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We reexamine the gravitational collapse of rotating neutron stars to black holes by new 3+1
numerical relativity simulations employing the Z4c formulation of Einstein equations, the moving
puncture gauge conditions, and a conservative mesh refinement scheme for the general relativistic
hydrodynamics. The end state of the collapse is compared to the vacuum spacetime resulting from
the evolution of spinning puncture initial data. Using a local analysis for the metric fields, we
demonstrate that the two spacetimes actually agree. Gravitational waveforms are analyzed in some
detail. We connect the emission of radiation to the collapse dynamics using simplified spacetime
diagrams, and discuss the similarity of the waveform structure with the one of black hole perturbation
theory.
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I. INTRODUCTION

A fundamental problem in general and numerical rel-
ativity is the simulation of the gravitational collapse of
a rotating neutron star to a black hole. The problem
is of theoretical and astrophysical relevance, and it has
been studied in some detail by means of 2D axisymmet-
ric simulations [1–7] and 3D simulations [8–13]. The rele-
vant theoretical questions are related to the nature of the
collapse spacetime, black hole formation and its proper-
ties. Astrophysically, rotating neutron stars close to the
collapse threshold can be produced in stellar core col-
lapse or neutron star mergers, e.g. [14, 15]. Associated
to such events, a significant emission of electromagnetic,
neutrino and gravitational radiation is expected, e.g. [16].
Accurate numerical relativity simulations are essential to
develop emission models. Thus, understanding the tech-
nical details of the simulations, such as the role of the
gauge and the sources of inaccuracies, is of particular im-
portance. In this paper we reexamine two key aspects of
the rotating collapse by a new set of numerical relativity
simulations.

First, we investigate the end state of the collapsing
spacetime when puncture gauge conditions are adopted,
and compare it to the spacetime of a single spinning
puncture. Gauge conditions are a key technical point
for the simulation of collapse in 3+1 general relativity.
The combination of the 1+log slicing condition [17] and
Gamma-driver shift for the spatial gauge [18, 19], com-
monly referred as “puncture gauge”, allows one to per-
form stable simulations and follow black hole formation
without excision treatment [20]. A clear understanding
of the role of this gauge in the gravitational collapse sce-
nario has been achieved only in the spherically symmetric
case [21]. For axisymmetric spacetimes little is known. In
vacuum, it is unclear how and to what stationary slice of
Kerr the conformally flat spinning puncture initial data
evolve. Some numerical and analytical studies have re-

cently performed in [22, 23]. Here, we present the first
analysis in presence of matter.

Second, we calculate the gravitational waveforms
(GWs) emitted during collapse. Consistent gravitational
waveforms from the neutron star collapse can be com-
puted only using full general relativity. It has been
pointed out long ago, and notably in [1, 24–26], that the
relevant features are rather simple and waveforms resem-
ble the ones generated by a particle infalling the black
hole [2, 27]. However, several 3D studies suggest a more
complicated wave pattern with the exception of recent
work of [13] (see also [28]) in which the “perturbative
picture” holds. Our data confirm the latter result. The
investigation of these aspects requires very precise nu-
merical data. In this work, such precision is achieved by
the use of (i) a conservative mesh refinement scheme for
the hydrodynamics evolution [13, 29, 30], and (ii) the Z4c
formulation of Einstein equations [31], which is applied
for the first time to this problem.

The paper is organized as follows. Section II summa-
rizes the equations, the numerical method, and the imple-
mentation details. Sec. III presents the dynamics of the
gravitational collapse. Sec. IV compares our numerical
results with the spacetime of a spinning puncture. Sec. V
focuses on the emitted gravitational waves. We conclude
in Sec. VI. Throughout the article dimensionless units
are used, i.e. we set c = G = M� = 1.

II. METHOD

A. Numerical relativity framework

Let us start discussing briefly the general relativity
framework employed in this work. Einstein’s field equa-
tions are written in 3+1 form and formulated as the Z4c
system [31, 32]. The gauge conditions are specified as
evolution equations for the lapse function α and the shift
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vector βi. We employ the 1+log slicing condition [17],

∂tα = βi∂iα− α2µLK̂ , (1)

together with the integrated version of the Gamma-driver
shift condition [18, 19]

∂tβ
i = µSΓi − ηβi + βj∂jβ

i . (2)

Above, K̂ is the trace of the extrinsic curvature in the Z4c
formulation and Γi the conformal connection functions.
These conditions are commonly referred as “puncture
gauge”. Puncture gauge conditions have been proved to
be a key element for collapse simulations [20, 21]. The
gauge parameters in Eq. (1) and (2) are chosen as η = 0.3,
µL = 2/α, and µS = 1. We employ the constraint damp-
ing scheme of the Z4c formulation, and set the damping
parameters to κ1 = 0.02 and κ2 = 0 [33].

The neutron star matter is described within gen-
eral relativistic hydrodynamics (GRHD) [34]. Eulerian
GRHD equations are written in conservative form and
coupled with the evolution equations for the spacetime.
We use the same notation and equations as described
in [15], and refer to that paper for details. The equation
of state for the fluid considered here is the Γ-law,

p = (Γ− 1)ρε , (3)

where p is the fluid pressure, ρ the rest-mass density, ε the
specific internal energy, and Γ the adiabatic exponent.

B. BAM code

For our simulations we use the BAM code described
in [15, 35]. The numerical method is based on the
method-of-lines, Cartesian grids and finite differencing.
BAM implements a grid made of a hierarchy of cell-
centered nested Cartesian boxes. The grid structure is
build out of L levels of refinement labeled l = 0, ..., L−1.
Every refinement level l has one or more Cartesian grids
with constant grid spacing hl and n points per direction.
Levels are typically refined in resolutions of constant fac-
tors of two. Levels with l > lm can employ a different
number of points per direction, nm 6= n. Runge-Kutta
type integrators are used for the time evolution. For the
time stepping the Berger-Oliger algorithm (BO) is em-
ployed [36]. Metric spatial derivatives are approximated
by fourth order finite differences. GRHD equations are
solved with a standard high-resolution–shock-capturing
schemes based on primitive reconstruction and the Local-
Lax-Friedrich’s central scheme for the numerical fluxes.
Primitive reconstruction is performed with the fifth or-
der WENO scheme of [37] (see [38] for its application in
numerical relativity).

The main difference with respect to previous work is
the implementation of an algorithm to enforce mass con-
servation of the hydrodynamical quantities among dif-
ferent refinement levels [29] (see also [13, 30] for numer-
ical relativity implementations). This algorithm allows

TABLE I: Grid configurations for the BAM simulations. L
number of total levels, n number of points per direction, Lm

number levels employing nm points per direction (every level
l > 3), hf finest grid spacing, hc coarsest grid spacing. The
neutron star is covered complelty by level l = 5, while its
radius equatorial radius is ∼ 7.7M�. The outer boundary is
roughly at rout ∼ 576M�.

Name L n Lm nm hf hc

G8 8 144 4 64 0.0625 8

G9L 9 108 5 48 0.04167 10.67

G9 9 144 5 64 0.03125 8

G9H 9 216 5 80 0.025 6.4

G10 10 144 6 64 0.015625 8

G11 11 144 7 64 0.0078125 8

G11H 11 216 7 96 0.0052083 5.33

G11F 11 288 7 128 0.00390625 4

us to use refinement levels inside the neutron star with-
out introducing mass violation. Our implementation fol-
lows [30], details and extensive tests for single and binary
neutron star spacetimes will be given elsewhere [Dietrich
et al., In prep.]. We mention that, throughout this work,
we use averages for the BO restriction and a second-order
ENO scheme for the BO prolongation step.

Simulations presented in this work employ quadrant
symmetry. The grid configurations are described in
Tab. I. We investigate numerical uncertainties by in-
creasing both the number of refinement levels keeping
the same number of points per directions, and the reso-
lution for a fixed number of levels. The former procedure
allows us to better resolve the origin and the puncture
in an efficient way; the latter has usually a larger effect
on the waveforms. In the next sections these effects are
discussed.

III. COLLAPSE DYNAMICS

We study the rotational collapse by evolving a partic-
ular initial stellar configuration constructed by perturb-
ing a uniformly rotating neutron star model in unstable
equilibrium, i.e. beyond the radial stability point. In this
section we describe the dynamics of the collapse and the
grid/resolution dependence in our simulations.

The initial data configuration is the D4 model inves-
tigated previously in [10, 11, 13, 28]. This choice fa-
cilitate the comparison with previous work. The equa-
tion of state is a Γ = 2 polytrope p = KρΓ with
K = KID = 100, the model’s central rest-mass den-
sity is ρc = 4.0869 · 10−3, the axes-ratio is 0.65, the
gravitational mass M = 1.8605M�, and the baryonic
mass Mb = 2.0443M�. The equilibrium configuration
has been computed with Stergioulas’s RNS code [39].

The gravitational collapse can be induced either by a
pressure perturbation or by computing initial data at low
resolution. Both methods violate Einstein constraints,
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FIG. 1: Spacetime diagram visualizing the collapse dynam-
ics of G11H. Contour lines in the equatorial plane (black
solid) and perpendicular (black dashed) are shown for ρ =
2.5 · 10−5, 10−4, 2.5 · 10−4, 10−3, 2.5 · 10−3, 10−2. The appar-
ent horizon forms at 188M� (straight blue line). Red dashed
horizontal lines correspond to special features of in the grav-
itational wave signal as marked in Fig. 9.

the violation can affect significantly the calculation of
gravitational radiation. For large perturbations or low
resolution initial data we observe a large unphysical burst
of radiation at early times; in some cases this burst has
an amplitude comparable to the waveform amplitude and
cannot be clearly separated from the physical data. We
minimize this effect by choosing a small perturbation and
using high resolutions. Specifically, we reduce the initial
pressure of 0.5% by recomputing its equilibrium value
with a different polytropic constant, K = 99.5, then the
unperturbed one KID = 100 (compare with [10, 11, 13]
where 2% and [28] where 0.1% was applied). The model
is then evolved with Eq. (3).

The collapse dynamics is summarized by the simpli-
fied spacetime diagrams shown in Fig. 1, which shows the
evolution of the coordinate star surface, constant density
lines, and of the apparent horizon radius, see e.g. [10].
Most of the matter contracts in an almost homologous
way and maintains its axisymmetric distribution until
t ∼ 175M�. Notice, however, that at high densities
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FIG. 2: Rotating collapse central dynamics. Central rest-
mass density (top) and central lapse (bottom). Results for
various grid configurations and resolution are shown.

(r <∼ 2) the contour lines slightly expand before collaps-
ing. An apparent horizon is first found at t ∼ 188M�
(for resolution G11H). Soon after horizon formation, all
the matter is inside the horizon and actually “falls off”
the grid due to gauge conditions (see [21] and below). In
Sec. V we will further discuss this spacetime diagram, and
identify specific waveforms features for each time marked
in Fig. 1.

Fig. 2 shows the evolutions of the central (coordi-
nate radius r ≈ 0) density ρc and the central lapse αc.
During collapse the central lapse decreases and the cen-
tral density increases, the latter reaches a maximum at
t ∼ 195M�. The plot shows results for different grid
configurations. By increasing the number of refinement
levels the origin is better resolved, and consequently the
maximum density (lapse) increases (decreases). Notice
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FIG. 3: Convergence test for the density ρc for the G9 (upper
panel) and G11 (lower panel) grid configurations. For both
triplets the results scale at approximately second order, con-
vergence is more robust and observed longer for the higher
resolved G11 data.

this is consistent with the argument of [21]. By varying
the resolution for a given grid setup we observe a mono-
tonic behavior. The resolution effect (see the dashed-
solid-dotted lines for configurations G9 and G11) can be
as large as the effect of including more refinement levels;
hence both parameters need to be tuned for an optimal
grid setup. For higher resolutions the collapse happens
earlier.

In Fig. 3 we show a standard three-level self-
convergence plot for the central density ρc(t). Similar
plots are also obtained for other quantities. For the G11
configurations we observe second order convergence al-
most up to horizon formation (see later), while for G9
convergence is slower after t ∼ 100M�. After horizon
formation convergence is slower, and, in particular, can-
not be monitored at the origin, when the black hole
(puncture) forms. In order to minimize the numerical
uncertainty for our local analysis presented below, we
use the highest number of refinement levels and focus on
the model G11H (unless otherwise stated).

Fig. 4 shows the baryonic mass conservation, and the
L2 norm of the Hamiltonian constraint ||H||2. The rela-
tive error in the mass conservation is <∼ 10−4 up to the
collapse. At black hole formation the Hamiltonian con-
straint (and the momentum constraints, not in the figure)
shows a maximum. Constraint violations decrease when
the grid is refined and the origin better resolved. Ad-
ditionally, the higher resolution is, the smaller the con-
straints violations are. Notably, for the higher resolutions
the violation remains below the level of the initial data
due to the use of the Z4c formulation.
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FIG. 4: Rotating collapse dynamics, global quantities. Con-
servation of baryonic mass ∆Mb = 1 −Mb(t)/Mb(0) (top),
L2 norm of the Hamiltonian constraint ||H||2 (bottom). The
constraint violations are measured on level l = 1, i.e. the
second coarsest level on which also the wave extraction takes
place.

The horizon mass and angular momentum, as mea-
sured by the apparent horizon finder, are MBH ∼
1.859(1)M� and jBH ∼ 0.543(7). In Fig. 5 we show the
differences between the horizon mass and spin with re-
spect to the initial ADM quantities and those estimated
by the apparent horizon corrected by the amount of en-
ergy (angular momentum) emitted in gravitational waves
(see below). We find typical relative errors at, or below,
the ∼ 0.1% level.

IV. COLLAPSE END STATE

In vacuum, the numerical evolution of puncture black-
hole initial data [40] approaches an asymptotically cylin-
drical stationary solution called trumpet [41]. The spatial
gauge choice, in particular, is responsible for pushing grid
points close to the puncture into the black hole interior;
the initial wormhole topology ceases to be numerically re-
solved [42–44]. The end state of a spherical gravitational
collapse asymptotically approaches the same trumpet so-
lution found in vacuum simulations [21]. The agreement
of end-states is again caused by the spatial gauge con-
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FIG. 5: Differences between the horizon mass (red) and di-
mensionless angular momentum (blue) of the final black hole
corrected by the radiation with respect to the initial ADM
quantities of the star. For both quantities the error is below
0.1%. G10 grid data are shown with solid lines, dashed lines
are used for G11F data.

dition, which allows the matter to fall inwards into a
region of spacetime that is not resolved by the numerical
grid. As stressed in [21], the result is nontrivial because
in the collapsing spacetime there is (at least in the mat-
ter region) no time-like Killing vector that can lead to
a stationary end-state, and, at the continuum level, it
has different topology than the puncture. Trumpet so-
lutions are also found in dust and gravitational waves
collapse [45, 46]. In axisymmetric vacuum spacetimes,
one can argue that puncture initial data evolve towards
some stationary trumpet slices of Kerr [22, 23, 47–49].
In [22] a first numerical examination of spinning black
holes with the puncture gauge was performed and, re-
cently, Ref. [23] found an analytical description of partic-
ular trumpet slices in the Kerr spacetime. Our discussion
builds on the results of [22].

In the following we demonstrate that the end states of
a rotating neutron star is a spinning puncture of mass
M . We propose two arguments for this statement; both
arguments rely on the fact that various metric functions
at the puncture can deliver information about the punc-
tures spin [22]. In particular, the leading order behavior
of the (square root of the) conformal factor and of the
lapse function are

√
χ(r ∼ 0) ∼ c0+c1r

γc , and α(r ∼ 0) ∼ a0+a1r
γa , (4)

with γc and γa characteristic exponents that depend on
the spin (see Fig. 2 of [22] and Fig. 6 below). Further-
more, the dimensionless spin j of a puncture can be es-
timated as

j '
√

1.41789− 4.71218 · K̄(r = 0) , (5)

extracting the value of the extrinsic curvature, K̄ =
K̂/M , at point r = 0. In the following, we verify that
the spin estimated in the collapsed spacetime from γc,
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FIG. 6: Characteristic behavior of metric variables
√
χ and

α at r = 0. Exponents γc and γa,c as extracted by fitting to
Eq. (6) for G11H. The thin solid lines are spinning puncture
data [22]. The thick lines are collapse data with error bars
obtained from our simulations. Red (blue) color refers to χ
(α). The dashed vertical line indicates the angular momen-
tum from the apparent horizon finder. The dark shaded re-
gion represents the spin obtained from Eq. 5, the light shaded
region the estimate according to γa,c

γa, and K̄(r = 0) agrees with the angular momentum
measured from the apparent horizon.

The exponents γc and γa can be determined as best
fits of the simulation data according to the models, e.g.

√
χ(r ∼ 0) = c0 + c1r

γc(1 + c2r + c3r
2) (6)

and similarly for the α(r ∼ 0). The fit is calculated
on the radial interval r ∈ [0.01, 0.3] in a direction either
parallel or perpendicularly to the rotational axis (z-axis).
Note the parallel and perpendicular values actually dif-
fer [22]. The results are reported in Fig. 6. The thin solid
(dashed) lines are spinning puncture data in the paral-
lel (perpendicular) direction. The straight thick lines are
collapse data with error bars estimated with the help of
different resolutions and different fitting intervals for r.
Red (blue) color refers to χ (α). The vertical line in-
dicates the dimensionless angular momentum estimated
from the collapse simulation’s apparent horizon. The fig-
ure shows that the spinning puncture lines cross the col-
lapse data at these points. The dimensionless angular
momentum is compatible with the one of a puncture of
the same mass.

Let us also consider a second estimate of the dimen-
sionless spin based on the evolution variables and the
puncture gauge. According to [22] the extrinsic curva-
ture depends on the angular momentum of the black
hole, when a stationary state is reached. The value
K̄(r = 0) = K̂(r = 0)/M can be extrapolated from a

linear fit of K̂ in the region r ∈ [0.05; 0.25]. We use
an extrapolation perpendicular, orthogonal, and in an
angle of 45◦ to the spin axis. In principle all these val-
ues coincide [22]. We receive K(r = 0) = 0.1301 along
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the x-axis, K(r = 0) = 0.1284 along the z-axis, and
K(r = 0) = 0.1293 along the diagonal for the G11H-
setup. Using Eq. (5) we get j = 0.533 ± 0.014, which
agrees with the measured horizon spin within the mea-
surement uncertainty (which is obtained from different
resolutions and fitting intervals).

V. GRAVITATIONAL WAVEFORMS

Gravitational waves are computed by multipole decom-
position of the curvature invariant rΨ4; metric multipoles
rh`m are then reconstructed from curvature multipoles
(see below). In the following, we discuss both curva-
ture and metric waveforms. Most of the GW energy
Egw ∼ 7.5 · 10−7 is emitted in the (`,m) = (2, 0) chan-
nel. The second dominant mode is the (`,m) = (4, 0)
multipole, but, as we shall see, it cannot be computed
accurately. We plot waveforms against a retarded time
defined as u = t− r∗ = t− r − 2M log (r/2M − 1).

Fig. 7 shows the two dominant axisymmetric modes
` = 2, 4 of the curvature waveform. The left panel plots
the quadrupolar ` = 2 mode, which is characterized by
a burst of radiation peaking before black hole formation
and followed by a ringdown pattern. We also show the
|Ψ4(20)

| in log scale to highlight the quasinormal ringing
phase. According to the ten local maxima between u ∈
[225M�, 380M�], we calculate the fundamental complex
frequencies and find Mω = (0.425,−0.0842). Comparing
our results with [50] we see that our values agree within
(10%, 3%) with perturbation theory [50] assuming j =
jBH = 0.544 and stationarity. (Notice the spacetime in
the simulation is still very dynamical at t ∼ 225M�.)

The left panel of Fig. 7 compares our data with those
of [13], extracted at scri and kindly provided by the
authors. Waveforms are shifted in time to match the
peaks. The comparison indicates a very good agree-
ment [62]. Notice that, as in our work, also [13] uses
a conservative mesh refinement algorithm, but employs
the BSSN-evolution system [51–53] and wave extraction
is performed with the Cauchy-characteristic extraction.

As one can observe from the figure’s right panel, the
` = 4-mode has amplitude ∼ 50 times smaller then the
` = 2. The amplitude is of the same order as the burst of
radiation caused by the initial (constraint violating) per-
turbation at early times. These kind of data are inaccu-
rate, and should be discarded in a physically meaningful
analysis.

A self-convergence test on the (`,m) = (2, 0) waveform
is shown in Fig. 8. We observe approximate second order
convergence in the G11 data. However, clear pointwise
convergence of the waveform is difficult to obtain: since
we evolve constraint violating initial data, simulations at
different resolutions are inconsistent, and for instance,
they do not tend to the same continuum collapse time.
Although the effect is rather small, it is visible in the
converge plot as a dephasing in the differences. The ef-
fect is larger at lower resolutions (and for larger initial

perturbations, not discussed here), but persists also at
high resolutions. We expect it can be removed only us-
ing constraint satisfying initial data.

Further, we study uncertainties due to finite radius
extraction. Waveforms computed at different radii r =
(100, 150, 200, 250, 300) and plotted against u slightly dif-
fer in amplitude. A linear extrapolation to r → ∞ of
rΨ4 20(u; r) shows that the amplitude uncertainty can
be as large as 15% for r = 100 and drop to below 5%
for r = 300. This uncertainty can be of the same order
of truncation errors. Notice in this comparison the use
of the retarded time as defined above in term of r∗ is es-
sential in order to properly align the waveforms, i.e. the
logarithm term 2M log (r/2M − 1) has a significant con-
tribution at these radii.

Let us turn now to the metric waveform, and discuss its
physical features. The multipoles h`m are reconstructed
by integrating the relation Ψ4 = ḧ. We adopt a time
domain integration subtracting a quadratic polynomial
as described in [54, 55]. Alternatively we have exper-
imented with the frequency domain integration of [56],
but in the collapse problem it is difficult to identify a
cutting frequency for the high-pass filter proposed there.
In both cases the reconstruction introduces inaccuracies
in the ringdown.

The dominant mode of the metric waveform is shown
in Fig. 9. As pointed out in [1, 24–26], the quadrupole
waveform is particularly simple, and characterized by
the “precursor-burst-ringdown” pattern well known from
black hole perturbation theory (either scattering [57, 58]
or radially infalling particles [2, 27, 59, 60]). The fig-
ure shows, together with our numerical relativity calcu-
lation, the ` = 2 waveform obtained by a perturbative
Gaussian scattering experiment onto a Kerr black hole
with j = jBH ∼ 0.544 [61]. The amplitude is scaled by
an arbitrary factor. The similarity of the numerical and
perturbative waveforms reflects the basic mechanism of
the emission process.

It is interesting to connect the waveform features with
the collapse dynamics. In perturbation theory this is
done, for instance, analyzing the background potential
that drives the particle motion [27, 59]. For the collapse
dynamics of our study we use the spacetime diagrams of
Fig. 1 and connect the dynamics to the emission using
the retarded time u = t − r∗, i.e. using null geodesic of
Schwarzschild spacetime. With these assumptions, the
events marked in Fig. 1 with horizontal lines correspond
to the waveform features marked in Fig. 9. The mini-
mum in the precursor corresponds to time t ∼ 80M�, at
which the collapse actually sets in. The first maximum
is related to the moment of time at which fluid parti-
cles significantly accelerate, and is slightly antecedent
apparent horizon formation. Indeed, we find that tak-
ing a worldline r(t) of Fig. 1, the quadrupole waveform

Q20 ∝ Ï20 ∝ −2ṙ2 − 2rr̈, captures all the qualitative
features up to horizon formation. The first maximum
in particular is determined by the competitive effect of
the two terms in the quadrupole formula: −ṙ2 < 0 and
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−rr̈ > 0. At times t < 150M� the second term domi-
nates, −rr̈ > ṙ2, but at later times t > 150M� the first
(velocity) term become comparable ṙ2 ∼ −rr̈. The max-
imum in the wave at t ∼ 175M� results from the growth
of ṙ2, the zero crossing at t ∼ 180M� marks the in-
stantaneous balance between the two terms. The metric
waveform has its absolute minimum shortly after black
hole formation (see dashed vertical line in Fig. 1), when
the mass enclosed by the horizon is MBH ∼ M and its
radius is approximately constant. The metric waveform
peaks after black hole formation when all the matter is

0 50 100 150 200 250 300 350 400

time u/M�

−0.012

−0.010

−0.008

−0.006

−0.004

−0.002

0.000

0.002

0.004

0.006

r
h

2
0

NS-collapse
Teukolsky -perturbative data

FIG. 9: Rotating collapse metric waveforms rh20. The (2, 0)
mode is compared with a Teukolsky perturbative simulation
of black hole scattering, see text for details. The waveform
main features are marked with red dots and correspond to the
events (horizontal lines) in Fig. 1. The horizon formation is
marked with a vertical dashed line.

inside the horizon and the black hole rings down.

VI. SUMMARY

Puncture gauge conditions play a key role in the sim-
ulations of rotational collapse as they “automatically”
handle the singularity formation and subsequent evolu-
tion [20, 21]. Building on previous work and extending
it, we have demonstrated that the end state of an ax-
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isymmetric collapse in the puncture gauge is the same as
the one obtained from the evolution of a spinning punc-
ture [22]. Our statement refers to a simple and controlled
case study (an unstable uniformly rotating equilibrium
configuration perturbed to collapse) but the result holds
for generic simulations in which the puncture gauge is
employed. For instance, rotational collapse characterises
the end phase of certain binary neutron star configura-
tions or supernova core collapse. Not surprising, the same
arguments used in this paper can be applied to those
data, e.g. [22] for preliminary results.

Our results strongly rely on the precision of the pre-
sented simulations. In particular, we have used a con-
servative mesh refinement scheme for the hydrodynam-
ics evolution [13, 29, 30] which allowed us to refine the
star and increase the resolution near the center (punc-
ture) without mass losses. Also, we have employed the
Z4c formulation of Einstein equations, which improves
accuracy and constraint preservation in a free evolution
(hyperbolic) approach to general relativity [31, 32].

The calculation of gravitational waves is particularly
sensitive to numerical resolution and errors. In these sim-
ulations, the waveform quality can be corrupted by spu-
rious radiation related to constraint violations. Our data
agree with the recent work of [13]; some earlier 3D cal-
culations appear as affected by unphysical features prob-
ably due to low resolution employed and the high initial
perturbation. The collapse waveform is rather simple
and qualitatively similar (“precursor-burst-ringdown”)

to those from black hole perturbation theory [1, 26, 27].
Using the spacetime diagram of Fig. 1, we have identified
and connected all its main features to precise stages of
the collapse dynamics.
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