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We calculate the ultraviolet to infrared evolution and analyze possible types of infrared behavior
for several asymptotically free chiral gauge theories with gauge group SU(N) and massless chiral
fermions transforming according to a symmetric rank-2 tensor representation S and N + 4 copies
(flavors) of a conjugate fundamental representation F̄ , together with a vectorlike subsector with
chiral fermions in higher-dimensional representation(s). We construct and study three such chiral
gauge theories. These have respective vectorlike subsectors comprised of (a) p copies of fermions in
the adjoint representation, (b) N = 2k even and p copies of fermions in the antisymmetric rank-k
tensor representation, and (c) p copies of {S+ S̄} fermions. Results are presented for beta functions,
their infrared zeros, and predictions from the most-attractive-channel approach for the formation of
bilinear fermion condensates. Importantly, we show that for these theories, the expected ultraviolet
to infrared evolution obeys a conjectured inequality concerning the field degrees of freedom for all
values of the parameters N and p characterizing each theory.

PACS numbers: 11.15.-q,11.10.Hi,11.15.Ex,11.30.Rd

I. INTRODUCTION

The question of how the properties of an asymptot-
ically free chiral gauge theory change as a function of
the Euclidean momentum scale µ at which one measures
these properties is of fundamental physical interest. For
sufficiently large µ in the deep ultraviolet (UV), a the-
ory of this type is weakly coupled and can be described
by perturbative methods. As µ decreases, the gauge
coupling increases, as described by the renormalization
group (RG) and associated beta function. To understand
the infrared (IR) properties of a strongly coupled chiral
gauge theory has long been, and continues to be, an out-
standing goal in quantum field theory. If the theory sat-
isfies the ’t Hooft global anomaly-matching conditions,
then it might confine and produce massless gauge-singlet
composite spin-1/2 fermions [1]-[10]. Alternatively, the
strong gauge interaction could produce bilinear fermion
condensates. A chiral gauge theory that does not con-
tain any vectorlike fermion subsector is defined as be-
ing irreducibly chiral. If a chiral gauge theory has an
irreducibly chiral fermion content, then these fermion
condensates necessarily break the chiral gauge symme-
try [8, 10],[11]-[14], whereas if it contains a vectorlike
fermion subsector, then condensates of fermions in this
vectorlike subsector may preserve the gauge symmetry.
In both cases, the fermion condensates break global chi-
ral flavor symmetries. In general, there can be several
stages of condensate formation at different momentum
scales, with a resultant sequence of gauge and/or global
symmetry breaking. Here and below, we restrict our
consideration to asymptotically free chiral gauge theo-
ries that have no anomalies in gauged currents, as is re-
quired for renormalizability. Thus, in the models that we
construct, the numbers of chiral fermions in various rep-
resentations of the gauge group are chosen to satisfy this
requirement. Further, we restrict to theories with only
gauge and fermion fields but without any scalar fields.

There are several methods that one can use to investi-

gate the ultraviolet to infrared evolution of a chiral gauge
theory. These include (i) (perturbative) calculation of
the beta function and analysis of possible IR zeros of
this beta function; (ii) use of the most-attractive-channel
(MAC) approach, which can suggest in which channel(s)
bilinear fermion condensates are most likely to form [12]
if the coupling gets sufficiently strong in the infrared; and
(iii) a conjectured inequality involving the perturbative
degrees of freedom in the massless fields [8, 15]. We will
denote this as the conjectured DFI, where DFI stands for
degree of freedom inequality. As was shown in [8] and dis-
cussed further in [9, 10], if the types of UV to IR evolution
involving either formation of fermion condensates with
associated spontaneous chiral gauge and global symme-
try breaking or confinement with production of massless
composite fermions were to occur over a sufficiently large
range of fermion contents (specifically, a sufficiently large
range of values of p in the Spmodel reviewed in Sect. III),
these would violate the conjectured degree-of-freedom in-
equality. Hence, assuming the validity of the conjectured
degree-of-freedom inequality imposes significant restric-
tions on the behaviors of these theories. Moreover, as
noted in [10], the type of UV to IR evolution that would
obey the degree-of-freedom inequality over the greatest
range of p values is not the one favored by the MAC ap-
proach. These results lead one to inquire whether it is
possible to achieve the goal of constructing chiral gauge
theories where the expected type(s) of UV to IR evo-
lution obey the conjectured degree-of-freedom inequality
throughout the full range of parameters specifying the
fermion contents of these theories.

In this paper we report a successful achievement of this
goal and give several examples of such theories. Our the-
ories have the gauge group SU(N) and massless chiral
fermions transforming according to a symmetric rank-2
tensor representation of SU(N), denoted S, and N + 4
copies (i.e., flavors) of a conjugate fundamental repre-
sentation, denoted F̄ , together with a vectorlike sub-
sector consisting of p copies of massless chiral fermions
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in higher-dimensional representation(s). Because SU(2)
has only (pseudo)real representations, it does not yield a
chiral gauge theory, so we restrict our considerations to
chiral gauge theories having a gauge group SU(N) with
N ≥ 3. We construct and analyze three theories of this
type. In the first two, the higher-dimensional represen-
tation R of the fermions in the vectorlike subsector is
self-conjugate, i.e., R = R̄. These theories have p copies
of chiral fermions in (a) the adjoint representation, Adj,
and (b) for N = 2k even, p copies of chiral fermions in
the k-fold antisymmetric tensor representation, denoted
[N/2]N = [k]2k. For properties that are common to both
of these two theories, we will use the generic symbol Rsc

to refer to the respective self-conjugate (sc) representa-
tions. In the third type of theory, (c), the vectorlike
subsector is comprised of p copies of pairs of fermions of
the form {R+ R̄} with R = S. Each of these three types
of chiral gauge theories thus consists of an irreducibly
chiral subsector, namely the S and N + 4 copies of F̄
fermions, together with a vectorlike subsector. Although
we shall refer to these as three theories, each one is really
a two-parameter class of theories depending on N and p.

We have chosen the representation R of the fermions
in the vectorlike subsector of the theories studied in this
paper so that for values of N and p that lead to suffi-
ciently strong gauge coupling in the infrared and associ-
ated formation of bilinear fermion condensates, the most
attractive channel for condensation involves the fermions
in the vectorlike subsector and is of the form R× R̄→ 1,
where here, the symbol 1 denotes a singlet under SU(N).
This contrasts with the theory studied in [8–10], which
has a vectorlike subsector consisting of p copies of mass-
less fermions transforming as {F + F̄}. In that theory,
the most attractive channel is S × F̄ → F rather than
F × F̄ → 1. For each of our new chiral gauge theo-
ries, we present results on beta functions, IR zeros of
the respective beta functions, and predictions from the
most attractive channel approach. We then demonstrate
that in each theory, for each type of expected UV to IR
evolution, the conjectured degree-of-freedom inequality
is obeyed throughout the full parameter range.

If the gauge theory is irreducibly chiral, then the gauge
invariance forbids any fermion masses in the Lagrangian.
For our purposes we will assume that the masses of the
fermions in vectorlike subsector are also zero. This as-
sumption does not entail a significant loss of generality,
because, generically, if a fermion in the vectorlike sub-
sector had a nonzero mass m, then as the reference scale
µ decreases below m, one would integrate this vectorlike
fermion out of the low-energy effective theory applicable
below that scale, and the result for the infrared behavior
would be equivalent to a theory without this fermion.

This paper is organized as follows. In Sect. II we dis-
cuss our general theoretical framework and methods of
analysis. Sect. III is devoted to a brief review of a theory
studied previously in [8–10]. In Sect. IV we explain the
basic strategy that we use to construct our chiral gauge
theories. In Sects. V and VI we present and analyze

two new chiral gauge theories with vectorlike subsectors
having fermions transforming according to self-conjugate
representations of the gauge group. In Sect. VII we dis-
cuss the global flavor symmetry group for these two types
of theories. For the values of N and p that lead to strong
coupling in the infrared and fermion condensation, we
then analyze, in Sect. VIII, the further evolution into
the infrared of the low-energy effective field theory that
is applicable below the scale of this initial condensation.
In Sect. IX we demonstrate that for both of these new
chiral gauge theories with a given SU(N) gauge group,
the expected UV to IR evolution obeys the conjectured
degree-of-freedom inequality for the full range of values
of p. Section X is devoted to the analysis of the third
type of chiral gauge theory, with the type-(c) vectorlike
subsector. Again, we show that the conjectured degree-
of-freedom inequality is obeyed for this theory. Our con-
clusions are given in Sect. XI, and some relevant formulas
are included in Appendix A.

II. THEORETICAL FRAMEWORK AND

METHODS OF ANALYSIS

In this section we discuss the theoretical framework
and methods of analysis that we use. As noted above,
we consider asymptotically free chiral gauge theories with
gauge group G = SU(N) and denote the gauge coupling
measured at a Euclidean momentum scale as g(µ). It is
also convenient to use the quantities α(µ) = g(µ)2/(4π)
and

a(µ) ≡ g(µ)2

16π2
=
α(µ)

4π
. (2.1)

(The argument µ in these couplings will often be sup-
pressed in the notation.) Without loss of generality, we
write all fermion fields in terms of left-handed chiral com-
ponents.

A. Beta Function

The ultraviolet to infrared evolution of the gauge cou-
pling is described by the beta function, βg = dg/dt, or
equivalently,

βα =
dα

dt
=

g

2π
βg (2.2)

where dt = d lnµ. This has the series expansion

βα = −2α

∞
∑

ℓ=1

bℓ a
ℓ = −2α

∞
∑

ℓ=1

b̄ℓ α
ℓ , (2.3)

where we have extracted an overall minus sign, bℓ is the
ℓ-loop coefficient, and b̄ℓ = bℓ/(4π)

ℓ. The n-loop beta
function, denoted βα,nℓ, is given by Eq. (2.3) with the
upper limit on the ℓ-loop summation equal to n instead
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of ∞. The property of asymptotic freedom means that
βα < 0 for small α. With the minus sign extracted in the
perturbative expansion (2.3), this is satisfied if b1 > 0.
The one-loop and two-loop coefficients b1 [16] and b2 [17]
are independent of the scheme used for regularization
and renormalization, while the bℓ with ℓ ≥ 3 are scheme-
dependent.
If b2 < 0, then the two-loop beta function, βα,2ℓ, has

an IR zero at

α
IR,2ℓ

= 4πa
IR,2ℓ

= −4πb1
b2

. (2.4)

For sufficiently small fermion content, b2 is positive, but
as one enlarges the fermion content in the theory, the
sign of b2 can become negative while the theory is still
asymptotically free, yielding an infrared zero in βα,2ℓ
at the above value. If a theory has such an infrared
zero in the beta function, then, as the reference scale
µ decreases from large values in the ultraviolet, α(µ) in-
creases toward this infrared zero. If this IR zero occurs
at sufficiently weak coupling, one expects that the the-
ory evolves from the UV to the IR without confinement
or spontaneous chiral symmetry breaking (SχSB), to a
non-Abelian Coulomb phase. In this case, the infrared
zero of beta is an exact IR fixed point (IRFP) of the
renormalization group, and as µ→ 0 and the beta func-
tion vanishes, and the theory exhibits scaling behavior
with nonzero anomalous dimensions. This phenomena
was discussed for vectorial gauge theories in [17, 18].

B. Most-Attractive-Channel Approach

In a theory whose UV to IR evolution leads to a gauge
coupling that is strong enough to produce fermion con-
densates, one method that has been widely used to pre-
dict which type of condensate is most likely to form is
the most-attractive-channel (MAC) approach [12]. Let
us consider a condensation channel in which fermions in
the representations R1 and R2 of a given gauge group
form a condensate that transforms according to the rep-
resentation Rcond. of this group, denoted

R1 ×R2 → Rcond. . (2.5)

An approximate measure, based on one-gluon exchange,
of the attractiveness of this condensation channel, is

∆C2 = C2(R1) + C2(R2)− C2(RCh) , (2.6)

where C2(R) is the quadratic Casimir invariant for the
representation R [19], and RCh ≡ Rcond.. At this level of
one-gluon exchange, if ∆C2 is positive (negative), then
the channel is attractive (repulsive). The most attractive
channel is the one that yields the maximum (positive)
value of ∆C2. The MAC approach predicts that if, a

priori, several condensation channels could occur, then
the one that actually occurs is the channel that has the
largest (positive) value of ∆C2. The MAC method was

applied, for example, in efforts to build reasonably UV-
complete models with dynamical electroweak symmetry
breaking [14]. These models made use of asymptotically
free chiral gauge interactions that became strongly cou-
pled, naturally leading to the formation of certain con-
densates (of fermions subject to the chiral gauge inter-
action) in a hierarchy of scales corresponding, via in-
verse powers, to the observed generational hierarchy of
Standard-Model fermion mass scales. In these previ-
ous applications of the MAC approach, and also in our
present application, one bears in mind that the MAC
method is based on the one-gluon exchange and hence is
only a rough guide to the nonperturbative phenomenon
of fermion condensation.
An analysis of the Schwinger-Dyson equation for the

propagator of a massless fermion transforming accord-
ing to the representation R of a gauge group G shows
that, in the ladder (i.e., iterated one-gluon exchange) ap-
proximation the minimum value of α for which fermion
condensation occurs in a vectorial gauge theory is given
by the condition that 3αcrC2(R)/π = 1, or equivalently,
3αcr∆C2/(2π) = 1, since ∆C2 = 2C2(R) in this case
[20]. Therefore, an estimate is that as µ decreases and
α(µ) increases, condensation will first occur in a given
channel Ch when α(µ) increases through a critical value

αcr,Ch ∼ 2π

3∆C2(R)Ch
, (2.7)

where we have labelled C2(R) with a subscript for the
channel Ch. This estimate will be of particular interest
for the most attractive channel. Clearly, because of the
strong-coupling nature of the fermion condensation pro-
cess, Eq. (2.7) is only a rough estimate. A measure of
the likelihood that the coupling grows large enough in
the infrared to produce fermion condensation in a given
channel Ch is the ratio

ρ
IR,Ch

≡ α
IR,2ℓ

αcr,Ch
. (2.8)

If this ratio is significantly larger (smaller) than unity,
one may infer that condensation in the channel Ch is
likely (unlikely). As with the caveats given above con-
cerning the MAC, in using this ratio ρ

IR,Ch
, one is cog-

nizant of the theoretical uncertainties due to the strong-
coupling nature of the physics.

C. Degree-of-Freedom Inequality

A quantity that can give interesting predictions for
renormalization-group evolution involves the relevant
perturbative field degrees of freedom in the effective
field theory that is applicable at a given reference scale,
µ. From the study of second-order phase transitions
and critical phenomena in statistical mechanics and con-
densed matter physics, one is familiar with the Wilsonian
thinning of degrees of freedom as one changes the scale
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on which one measures physical quantities from short
distances (UV) to large distances (IR). Given the corre-
spondence between the inverse distance and the reference
momentum scale µ, one may naturally expect a similar
decrease (or non-increase) of dynamical degrees of free-
dom in a quantum field theory as µ decreases from large
values in the ultraviolet to small values in the infrared.
In conformal field theory in d = 2 dimensions, it has been
proved that a certain quantity that can be interpreted as
a measure of the degrees of freedom (the central charge of
the associated Virasoro algebra) decreases as a function
of the renormalization-group flow [21].
Given that a theory is asymptotically free, the gauge

coupling approaches zero in the deep ultraviolet as µ →
∞, so that one can identify and enumerate the pertur-
bative degrees of freedom in the fields. Depending on
the theory, it may also be true that in the deep infrared,
as µ → 0, the residual (massless) particles are weakly
interacting, so that again one can describe them pertur-
batively and enumerate their degrees of freedom. Al-
though one is describing the UV to IR evolution of a zero-
temperature quantum field theory, a natural approach to
the enumeration of the perturbative degrees of freedom in
the fields is provided by envisioning a finite-temperature
field theory, where the temperature T corresponds to the
Euclidean scale, µ, and using the count embodied in the
free energy density, F (T ). This is given by

F (T ) = f(T )
π2

90
T 4 (2.9)

with

f = 2Nv +
7

4
Nf +

7

8
Nf,Maj +Ns , (2.10)

where Nv and Ns are the number of vector and (real)
scalar fields, and Nf and Nf,Maj are the number of chi-
ral components of Dirac and Majorana fermions in the
theory, respectively [22, 23]. Assuming that the relevant
fields become free in the respective UV and IR limits, we
define

fUV = f(∞), fIR = f(0) . (2.11)

Since the theories that we consider are required to
be asymptotically free, we can always identify the La-
grangian fields in the deep UV and hence calculate fUV .
In accord with experience in statistical mechanics, Ref.

[15] conjectured the degree-of-freedom inequality

∆f ≡ fUV − fIR ≥ 0 (2.12)

for vectorial gauge theories, and Ref. [8] extended this
conjecture to chiral gauge theories. In [8] this conjecture
was applied to analyze several asymptotically free chiral
gauge theories. Subsequent studies have investigated the
possible types of IR behavior involving strong coupling
and condensate formation; Refs. [9, 10] are particularly
relevant for our current work.

As noted above, since we restrict to asymptotically free
theories, the condition that the theory becomes free as
µ→ ∞ is always satisfied. There are three types of situ-
ations where the condition that the fields are also weakly
coupled in the IR is satisfied. In all of these we can cal-
culate fIR. In the first of these, the theory evolves to
an exact, weakly coupled IR fixed point, so that the field
degrees of freedom in the massless fields are the same as
they were in the UV, up to small, calculable perturbative
corrections, which obey the inequality (2.12) [8, 15]. In
the second type of situation, there is global and/or gauge
symmetry breaking at one or more scales, so that as µ
decreases below these scales toward the infrared, in the
applicable low-energy effective field theory, the remaining
massless particles are Nambu-Goldstone bosons (NGBs)
resulting from the spontaneous chiral symmetry break-
ing. Since the NGBs have only derivative interactions
among themselves, which vanish as

√
s/Λ → 0, where√

s is the center-of-mass energy and Λ denotes the scale
of chiral symmetry breaking, it follows that these NGBs
become free in the infrared limit. A third type of possi-
ble situation is one in which the chiral gauge interaction
confines and produces massless gauge-singlet composite
fermions. The interactions between these gauge-singlet
fermions involve higher-dimension operators and hence
are also weak in the infrared. In some models, the sec-
ond and third types of behavior can occur together [10].
A direct test of the conjectured degree-of-freedom in-

equality (2.12) for asymptotically free chiral gauge theo-
ries would probably require lattice simulations. However,
because of fermion doubling on the lattice (in which a
single continuum fermion produces 2d fermion modes on
a d-dimensional Euclidean lattice, with half correspond-
ing to one sign of γ5 and the other half corresponding
to the opposite sign of γ5), it has been challenging to
simulate chiral gauge theories via lattice methods. A dif-
ferent approach to testing the validity of the conjecture
is to study its application to vectorial gauge theories.
These have the advantage that they can be simulated on
the lattice, and there are well-understood ways of dealing
with fermion doubling so that in the continuum limit one
should be able to determine the actual number, Nf , of ac-
tive fermions. Ongoing lattice studies of the infrared be-
havior of various vectorial gauge theories, such as a gauge
theory with G = SU(2) and Nf = 6 Dirac fermions in
the fundamental representation [24], are making progress
in testing the conjectured degree-of-freedom inequality.

III. THE Sp THEORY

In this section we review the properties of a chiral
gauge theory that has been studied before [4, 5, 8–10]
and provides motivation for our present work. The reader
who is familiar with this material could skip this section
and proceed to Sect. IV. This theory, which we denote
the Sp model, has the gauge group SU(N) and massless
chiral fermions transforming according to
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1. a symmetric rank-2 tensor representation, S, with
corresponding field ψab

L = ψba
L ,

2. N + 4 copies of chiral fermions in the conjugate
fundamental representation, F̄ , with fields χa,i,L,
i = 1, ..., N + 4, and

3. a vectorlike subsector consisting of p copies of pairs
of chiral fermions transforming as {F + F̄}, with
fields χa

j,L and χa,j,L, j = 1, ..., p.

Here and below, a, b, c... are gauge indices and i, j, .. are
copy (i.e., flavor) indices.
The one- and two-loop coefficients in the beta function

of this theory are

(b1)Sp = 3N − 2− 2p

3
(3.1)

and

(b2)Sp =
13

2
N2− 15N +

1

2
+6N−1+p

(

− 13N

3
+N−1

)

.

(3.2)
The coefficient (b1)Sp decreases with p and vanishes at
p = pb1z,Sp = (9/2)N − 3, where the subscript bnz
stands for “bn equals zero”. Asymptotic freedom requires
(b1)Sp > 0, i.e.,

p <
9

2
N − 3 . (3.3)

The two-loop coefficient is positive for small p and de-
creases through zero to negative values as p increases
through the value

pb2z,Sp =
3(13N3 − 30N2 +N + 12)

2(13N2 − 3)
. (3.4)

In the interval

(Ip)Sp : pb2z,Sp < p < pb1z,Sp (3.5)

the two-loop beta function has an infrared zero, which
occurs at the value

α
IR,2ℓ,Sp

=
8πN(9N − 6− 2p)

p(26N2 − 6)− 39N3 + 90N2 − 3N − 36
.

(3.6)

Clearly, the two-loop perturbative calculation that yields
this result (3.6) is most accurate if p is near the upper
end of the interval (Ip)Sp, where αIR,2ℓ,Sp

is small, and
becomes less reliable as p approaches the lower end of the
interval (Ip)Sp.
For this theory, the most attractive channel for fermion

condensation is

S × F̄ → F , (3.7)

with attractiveness measure

∆C2 = C2(S) =
(N + 2)(N − 1)

N
for S × F̄ → F .

(3.8)

Hence, for this channel,

ρ
IR,S×F̄

≡ α
IR,2ℓ,Sp

αcr,S×F̄

=
12(9N − 6− 2p)(N + 2)(N − 1)

p(26N2 − 6)− 39N3 + 90N2 − 3N − 36
.

(3.9)

This ratio exceeds unity for

p < pcr,Sp =
3(49N3 − 18N2 − 95N + 60)

2(25N2 + 12N − 27)
. (3.10)

If p is only slightly less than pb1z, then ρIR,S×F̄
≪ 1, so

the UV to IR evolution is expected to be to a deconfined,
weakly coupled non-Abelian Coulomb phase. Here, also
taking into account perturbative corrections to the free-
field count of field degrees of freedom, the DFI is obeyed
[8].
If p is sufficiently small (with either p ∈ (Ip)Sp or

1 ≤ p < pb2z,Sp), then the theory becomes strongly cou-
pled in the infrared. For these values of p, one possible
type of UV to IR evolution could produce confinement
with massless, gauge-singlet composite fermions [4] and
no spontaneous chiral symmetry breaking. Alternately,
there could be fermion condensation in the most attrac-
tive channel (3.7), breaking the gauge group SU(N) to
SU(N − 1) and also breaking global flavor symmetries.
The associated fermion condensate has the form

〈ψab T
L Cχb,i,L〉 . (3.11)

Without loss of generality, one may pick a = N and i = 1.
The fermions involved in this condensate gain dynamical
masses, and one then constructs the low-energy effective
field theory applicable at lower scales. The coupling in
this low-energy theory continues to grow and is again ex-
pected to produce a condensate in the most attractive
channel, S × F̄ , where now S and F̄ refer to representa-
tions of SU(N − 1). This process continues sequentially
until the original SU(N) gauge symmetry in the UV is
completely broken.
The degree-of-freedom measure in the UV is

fUV,Sp = 2(N2 − 1) +
7

4

[N(N + 1)

2
+ (N + 4 + 2p)N

]

.

(3.12)

For the possible type of UV to IR evolution that leads to
confinement and massless composite fermions (labelled
with the subscript sym), one finds [8]

fIR,Sp;sym =
7

4

[1

2
(N + 4 + p)(N + 3 + p)

+ p(N + 4 + p) +
1

2
p(p+ 1)

]

.

(3.13)
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Here and below, the subscripts after IR in a quantity
such as fIR,Sp;sym refer to the theory (here, the Sp the-
ory) and then, after the semicolon, the type of UV to IR
evolution. Thus, for this type of UV to IR flow,

(∆f)Sp;sym ≡ fUV,Sp − fIR,Sp;sym

=
1

4

[

15N2 + 7N − 50− 14p(4 + p)
]

.

(3.14)

(Here, in the symbol (∆f)Sp;sym, the first subscript iden-
tifies the theory and the subscripts after the semicolon
identify the type of UV to IR evolution; the same nota-
tion is used for the other theories to be discussed.) The
difference (∆f)Sp;sym is positive if and only if

p < −2 +

√

15N2 + 7N + 6

14
. (3.15)

For the type of UV to IR flow involving sequential
fermion condensation in the S × F̄ → F channels

fIR,Sp;S×F̄ = 2N(4 + p) + 1

+
7

4

[N(N − 1)

2
+ 4N + 2pN

]

.

(3.16)

Consequently, for this type of UV to IR flow,

(∆f)Sp;S×F̄ ≡ fUV,Sp − fIR,Sp;S×F̄

=
1

4

[

15N2 − 25N − 12− 8pN
]

.

(3.17)

This is positive if and only if

p <
15N2 − 25N − 12

8N
. (3.18)

If, for a given N , the upper bounds (3.15) and (3.18)
were substantially greater than the value of pcr,Sp in Eq.
(3.10), then they would not be important, since in this
region, toward the upper end of the interval (Ip)Sp, one
would expect that the UV to IR evolution would be to
a deconfined non-Abelian Couolmb phase, for which the
conjectured DFI is obeyed. However, these upper bounds
(3.15) and (3.18) are less then pcr,Sp. For example, for
N = 3, we have pb2z,Sp = 24/19 = 1.263 (to the given
floating point accuracy) and pb1z,Sp = 21/2 = 10.5, so
the interval (Ip)Sp consists of the values 2 ≤ p ≤ 10.
Furthermore, for this N = 3 value, pcr,Sp = 6, so that

for p <∼ 6, one may anticipate that the UV to IR evo-
lution would plausibly involve strong coupling, as em-
bodied in the two types of evolution discussed above,
namely confinement with massless composite fermions

and no spontaneous chiral symmetry breaking or pro-
duction of fermion condensates and associated gauge and
global symmetry breaking. Now

N = 3 ⇒ (∆f)Sp;sym > 0 if p <
−14 + 9

√
7

7
= 1.402 ,

(3.19)
so that if this UV to IR evolution leading to massless
composite fermions without any spontaneous chiral sym-
metry breaking were to occur for values in the strongly
coupled range of p, 2 ≤ p <∼ 6, then it would violate
the conjectured degree-of-freedom inequality (2.12). Fur-
thermore,

N = 3 ⇒ (∆f)Sp;S×F̄ > 0 if p < 2 . (3.20)

Hence, if the UV to IR evolution were to lead to conden-
sate formation in the successive S × F̄ channels of the
SU(N) theory, the SU(N − 1) theory, etc., then it would
violate the conjectured DFI for much of the strongly-
coupled range of values of p, including 2 ≤ p <∼ 6.
In general, the Sp model is a two-parameter theory,

depending on both N and p. An interesting limit is

LNP : N → ∞ , p→ ∞

with r ≡ p

N
fixed and α(µ)N finite .

(3.21)

We denote this as the LNP (large N and p) limit [25]. In
this LNP limit, the resultant theory evidently depends
only on the single parameter r. We define

rbnz ≡ lim
LNP

pbnz
N

,n = 1, 2 (3.22)

One has

rb1z =
9

2
(3.23)

and

rb2z =
3

2
(3.24)

so that the analogue of (Ip)Sp for this LNP limit is

(Ir)Sp : 1.5 < r < 4.5 . (3.25)

Further,

rcr,S×F̄ ≡ lim
LNP

pcr,S×F̄

N
=

147

50
= 2.94 . (3.26)

We define a rescaled degree-of-freedom measure that is
finite in the LNP limit, namely

f̄ ≡ lim
LNP

f

N2
. (3.27)

One has

f̄UV,Sp =
37

8
+

7

2
r (3.28)
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f̄IR,Sp;sym =
7

8
+

7

2
r(1 + r) (3.29)

and

f̄IR,Sp;S×F̄ =
7

8
+

11

2
r . (3.30)

Consequently, for the type of UV to IR evolution that
leads to confinement and massless composite fermions,
which might occur in the strongly coupled IR regime
where r <∼ 3,

(∆f̄)Sp;sym ≡ f̄UV,Sp − f̄IR,Sp;sym =
15− 14r2

4
. (3.31)

This would obey the conjectured DFI only if [8, 10, 26]

r <

√

15

14
= 1.035 . (3.32)

For the possible type of UV to IR evolution that leads
to sequential fermion condensation in the S × F̄ → F
channels,

(∆f̄)Sp;S×F̄ ≡ fUV,Sp − f̄IR,Sp;S×F̄ =
15− 8r

4
. (3.33)

This would obey the conjectured DFI only if

r <
15

8
= 1.875 . (3.34)

Both of the upper limits (3.32) and (3.34) are well below
the upper bound from asymptotic freedom, r < 4.5. Im-
portantly, they are also below the value of r ∼ 3 where
the estimate Eq. (3.26) suggests that strong-coupling
behavior occurs. Hence, in this Sp model, there is con-
siderable uncertainty in the overall prediction for the UV
to IR evolution in the case where this involves strong cou-
pling. Assuming the validity of the conjectured degree-
of-freedom inequality, this DFI would forbid two types of
strongly coupled UV to IR evolution that would other-
wise be inferred to be likely, namely confinement without
any spontaneous chiral symmetry breaking in the interval
√

15/14 < r <∼ 3 and condensate formation in the MAC
with attendant gauge and chiral symmetry breaking in
the interval 15/8 < r <∼ 3.
This property of the Sp model, noted in [8] and fur-

ther discussed in [9, 10] provides a motivation for the
goal of constructing asymptotically free chiral gauge the-
ories where the likely type(s) of UV to IR evolution
is (are) in agreement with the conjectured degree-of-
freedom inequality for the full range of fermion con-
tents (as parametrized here by the value of p). We have
achieved this goal, as we report in the present work.
We include a parenthetical remark here. In the Sp

model, although not favored by the MAC criterion, if
there were condensation of the fermions in the vector-
like subsector in the F × F̄ → 1 channel, followed at
lower scales by either confinement with massless com-
posite fermions or sequential condensate formation in the
S × F̄ → F channels, then

f̄IR,Sp;F×F̄ ,sym = f̄IR,Sp;F×F̄ ,S×F̄

=
7

8
+ r(2 + r) . (3.35)

Hence, for this type of UV to IR evolution,

(∆f̄)Sp;F×F̄ ,S×F̄ ≡ f̄UV,Sp − f̄IR,Sp;F×F̄ ,S×F̄

=
1

4
(15 + 6r − 4r2) . (3.36)

This is positive for

r <
3 +

√
69

4
= 2.83 . (3.37)

Thus, of the various possible types of UV to IR evolution
in the Sp theory, the type that obeys the DFI conjec-
ture over the largest range of r, is condensation in the
F × F̄ → 1 channel, followed at lower scales by either
confinement with massless composite fermions or sequen-
tial condensate formation in the S × F̄ → F channels.
But the initial condensation in this type of evolution is
not the one favored by the MAC criterion, which, in-
stead favors initial and then sequential condensation in
the S × F̄ → F channels of the SU(N) then S × F̄ → F
condensation in the SU(N−1) theory, and so forth, until
the SU(N) gauge symmetry is completely broken.

IV. STRATEGY FOR CONSTRUCTION OF

NEW CHIRAL GAUGE THEORIES

Our general method for constructing the chiral gauge
theories presented here is as follows. We take the gauge
group to be G = SU(N) and include, as the irreducibly
chiral sector of the theory, fermions transforming as the
S and (N + 4) copies of F̄ . We choose the vectorlike
subsector to consist of p copies of fermions that trans-
form according to representation(s) R of G such that the
channel

R× R̄ → 1 (4.1)

is more attractive than other channels. (For some of our
theories, R = R̄.) In the theories that we consider, the
next-most-attractive channel is

S × F̄ → F . (4.2)

The ∆C2 attractiveness measures for these channels are

∆C2 = 2C2(R) for R× R̄ → 1 (4.3)

and

∆C2 = C2(S) =
(N + 2)(N − 1)

N
for S × F̄ → F̄ ,

(4.4)
so the condition that the R × R̄ → 1 channel is more
attractive than the S × F̄ → F̄ channel is that

∆C2(R) = 2C2(R) >
(N + 2)(N − 1)

N
. (4.5)
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In all the cases that we consider, this guarantees that the
R×R̄→ 1 channel is the most attractive channel in which
condensation thus occurs first as the theory evolves from
the UV to the IR. Consequently, if the fermion content is
such that the running coupling α(µ) becomes sufficiently
large in the infrared, then, because the MAC is (4.1), the
fermion condensation at the highest energy scale occurs
among the fermions in the vectorlike subsector of the
model, via the channel R × R̄ → 1. The resultant low-
energy effective field theory applicable below this scale
is thus comprised of the irreducible chiral sector of the
theory, equivalent to the p = 0 special case of the full
theory, with just the S fermion and the N + 4 copies
of the F̄ fermion. As reviewed in Sect. III, the various
possible types of UV to IR evolution of this p = 0 theory
obey the conjectured degree-of-freedom inequality [8–10].

V. THEORY WITH R = Adj

A. Particle Content

In this section we construct and study a chiral gauge
theory with gauge group SU(N) and fermion content con-
sisting of chiral fermions transforming according to

1. a symmetric rank-2 tensor representation, S, with
corresponding field ψab

L = ψba
L ,

2. N+4 copies (also called “flavors”) of chiral fermions
in the conjugate fundamental representation, F̄ ,
with fields χa,i,L, i = 1, ..., N + 4, and

3. p copies of chiral fermions in the adjoint represen-
tation, denoted Adj, with fields ξab,j,L, j = 1, ..., p.

Here and below, a, b, c... are gauge indices and i, j are
copy indices. We call this the Adj theory by reference to
the choice of the representation R = Rsc for the fermions
in the vectorlike subsector. This fermion content is sum-
marized in Table I. As noted above, we restrict to N ≥ 3
because SU(2) has only (pseudo)real representations and
hence a gauge theory based on the gauge group SU(2)
is not chiral. This theory thus depends on the two inte-
ger parameters, N ≥ 3 and p ≥ 0, with an upper limit
on p given by Eq. (5.5) below. We will sometimes use
the Young tableaux and for S and F̄ . The irre-
ducibly chiral sector of this theory is comprised of the S
and the N + 4 copies of F̄ fermions, and the vectorlike
subsector is comprised of the Adj fermions. Because of
this self-conjugate nature of Rsc, the Adj fermions may
be considered to be Majorana. Thus, if one were to re-
move the irreducibly chiral part of this theory and con-
sider the part containing the gauge fields and the Adj
fermions alone, the dynamical particle content in the La-
grangian would be analagous to the gluons and gluinos
of an N = 1 supersymmetric SU(N) gauge theory.
We recall that since the contribution to the triangle

anomaly from S satisfies [27]

Anom(S) = (N + 4)Anom(F ) , (5.1)

and since

Anom(R) = −Anom(R̄) , (5.2)

it follows that the set of chiral fermions S plus (N + 4)
copies of F̄ yields a theory that is free of anomalies
in gauged currents. Furthermore, from Eq. (5.2), it
follows that for any self-conjugate representation Rsc,
Anom(Rsc) = 0. Hence, we are free to add fermions
transforming according to a self-conjugate representa-
tion to a chiral gauge theory that is free of anomalies
in gauged currents and it will retain this anomaly-free
property. We use this fact here with Rsc = Adj.

B. Beta Function

The beta function for this Adj theory is given by Eq.
(2.3) with the one-loop coefficient

(b1)Adj =
1

3

[

(9− 2p)N − 6
]

(5.3)

and the two-loop coefficient

(b2)Adj =
1

6

[

(39− 32p)N2 − 90N + 3+ 36N−1
]

. (5.4)

(See Appendix A for general formulas for b1 and
b2.) These coefficients contain the maximal scheme-
independent information about the dependence of the
gauge coupling on the reference scale, µ. This informa-
tion will suffice for our present purposes. Higher-loop
effects for vectorial theories and effects of scheme trans-
formations on higher-loop terms in the beta function for
gauge theories have been studied in [28]-[35].
We denote the values of p for which (b1)Adj = 0 as

pb1z,Adj (where the subscript stands for b1 zero). This
value is [36]

pb1z,Adj =
3(3N − 2)

2N
. (5.5)

Our requirement that the model should be asymptoti-
cally free means that βα < 0 for small α. This is equiva-
lent to the condition that b1 > 0 or, if b1 vanishes, then
the further requirement that b2 > 0. Now (b1)Adj > 0 if
and only if p < pb1z,Adj, i.e.,

p <
3(3N − 2)

2N
. (5.6)

This means that the set of physical, integral values of
p allowed by our requirement of asymptotic freedom are
0 ≤ p ≤ 3 for N = 3, 4, 5, 6 and 0 ≤ p ≤ 4 for N ≥ 7.
Note that if N = 6 and p = 4, then b1 = 0, so one
must examine the sign of b2 to determine if the theory
is asymptotically free or not, and for this case (b2)Adj

is negative, hence excluding it from consideration. Here
and below, for a given theory and value of N , we will
denote the maximum allowed value of p as pmax.
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As a consequence of the asymptotic freedom of the
theory, the beta function always has a zero at α = 0,
which is a UV fixed point (UVFP) of the renormalization
group. In general, the two-loop beta function, βα,2ℓ, has
an IR zero if b2 has a sign opposite to that of b1, i.e., if
b2 is negative. For p = 0, (b2)Adj > 0, so βα,2ℓ has no
IR zero. As p increases, (b2)Adj decreases and eventually
passes through zero to negative values, giving rise to an
IR zero of βα,2ℓ,Adj. Let us denote the value of p where
b2 vanishes as pb2z,Adj. This is

pb2z,Adj =
3(13N3 − 30N2 +N + 12)

32N3
. (5.7)

In Table II we list values of pb1z,Adj and pb2z,Adj for this
theory. The value pb2z,Adj is less than the upper bound
on p, pb1z,Adj, i.e.,

pb2z,Adj < pb1z,Adj . (5.8)

This inequality is proved by analyzing the difference,

pb1z,Adj − pb2z,Adj =
3(35N3 − 2N2 −N − 12)

32N3
. (5.9)

This difference is positive for all physical N . Hence, for
p in the interval [36]

(Ip)Adj : pb2z,Adj < p < pb1z,Adj , (5.10)

this theory is asymptotically free, and βα,2ℓ,Adj has an
IR zero. The actual physical, integral values of p in the
interval (Ip)Adj depend on the value of N . There are
several different sets of N and p values where this IR
zero is physical:

(Ip)Adj : 1 ≤ p ≤ 3 if 3 ≤ N ≤ 6,

1 ≤ p ≤ 4 if 7 ≤ N ≤ 12,

2 ≤ p ≤ 4 if N ≥ 13 . (5.11)

These different cases follow from two properties. First,
pb1z,Adj (continued to real numbers) is a monotonically
increasing function of N for physical N and ascends
through the value 4 asN increases through the valueN =
6. Second, for N > (1 +

√
1081 )/30 = 1.129 and hence

for the range N ≥ 3 relevant here, pb2z,Adj is a mono-
tonically increasing function and increases through 1 at
N = 12.7922 (the largest root of 7N3−90N2+3N+36).
Hence, if N ≥ 13, the lowest value of p ∈ (Ip)Adj is p = 2,
as indicated in (5.11).
For values of N and p where βα,2ℓ,Adj has a physical

IR zero, it occurs at

α
IR,2ℓ,Adj

≡ 4πa
IR,2ℓ,Adj

= −4π
(b1)Adj

(b2)Adj

=
8πN [(9− 2p)N − 6]

(32p− 39)N3 + 90N2 − 3N − 36
.

(5.12)

In using this result, it should be recalled that, in general,
an IR zero of a beta function at α

IR,2ℓ
= −4πb1/b2 can be

reliable if |b2| is not too small, i.e., when α
IR,2ℓ

is not too
large for the perturbative calculation to be applicable. In
Table III we list values of α

IR,2ℓ,Adj
.

It is of interest to consider the limit [25]

N → ∞ with ζ(µ) ≡ α(µ)N finite and p fixed. (5.13)

In this limit,

lim
N→∞

pb1z,Adj =
9

2
(5.14)

and

lim
N→∞

pb2z,Adj =
39

32
= 1.21875 , (5.15)

so that the interval (Ip)Adj becomes

lim
N→∞

(Ip)Adj :
39

32
< p <

9

2
, (5.16)

containing the physical, integral values p = 2, 3, 4. In
the large-N limit (5.13), the combination of α, or equiv-
alently, a, and N that remains finite is

ζ ≡ lim
N→∞

αN . (5.17)

Correspondingly, the rescaled beta function that is finite
has the form

βζ ≡ dζ

dt
. (5.18)

where, as in Eq. (2.2), t = lnµ. In this limit, for physical
p ∈ (Ip)Adj , the (rescaled, finite) βζ,2ℓ, has an IR zero at

ζ
IR,2ℓ,Adj =

8π(9− 2p)

32p− 39
. (5.19)

The approach to this limit of N → ∞ involves correction
terms that are powers in 1/N :

Nα
IR,2ℓ,Adj

=
8π(9− 2p)

32p− 39
− 96π(p+ 48)

(32p− 39)2N
+O

(

1

N2

)

.

(5.20)

One may compare the approach to the N → ∞ limit here
with that in a (vectorial) SU(N) gauge theory with Nf

fermions in the fundamental representation in the limit
N → ∞, Nf → ∞ with the ratio Nf/N fixed and finite
(and α(µ)N a finite function of µ), denoted the LNN
limit in [30]. In that case [29, 30] the leading correction
term to the limit was suppressed like 1/N2 instead of
1/N , and the correction terms formed a series in powers
of 1/N2 instead of powers in 1/N . Hence, the approach
to the N → ∞ limit here is not as rapid as in the LNN
limit.
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C. Analysis of UV to IR Flows

Because of the asymptotic freedom of the theory, i.e.,
the fact that the beta function is negative for small α, it
follows that, as the Euclidean reference momentum scale
µ decreases from the ultraviolet toward the infrared, α(µ)
increases. There are several possibilities for the behavior
that can occur:

1. First, if the beta function has an IR zero at a suf-
ficiently small value of α = α

IR
, then one expects

that the theory will evolve into the infrared with-
out any spontaneous chiral symmetry breaking. In
this case, the IR zero of βα is an exact IRFP of the
renormalization group, so that as µ→ 0, the theory
exhibits scale invariance with nonzero anomalous
dimensions. In the IR limit µ→ 0, one anticipates
that the theory is in a deconfined, massless non-
Abelian Coulomb phase.

2. For smaller values of p, the IR zero of the beta
function is larger, and correspondingly, α(µ) be-
comes larger as µ decreases from the UV to the IR.
Then the strongly coupled gauge interaction can
produce fermion condensates that break global and
possibly also local gauge symmetries. This behav-
ior also applies if p is sufficiently small that the beta
function has no IR zero, so that α(µ) keeps increas-
ing with decreasing µ until it exceeds the interval
where the perturbative beta function describes its
evolution. In this general category of UV to IR
evolution, there can be a sequence of condensate
formations at various energy scales.

3. In the strongly coupled case (including both the
subcases where the beta function has an IR zero at
sufficiently large coupling and where the beta func-
tion has no IR zero), an alternate possibility is, if
the fermion content satisfies the ’t Hooft anomaly-
matching conditions [1], then the gauge interaction
might confine and produce massless gauge-singlet
composite fermions.

The beta function describes the growth of α(µ) as the
reference momentum scale µ decreases from the UV to
the IR. If the fermion content is such that the beta func-
tion has no IR zero, then the interaction definitely be-
comes strongly coupled in the infrared. If, on the other
hand, the beta function does have an IR zero, then one
must investigate how large the value of the coupling is at
this zero. In conjunction with knowledge of the probable
channel in which fermions may condense and the cor-
responding estimate of the minimum critical coupling,
αcr that triggers this condensation, one can then draw a
plausible inference as to whether the condensation takes
place or whether, in contrast, the theory evolves into the
infrared without any fermion condensation or associated
spontaneous chiral symmetry breaking.
The only composite fermions that one can form are

those of the p = 0 theory, and we find that these do not

match the global anomalies of Gfl,Rsc (given below in Eq.
(7.1) for Rsc = Adj. This rules out the possibility that
the original theory can form massless composite fermions
involving the full set of massless fermions in the theory
with p > 0. As we will discuss below, however, if the UV
to IR evolution leads to sufficiently strong coupling so
that there is condensation in the Rsc ×Rsc → 1 channel,
giving the Rsc fermions dynamical masses, then in the
low-energy effective field theory below the condensation
scale, with these fermions removed, the descendant the-
ory is equivalent to the original theory with p = 0. In
this descendant theory (called the SF̄ theory below), fur-
ther evolution into the infrared might produce massless
gauge-singlet composite fermions.
To obtain information concerning the likely type of UV

to IR evolution among types 1 and 2 in the list above,
as a function of p, we first identify the most attractive
channel, which is

Adj ×Adj → 1 . (5.21)

This clearly preserves the SU(N) gauge symmetry, and
has attractiveness measure

∆C2 = 2N for Adj ×Adj → 1 . (5.22)

In particular, this channel is more attractive than the
S × F̄ → F channel, in accordance with the inequality
(4.5). Quantitatively, the difference in ∆C2 values for
these two channels is

∆C2(Adj ×Adj → 1)−∆C2(S × F̄ → F )

=
N2 −N + 2

N
, (5.23)

which is positive for all physical N . The condensates for
the Adj ×Adj → 1 channel are

〈ξa T
b,i,LC ξ

b
a,j,L〉 , i, j = 1, ..., p . (5.24)

From Eq. (5.22), we obtain the rough estimate of the
minimal critical coupling for condensation in the Adj ×
Adj → 1 channel:

αcr,Adj×Adj ≃
π

3N
. (5.25)

Thus, an approximate indication of the size of the IR
fixed point relative to the size that would lead to the
formation of fermion condensates in the channel (5.21) is
the ratio

ρ
IR,Adj×Adj

≡ α
IR,2ℓ,Adj

αcr,Adj×Adj

=
24N2[(9− 2p)N − 6]

(32p− 39)N3 + 90N2 − 3N − 36
. (5.26)

As p decreases, α
IR,2ℓ

increases. Therefore, considering
N and p as being extended from the non-negative in-
tegers to the non-negative real numbers, one can calcu-
late a rough estimate of the critical value of p, denoted
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pcr,Adj×Adj, such that, as p decreases through this value,
α

IR,2ℓ
increases through the value αcr,Adj×Adj. This

critical value of pcr,Adj×Adj is thus obtained by setting
ρIR,Adj×Adj = 1 and solving for p, yielding

pcr,Adj×Adj ≃
3(85N3 − 78N2 +N + 12)

80N3
. (5.27)

This critical value pcr,Adj is a monotonically increasing
function of N for physical N , increasing from 67/30 =
2.23 for N = 3 and, as N → ∞,

lim
N→∞

pcr,Adj×Adj =
51

16
= 3.1875 , (5.28)

where the limit is approach from below as N increases.
We list values of the ratio ρ

IR,Adj×Adj
in Table III for

several illustrative values of N and p. For all of the val-
ues of N presented in this table, the respective values
of the ratio ρ

IR,Adj×Adj
for p = 4 are much smaller than

1, so that one can conclude that for p = 4, the theory
evolves from the UV to a scale-invariant, non-Abelian
Coulomb phase in the IR. As is evident from Table III,
for a given N , as p decreases, α

IR,2ℓ,Adj
increases. As this

IR coupling becomes of O(1), the uncertainties in the
use of perturbation theory increase. For most of p = 3
cases shown with various N , the ratio ρ

IR,Adj×Adj
is suffi-

ciently close to 1 that, taking account of these uncertain-
ties, one cannot draw a definite conclusion as to whether
fermion condensate does or does not take place. For the
cases shown in Table III with p = 1 (where this is in
(Ip)Adj) and p = 2, the ratio ρ

IR,Adj×Adj
is substantially

larger than 1, so that in these cases, one expects that
the gauge interaction become strong enough to produce
fermion condensation in the channel (5.21).
In the large-N limit defined above,

lim
N→∞

ρ
IR,Adj×Adj

=
24(9− 2p)

32p− 39
. (5.29)

In particular,

lim
N→∞

ρ
IR,Adj×Adj

=
24

89
= 0.270 for p = 4 (5.30)

lim
N→∞

ρ
IR,Adj×Adj

=
72

57
= 1.26 for p = 3 (5.31)

lim
N→∞

ρ
IR,Adj×Adj

=
24

5
= 4.80 for p = 2 (5.32)

(where the floating-point results are given to the indi-
cated accuracy). Hence, in this large-N limit, since the
limit of the ratio ρ

IR,Adj×Adj
for p = 4 is sufficiently small

compared to 1 that it is plausible that in the IR the the-
ory is in a deconfined Coulombic phase, while if p = 3,
ρ

IR,Adj×Adj
is too close to unity for one to be able to draw

a definite conclusion. Finally, if p = 2, then ρ
IR,Adj×Adj

is
sufficiently large compared with 1 that one expects that

the theory can produce bilinear condensates in the most
attractive channel, as discussed above.
We continue with the analysis of the UV to IR evolu-

tion for the smaller values of p that produce a strongly
coupled gauge interaction. As the momentum scale µ
decreases through a scale denoted ΛAdj, α(µ) exceeds
αcr,Adj, and, from our discussion above, we infer that the
gauge interaction produces the bilinear fermion conden-
sates (5.24) in the MAC, Adj ×Adj → 1. These conden-
sates preserve the SU(N) gauge symmetry and the U(1)1
global symmetry, while breaking the U(1)2 and SU(p)
global symmetries (these global symmetries are defined
in Sect. ). By the use of a vacuum alignment argument
[37], one can plausibly infer that the condensates (5.24)
have i = j, with i = 1, ..., p and hence preserve an SO(p)
global isospin symmetry defined by the transformation

ξab,i,L →
p

∑

j=1

Oijξ
a
b,j,L , O ∈ SO(p) . (5.33)

Just as light quarks gain dynamical, constituent quark
masses of order ΛQCD due to the formation of 〈q̄q〉 con-
densates in quantum chromodynamics (QCD), so also,
the p(N2− 1) components, ξab,i,L, of the Adj fermions in-
volved in these condensates pick up a common dynamical
mass of order ΛAdj.
At scales µ < ΛAdj, the analysis proceeds by integrat-

ing out the massive ξab,j,L fermions, constructing the low-
energy effective field theory applicable for these lower
scales, and then exploring the further evolution of this
descendant theory into the infrared. Since the conden-
sation (5.24) gives dynamical masses to all of the Adj
fermions ξab,j,L, j = 1, ..., p, the low-energy effective the-
ory below this condensation scale ΛAdj is just the p = 0
theory. Since the evolution of this theory is the same
as for our second type of chiral gauge theory, we first
study this second theory, and then discuss the further IR
evolution.

VI. THEORY WITH N = 2k AND R = [N/2]N

A. Particle Content

In this section we construct and study a chiral gauge
theory with gauge group G = SU(N) with even N = 2k,
and fermions transforming according to

1. a symmetric rank-2 tensor representation, S, with
corresponding field ψab

L = ψba
L ,

2. N + 4 copies chiral fermions in the conjugate fun-
damental representation, , with fields χa,i,L, i =
1, ..., N + 4, and

3. p copies of chiral fermions in the totally antisym-
metric k-fold tensor representation [N/2]N = [k]2k,
with fields ξa1...ak

j,L , j = 1, ..., p.
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We again label this theory by the representation of the
fermions in the vectorlike subsector, namely AT, for
antisymmetric k-fold tensor. This fermion content is
summarized in Table I.
The representation [k]N has the dimension (for general

N)

dim([k]N ) =

(

N

k

)

(6.1)

and satisfies the equivalence property

[N − k]N = [k]N . (6.2)

Here we have used the standard notation for the binomial
coefficient,

(

a
b

)

≡ a!/[b! (a− b)!]. An important property
that follows from Eq. (6.2) that that we will use here
is the fact that for our case of interest, N = 2k, the
representation [k]2k is self-conjugate:

[k]2k = [k]2k . (6.3)

Combining the self-conjugate property of [N/2]N = [k]2k
with the relation (5.2), it follows that

Anom([k]2k) = 0 . (6.4)

Thus, this theory has the same irreducibly chiral sector
as the theory discussed in the previous section, and a
vectorlike subsector that consists of the p copies of the
fermions in the [N/2]N representation.

B. Beta Function

We calculate that the one- and two-loop terms in the
beta function of this theory are, in terms of k = N/2,

(b1)AT = 6k − 2− p (2k − 2)!

3[(k − 1)!]2
(6.5)

and

(b2)AT =
52k3 − 60k2 + k + 6

2k
− p k(43 + 6k) (2k − 2)!

12[(k − 1)!]2
.

(6.6)
For small p, (b1)AT is positive, and as p increases, (b1)AT

decreases and passes through zero as p exceeds the value

pb1z,AT =
6(3k − 1)[(k − 1)!]2

(2k − 2)!
. (6.7)

The requirement that the theory should be asymptoti-
cally free is thus satisfied if

p <
6(3k − 1)[(k − 1)!]2

(2k − 2)!
. (6.8)

This upper bound decreases rapidly as a function of k =
N/2, so that as k increases, eventually the requirement
of asymptotic freedom precludes any nonzero value of p.

Thus, the AT theory has no asymptotically free large-
N limit with nonzero p, in contrast to the Adj and SS̄
theories constructed and studied here and the Sp theory
reviewed in Sect. III.
The beta function of the AT theory has an IR zero

if b2 is negative. For small p, (b2)AT is positive, and it
decreases through zero to negative values as p (continued
to the real numbers) increases through the value

pb2z,AT =
6(52k3 − 60k2 + k + 6) [(k − 1)!]2

k2(6k + 43) (2k − 2)!
. (6.9)

We observe that pb1z,AT > pb2z,AT . This is proved by
considering the difference,

pb1z,AT − pb2z,AT

=
6(18k4 + 71k3 + 17k2 − k − 6)[(k − 1)!]2

k2(43 + 6k)[(2k − 2)!]
.

(6.10)

This difference is positive for all k values of relevance here
(with k extended to the positive reals, it is positive for
k > 0.3724). By itself, this inequality does not guarantee
that there is an integral value of p that lies above pb2z,AT

and below pb1z,AT , but in fact we find that for each rel-
evant case, there are one or more such integral values.
These then define the respective intervals (Ip)AT ,

(Ip)AT : pb2z,AT < p < pb1z,AT (6.11)

for each k. For the (integral) values of p ∈ (Ip)AT , the
beta function of the SU(2k) AT theory has an IR zero.
We list the values of pb1z, pb2z, pmax, and (Ip)AT in Table
IV). Note that for the cases G = SU(N) with k ≥ 2
under consideration here, the requirement of asymptotic
freedom allows nonzero values of p only for k ≤ 5.
For a given N = 2k whith a nonvacuous interval

(Ip)AT , the βα,2ℓ has an IR zero at

α
IR,2ℓ,AT

= −4π(b1)AT

(b2)AT
(6.12)

where (b1)AT and (b2)AT were given in Eqs. (6.5) and
(6.6) above. We list the values of α

IR,2ℓ,AT
in Table V.

C. UV to IR Evolution

Here we analyze the UV to IR evolution of this AT
chiral gauge theory. By construction, the most attrac-
tive channel involves fermion condensation in the channel
(4.1), with R = [N/2]N = [k]2k in this case, i.e.,

[N/2]N × [N/2]N → 1 . (6.13)

This preserves the SU(N) gauge symmetry and has the
attractiveness measure

∆C2 = 2C2([N/2]N ) =
k(2k + 1)

2
, (6.14)
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where we have used the result for C2([k]N ) given in Ap-
pendix A. The condensates are

〈ǫa1,...a2k
ξa1,...,ak T
i,L C ξ

ak+1,...,a2k

j,L 〉 , i, j = 1, ..., p . (6.15)

By a vacuum alignment argument, one may infer that
these condensates have i = j [37]. To show that the
channel (6.13) is more attractive than the next-most-
attractive channel, S×F̄ → F , we examine the difference

∆C2([N/2]N × [N/2]N → 1)−∆C2(S × F̄ → F )

= 2C2([N/2]N)− C2(S) =
2k3 − 3k2 − 2k + 2

2k
.

(6.16)

This difference is positive for all values of k ≥ 2 of interest
here.
If the beta function has no IR zero, then as the scale

µ decreases and α(µ) increases, it will eventually become
large enough to cause condensation, which, according to
the MAC criterion, will be in this channel (6.13). If the
beta function does have a zero, then the next step in the
analysis is to determine how the value of the coupling at
this zero compares with αcr for the most attractive chan-
nel, (6.13). Substituting (6.14) into the general formula
for Eq. (2.7), we calculate

αcr,AT =
4π

3k(2k + 1)
. (6.17)

As discussed above, an approximate measure of how
strong the coupling gets in the infrared, compared with
the minimum critical value for condensation in the MAC
is then given by the ratio

ρ
IR,AT

≡ α
IR,2ℓ,AT

αcr,AT
. (6.18)

We list values of ρ
IR,AT

for the relevant N and p in Table
V. In cases where condensation occurs in this theory we
denote the scale at which it occurs as Λ[N/2]N .

1. AT Theory with G = SU(4)

In this subsection and the following ones we discuss
three illustrative cases with various values of N = 2k
and their corresponding intervals (Ip)AT . For each value
of N , if p is nonzero and p < pb2z, i.e., below the lower
end of the interval (Ip)AT , then the theory has no IR
fixed point, even an approximate one, so that the gauge
coupling continues to grow in the infrared and will cause
condensation in the MAC. Hence, we restrict our con-
sideration here to p ∈ (Ip)AT . The reader is referred to
Tables IV and V for numerical values of relevant quanti-
ties. As indicated in Table IV, for this SU(4) AT theory
the interval (Ip)AT is 3 ≤ p ≤ 14. For p in this interval,
βα,2ℓ,AT has an IR zero at

N = 4 : α
IR,2ℓ,AT

=
8π(15− p)

55p− 138
. (6.19)

The ratio ρ
IR,AT

is

N = 4 : ρ
IR,AT

=
60(15− p)

55p− 138
. (6.20)

As listed in Table V, for the range of p from 3 to 7,
this ratio takes on values decreasing from 26.7 to 1.94,
all well above unity. Thus, one may plausibly expect
that for these values of p, in the UV to IR evolution, as
the reference scale µ decreases sufficiently and the run-
ning coupling approaches α

IR,2ℓ,AT
, the gauge interaction

will become strong enough to cause fermion condensa-
tion in the most attractive channel, [2]4 × [2]4 → 1. For
p = 8, 9, 10, 11, ρ

IR,AT
has the respective values 1.39,

1.01, 0.728, 0.514. Given the theoretical uncertainties
in these estimates, the IR behavior might or might not
involve the formation of the condensates (6.15). For the
largest values of p, namely p = 12, 13, 14, ρ

IR,AT
has

the respective values 0.345, 0.208, 0.095, so for these
cases, it is likely that the theory evolves from the UV to
a scale-invariant, deconfined, Coulombic IR phase. This
inference is, of course, most reliable for the largest al-
lowed value of p, namely p = 14, which leads to the small-
est value of α

IR,2ℓ,AT
and ρ

IR,AT
. As discussed above, in

the cases where there is condensate formation and chi-
ral symmetry breaking, the IRFP is only approximate,
while in the cases where there is no such chiral symme-
try breaking the IRFP (calculated to all orders) is exact.

2. AT Theory with G = SU(6)

In the SU(6) (i.e., k = 3) AT theory, (Ip)AT is the
interval 2 ≤ p ≤ 7. For p in this interval, βα,2ℓ has an IR
zero at

N = 6 : α
IR,2ℓ,AT

=
16π(8− p)

3(61p− 97)
. (6.21)

The ratio ρ
IR,AT

is

N = 6 : ρ
IR,AT

=
84(8− p)

61p− 97
. (6.22)

As listed in Table V, for 2 ≤ p ≤ 7, this has the respective
values 20.16, 4.89, 2.29, 1.21, 0.625, 0.255. Thus, for
p = 3 and p = 4, it is likely that condensation occurs in
the MAC, [3]6 × [3]6 → 1 channel; for p = 7, it is likely
that there is no condensation; and for the middle two
values p = 5 and p = 6, taking account of the intrinsic
theoretical uncertainties, one cannot give a very definite
prediction from this analysis.

3. AT Theory with G = SU(10)

In the SU(10) (k = 5) AT theory, the interval (Ip)AT

reduces to just a single nonzero value, p = 1, and the
resultant α

IR,2ℓ,AT
= 0.036, yielding the ratio ρ

IR,AT
=
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0.473. It is thus likely that this theory evolves from the
UV to the IR to a non-Abelian Coulomb phase, although
there are obvious uncertainties in this inference due to
the strong-coupling physics involved.

VII. GLOBAL FLAVOR SYMMETRY FOR

THEORIES WITH SELF-CONJUGATE R

In analyzing the global flavor symmetry of these chiral
gauge theories, it is useful to consider a more general class
of theories, in which the vectorlike fermion subsector is
comprised of fermions transforming under a general self-
conjugate representation, R = Rsc. The results will then
be applied to the two specific theories discussed above,
namely those with G = SU(N), N ≥ 3, and Rsc = Adj;
and the AT theory with G = SU(N) with even N = 2k,
k ≥ 2, and Rsc = [N/2]N .
The classical global chiral flavor symmetry of a theory

in this class of theories is

Gfl,cl,Rsc
= U(1)S ⊗U(N + 4)F̄ ⊗U(p)Rsc

= U(1)S ⊗ SU(N + 4)F̄ ⊗U(1)F̄ ⊗ SU(p)Rsc
⊗U(1)Rsc

.

(7.1)

The representations of the fermions in the two theories
with R = Rsc under this symmetry are given in Table I.
The corresponding global unitary transformations are

ψab
L → US ψ

ab
L , US ∈ U(1)S , (7.2)

χa,i,L →
N+4
∑

j=1

(UF̄ )ij χa,j,L , UF̄ ∈ U(N + 4)F̄ , (7.3)

and

ξi,L →
p

∑

j=1

(URsc
)ij ξj,L , URsc

∈ U(p)Rsc
(7.4)

where we have suppressed the SU(N) gauge indices in
Eq. (7.4), which applies to each theory with the corre-
sponding ξ field, i.e., ξab,i,L in the Adj theory and ξa1,...,ak

i,L
in the AT theory.
Each of the three global U(1) symmetries is broken

the instantons of the SU(N) gauge theory [38]. One may
define a three-dimensional vector of anomaly factors,

~v =
(

NST (S), NF̄T (F̄ ), NRsc
T (Rsc)

)

=

(

N + 2

2
,
N + 4

2
, pTRsc

)

, (7.5)

where the basis is (S, F̄ , Rsc), and we have inserted the
values NS = 1, NF̄ = N + 4, and NRsc

= p. One can
construct two linear combinations of the three original
currents that are conserved in the presence of SU(N)

instantons. The fermions have charges under these global
U(1) symmetries given by the vectors

~Q(j) ≡
(

Q
(j)
S , Q

(j)

F̄
, Q

(j)
Rsc

)

, j = 1, 2 , (7.6)

where j = 1 for U(1)1 and j = 2 for U(1)2. The condition
that the corresponding currents are conserved, i.e., the
U(1)j global symmetries are exact, in the presence of
instantons is that
∑

f

NfT (Rf)Q
(j)
f = ~v · ~Q(j) = 0 for j = 1, 2 . (7.7)

As indicated, this condition is equivalent to the condition
that the vectors of charges under the U(1)1 and U(1)2
symmetries are orthogonal to the vector ~v. (Note that the
condition (7.7) does not uniquely determine the vectors
~Q(j), j = 1, 2. It will be convenient to choose the first

vector, ~Q(1), so that Q
(1)
Rsc

= 0. We thus choose

~Q(1) =
(

N + 4, −(N + 2), 0
)

. (7.8)

For the vector of charges under U(1)2, we choose

~Q(2) =
(

2pTRsc
, 0, −(N + 2)

)

. (7.9)

(Note that in contrast to Gram-Schmidt orthogonaliza-

tion of the three vectors ~v, ~Q(1), and ~Q(2), here it is not

necessary that ~Q(1) · ~Q(2) = 0.)
The actual non-anomalous global chiral flavor sym-

metry group of the class of chiral gauge theories with
R = Rsc is then

Gfl,Rsc
= SU(N + 4)F̄ ⊗ SU(p)Rsc

⊗U(1)1 ⊗U(1)2 .

(7.10)

For the two respective theories with (i) Rsc = Adj and
(ii) Rsc = [N/2]N , Eqs. (7.9) and (7.10) apply with (i)
TRsc

= T (Adj) = N and (ii) T[N/2]N given by Eq. (A8)
in Appendix A. We summarize these properties in Table
I.
In general, one must also check to see if either of the

chiral gauge theories with Rsc = Adj or Rsc = [N/2]N
satisfies the ’t Hooft anomaly-matching conditions, which
are necessary conditions for the possible formation of
massless gauge-singlet composite fermions. The possible
gauge-singlet fermions can be described by wavefunctions
of the form

Bij = F̄a,i,L S
ab
L F̄b,j,L , 1 ≤ i, j ≤ N + 4 . (7.11)

Given the minus sign from Fermi statistics and the fact
that Sab is a rank-2 symmetric tensor representation
( ) of SU(N), it follows that Bij = −Bji, i.e., Bjk is

a rank-2 antisymmetric tensor representation ( ) of the
SU(N + 4)F̄ factor group in the global flavor symmetry
group Gfl. There are thus (N +4)(N+3)/2 components
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of Bij . The charges of Bij under the two global abelian
factor groups in Gfl,Rsc

, U(1)k, k = 1, 2 are determined
by the relation

Q
(k)
B = Q

(j)
S + 2Q

(k)

F̄
, k = 1, 2 (7.12)

Hence,

Q
(1)
B = −N (7.13)

and

Q
(2)
B = 2p TRsc

. (7.14)

We find that the global anomalies of a theory with these
massless composite fermions do not match those of the
original Gfl group except in the degenerate case p =
0. This p = 0 case describes a descendant low-energy
effective field theory that occurs if there is condensation
in the Rsc×Rsc → 1 channel, and will be discussed below.

VIII. ANALYSIS OF LOW-ENERGY

EFFECTIVE THEORY FOR µ < ΛRsc

In the cases where the values of N and p are such as to
lead to the respective bilinear fermion condensates (5.24)
or (6.15) at the corresponding scales ΛAdj or Λ[N/2]N ,
we analyze the further UV to IR evolution below these
scales. We denote these scales generically as ΛRsc

. Be-
cause of this condensation, the p fermions ξab,i,L involved

in the condensate (5.24) in the Adj model and the p
fermions ξa1,...,al

i,L involved in the condensate (6.15) in
the AT theory gain dynamical masses of order ΛAdj and
Λ[N/2]N , respectively.
For momentum scales µ slightly below the condensa-

tion scale ΛRsc
, the resultant global symmetry is

G′
fl = SU(N + 4)F̄ ⊗ SO(p)⊗U(1)1 . (8.1)

Here the SU(N + 4)F̄ ⊗ U(1)1 is a global chiral symme-
try operating on the massless S and F̄ fermions, leaving
their covariant derivatives invariant, while the SO(p) is
a global isospin symmetry of the condensate in each of
our two theories with R = Rsc, or equivalently, the cor-
responding effective mass term. These mass terms are

ΛAdj

p
∑

i=1

ξa T
b,i,LC ξ

b
a,i,L + h.c. (8.2)

in the Adj theory and

Λ[N/2]N

p
∑

i=1

〈ǫa1,...a2k
ξa1,...,ak T
i,L C ξ

ak+1,...,a2k

i,L 〉+ h.c.

(8.3)
in the AT theory produced by the bilinear fermion con-
densations in these respective theories. This SO(p) sym-
metry also leaves the covariant derivatives of these ξ fields
invariant.

The spontaneous symmetry breaking of the initial
nonanomalous global symmetry Gfl in Eq. (7.10) to the
final global symmetry (8.1) produces

o(SU(p)) + 1− o(SO(p)) =
p(p+ 1)

2
. (8.4)

massless Nambu-Goldstone bosons, where o(H) denotes
the order of a group H .
As the reference scale µ decreases well below ΛRsc

, we
integrate these now-massive ξ fermions out of the low-
energy (LE) effective field theory (LEEFT) applicable for
µ ≪ ΛRsc

. Focusing on the infrared region µ ≪ ΛRsc
,

with the ξ fermions integrated out, both the theory with
Rsc = Adj and the theory with Rsc = [N/2]N reduce to
the same low-energy descendant theory, with (massless)
S fermion andN+4 copies of F̄ fermions. We denote this
as the SF̄ theory. This theory has been well studied in
the past [2, 4, 8–10, 12]. We recall the results from these
earlier studies that we will need for our present analysis.
The value of fUV for the SF̄ model, which we denote

as fUV,SF̄M (M standing for model), is given by the p = 0
special case of Eq. (9.1), namely

fUV,SF̄M = 2(N2 − 1) +
7

4

[N(N + 1)

2
+ (N + 4)N

]

.

(8.5)

The SF̄ theory is invariant under a nonanomalous global
flavor symmetry group

Gfl,SF̄M = SU(N + 4)F̄ ⊗U(1)SF̄ . (8.6)

For this theory the three-dimensional vector (7.5) reduces
to a two-dimensional vector with the third entry deleted,
and the vector of charges that is orthogonal to it and
hence defines the charge assignments of the U(1)SF̄ is
given by the first two entries in Q(1), namely

~Q(1) = (N + 4,−(N + 2)) . (8.7)

The SF̄ theory is asymptotically free, so the gauge cou-
pling continues to grow as µ decreases. The beta function
of this SF̄ theory has one-loop and two-loop coefficients
given by Eqs. (5.3) and (5.4) with p = 0 or equivalently,
the p = 0 special case of Eqs. (3.1) and (3.2). In the
relevant range N ≥ 3, b2 is positive. Since b1 and b2
thus have the same sign, the beta function, calculated
to the maximal scheme-independent order of two loops,
does not have any IR zero. Hence, as µ decreases from
the UV to the IR, the running coupling α(µ) increases,
eventually exceeding the region where the perturbatively
calculated beta function is applicable.
There are two possible types of UV to IR evolution in

the SF̄ theory. First, the strongly coupled gauge inter-
action may produce bilinear fermion condensates. The
most attractive channel is S × F̄ → F , with condensates

〈
N
∑

b=1

ψab T
L Cχb,i,L〉 . (8.8)
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Without loss of generality, one may take a = N and i = 1
for the first condensate. This breaks the SU(N) gauge
symmetry down to SU(N − 1), so that the 2N − 1 gauge
bosons in the coset SU(N)/SU(N − 1) gain masses of
order this scale of condensation, which we denote ΛN .
The fermions ψNb

L and χb,1,L with b = 1, .., N involved in
this condensate also gain dynamical masses of order ΛN .
In the low-energy theory applicable for scales µ < ΛN ,
these now massive fermions are integrated out.
The descendant theory is again asymptotically free, so

the gauge coupling inherited from the SU(N) theory con-
tinues to increase. There is then a second condensation,
again in the MAC, S × F̄ → F channel, breaking the
gauge symmetry from SU(N−1) to SU(N −2). Without
loss of generality, we may take the breaking direction to
be a = N − 1 and the F̄ fermion involved in the con-
densate to be labelled as χb,2,L, so that this condensate
is

〈
N−1
∑

b=1

ψN−1,b T
L Cχb,2,L〉 . (8.9)

We denote the scale at which this occurs as ΛN−1. The
2N − 3 gauge bosons in the coset SU(N − 1)/SU(N − 2)

gain masses of order ΛN−1 and the fermions SN−1,b
L and

χb,2,L with b = 1, ..., N − 1 involved in this condensate
gain dynamical masses of order ΛN−1. This sequential
breaking via condensation in the respective S × F̄ → F
channels continues at the scales ΛN−2, etc. until the
gauge symmetry is completely broken. Thus, the se-
quence of gauge symmetry breaking is

SU(N) → SU(N − 1) → · · · → SU(2) → ∅ . (8.10)

The gauge bosons in the respective cosets
SU(N)/SU(N − 1), SU(N − 1)/SU(N − 2), etc. gain
masses of order ΛN , ΛN−1, etc, as do the components of
the fermions involved in the respective condensates.
Considering the SF̄ theory, for this type of UV to IR

evolution [8–10],

fIR,SF̄M ;S×F̄ = 8N + 1 +
7

4

[N(N − 1)

2
+ 4N

]

, (8.11)

where here the subscript SF̄M means the SF̄ model, and
the subscript SF̄ refers to the condensation channel. For
the SF̄ model, with this type of UV to IR evolution, one
then has

(∆f)SF̄M ;S×F̄ = fUV,SF̄M − fIR,SF̄M ;S×F̄

=
15N2 − 25N − 12

4
. (8.12)

This is positive for all relevant values of N . (For N
extended to the positive reals, it is positive for N >
(25 +

√
1345 )/30 = 2.056.)

The low-energy effective SF̄ theory applicable below
ΛRsc

could also undergo a different type of flow deeper
into the infrared, namely one leading to confinement with

massless gauge-singlet composite fermions with wave-
functions (7.11). In this case, for this SF̄ theory, con-
sidered in isolation,

fIR,SF̄M ;sym =
7

4

[ (N + 4)(N + 3)

2

]

. (8.13)

Hence, for this type of UV to IR evolution,

(∆f)SF̄M ;sym =
15N2 + 7N − 50

4
. (8.14)

This is positive for all relevant values of N . (For N
extended to the positive reals, it is positive for N >
(−7+

√
3049 )/30 = 1.607.) Thus, for both of these types

of UV to IR evolution of the SF̄ theory, the conjectured
degree-of-freedom inequality (2.12) is obeyed.

IX. COMPARISON WITH

DEGREE-OF-FREEDOM INEQUALITY

We now combine the results for the SF̄ theory with
our calculations of UV and IR degree-of-freedom counts
for the different types of UV to IR evolution in the Adj
and AT chiral gauge theories and compare with the con-
jectured degree-of-freedom inequality (2.12).

A. UV Count

Given that we have required our theories to be asymp-
totically free, they are weakly coupled in the UV, so we
can identify the perturbative degrees of freedom and cal-
culate fUV . From the general formula (2.10), we have

fUV,Rsc
= 2(N2 − 1) +

7

4

[N(N + 1)

2
+ (N + 4)N

]

+
7

8
p dim(Rsc) , (9.1)

where the respective terms represent the contributions of
the SU(N) gauge fields, the S fermions, the N +4 copies
of F̄ fermions, and the Rsc fermions. Explicitly, for the
Adj theory,

fUV,Adj = 2(N2 − 1) +
7

4

[N(N + 1)

2
+ (N + 4)N

]

+
7

8
p (N2 − 1) (9.2)

and for the AT theory, with N = 2k,

fUV,AT = 2(N2 − 1) +
7

4

[N(N + 1)

2
+ (N + 4)N

]

+
7

8
p

(

N

N/2

)

. (9.3)

where
(

a
b

)

is the binomial coefficient.
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B. fIR Calculations

Next, we calculate fIR for the two types of chiral gauge
theories discussed above in the cases where the UV to IR
evolution involves a high-scale condensation in the re-
spective channels (5.21) or (6.13), followed by sequential
condensations in the S×F̄ → F channel. Taking account
of the p(p+ 1)/2 NGBs from the higher-scale symmetry
breaking at ΛRsc

, we find, for either of these two types of
chiral gauge theories, for this type of infrared evolution
below ΛRsc

,

fIR,Adj;Adj×Adj,S×F̄ = fIR,AT ;[k]2k×[k]2k,S×F̄

≡ fIR,Rsc;Rsc×Rsc,S×F̄

= 8N + 1 +
7

4

[N(N − 1)

2
+ 4N

]

+
p(p+ 1)

2
,

(9.4)

where the subscript Rsc identifies the chiral fermion rep-
resentation in the vectorlike subsector, the next subscript
Rsc × Rsc is shorthand for the MAC Rsc × Rsc → 1 in
which the highest-scale condensation takes place, and the
last subscript, S × F̄ or sym are shorthand for the two
types of IR flow in the low-energy descendant theory,
namely sequential S × F̄ → F condensation formation
and gauge and global symmetry breaking in the descen-
dent theory, or confinement with formation of massless
composite fermions and retention of exact chiral symme-
try (sym) in the infrared. Thus, the subscripts here and
below placed after the semicolon in quantities such as
fIR,Adj;Adj×Adj,S×F̄ refer to the sequence of steps in the
UV to IR evolution.
For the alternate type of evolution involving high-scale

condensation in the respective channels (5.21) or (6.13),
followed by confinement leading to massless gauge-singlet
composite fermions, we calculate, for either of our two
types of chiral gauge theory with R = Rsc,

fIR,Adj;Adj×Adj,sym = fIR,AT ;[k]2k×[k]2k,sym

≡ fIR,Rsc;Rsc×Rsc,sym

=
7

4

[ (N + 4)(N + 3)

2

]

+
p(p+ 1)

2
. (9.5)

C. Comparison with DFI for Adj Theory

Using these inputs, we can now calculate ∆f for these
chiral gauge theories and compare with the conjectured
degree-of-freedom inequality (2.12). For both theories, if
the UV to IR evolution is such as to lead to a deconfined
non-Abelian Coulomb phase, the perturbative degrees of
freedom are the same as in the UV, so the DFI is obeyed.
(The perturbative corrections also obey the DFI [8, 15].)
We first discuss the possible cases for the theory with

R = Adj. If N and p are such that the gauge interac-

tion produces the high-scale condensation in the channel
(5.24), followed by Eqs. (8.4) with (8.11), we calculate

(∆f)Adj;Adj×Adj,S×F̄ ≡ fUV,Adj − fIR,Adj;Adj×Adj,S×F̄

=
1

8

[

30N2 − 50N − 24 + 7pN2 − 11p− 4p2
]

.

(9.6)

This is positive for p satisfying the upper bound

p <
1

8

[

7N2 − 11 +
√

49N4 + 326N2 − 800N − 263
]

.

(9.7)

The upper bound on the right-hand side of Eq. (9.7)
is larger than the upper limit on p imposed by the re-
quirement of asymptotic freedom, (5.6). Hence, the con-
jectured degree-of-freedom inequality (2.12) is obeyed for
all N and allowed p with this type of UV to IR evolution.
For the case where the low-energy effective SF̄ theory

confines without any spontaneous chiral symmetry break-
ing, producing massless composite fermions, we calculate

(∆f)Adj;Adj×Adj,sym ≡ fAdj,UV − fIR,Adj;Adj×Adj,sym

=
1

8

[

30N2 + 14N − 100 + 7pN2 − 11p− 4p2
]

.

(9.8)

This is positive for p satisfying the upper bound

p <
1

8

[

7N2 − 11

+
√

49N4 + 326N2 + 224N − 1479
]

. (9.9)

The upper bound on the right-hand side of Eq. (9.9) is
larger than the upper limit on p imposed by the require-
ment of asymptotic freedom, (5.6). Hence, the conjec-
tured degree-of-freedom inequality (2.12) is also obeyed
for all N and allowed p with this type of UV to IR evo-
lution.
As illustrative numerical examples, we may consider

the casesN = 3 andN = 4. In these cases, the respective
upper bounds on p from Eq. ((5.6) are p ≤ 3, while the
respective values of the right-hand side of (9.7) are 14.64
and 27.57 and the respective values of the right-hand
side of (9.9) are 16.26 and 29.01. Note that if p is close
to the upper bound pb1z arising from the requirement
of asymptotic freedom, then b1 is small, so that α

IR,2ℓ
is

sufficiently small that the UV to IR evolution is to a non-
Abelian Coulomb phase, so that one knows that the DFI
is satisfied without going through the present analysis.
These expressions simplify in the limit N → ∞ (with

p fixed) in Eq. (5.13). We define rescaled degree-of-
freedom measures that are finite in this limit, of the form

f̄ ≡ lim
N→∞

f

N2
. (9.10)
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(We use the same notation, f̄ for this N → ∞ limit
and for the quantity (3.27) defined in the LNP limit; the
context will always make clear which limit is meant.) We
calculate

f̄UV,Adj =
37 + 7p

8
, (9.11)

f̄IR,Adj;Adj×Adj,S×F̄ = f̄IR,Adj;Adj×Adj,sym =
7

8
,

(9.12)

and hence

(∆f̄)Adj;Adj×Adj,S×F̄ = (∆f̄)Adj;Adj×Adj,sym

=
30 + 7p

8
(9.13)

This obviously obeys the conjectured degree-of-freedom
inequality (2.12).

D. Comparison with DFI for AT Theory

We next calculate ∆f for the AT chiral gauge theory
with gauge group G = SU(N) with even N = 2k and
Rsc = [N/2]N = [k]2k. As noted above, for values of N
and p such that the UV to IR evolution is to a deconfined
non-Abelian Coulomb phase in the IR, the perturbative
degrees of freedom are the same as in the UV, and the
conjectured degree-of-freedom inequality is obeyed.
IfN and p are such that the gauge interaction produces

high-scale condensation in the channel (5.21) followed at
lower scales by condensations in the successive S×F̄ → F
channels in SU(N), SU(N − 1), etc., then, using Eqs.
(8.4) and (8.11), we compute

(∆f)AT ;[k]2k×[k]2k,S×F̄ ≡ fUV,AT − fIR,AT ;[k]2k×[k]2k,S×F̄

=
1

8

[

30N2 − 50N − 24 + 7p dR − 4p(p+ 1)
]

,

(9.14)

where here dR ≡
(

N
N/2

)

. This is positive for p satisfying

the upper bound

p <
1

8

[

7dR − 4

+
√

480N2 − 800N − 368 + 49d2R − 56dR

]

.

(9.15)

The upper bound on the right-hand side of Eq. (9.15) is
larger than the upper limit on p imposed by the require-
ment of asymptotic freedom, (6.8). Hence, the conjec-
tured degree-of-freedom inequality (2.12) is also obeyed
for all N and allowed p with this type of UV to IR evo-
lution in the AT model.

For the alternate type of UV to IR evolution in which
the low-energy effective SF̄ theory confines without any
spontaneous chiral symmetry breaking, producing mass-
less composite fermions, we calculate

(∆f)AT ;[k]2k×[k]2k,sym ≡ fAT,UV − fIR,AT ;[k]2k×[k]2k,sym

=
1

8

[

30N2 + 14N − 100 + 7p dR − 4p(p+ 1)
]

.

(9.16)

This is positive for p satisfying the upper bound

p <
1

8

[

7dR − 4

+
√

480N2 + 224N − 1584 + 49d2R − 56dR

]

.

(9.17)

The upper bound on the right-hand side of Eq. (9.17) is
larger than the upper limit on p imposed by the require-
ment of asymptotic freedom, (6.8). Hence, the conjec-
tured degree-of-freedom inequality (2.12) is also obeyed
for all N and allowed p with this type of UV to IR evo-
lution in the AT model.
As numerical examples, for N = 4 and N = 6, the

respective upper bounds on p from Eq. (6.8) are p ≤ 14
and p ≤ 7, while the respective right-hand sides of (9.15)
are 14.05 and 38.86 and the respective right-hand sides of
(9.17) are 16.22 and 40.56. As before, it should be noted
that if p is close to the upper bound from asymptotic
freedom, b1 is small, so that α

IR,2ℓ
is sufficiently small

that the UV to IR evolution is to a non-Abelian Coulomb
phase, so that one knows that the conjecture degree-of-
freedom inequality (2.12) is satisfied.

X. A CHIRAL GAUGE THEORY WITH SS̄
VECTORLIKE SUBSECTOR

A. Particle Content

In this section we construct and study a chiral gauge
theory with gauge group SU(N) and (massless) chiral
fermion content such that the irreducibly chiral part
of the theory is the same as in our previous two the-
ories, and the vectorlike subsector consists of p copies
of fermions in {R + R̄} where R is a non-self-conjugate
higher-dimensional representation, namely the symmet-
ric rank-2 tensor, S. Explicitly, the chiral fermions in-
clude

1. a symmetric rank-2 tensor representation, S, with
corresponding field ψab

i,L = ψba
i,L, where i = p+ 1,

2. N + 4 copies of chiral fermions in the conjugate
fundamental representation, F̄ , with fields χa,j,L,
where j = 1, ..., N + 4, and
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3. p copies of chiral fermions {S+S̄} in the symmetric
rank-2 tensor and conjugate tensor representations,
with fields ψab

i,L and ψab,i,L, i = 1, ..., p.

This fermion content is summarized in Table VI. It is
again clear that this theory is free of any anomalies in
gauged currents. We will refer to this as the SS̄ theory.

B. Beta Function

The one- and two-loop terms in the beta function of
this theory are

(b1)SS̄ = 3N − 2− 2p(N + 2)

3
(10.1)

and

(b2)SS̄ =
1

2
(13N2 − 30N + 1 + 12N−1)

−2p

3
(8N2 + 19N − 12N−1) . (10.2)

The values of pb1z,SS̄ and pb2z,SS̄ are listed in Table VII.
As p increases, the coefficient (b1)SS̄ decreases and passes
through zero as p ascends through the value

pb1z,SS̄ =
3(3N − 2)

2(N + 2)
. (10.3)

The asymptotic freedom requirement requires b1 > 0,
i.e.,

p <
3(3N − 2)

2(N + 2)
. (10.4)

There are two marginal cases to consider, consisting of
values of N and p for which (b1)SS̄ = 0, so that one must
determine the sign of (b2)SS̄ to see if the theory is asymp-
totically free. These are the pairs (N, p) = (6, 3) and

(22,4). However, for both of these cases, (b2)SS̄ is nega-
tive, so they are excluded by the condition of asymptotic
freedom. The upper bound pb1z,SS̄ , is a monotonically
increasing function of N for all physical N , increasing
from 2.1 for N = 3 and approaching the limiting value
4.5 from below as N → ∞. The resultant physical, inte-
gral values of p that are allowed by the inequality (10.4)
are:

p = 0, 1, 2 if 3 ≤ N ≤ 6

p = 0, 1, 2, 3 if 7 ≤ N ≤ 22

p = 0, 1, 2, 3, 4 if N ≥ 23 . (10.5)

For small p values, (b2)SS̄ is positive, so the two-loop
beta function βα,2ℓ has no IR zero. The coefficient (b2)SS̄

decreases and passes through zero to negative values as
p increases through the value

(pb2z)SS̄ =
3(13N3 − 30N2 +N + 12)

4(N + 2)(8N2 + 3N − 6)
. (10.6)

This is a monotonically increasing function of N for all
physical N , increasing from the value 24/125 = 0.192
at N = 3 and approaching the limiting value 39/32 =
1.21875 from below as N → ∞. We list the values of
pb1z,SS̄ and pb2z,SS̄ in Table VII. Since pb1z,SS̄ > pb2z,SS̄ ,
it follows that there is an interval (Ip)SS̄ of values of
p for which βα,2ℓ has an IR zero. This zero occurs at
α

IR,2ℓ,SS̄
= −4π(b1)SS̄/(b2)SS̄ , where these coefficients

were given above. As N → ∞, the product α
IR,2ℓ,SS̄

N
approaches the same limit as for the Adj model, given
above in Eq. (5.19).

C. Global Flavor Symmetry

The classical global chiral flavor symmetry of this the-
ory is

Gfl,cl,SS̄ = U(1 + p)S ⊗U(N + 4)F̄ ⊗ U(p)S̄

= SU(1 + p)S ⊗U(1)S ⊗ SU(N + 4)F̄ ⊗U(1)F̄ ⊗ SU(p)S̄ ⊗U(1)S̄ . (10.7)

The representations of the various fermion fields under
this symmetry are given in Table VI. The corresponding
global unitary transformations are

ψab
i,L →

1+p
∑

j=1

(US)ij ψ
ab
j,L , US ∈ U(1 + p)S , (10.8)

χa,i,L →
N+4
∑

j=1

(UF̄ )ij χa,j,L , UF̄ ∈ U(N + 4)F̄ , (10.9)

and

ψab,i,L →
p

∑

i=1

(US̄)ij ψab,j,L , US̄ ∈ U(p)S̄ . (10.10)
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Each of the three global U(1) symmetries is broken by
SU(N) instantons. As before, we define the vector

~v =
(

NST (S), NF̄T (F̄ ), NS̄T (S̄)
)

=

[

(1 + p)
(N + 2

2

)

,
N + 4

2
, p

(N + 2

2

)]

,

(10.11)

where the basis is (S, F̄ , S̄), and we have used the values
NS = 1+p, NF̄ = N +4, and NS̄ = p. In the same man-
ner as before, we can construct two linear combinations
of the three original currents that are conserved in the
presence of SU(N) instantons. These have charges given
by

~Q(j) ≡
(

Q
(j)
S , Q

(j)

F̄
, Q

(j)

S̄

)

, j = 1, 2 , (10.12)

where j = 1 for U(1)1 and j = 2 for U(1)2. Next, we
apply the conditions (7.7) and solve for the vectors of

charges ~Q(1) and ~Q(2) under the non-anomalous global
symmetries U(1)1 and U(1)2. The condition (7.7) does

not uniquely determine the vectors ~Q(j), j = 1, 2. We
choose

~Q(1) =
(

N + 4, −(1 + p)(N + 2), 0
)

(10.13)

and

~Q(2) =
(

0, p(N + 2), −(N + 4)
)

. (10.14)

Then the (non-anomalous) global chiral flavor symmetry
group of the theory is

Gfl,SS̄ = SU(1+p)S⊗SU(N+4)F̄⊗SU(p)S̄⊗U(1)1⊗U(1)2 .
(10.15)

For a given N and p that would lead to strong cou-
pling in the infrared, we check if the infrared theory
could consist of confined, gauge-singlet massless compos-
ite fermions that satisfy the ’t Hooft anomaly-matching
conditions. The possible gauge-singlet fermions that
could, a priori, form are described by the wavefunctions

Bijk = F̄a,i,L S
ab
j,L F̄b,k,L , with

1 ≤ i, k ≤ N + 4; 1 ≤ j ≤ 1 + p.

(10.16)

and

B′
ijk = (F̄ †)ai,L S̄ab,j,L (F̄ †)bk,L , with

1 ≤ i, k ≤ N + 4, 1 ≤ j ≤ p .

(10.17)

The composite fermion Bijk transforms as a rank-2 an-
tisymmetric tensor of SU(N + 4)F̄ and a fundamental

representation of SU(1 + p)S . From the analogue of the
relation (7.12), its charges under the two global abelian
factor groups in Gfl,SS̄ , U(1)k, k = 1, 2, are

Q
(1)
B = −N − 2p(N + 2) (10.18)

and

Q
(2)
B = 2p(N + 2) . (10.19)

The composite fermion B′
ijk transforms as a rank-2 con-

jugate antisymmetric tensor of SU(N + 4)F̄ and a fun-
damental representation of SU(p)S̄ . Its charges under
the two global abelian factor groups in Gfl,SS̄ , U(1)k,
k = 1, 2, are determined by the relation

Q
(k)
B′ = Q

(k)

S̄
− 2Q

(k)

F̄
, k = 1, 2. (10.20)

Hence,

Q
(1)
B′ = 2(1 + p)(N + 2) (10.21)

and

Q
(2)
B′ = −(N + 4)− 2p(N + 2) . (10.22)

We find that a hypothetical low-energy theory with these
two massless composite fermions would not satisfy the
’t Hooft anomaly-matching conditions for any nonzero
value of p. (In the p = 0 case, the theory degenerates
to the SF̄ model, for which there is only the one type
of composite fermion (7.11), and the dynamics in the
strongly coupled case would allow the formation of this
massless composite fermion.) As with the Adj and AT
theories, in the present SS̄ theory, if N and p are such
that the theory becomes strongly coupled in the infrared,
then the resultant fermion condensation in the S × S̄ →
1 channel leaves, as the descendant low-energy effective
field theory below the scale of this condensation, the SF̄
theory. This is equivalent to the original SS̄ theory with
p = 0.

D. UV to IR Evolution

In order to investigate the nature of the UV to IR
evolution in this SS̄ theory, we first note that, again by
design, the most attractive channel is

S × S̄ → 1 , (10.23)

preserving the SU(N) gauge symmetry. This has the
attractiveness measure

∆C2(S × S̄ → 1) = 2C2(S) =
2(N + 2)(N − 1)

N
.

(10.24)
That this is larger than the ∆C2 for the next-most-
attractive channel S × F̄ → F is clear since

∆C2(S × S̄ → 1)−∆C2(S × F̄ → F )
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= C2(S) > 0 . (10.25)

Using the rough estimate (2.7), the minimal critical cou-
pling for condensation in the channel (10.23) is

αcr,S×S̄ =
πN

3(N + 2)(N − 1)
. (10.26)

In order to get an approximate measure of the size of
the coupling at the IR fixed point as compared with the
minimum size for condensation, we define the ratio

ρ
IR,S×S̄

≡ αIR,2ℓ,SS̄

αcr,S×S̄

, (10.27)

depending on N and p ∈ (Ip)SS̄ . In Table VIII we list
values of this ratio for a range of N and p values.
As N → ∞ (with p fixed [25]), the ratio ρ

IR,S×S̄
ap-

proaches the same limit as ρ
IR,Adj×Adj

in the Adj model,
namely Eq. (5.29), and the specific values for the al-
lowed range p = 4, 3, 2 are the same as were given in
Eqs. (5.30)-(5.32). Also, the same comments about the
likely evolution to various IR phases that were made in
the N → ∞ limit there also apply here.

E. Comparison with DFI

Since the theory is asymptotically free and hence
weakly coupled in the UV, one can enumerate the per-
turbative field degrees of freedom, with the result

fUV,SS̄M = 2(N2 − 1) +
7

4

[

(2p+ 1)
N(N + 1)

2

+ (N + 4)N
]

, (10.28)

where here and below, the subscript SS̄M means SS̄
model. For values of N and p such that the beta func-
tion has an IR zero α

IR,2ℓ
at a value significantly smaller

than αcr,SS̄ , i.e., for which ρIR,SS̄;S×S̄
is well below unity,

one expects that the UV to IR evolution of this theory
will not involve any spontaneous chiral symmetry break-
ing but instead will lead to a deconfined non-Abelian
Coulomb phase in the infrared. In this case, as for the
other two theories discussed above, at the weakly cou-
pled perturbative level, fUV = fIR, and the perturba-
tive corrections obey the conjectured degree-of-freedom
inequality (2.12).
For values of N and p such that the beta function has

no IR zero or an IR zero α
IR,2ℓ

that is moderately large,

i.e., for which ρ
IR,SS̄;S×S̄

>∼ O(1), one expects that as the
reference scale µ decreases sufficiently, the gauge coupling
will become large enough to produce a bilinear fermion
condensate, and this condensate is expected to be in the
most attractive channel, (10.23). We denote the scale at
which this happens as ΛSS̄ . The associated condensate
is

〈ψab T
i,L Cψab,j,L〉 . (10.29)

A vacuum alignment argument suggests that the dynam-
ics would yield condensates with i = j, which would thus
take the values i = j = 1, ..., p, namely

〈
p

∑

i=1

ψab T
i,L Cψab,j,L〉 . (10.30)

The condensate (10.30) preserves an SO(p) isospin sym-
metry defined by

ψab
i,L →

p
∑

i=1

Oijψ
ab
j,L ,

ψab,i,L →
p

∑

i=1

Oijψab,j,L . (10.31)

Here the orthogonal transformation O ∈ SO(p) is in 1-1
correspondence with the special case of unitary trans-
formation in SU(p + 1)S that, furthermore, leaves the
i = p + 1 component of the (p + 1)-dimensional vector
(ψab

1,L, ..., ψ
ab
p+1,L)

T unchanged, and is also a special case

of the unitary transformation in SU(p)S̄ . Assuming that
the condensate takes the form (10.30), this process breaks
the initial (non-anomalous) global flavor symmetry group
Gfl,SS̄ to

G′
fl,SS̄ = SO(p)⊗ SU(N + 4)F̄ ⊗U(1)′ . (10.32)

Here the SU(N + 4) is (7.3), and the U(1)′ is the lin-
ear combination of U(1)1 and U(1)2 for which the fields
(S, F̄ , S̄) have charges of the form Q = (a, b,−a). The
2p chiral fermions involved in the condensate (10.29),
namely the S fields ψab

i,L and the S̄ fields ψab,i,L with
i = 1, ..., p, gain dynamical masses of order ΛSS̄. Note
that this leaves the (p + 1)’th component ψab

i,L with
i = p + 1 still massless. It follows that the number of
Nambu-Goldboson bosons produced by this spontaneous
symmetry breaking of Gfl,SS̄ to G′

fl,SS̄
is

o(Gfl,SS̄)− o(G′
fl,SS̄) =

p(3p+ 5)

2
. (10.33)

In the low-energy effective field theory applicable at
scales µ << ΛSS̄, one integrates out the now-massive S
and S̄ fermions ψab

i,L and ψab,i,L with i = 1, ..., p. The
resultant global flavor symmetry group describing the
massless degrees of freedom in this low-energy effective
theory is just that of the SF̄ model, Gfl,SF̄ given in Eq.
(8.6).
The further evolution of this SF̄ theory into the in-

frared and the two possibilities of confinement without
chiral symmetry breaking or sequential condensate for-
mation in the SF̄ → F channel and associated gauge
and global symmetry breaking have been reviewed above.
From these we can calculate the resultant IR degrees
of freedom and check the degree-of-freedom inequality
(2.12).
For the S× S̄ → 1 condensation followed by sequential

S × F̄ condensations in the SU(N) theory, SU(N − 1)
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theory, etc., we have

fIR,SS̄M ;S×S̄,S×F̄ = 8N + 1 +
7

4

[N(N − 1)

2
+ 4N

]

+
p

2
(3p+ 5)

=
N(7N + 113)

8
+ 1 +

p

2
(3p+ 5) .

(10.34)

Hence,

(∆f)SS̄M ;S×S̄,S×F̄ ≡ fUV,SS̄M − fIR,SS̄M ;S×S̄,S×F̄

=
1

4

[

15N2 − 25N − 12 + p{7N(N + 1)− 2(3p+ 5)}
]

.

(10.35)

This is positive for all N and p values of relevant here.
Explicitly, for (nonnegative) p, (∆f)SS̄M ;S×S̄,S×F̄ is pos-
itive if

p <
1

12

[

7N(N + 1)− 10

+
√

49N4 + 98N3 + 269N2 − 740N − 188
]

.

(10.36)

The right-hand side of Eq. (10.36) is greater than the
upper bound pb1z allowed by asymptotic freedom. For
example, for N = 3, the physical, integral values of p
are required by asymptotic freedom to be ≤ 2, whereas
the right-hand side of (10.36) is 12.95; and for N = 4,
asymptotic freedom again requires p ≤ 2, whereas the
right-hand side of (10.36) is 22.61, and similarly for larger
values of N .
For a UV to IR evolution involving SS̄ → 1 condensa-

tion followed by confinement without spontaneous chiral
symmetry breaking, we find

fIR,SS̄M ;S×S̄,sym =
7

4

[ (N + 4)(N + 3)

2

]

+
p(3p+ 5)

2

(10.37)

and hence

(∆f)SS̄M ;S×S̄,sym ≡ fUV,SS̄M − fIR,SS̄M ;S×S̄,sym

=
1

4

[

15N2 + 7N − 50 + p{7N(N + 1)− 2(3p+ 5)}
]

.

(10.38)

This is positive for all N and p values of relevant here.
Explicitly, for (nonnegative) p, (∆f)SS̄M ;SS̄,SF̄ is posi-
tive if

p <
1

12

[

7N(N + 1)− 12

+
√

49N4 + 98N3 + 269N2 + 28N − 1100
]

.

(10.39)

The right-hand side of Eq. (10.39) is greater than the
upper bound pb1z allowed by asymptotic freedom. For
example, for N = 3, p ≤ 2 for asymptotic freedom, while
the right-hand side of (10.39) is 13.63; and for N = 4,
again, p ≤ 2 for asymptotic freedom, while the right-hand
side of (10.39) is 23.23, and similarly for larger values of
N .
In the N → ∞ limit (5.13) (with p fixed), we have

f̄UV,SS̄ =
37 + 14p

8
(10.40)

and

f̄IR,SS̄M ;S×S̄,S×F̄ = f̄IR,SS̄M ;S×S̄,sym =
7

8
, (10.41)

and hence

(∆f̄)SS̄M ;S×S̄,S×F̄ ≡ f̄UV,SS̄M − f̄UV,SS̄M ;S×S̄,S×F̄

= (∆f̄)SS̄M ;S×S̄,sym ≡ f̄UV,SS̄M − f̄UV,SS̄M ;S×S̄,sym

=
15 + 7p

4
. (10.42)

This difference is manifestly positive, in agreement with
the conjectured degree-of-freedom inequality (2.12).

XI. CONCLUSIONS

In summary, we have constructed three asymptot-
ically free chiral gauge theories and analyzed their
renormalization-group evolution from the ultraviolet to
the infrared. These theories have the gauge group SU(N)
and massless fermions transforming according to a sym-
metric rank-2 tensor representation, S, and N +4 copies
of a conjugate fundamental representation, F̄ , together
with a vectorlike subsector with p copies of fermions
in higher-dimensional representation(s). We first stud-
ied two theories with the vectorlike fermions in differ-
ent self-conjugate representations, namely theories with
p copies of fermions in (a) the adjoint representation and
(b) in the antisymmetric rank-k tensor representation
of SU(2k). We have also studied a third type of the-
ory, with a vectorlike subsector consisting of p pairs of
fermions transforming as {S+ S̄}. We have presented re-
sults on beta functions, IR zeros of these beta functions,
and possible types of UV to IR evolution. In analyzing
fermion condensate formation, we have made use of the
most-attractive-channel approach. We have shown that
for these three types of chiral gauge theories, the various
types of likely UV to IR evolution satisfy the conjectured
degree-of-freedom inequality (2.12) for all relevant values
ofN and p. It is hoped that the new chiral gauge theories
constructed and analyzed here may serve as useful theo-
retical laboratories for the study of chiral gauge theories
in future work.
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Appendix A: Beta Function Coefficients and

Relevant Group Invariants

For reference, we list the one-loop and two-loop coeffi-
cients [16, 17] in the beta function (2.3) for a non-Abelian
chiral gauge theory with gauge groupG and a set of chiral
fermions comprised of Ni fermions transforming accord-
ing to the representations {Ri}.

b1 =
1

3

[

11C2(G) − 2
∑

Ri

NiT (Ri)
]

(A1)

and

b2 =
1

3

[

34C2(G)
2 − 2

∑

Ri

Ni{5C2(G)+ 3C2(Ri)}T (Ri)
]

.

(A2)
We list below the group invariants that we use for the

relevant case G = SU(N). We have C2(G) = C2(Adj) =
T (Adj) = N , and, as in the text, we use the symbols F

for and S for . We have

C2(F ) =
N2 − 1

2N
, T (F ) =

1

2
, (A3)

C2(S) =
(N + 2)(N − 1)

N
, T (S) =

N + 2

2
, (A4)

C2([k]N ) =
k(N + 1)(N − k)

2N
, (A5)

and

T ([k]N ) =
1

2

(

N − 2

k − 1

)

. (A6)

Hence, for our case N = 2k,

C2([k]2k) =
k(2k + 1)

4
(A7)

and

T ([k]2k) =
(2k − 2)!

2[(k − 1)!]2
. (A8)
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TABLE I: Properties of fermions in the chiral gauge theories with
vectorlike subsector consisting of p copies of fermions in the self-
conjugate representation R = Rsc. The entries in the columns
are: (i) fermion, (ii) representation of the SU(N) gauge group, (iii)
number of copies, and representations (charges for abelian factors)
of the respective factor groups in the global flavor symmetry group:
(iv) SU(N +4)F̄ , (v) SU(p)Rsc , (vi) U(1)1, (vii) U(1)2. The nota-
tion for the fermion ξ in the Rsc is generic; specifically, this is ξa

b,i,L

for the Adj model and ξ
a1,...,ak
i,L

for the AT model (with N = 2k).

See text for further discussion.

fermion SU(N) no. copies SU(N + 4)F̄ SU(p)Rsc U(1)1 U(1)2

S : ψab
L 1 1 1 N + 4 2pTRsc

F̄ : χa,i,L N + 4 1 −(N + 2) 0

Rsc: ξL Rsc p 1 0 −(N + 2)

TABLE II: Values of pb1z,Adj and pb2z,Adj in the Adj theory as
functions of N .

N pb2z,Adj pb1z,Adj

3 0.3333 3.5000

4 0.5391 3.7500

5 0.6690 3.9000

6 0.7578 4.0000

7 0.8222 4.0714

8 0.8708 4.1250

9 0.90895 4.1667

10 0.9396 4.2000

11 0.9647 4.2773

12 0.9857 4.2500

13 1.0035 4.2692

14 1.0187 4.2857

15 1.0320 4.3000

102 1.1906 4.4700

103 1.2159 4.4970

∞ 1.21875 4.5000
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TABLE III: Values of α
IR,2ℓ,Adj

and ρ
IR,Adj×Adj

in the Adj the-
ory for an illustrative range of values of N and, for each N , the
values of p in the respective interval (Ip)Adj .

N p α
IR,2ℓ,Adj

ρ
IR,Adj×Adj

3 1 1.96 5.63

3 2 0.471 1.35

3 3 0.0982 0.281

4 1 2.34 8.95

4 2 0.470 1.80

4 3 0.120 0.457

5 1 2.75 13.1

5 2 0.448 2.14

5 3 0.121 0.579

6 1 3.24 18.6

6 2 0.4215 2.415

6 3 0.117 0.669

7 1 3.88 25.9

7 2 0.395 2.64

7 3 0.110 0.738

7 4 0.00504 0.0337

8 1 4.75 36.3

8 2 0.370 2.82

8 3 0.104 0.793

8 4 0.00784 0.0599

13 2 0.275 3.42

13 3 0.0768 0.954

13 4 0.0109 0.135

14 2 0.261 3.49

14 3 0.0728 0.973

14 4 0.01075 0.144

15 2 0.249 3.56

15 3 0.0692 0.991

15 4 0.0106 0.152

TABLE IV: Values of pb1z,AT , pb2z,AT , pmax, and the intervals
(Ip)AT as functions of N in the AT model with gauge group SU(N)
with N = 2k.

N pb2z,AT pb1z,AT pmax (Ip)AT

4 2.509 15 14 3 ≤ p ≤ 14

6 1.590 8 7 2 ≤ p ≤ 7

8 0.665 3.3 3 1 ≤ p ≤ 3

10 0.235 1.2 1 p = 1
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TABLE V: Values of α
IR,2ℓ,AT

and ρ
IR,AT

in the AT theory for
the relevant values of N and, for each N , the values of p in the
respective interval (Ip)AT .

N p α
IR,2ℓ,AT

ρ
IR,AT

4 3 11.170 26.67

4 4 3.371 8.05

4 5 1.8345 4.38

4 6 1.178 2.81

4 7 0.814 1.94

4 8 0.583 1.39

4 9 0.422 1.01

4 10 0.305 0.728

4 11 0.215 0.514

4 12 0.144 0.345

4 13 0.0871 0.208

4 14 0.0398 0.095

6 2 4.021 20.16

6 3 0.974 4.88

6 4 0.460 2.29

6 5 0.242 1.21

6 6 0.125 0.625

6 7 0.0508 0.255

8 1 1.290 11.08

8 2 0.183 1.57

8 3 0.0241 0.207

10 1 0.0360 0.473

TABLE VI: Properties of fermions in the SS̄ theory with vec-
torlike subsector consisting of p copies of fermions in the {S + S̄}
representations. The entries in the columns are: (i) fermion, (ii)
representation of the SU(N) gauge group, (iii) number of copies,
and representations (charges for abelian factors) of the respective
factor groups in the global flavor symmetry group Gfl,SS̄ : (iv)
SU(1 + p)S ; (v) SU(N + 4)F̄ , (vi) SU(p)S̄ , (vi) U(1)1, (vii) U(1)2.
See text for further discussion.

fermion SU(N) no. copies SU(1 + p)S SU(N + 4)F̄ SU(p)S̄ U(1)1 U(1)2

S : ψab,i
L 1 + p 1 1 N + 4 0

F̄ : χa,j,L N + 4 1 1 −(1 + p)(N + 2) p(N + 2)

S̄ : ψab,k,L p 1 1 0 −(N + 4)
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TABLE VII: Values of pb1z,SS̄ and pb2z,SS̄ in the SS̄ theory, as
functions of N .

N pb2z,SS̄ pb1z,SS̄

3 0.1920 2.1000

4 0.3433 2.5000

5 0.4573 2.7857

6 0.5456 3.0000

7 0.6159 3.1667

8 0.6730 3.3000

9 0.7203 3.4091

10 0.7602 3.5000

20 0.9642 3.9455

25 1.0106 4.0555

50 1.1098 4.2692

102 1.1630 4.3824

103 1.2131 4.4880

∞ 1.21875 4.5000

TABLE VIII: Values of α
IR,2ℓ,SS̄

and ρ
IR,S×S̄

for 3 ≤ N ≤ 8 in

the SS̄ theory, and, for each N , the values of p ∈ (Ip)SS̄ .

N p α
IR,2ℓ,SS̄

ρ
IR,S×S̄

3 1 0.684 2.18

3 2 0.0278 0.0885

4 1 0.857 3.68

4 2 0.113 0.486

5 1 0.989 5.29

5 2 0.153 0.819

6 1 1.106 7.04

6 2 0.173 1.10

7 1 1.219 8.98

7 2 0.182 1.34

7 3 0.015 0.111

8 1 1.334 11.15

8 2 0.186 1.55

8 3 0.0245 0.204


