscopic action (19), the translation formulas are superfluous since we
know the explicit form of the classical action for all g and s. Rather, their power derives from the equality of the
full quantum partition functions for which we may not have this knowledge. One can imagine computing correlation
functions for some convenient choice (such as g = 2, s = 1 for LLL physics). W =W ′ then ensures that regardless of
that choice we are actually describing the same physics as for the true values of g and s and there is a precise map
that can be used to determine the physical correlation functions. (B14) is that map for one-point correlators. One
may similarly derive a map for two-point correlators, etc. using the method above.

Appendix C: Current Redefinitions – Covariant Version

The same manipulations above may be carried out for the covariant currents as well. To begin, we recall that the
microscopic action (19) may be written using Newton-Cartan geometry as

S =

∫

d3x
√
ge−Φ

( i

2
vµψ†↔Dµψ − 1

2m

(

gµν +
ig

2
εµν
)

Dµψ
†Dνψ − λ|ψ|4

)

(C1)

where we have suppressed the volume element and Dµ = ∇µ − iÃµ + isω̃µ. Here ω̃µ = 1
2ǫabe

aν∇µe
b
ν is the spin

connection associated to a transverse zweibein gµν = δabe
aµebν and Ãµ is the modified vector potential.

By the same method as above, we find that the substitution

Ã′
µ = Ãµ + (s′ − s)ω̃µ +

g′ − g

4
εµνG

ν +
g − g′

4m
nµ

(

F̃ +
g + g′

8
GνG

ν − g′

4
∇νG

ν
)

(C2)

sends the action to itself but with new parity breaking parameters g′ and s′. Here F̃ = εµν∇µ(Ãν − sω̃ν). We may

now derive the action with respect to δnµ, δhµν and δÃµ to find how our field redefinition has affected the stress,
energy and charge currents. For brevity, we cite the result only in the flat case Φ = 0, Ci = 0, gij = δij .

jµ = j′µ +
g − g′

4m
εµν∇νn

′

εµ = ε′µ − 1

4
(s′µντνλj

′λ − g − g′

4
B̃j′µ +

g′ − g

2
ελ[µ∇ν(v

ν]j′λ)

− g − g′

4m

(

εµν F̃νλv
λn′ − 1

4
sτ̄µν∇νn

′
)

− (g − g′)g′

32m

(

τ̄µν∇νn
′ν(∇µ∇ν − gµν∇2)n′

)

T µν = T ′µν + (s′λ(µgν)ρ∇λj
′
ρ −

g − g′

4m

(

B̃n′µν + s(∇µ∇ν − gµν∇2)n′
)

(C3)

where τ̄µν is the trace reversed shear and n = nµj
µ.
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