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Abstract

We construct “connected” (0,2) sigma models starting from n copies of (2,2)
CP(N − 1) models. General aspects of models of this type (known as T + O defor-
mations) had been previously studied in the context of heterotic string theories. Our
construction presents a natural generalization of the non-minimally deformed (2,2)
model with an extra (0,2) fermion superfield on tangent bundle T

[
CP(N−1)×C1

]
.

We had thoroughly analyzed the latter model previously, found the exact β function
and a spontaneous breaking of supersymmetry. In contrast, in certain connected
sigma models the spontaneous breaking of supersymmetry disappears. We study the
connected sigma models in the large-N limit finding supersymmetric vacua and de-
termining the particle spectrum. While the Witten index vanishes in all the models
under consideration, in these special cases of connected models one can use a permu-
tation symmetry to define a modification of the Witten index which does not vanish.
This eliminates the spontaneous breaking of supersymmetry. We then examine the
exact β functions of our connected (0,2) sigma models.



1 Introduction

Quiver gauge theories in four dimensions are useful in various applications. Most
common in four dimensions are Yang-Mills theories of the type

SU(N1)×SU(N2)×SU(N3)× ...

(the “nodes”) with each factor group being cyclically connected to its neighbors by a
set of bifundamental fermion fields transforming in the fundamental representation
of a given SU(N) theory and in the antifundamental representation of its neighbor.
These fermion fields can be represented in the quiver graph as arrows (see Fig. 1).
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Figure 1: SU(N)×SU(N)×SU(N) Yang-Mills theory with bifundamental fermions.

Two-dimensional asymptotically free sigma models are long known to be excellent
laboratories for modeling four-dimensional Yang-Mills theories.1 The question we ask
is whether one can construct an analog of quiver Yang-Mills in the context of two-
dimensional sigma models. Moreover, we require a part of supersymmetry to be
preserved in this construction.

In answering the above question we can use, for guidance, previous work carried
out in the context of heterotic string theories in which models known as deformations
T+O with O being the trivial bundle where discussed [2,3]. In many instances models
obtained are superconformal in the infrared (see e.g. [3]). Since we are interested in
analogies with four-dimensional super-Yang Mills we would like to construct models
with massive particle spectrum. To this end we turn our attention to a particular
case of the T + O deformations starting from a N = (2, 2) theory associated to
a product of n two-dimensional CP(N−1) models. Dynamical connection between
them is realized through one or several right-moving fermions from trivial tangent
bundles. Somewhat related constructions were discussed in recent publications [4,5].

1 It was forty years ago that A. Polyakov emphasized [1] that asymptotically free two-dimensional
sigma models could present the best laboratory for the four-dimensional Yang-Mills theories. His
prophecy came true.
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Adding fermions in the bosonic sigma models (generally speaking, in a nonsuper-
symmetric manner) it is not difficult to “connect” them. For, instance, one of the
options is to couple two CP(N−1) models, both nonsupersymmetric, as follows:

L = G
[
∂µφ† ∂µφ+ iψ̄/∇ψ

]
+ G̃

[
∂µφ̃ † ∂µφ̃+ i˜̄ψ/∇ψ̃

]
+ β

(
Rψ†

LψR

)(
R̃ψ̃ †

Rψ̃L

)
, (1)

where the fields of the first CP(N−1) are untilded, those of the second CP(N−1)
are tilded, β is a coupling constant, G and R stand for the CP(N − 1) metric and
Ricci tensor, respectively. Moreover, ∇µ is the target-space covariant derivative. The
fermion fields ψL and ψ̃R are chiral, left- and right-movers.

As was mentioned, we would like to find connected models with dynamical mass
generation and a part of supersymmetry preserved. Nonminimal N =(0, 2) models
seem to be an ideal starting point. A nonminimal model to serve as our starting point
appeared as a low-energy theory on the world sheet of a non-Abelian BPS-saturated
flux tube supported in an N = 1 four-dimensional Yang-Mills theory [6,7]. Our tool
is the large-N expansion, generalizing a number of results which had been obtained
in the past in nonsupersymmetric and (2,2) supersymmetric CP (N − 1) models.

One starts from the bulk four-dimensional theory with N = 2 supersymmetry
which supports 1/2-BPS strings. Then the low-energy theory on its world sheet has
four supercharges and, thus, possesses N =(2, 2) supersymmetry. The target space
of the corresponding sigma model is CP(N −1) [8]. More exactly, the full target
space is CP(N−1)×C1 where C1 appears due to shifts of the string in transversal
spatial directions. The bosonic fields living on C1 as well as their fermionic partners
on the tangent bundle TC1 are free fields and for this reason usually are omitted
from consideration.

If one slightly deforms the bulk theory, breaking N = 2 down to N = 1, four
supercharges in the bulk survive. For relatively small deformations BPS saturation
remains valid and so does the the target space of the two-dimensional sigma model.
Now, the world-sheet model must have two, not four supercharges. However, Zu-
mino’s theorem [9] implies that given a Kähler target space any supersymmetric
nonchiral model is automatically uplifted to N =(2, 2), i.e. four supercharges.

Edalati and Tong [6] noted that in fact the above deformation of the bulk theory
gives rise to interaction for right-moving fermions living on TC1; in the bosonic
background they start to mix with the right-moving fermions on TCP(N−1). Thus,
the bosonic target space stays the same CP(N−1) (modulo free fields on C1) while
N =(2, 2) is broken into N =(0, 2) on the fermion tangent bundle T

[
CP(N−1)×C1

]
.

They also conjectured a certain N =(0, 2) model on the string world sheet with the
field content of N = (2, 2) CP(N −1) sigma model plus a (0, 2) spinor multiplet
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defined on C1. This nonminimal theory (in a slightly different form) was explicitly
derived by Shifman and Yung [7] from the analysis of the vortex solution. They
also found a geometric formulation of this model, as well as its large-N solution [10].
This solution exhibits spontaneous breaking of supersymmetry, as it often happens
in other N = (0, 2) models discussed in the literature.

Heterotic two-dimensional models (known as N = (0, 2) supersymmetric sigma
models) have two chiral supercharges, say, QL and Q†

L, with the defining anticom-
mutator

{QL , Q
†
L} = 2(H − P ) . (2)

They were studied from the mathematical perspective [11–16] as well as from the
standpoint of physical applications (see [17] and extensive references therein).

The (0, 2) connected model we will construct has the bosonic target space

CP(N1−1)×CP(N2−1)× ...×CP(Nn−1) . (3)

As for the fermion fields they will live on the tangent bundles of the type

T
[
CP(N1−1)×CP(N2−1)× ...×CP(Nn−1)×C1...

]
. (4)

In the simplest version to be considered in Sec. 3 there is a single connecting fermion
ζR defined on the trivial tangent bundle TC1. All fields from CP(Np−1) interact with
those from CP(Nq−1) (for all q, p = 1, 2, ..., n) through the coupling to the (0, 2)
Fermi multiplet consisting of ζR and an auxiliary field. The graph representation
describing the case of T

[
CP(N−1)×CP(N−1)×CP(N−1)×C1

]
is given in Fig. 2.
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Figure 2: T
[
CP(N−1)×CP(N−1)×CP(N−1)×C1

]
two-dimensional sigma model with

one (0,2) fermion superfield. G and H are defined after Eq. (12).

In Sec. 4 we construct a (0,2) Lagrangian describing a connected sigma model
with a cyclic graph of the type given in Fig. 1 with n nodes and n arrows (ζR)j,j+1.
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Each arrow corresponds to its own (0,2) fermion superfield (Fig. 3), so that the target
space structure is as follows:

T
[
CP(N1−1)×C1×CP(N2−1)×C1×CP(N3−1)×C1...

]
. (5)
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Figure 3: Graphic representation for the two-dimensional sigma model with the target
space (5).

All models we consider have N = (0, 2) supersymmetry at the Lagrangian level.
In the leading order in 1/N we select the models (choosing N1, N2, . . . appropriately)
where there is no spontaneous supersymmetry breaking. Once it happens in the
leading 1/N order one can argue that then restoration of supersymmetry is an exact
statement.

An important characteristic of the model associated with spontaneous breaking
of supersymmetry is the Witten index of the model [18]. Spontaneous breaking can
occur only when this index vanishes. In Sec. 5 we show that Witten’s index vanishes
for all the models we consider. However, one can introduce a modification of Witten
index (a particular case of algebraic genera), following the same line of reasoning as
in Sec. 6 of [19]. In massless N =1 QED in four dimension Tr (−1)F = 0, however
TrC(−1)F = 4, where C stands for the C parity. In our case we can use flavor
permutations to refine a modified index.

The paper is organized as follows. In Sec. 2 we briefly review the variant of the
nonminimal heterotic modification of N =(2, 2) theory to be used in our study. In
Secs. 3 and 4 we fully specify the connected models with the target spaces (4) and
(5), solve them at large N and determine the mass spectrum. Section 5 is devoted
to the Witten index and its refinement. In Sec. 6 we obtain the exact β functions for
both models. Finally, Sec. 7 summarizes our conclusions.
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2 The nonminimal heterotic modification

of N =(2, 2) theories: generalities

The Lagrangian of generic N =(2, 2) sigma model without torsion has the form

L =

∫
d4θK(Φ,Φ†) , (6)

where the Kähler potential K depends on the chiral superfields Φi and antichiral
Φ†j̄ . Having in mind a manifold M which is a direct product of n manifolds MF ,
(F = 1, . . . , n),

M =M1 ×M2 × · · · ×Mn , (7)

we can rewrite L as a sum over manifolds,

L =
n∑

F=1

∫
d4θ KF (ΦF ,Φ

†
F ) . (8)

In terms of the (0,2) superfields the field Φi decomposes as

Φi(xR + 2iθ†RθR, xL − 2iθ†LθL, θR, θL)

= Ai(xR + 2iθ†RθR, xL − 2iθ†LθL, θR) +
√
2 θLB

i(xR + 2iθ†RθR, xL, θR),
(9)

where xR,L = x0 ± x1 and the field Ai represents the chiral supermultiplets which on
the mass shell consists of the scalar field and left-moving fermion,

Ai = φi(xR + 2iθ†θ, xL) +
√
2 θ ψiL(xR + 2iθ†θ, xL) , (10)

while the field Bi describes the Fermi supermultiplet which on mass shell contains
only a right-moving fermion (F i is an auxiliary field),

Bi = ψiR(xR + 2iθ†θ, xL) +
√
2 θF i

ψ(xR + 2iθ†θ, xL) . (11)

Note a change in notation: in Eqs. (10) and (11) θR is substituted by θ because we
do not use θL in the (0,2) superspace.

The (0,2) heterotic modification is due to adding one extra Fermi supermultiplet
which we denote as B,

B = ζR(xR + 2iθ†θ, xL) +
√
2 θFζ(xR + 2iθ†θ, xL) , (12)

5



which interacts with the fields AF , BF defined on each manifoldMF . Introduction of
this right-moving fermion does not change geometry of the original bosonic manifold.
Indeed, the manifold MF we deal with is a symmetric space associated with GF/HF

(in case of CP(N − 1) we have G = SU(N) and H = S (U(N−1)×U(1))). The
additional field B is a singlet of the isometry group GF , in contrast to AiF , B

i
F .

Therefore, its interaction does not modify the isometry group.
The Lagrangian of the model is

L =
n∑

F=1

{
−1

2
Re

∫
dθ GF

ij̄(AF , A
†
F )(DA

†j̄
F )
(
i∂RA

i
F − 2κF BBi

F

)

+
1

2

∫
d2θ ZF G

F
ij̄(AF , A

†
F )B

†j̄
F B

i
F

}
+

1

2

∫
d2θZ B†B , (13)

where GF
ij̄

= ∂2KF/∂Ai∂A† j̄ is the Kähler metric of MF , ∂L,R = ∂x0 ± ∂x1 and

D = ∂θ − iθ̄∂L, D= −∂θ̄ + iθ∂L.
Moreover, the parameters κF are the deformation parameters, and ZF , Z are

wave function renormalization factors for Bi
F , B fields. When all κF = 0 the field

B becomes a sterile field, and the (2, 2) supersymmetry in the nontrivial sector is
restored. (The ZF factors do not run at κ = 0 and can be taken to be 1.)

In components

L =

n∑

F=1

{
GF
ij̄

[
∂Lφ

†j̄
F ∂Rφ

i
F + ψ†j̄

FL i∇R ψ
i
FL + ZF ψ

†j̄
FR i∇Lψ

i
FR

]

+ ZFR
F
ij̄kl̄ ψ

†j̄
FLψ

i
FL ψ

†l̄
FRψ

k
FR +

[
κF ζRG

F
ij̄

(
i ∂Lφ

†j̄
F

)
ψiFR +H.c.

]
(14)

+
|κF |2
ZF

ζ†R ζR
(
GF
ij̄ ψ

†j̄
FLψ

i
FL

)}
− 1

Z

∣∣∣∣∣

n∑

F=1

κFG
F
ij̄ψ

†j̄
FLψ

i
FR

∣∣∣∣∣

2

+ Z ζ†R i∂L ζR .

Here ∇L,R are covariant derivatives,

∇L,R ψ
i
R,L = ∂L,R ψ

i
R,L + Γikl ∂L,R φ

k ψlR,L . (15)

3 The simplest connection of n CP(N−1) models

The general idea is to choose the manifold MF = CP(N−1) for all F = 1, . . . , n and
couple all sectors through the field(s) B (see Fig. 2). This coupling can be realized
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in various forms. The simplest one is a universal coupling of a single B field to all
CP(N−1) sectors with one and the same coupling constant κF = κ, F = 1, . . . , n.
The right-moving fermions then live on the tangent bundle of the form

T
[
{CP(N − 1)}n × C1

]
. (16)

Let us first discuss this version and then move on to consider more elaborate models
with the same underlying idea and a number of different B superfields (Fig. 3).

The geometric formulation of the models is given then by Eqs. (13) and (14) where
the metric GF

ij̄ , the heterotic coupling κF , and the wave function factors ZF are the

same for each MF = CP(N−1). The field indices i, j̄ run from 1 to N−1 and the
explicit expressions for CP(N−1) metric and related objects are of the form,

K =
2

g2
logχ , χ = 1 +

N−1∑

m

φ†mφm , (17)

Gij̄ =
2

g2

(
δij̄
χ

− φ† iφj̄

χ2

)
, Gij̄ =

g2

2
χ
(
δij̄ + φiφ† j̄

)
,

Γikl = −δ
i
k φ

† l + δil φ
† k

χ
, Γīk̄l̄ = −δ

ī
k̄
φl̄ + δ ī

l̄
φl̄

χ
,

Rij̄kl̄ = −g
2

2

(
Gij̄Gkl̄ +Gkj̄Gil̄

)
, Rij̄ = −Gkj̄Rij̄kl̄ =

g2N

2
Gij̄ .

The analogs of the gauge couplings 1/g2 are hidden in the metric tensors Gij̄, see
Eq. (17). These couplings can be complexified by including θ terms,

1

g2
=⇒ 1

g2
+ i

θ

4π
. (18)

Later we will use such complexification to our benefit.
The symmetry of the model is

[
SU(N)

]n
. With our choice of all parameters,

the model acquires an additional flavor Zn symmetry corresponding to interchanging
different-F fields.2 More exactly, we define the flavor symmetry as follows. Assume
that the real parts of 1/g2 are the same for all n CP (N − 1) factors, while the θ
terms take the values 0, 2π, 4π, ...2π(n − 1). Since for all θ = 2π×integer physics
is the same, the permutation symmetry will be valid with the appropriate choice of
vacua.

2 This Zn, which has no continuous analog, is not to be confused with the axial ZN for each
flavor which is a remnant of the continuous classical R-symmetry
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3.1 Gauged formulation of modified
[
CP(N−1)

]n
×C1

The gauged formulation is defined by the groups G and H entering into the G/H
symmetric space under consideration. In the CP(N−1) case G = SU(N) and the
gauged formulation has the form [6],

L =
n∑

F=1

{
Dµn

†
F iDµn

i
F −

(
2|σF |2 +DF

)
n†
F in

i
F + ξ†FLj iDR ξjFL + Z ξ†FRj iDL ξjFR

+
[√

2Z i σF ξ
†
FRjξ

j
FL +

√
2 i n†

FjλFRξ
j
FL +

√
2Z i n†

FjλFLξ
j
FR +H.c.

]

+
2

g2
DF − θ

2π
ǫµν∂µAFν +

[
2κ

g2

√
2Z i ζR λ

†
FL +H.c.

]}
− 8

|κ|2
g4

∣∣∣
n∑

F=1

σF

∣∣∣
2

+Z ζ†R i∂L ζR . (19)

Here niF (i = 1, . . . , N) is the complex scalar field in the fundamental representation
of SU(N), ξiFL, ξ

i
FR are its fermion superpartners in unbroken N = (2, 2). The

covariant derivatives, defined as Dµn
i
F = (∂µ − iAFµ)n

i
F , contain auxiliary Abelian

gauge fields AFµ. The gauge field (2,2)-superpartners DF , σF , and λFL, λFR are
other auxiliary fields which implement the constraints

n†
F in

i
F =

2

g2
, n†

Fjξ
j
FL = 0 ,

√
Zn†

Fjξ
j
FR = 2

√
Z κ∗

g2
ζ†R . (20)

3.2 Large -N solution

It is easy to solve the theory (19) in the ’t Hooft limit, using the method of [20,21].
In fact, at N → ∞ only one-loop diagrams survive, as explained in detail in [20, 21]
(and in [10] in application to the heterotic model (19) under consideration).

The running of the wavefunction factors Z and Z shows up only in the 1/N
corrections (see Sec. 6 and [26] for further details of running), so in the leading
large-N approximation we put Z=Z=1. Note also that in each CP(N−1) sector the
auxiliary fields Aµ, D, σ and λL,R form a supermultiplet of N =(2, 2). The heterotic
modification decomposes it into two (0,2) multiplets: a vector one, containing AR,
λR, λ

†
R, D, and a chiral multiplet with σ and λ†L fields.

To determine the vacuum structure it is sufficient to set Aµ = 0 and λL,R = 0, and
treat D and σ as constant background fields, the critical values of which determine
the vacuum energy density. The Lagrangian (19) is quadratic in both, the n fields

8



and their fermion superpartners ξ. Therefore, they can be integrated out exactly.
This yields

n∏

F=1

Det
(
− ∂2α − 2|σF |2

)N

Det
(
− ∂2α −DF − 2|σF |2

)N . (21)

The denominator comes from the boson loop while the numerator from the fermion
loop. Although σ is generically complex its phase can always be absorbed in the θ
term in Eq. (19) by U(1) rotation of fermion fields. The one-loop graph contributions
in (21) are simply calculable,

Vone−loop=
N

4π

n∑

F=1

[
(DF + 2|σF |2)

(
log

M2
uv

DF + 2|σF |2
+ 1
)
− 2|σF |2

(
log

M2
uv

2|σF |2
+ 1
)]

,

(22)
where Muv is the ultraviolet cut-off. Then, the effective potential takes the form

Veff = Vone−loop −
2

g2

n∑

F=1

DF + 8
|κ|2|
g4

∣∣∣
n∑

F=1

σF

∣∣∣
2

=
N

4π

{
n∑

F=1

[
DF

(
log

Λ2

DF + 2|σF |2
+ 1
)
+ 2|σF |2 log

2|σF |2
DF + 2|σF |2

]

+ 2u
∣∣∣

n∑

F=1

σF

∣∣∣
2
}
.

(23)

Here we introduced the scaling parameter Λ,

Λ =Muve
−4π/Ng2 (24)

and the heterotic deformation parameter u,

u =
16π|κ|2
Ng4

. (25)

The auxiliary field DF can be excluded by the condition ∂Veff/∂DF = 0 ,

DF = Λ2 − 2|σF |2 , (26)

and the effective potential for the σF fields becomes

Veff(σ) =
N

4π

{
n∑

F=1

[
Λ2 − 2|σF |2 + 2|σF |2 log

2|σF |2
Λ2

]
+ 2u

∣∣∣
n∑

F=1

σF

∣∣∣
2
}
. (27)
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3.3 Vacuum structure

Let us start with undeformed case when the heterotic parameter u = 0. Then we
have just n disconnected copies of the (2,2) CP(N−1) sigma models. Each of these
copies has N supersymmetric vacua [20, 21],

〈DF 〉 = 0, 〈σF 〉kF =
Λ√
2
exp

(2π i ℓF
N

)
, ℓF = 0, 1, ..., (N−1) . (28)

The value of |σF | follows from minimization of Veff in Eq. (27), the value of DF

is then given by Eq. (26). How the phase factor of σF appeared in Eq. (28) ? The
phase of the vacuum value of σ can always be absorbed in the θ term which, in
turn, can be hidden in the definition (24) of Λ (we chose θ=0 for simplicity). Given
physical 2π periodicity in θ one arrives at the expression for σF presented in (28).
The multi-valuedness of the vacuum expectation value of σ is the same as that in
the condensate 〈ξ†LξR〉.

The next step to consider is the case of one CP(N−1), n = 1, with nonvanishing
heterotic parameter u. This was done in detail in Ref. [10]. The critical values are

〈σ〉k =
Λ√
2
exp

(
−u
2
+

2π i ℓ

N

)
, ℓ = 0, 1, ..., (N − 1) ,

〈D〉 = Λ2
(
1− e−u

)
, 〈Veff〉 =

N

4π
〈D〉 = N

4π
Λ2
(
1− e−u

)
. (29)

The fact that the vacuum energy density 〈Veff〉 6= 0 for u 6= 0 indicates that (0,2)
supersymmetry is spontaneously broken. Of course, this implies the emergence of a
massless Goldstino, its determination can be found in [10].

Now, let us turn to the quiver-like theories with n> 1 and show that for n> 1
supersymmetric vacua appear !

Unbroken supersymmetry implies that in the vacuum 〈DF 〉 = 0 for all F ; then
Eq. (26) fixes |〈σF 〉| = Λ/

√
2 also for all F . Thus, in the supersymmetric vacua 〈σF 〉

are the same as in the undeformed case and given by Eq. (28). The vacuum energy
density (27) at this value of |〈σF 〉| is given by u |∑σF |2 and vanishes when

n∑

F=1

exp

(
2π i ℓF
N

)
= 0 . (30)

Take, for example, n = 2 where the total number of “prevacua” is N2. The condition
(30) is satisfied if |ℓ2− ℓ1| = N/2. Of course, this is possible only for even N . We see
the occurrence of N supersymmetric vacua, ℓ1 = 0, . . . , (N − 1). In the remaining
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N(N − 1) would-be vacua supersymmetry is spontaneously broken. These vacua
have nonvanishing energy and are cosmologically unstable. In Sec. 5 we argue that
the existence of supersymmetric vacua in our models extends beyond the leading
1/N approximation. This is an exact statement.

Absence of the spontaneous supersymmetry breaking in the heterotic (0,2) theo-
ries is not a new phenomenon. The (0,2) theories with supersymmetric vacua were re-
cently discussed in Refs. [4,5]. Classes of theories such as the (0,2) Landau-Ginzburg
models, as well as (0,2) GLSM constructions of heterotic string vacua – with super-
symmetric vacua and superconformal regime in the IR – had been also considered in
the past. Their dynamics is quite different from that we observe in our models.

The resurgence of the supersymmetric vacua due to (30) can be understood from
different angles. To this end let us start discussing the mass spectrum of the models.

3.4 Mass spectrum

3.4.1 Undeformed theory

Let us start, again, with the undeformed case when the heterotic parameter u = 0.
Then the right-moving fermion ζR represent a sterile massless field, and we have
N =(2, 2) supersymmetry in the eachMF = CP(N−1) sector. The supersymmetry is
unbroken and the mass spectrum at large N is well known [20,21]. The fundamentals
of SU(N) – i.e. the fields ni, ξi – get masses

mn = mξ =
√
2 |〈σ〉| = Λ , (31)

as it is visible from Eq. (19). It means that strong interaction in the infrared produces
extra states as compared to the original Lagrangian of the sigma model. This leads
to the linear representation of SU(N) and nonvanishing masses.

Besides, the kinetic terms for the gauge Aµ field and its (2,2) superpartners σ
and λ as well as the Yukawa σλλ coupling are dynamically generated at one loop in
much the same way as in [20, 21],

Lkin
one−loop =

N

4πρ2

[
− 1

4
FµνF

µν+
1

2
∂µρ ∂

µρ+λ†Li∂RλL +λ†Ri∂LλR

+2iρ
(
eiαλ†RλL−e−iαλ†LλR

)]
+
N

4π

[ 1
2
∂µα ∂

µα+ 2αǫµν∂µAν

]
. (32)

Here we represent the complex field σ in terms of the real fields ρ and α,

σ =
1√
2
ρ eiα , (33)
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i.e., the modulus and the phase of σ.
The Yukawa σλλ coupling generates mass for the λ field, mλ = 2〈ρ〉 = 2Λ . To

read off this mass one should substitute fields ρ and α in Eq. (32) by their vacuum
values,

〈ρ〉 = Λ , 〈α〉 = 2π

N
ℓ , (34)

and introduce canonically normalized fields

λ̃L =

√
4π

N

ei〈α〉/2

〈ρ〉 λL , λ̃R =

√
4π

N

e−i〈α〉/2

〈ρ〉 λR . (35)

The same mass mρ = mλ follows for the ρ field from expansion of Veff in (ρ−〈ρ〉)
(see Eq. (27)) at u = 0.

To show that the gauge field has the same mass note that equations of motion
relate the deviation α−〈α〉 to the gauge field,

α− 〈α〉 = 1

2ρ2
ǫµν∂µAν , (36)

and lead to
mph = mρ = mλ = 2〈ρ〉 = 2Λ . (37)

A crucial feature of the model is that the photon field Aµ, in addition to the kinetic
term, acquires a nonvanishing mass: the presence of massless fermion fields in the
model shifts the pole in the photon propagator away from zero. Thus, the gauge
(2,2) multiplet Aµ, ρ, λ becomes propagating with the mass mph.

Consequences of massless vs. massive photon in two dimensions are radically dif-
ferent. Massless gauge field in two-dimensions (bosonic CP(N−1)) imply confinement
of charged particles, while the massive one (supersymmetric CP(N−1)) does not con-
fine [20,21]. In one-to-one correspondence with this is the existence of N degenerate
vacua in the nonconfining case. In the confining case (i.e. massless gauge field, as
in the bosonic CP(N−1)) one of these vacua remains genuine while the remaining
N−1 are uplifted and become quasistable states [22].

3.4.2 Deformed CP(N−1)

Now let us consider one CP(N−1), n = 1, with nonvanishing heterotic parameter
u. In this case supersymmetry is broken, but all N vacua (see the second line in
(29)) remain degenerate. This degeneracy reflects spontaneous breaking of a ZN
symmetry present in the model. Hence, the ni particles should remain unconfined.

12



Correspondingly, the photon becomes massive much in the same way as in the (2,2)
model.

The masses of the fundamental fields n and ξ are different,

mn = Λ, mξ = Λe−u/2 (38)

Other particle masses change with u, see [10] for a detailed derivation. At small u
they are close to 2Λ, with the massless Goldstino which predominantly coincides with
ζR with a small admixture of λR . At large u the Goldstino becomes predominantly
λR while ζR together with λL constitute two massive states with a large mass

mλL,ζR = Λ
√
u . (39)

The gauge and ρ fields become light with masses

mph =
√
6Λe−u/2 , mρ = 2

√
3Λe−u/2 . (40)

3.4.3 Mass spectrum at u 6= 0

Let us find the mass spectrum of the quiver-like theory in more detail. For sim-
plicity we consider the case n = 2 and even N . Vacuum values of the fields in the
supersymmetric vacua in this case are

〈ρ1〉 = 〈ρ2〉 = Λ , 〈α1〉 =
2π

N
k , 〈α2〉 = 〈α1〉+ π . (41)

Masses of the bosonic and fermionic fields niF and ξiF determined by the above VEVs
are

mF
n = mF

ξ = 〈ρF 〉 = Λ , (F = 1, 2) . (42)

Note, that they are the same for all “flavors” F , do not depend on the deformation
parameter u, and bosons and fermions remain degenerate. Note also that the D-term
constraints are effectively lifted. For example, we have 2nN real degrees of freedom
in the bosonic sector rather then 2n (N−1) seen quasiclassically.

Let us consider now the effective Lagrangian for fields of two gauge multiplets and
the right-moving fermion ζR. Combining Eqs. (27) and (32) as well as the fermionic
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part of the heterotic deformation from Eq. (19) we have

Leff = ζ†Ri∂LζR +
N

4π

∑

F=1,2

{
1

ρ2F

[
− 1

4
FFµνF

µν
F +

1

2
∂µρF∂

µρF+λ
†
FLi∂RλFL+λ

†
FRi∂LλFR

+2iρF
(
eiαF λ†FRλFL− e−iαF λ†FLλFR

)]
+
[ 1
2
∂µαF ∂

µαF + 2αF ǫ
µν∂µAFν

]
(43)

−
[
Λ2 − ρ2F + ρ2F log

ρ2F
Λ2

]
+

√
8πu

N

[
i ζR λ

†
FL +H.c.

]}
− u

N

4π

∣∣∣
∑

F=1,2

ρF e
iαF

∣∣∣
2

.

Here we assumed that the parameter κ is real, its phase can be absorbed into a field
redefinition of ζR.

Let us emphasize that this Leff is exact for constructing the large-N expansion for
terms up to the second order in derivative. For fermions each fermionic field should
be counted as a square root of derivative. The only term missing in Eq. (43) is of the
fourth order in λ . It does not contribute in our leading-N calculation but will enter
for 1/N corrections. (These terms can be found in [23].)

Now let us consider the effect of the heterotic modification for the mass spectrum.
Consider first the bosonic masses. Expanding the modification term (the last one in
Eq. (43)) near the vacuum values we get

− u
N

4π

∣∣∣
∑

F=1,2

ρF e
iαF

∣∣∣
2

= −4u
N

4π

[
1

2

( ρ̃1 − ρ̃2√
2

)2
+

1

2

( α̃1 − α̃2√
2

)2]
,

ρ̃F = ρF − 〈ρF 〉 , α̃F = αF − 〈αF 〉 .
(44)

It means that the mass of the (ρ̃1+ρ̃2)/
√
2 field as well as the mass of (α̃1+α̃2)/

√
2 and

the corresponding gauge field combination is not modified by the heterotic coupling,

m
[
(ρ̃1 + ρ̃2)/

√
2
]
= mph

[
(A1 + A2)/

√
2
]
= 2Λ , (45)

while for the orthogonal combinations we get

m
[
(ρ̃1 − ρ̃2)/

√
2
]
= mph

[
(A1 −A2)/

√
2
]
= 2Λ

√
1 + u . (46)

The fermionic part of the heterotic modification in Eq. (43) in terms of the canon-
ical λ̃ fields introduced in Eq. (35) reduces to

2
√
uΛ e−i〈α1〉/2 i ζR

λ̃†1L + iλ̃†2L√
2

+ H.c. . (47)
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It implies that the mass of the orthogonal combination (λ̃1+iλ̃2)/
√
2 is not modified,

m
[
(λ̃1 + iλ̃2)/

√
2
]
= 2Λ , (48)

The field λ̃−R = (λ̃1R − iλ̃2R)/
√
2 mixes with ζR, forming

λ̃−R +
√
u e−i〈α1〉/2 ζR√
1 + u

(49)

under diagonalization. In conjunction with the field λ̃−L it results in the mass

m
[
λ̃−L,

(
λ̃−R +

√
u ei〈α1〉/2 ζR

)
/
√
1 + u

]
= 2Λ

√
1 + u , (50)

i.e. the same as in (46).
The combination

ζR −√
u ei〈α1〉/2 λ̃+R√
1 + u

(51)

orthogonal to (49) represents a massless right-moving fermion. It is not a Goldstino
fermion, however, since its residue to the supercurrent vanishes, together with the
finishing of

∑
σF .

Thus, our large-N study of the connected model mass spectrum demonstrates
the following phenomenon. In addition to the extra massless fermion, we obtain two
supermultiplets of N = (2, 2) supersymmetry. The breaking of (2,2) supersymmetry
in the mass spectrum down to N = (0, 2) does not show up in the leading-N approx-
imation at large N . The reason for this is visible in the above derivation: the effect
of the heterotic modification, say, for fermions, appears just as an admixture of ζ to
λ, which does not break the (2,2) supersymmetry. This feature is not maintained for
higher than quadratic in fields terms in the effective action implying that breaking
of (2,2) down to (0,2) supersymmetry shows up in the next order in 1/N .

The breaking to (0,2) in the 1/N corrections also shows up in the running of the
Z-factors in the model at hand. This running will be discussed in Sec. 6.

4 Pattern of quiver Yang-Mills: constructing

a variety of connected sigma models

The simplest (0,2) model presented in Sec. 3 can be extended in many distinct ways
similar to the pattern used in four-dimensional Yang-Mills (Fig. 1). For instance, the
target space (16) can be expanded up to

[
CP(N−1)

]n ×
[
C1
]n

(52)
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by replacing a single B superfield by an ensemble of n superfields

B12, B23, . . .Bn−1,n, Bn,1 ,

see Fig. 1. The Lagrangian in the geometric formulation takes the form

Ln =
n∑

F=1

{
−1

4

∫
dθ
[
Gij̄(AF , A

†
F )(D̄A

†j̄
F ) i∂RA

i
F +H.c.

]

+
1

2

∫
d2θ Gij̄(AF , A

†
F )B

†j̄
F B

i
F

}
+

1

2

n∑

F=1

∫
d2θB†

F,F+1BF,F+1 (53)

− κ

2

n∑

F=1

∫
dθ
{
Gij̄(AF , A

†
F )(D̄A

†j̄
F )B

i
F (BF−1,F + BF,F+1) + H.c.

}
.

In the gauged formulation we have

Ln gauged =
∑

F

{∣∣DFµn
i
F

∣∣2 − 2|σF |2 |niF |2 −DF

(
|niF |2 − 2/g2

)

+
(
ξ†F
)
jR
iDFL (ξF )

j
R +

(
ξ†F
)
jL
iDFR (ξF )

j
L

+
[√

2σF
(
ξ†F
)
jR

(ξF )
j
L +

√
2n†

Fj

(
λFRξ

j
FL + λFLξ

j
FR

)
+H.c.

]}

+
(
ζ†F,F+1

)
R
i∂L ζ

F,F+1
R −

∑

F

[
4κ

g2
i λ†FL

(
ζF−1,F
R + ζF,F+1

R

)
+H.c.

]

− 8|κ|2
g4

n∑

F=1

|σF−1 + σF |2 . (54)

For even values of n this model also has supersymmetric vacua with vanishing
energy, i.e. N = (0, 2) is unbroken. To this end – keeping supersymmetry unbroken
– one should choose the set of the vacuum values of σF to be sign-alternating, e.g.
(1/2) (Λ2, −Λ2, Λ2, −Λ2, ...). Large -N solution can be obtained along the same lines
as in Sec. 3.

5 Witten’s index and its generalization

An investigation of the Witten index in a general class of (0,2) models was carried
out in [24]. In our case the Witten index vanishes for all connected sigma models but
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permutation symmetries of the models allow us to introduce a nonvanishing modified
index.

The vanishing of the Witten index in the heterotically modified CP(N−1) was
clearly demonstrated by the large N solution [10], where spontaneous breaking of
(0.2) supersymmetry is explicit. The connected extensions considered here preserve
the feature of the vanishing Witten index.

To see that this is indeed the case let us consider the model on a finite-size
circle, i.e., let us compactify the spacial dimension by imposing periodic boundary
conditions both on bosons and fermions, which preserves supersymmetry. In the
limit when all heterotic couplings κF in Eq. (13) are small we have the same bosonic
vacua as in the unmodified (2,2) models. For example, in the case of

∏
CP(Ni−1)

the number of these bosonic vacua is
∏
Ni. Besides, in the limit of κF → 0, we have

a free massless fermion field ζR which at the finite-size circle has two zero modes,
one for ζR, another for ζ

†
R. Fermionic operators of creation and annihilation can be

introduced in the standard way. The corresponding zero-energy fermion state can be
either empty (bosonic vacuum) or once filled (fermionic counterpartner). Therefore,
each bosonic and fermionic vacua always come together in the theories of Secs. 3 and
4.

The vanishing of the Witten index usually implies that in some higher approxi-
mation (e.g. nonperturbatively) supersymmetry will be spontaneously broken since
there is no apparent robust protection against this breaking. Such a protection can
exist, though, if there exists a nonvanishing extended “flavor” index, in the same
vein as in [12]. In our model an extra flavor symmetry is the permutation symmetry
of the CP(N−1) factors from (4).

For simplicity let us consider the same case as in Sec. 3.3, i.e. n=2 and N even.
Generalizations are straightforward. Let us choose θ1 = 0 and θ2 = 2π N

2
for the two

CP(N−1) factors. Classically we have a discrete symmetry

ζR → −ζR , ψfR → −ψfR . (55)

At the quantum level this symmetry is broken which is visible from the existence
of fermion condensates 〈ψ†

Lfψ
f
R〉 . However, applying in addition the permutation of

two CP(N−1) factors:
Φ1 ↔ Φ2 (56)

we get an invariance of the theory. The combination of (55) and (56) is a good
symmetry which we will call P -conjugation. Now we introduce a modification of the
Witten index IW = Tr(−1)F of the form

IP = Tr
[
P (−1)F

]
(57)
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It is clear that that index does not vanish in contradistinction with IW : an addition
of the ζR fermion to the state now yields the positive sign because of P .

Another way to show the absence of the spontaneous supersymmetry breaking in
the case is as follows. The order parameter for supersymmetry breaking is

Fζ = const · κ
(
∑

f=1,2

ψ+
Lf ψ

f
RG

f

)
(58)

where Gf is the metric of the corresponding CP(N−1) factor.
Now, let us apply the transformation (55). As was mentioned above this classical

symmetry is broken at the quantum level due to the chiral anomaly, it changes the
vacuum angles, namely,

θ1 → 2π
N

2
, θ2 → 2π

N

2
+ 2π

N

2
= 2πN equiv 0 . (59)

Under the rotation above the order parameter

Fζ → exp(iπ)Fζ . (60)

At the same time, interchanging the two CP(N−1) factors we see that Fζ remains
intact. Combining these two facts we conclude that Fζ = 0. Note that Fζ presents
also the coupling of the would-be-Goldstino to the supercurrent.

Another very simple example is n = N . In this case we must choose

θ1 = 0, , θ2 = 2π , θ3 = 4π, , ..., θN = 2π(N−1) , (61)

and the rotation

ψfR → ei2π/N ψfR for all f , ζR → ζR exp(−i2π/N) . (62)

The same argument as above implies Fζ = 0.

6 Beta functions

The β functions of the basic heterotic model discussed in Sec. 2 were derived in
[26, 27]. In the heterotic model one deals with two coupling constants, g2 appearing
in the metric, and the deformation parameter κ. The β function for g2 is [26]

βg=µ
dg2

dµ
=− g2

4π

TG g
2 (1 + γψR

/2)− h2 (γψR
+ γζ)

1− (h2/4π)
, (63)
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where γζ = −µ d logZ/dµ and γψR
= −µ d logZ/dµ are the anomalous dimensions of

the corresponding fields, which to the leading order are proportional to the coupling

h2 =
|κ|2
ZZ . (64)

Here Z and Z are field renormalization constants for ψR and ζR respectively (see
Eqs. (13) and (14) for their definition). At one loop [27]

γ
(1)
ψR

=
h2

2π
, γ

(1)
ζ =

(N − 1) h2

2π
. (65)

Now, in the connected models the general relation (63) remains intact, while the
expression for the anomalous dimension γ changes. In particular, for the model of
Sec. 3

γ
(1)
ψR

=
h2

2π
, γ

(1)
ζ = n

(N − 1) h2

2π
. (66)

and TG = N .
The β function for h2 is also fixed by anomalous dimensions, see [26,27] for details.

There is a fixed point for the ratio h2/g2,

h2

g2

∣∣∣∣∣
c

=
1

2
· N

n (N − 1) + 1
. (67)

At large n it means that nh2 and g2 scale exactly in the same way (as it occurred at
one loop).

7 Conclusions

In this paper we suggested a way to make connected two-dimensional N = (0, 2)
sigma models from N = (2, 2) CP(N−1) models. This method is easily extendible
to any Grassmannian sigma model. To this end one introduces an extra fermion
N =(0, 2) superfield (or superfields) on C1 coupled to all or some of the n copies of
the N =(2, 2) sigma model. The connected model emerging in this way can be solved
in the large-N limit. Our solution demonstrates thatN =(0, 2) supersymmetry which
is spontaneously broken without “connection” is restored in the connected version.
This statement is unambiguously proved in the leading order in 1/N .

Then in Sec. 5 we introduce a generalized Witten index which, being nonvanish-
ing, provides us with the general proof of the exact statement: our connected models
do have supersymmetric vacua.

19



We also find the excitation spectrum in the leading 1/N approximation and ex-
pressions for the beta functions in the quiver models.
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