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The LIGO gravitational wave (GW) detectors will begin collecting data in 2015, with Virgo
following shortly after. These detectors are expected to reach design sensitivity before the end of
the decade, and yield the first direct detection of GWs before then. The use of squeezing has been
proposed as a way to reduce the quantum noise without increasing the laser power, and has been
successfully tested at one of the LIGO sites and at GEO in Germany. When used in Advanced LIGO
without a filter cavity, the squeezer improves the performances of detectors above ∼ 100 Hz, at the
cost of a higher noise floor in the low frequency regime. Frequency-dependent squeezing, on the
other hand, will lower the noise floor throughout the entire band. Squeezing technology will have a
twofold impact: it will change the number of expected detections and it will impact the quality of
parameter estimation for the detected signals. In this work we consider three different GW detector
networks, each utilizing a different type of squeezer – all corresponding to plausible implementations.
Using LALInference, a powerful Monte Carlo parameter estimation algorithm, we study how each
of these networks estimates the parameters of GW signals emitted by compact binary systems, and
compare the results with a baseline advanced LIGO-Virgo network. We find that, even in its simplest
implementation, squeezing has a large positive impact: the sky error area of detected signals will
shrink by ∼ 30% on average, increasing the chances of finding an electromagnetic counterpart to
the GW detection. Similarly, we find that the measurability of tidal deformability parameters for
neutron stars in binaries increases by ∼ 30%, which could aid in determining the equation of state
of neutron stars. The degradation in the measurement of the chirp mass, as a result of the higher
low-frequency noise, is shown to be negligible when compared to systematic errors. Implementations
of a quantum squeezer coupled with a filter cavity will yield a better overall network sensitivity.
They will give less drastic improvements over the baseline network for events of fixed SNR but
greater improvements for identical events.

PACS numbers: 04.30.-w,04.80.Nn,04.30.Tv

I. INTRODUCTION

The era of ground-based gravitational wave astronomy
is about to begin. The Advanced LIGO [1] detectors are
expected to come online in 2015 [2], whereas Advanced
Virgo [3] should start taking data in 2016 [2]. Through
a sequence of commissioning and observing periods, the
advanced detectors should reach their design sensitivities
over the next 3-4 years. Two additional instruments,
LIGO India [4] and the Japanese Kagra [5], should join
the global network of gravitational wave detectors before
the end of the decade, further increasing its sensitivity.

Several astrophysical phenomena are known which
should produce gravitational waves (GWs) measurable
with ground-based detectors. The most promising
sources are compact binary coalescences (CBCs) made
of neutron stars and/or black holes. Once at design sen-
sitivity, advanced detectors are expected to detect ∼ 70
CBCs per year (although this rate has significant uncer-
tainties [6]). Analysis of detected signals will broaden our
understanding of compact objects and binary formation.
For example, mass measurements can give insight into
the mass distribution of neutron stars and black holes in
binaries, and could reveal or dismiss the presence of a
“mass gap” between the largest neutron stars and small-
est black holes [7]. Measurements of neutron star tidal
deformability may help constrain the equation of state of

matter in extreme conditions [8, 9]. GWs will be used to
measure the spin of black holes and neutron stars [10–12],
which may help shed light into the evolutionary paths of
binary systems and verify how efficiently common en-
velope evolution aligns spins with the system’s orbital
angular momentum.

While most of the effort is currently being put into
preparing the advanced detectors for the first observing
period (late 2015 [2]), research and development continue
to improve this generation of ground-based detectors,
and shape the next one [13, 14]. Quantum noise will dom-
inate throughout the detection band of Advanced LIGO
and Virgo, with thermal noise contributing significantly
below 100Hz.

Squeezing has been proposed as a mean of reducing
the quantum noise of advanced detectors without having
to increase the laser power [15–17]. In its simplest imple-
mentation (frequency-independent squeezing), quantum
squeezing lowers the medium- and high-frequency noise
floor of the detector at the expense of the low-frequency
noise floor (see Fig. 1 top panel). Further developments
will couple the squeezer with a filter cavity to control the
squeezing in a frequency-dependent fashion, avoiding the
low-frequency sensitivity degradation produced by fre-
quency independent squeezing (see Fig. 1 bottom panel),
with respect to the baseline noise spectral density (de-
fined on Sec. II A) [18–21]. Although squeezing was not
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part of the baseline configuration for the Advanced LIGO
detectors, encouraging tests done so far (including at one
of the LIGO sites [16]) suggest that at least the simpler
squeezer without filter cavity may be mounted on the
LIGO detectors already (as opposed to third-generation
GW detectors). It is thus interesting to determine if and
to what extent quantum squeezing can help gravitational
wave astrophysics.

As mentioned above, frequency-independent squeezing
reduces the noise at high frequencies while degrading
the sensitivity at lower frequencies. It is important to
stress that these two effects may somewhat balance each
other when it comes to assessing the overall sensitivity
of the detector (or network of detectors). It may thus
be the case that the expected number of GW detections
and the range [22] of a network of interferometers do
not strongly depend on whether squeezing is used or
not. We will see that for some of the plausible noise
spectral densities we used, this is the case. As a result,
the simplest implementation of quantum squeezing will
not lead to more frequent GW detections. However, the
number of detections is not, obviously, the only figure
of merit one should use to decide on the usefulness of
squeezing. By the time squeezers may realistically be
implemented in ground based GW detectors, it is very
likely that one or several detections will have been made.
On the other hand, squeezing can change what we can
learn about the astrophysical sources of detected GWs.

The purpose of this study is to investigate how the im-
plementation of squeezing in a LIGO-Virgo network af-
fects parameter estimation capabilities for CBC sources.
We consider a baseline network consisting of LIGO
and Virgo, and compare it to three hypothetical net-
works where the LIGO instruments mount a squeezer (a
frequency-independent squeezer; a frequency-dependent
squeezer with a lossy filter cavity; and a frequency-
dependent squeezer with a lossless filter cavity) [20, 23].

We simulate CBC signals emitted by binary neutron
star (BNS) and binary black hole (BBH) events and de-
tected by the networks above, and verify how the dif-
ferent shapes of the noise floors due to squeezing affect
the quality of reconstruction of some key astrophysical
parameters, such as the mass and the sky position of
the GW source. While comparing events across network
configurations, we keep the same SNRs so that the differ-
ences we see are only due to the noise floor of the detec-
tors and not the loudness of the source. We find that a
network implementing frequency-independent squeezing
in LIGO improves sky localization precision by ∼ 30%
with respect to the baseline advanced detector network.
The measurability of neutron star tidal deformability im-
proves by a similar amount. These improvements come
with a negligible degradation of the network’s overall sen-
sitivity and of the measurability of chirp mass (which we
find to be limited by systematic errors).

When filter cavities are used, the detectors with
squeezing are more-or-equally sensitive than the base-

line detector throughout the entire frequency band. Un-
like the simpler frequency-independent squeezing, there
won’t be a trade-off between high-frequency and low-
frequency noise, and we thus find that the total network
sensitivity increases.

This study suggests that quantum squeezing, even in
its simplest implementation without a filter cavity, can
have a large impact on parameter estimation of CBC
events, and increase the scientific payoff of LIGO and
Virgo detections.

II. METHOD

A. Noise Models

The noise power spectral density (PSD) of a GW de-
tector is defined as the autocorrelation of the noise [24].
Working in the Fourier domain, this is written as

S(f) = 2E [n(f)n∗(f)] (1)

where n(f) is the Fourier transform of the noise, the
star represents complex conjugation, and E[◦] denotes an
ensemble average for a detector. The noise in GW detec-
tors is not fully stationary (for example, there are known
variations between day and night) nor it is fully Gaus-
sian. However we can safely assume that for stretches of
data long enough to contain a GW signal (. minutes) the
noise is stationary. Initial LIGO and Virgo were affected
by non-Gaussian noise fluctuations (known as glitches),
typically short (. 1 sec) and loud. Similar artifacts will
almost certainly also affect Advanced LIGO and Virgo.
Work is ongoing to try to either remove glitches from the
data, or to take them into account in the analysis [25].
We expect these efforts to be fully mature by the time the
first few detections are made. In what follows, we thus as-
sume that the noise in LIGO and Virgo can be considered
Gaussian and stationary. Under those hypotheses, the
noise PSD fully characterizes the frequency-dependent
sensitivity of the detector at any given time. Finally, we
assume that the noise is an additive process; if a GW
h(f) is present, the data will read d(f) = n(f) + h(f).

As mentioned above, we consider four hypothetical
networks of GW detectors:

• “Baseline”: Two Advanced LIGO with design sen-
sitivity; Virgo with design sensitivity;

• “Squeezed”: Two Advanced LIGO with frequency-
independent squeezing; Virgo with design sensitiv-
ity;

• “Lossy” : Two Advanced LIGO with squeezing and
lossy filter cavity; Virgo with design sensitivity;

• “Lossless” : Two Advanced LIGO with squeezing
and lossless filter cavity; Virgo with design sensi-
tivity;
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Even though Virgo is considering the possibility of
adding a squeezer in the future, no PSD curves of po-
tential squeezing implementation in Virgo were available
at the time of our analysis. This is why in all four sce-
narios we gave Virgo its design sensitivity.

The PSDs we used are show in Fig. 1. It is clear how
in its simpler implementation (top panel, red dashed)
quantum squeezing will improve the sensitivity above ∼
100 Hz, while doing worse at lower frequencies. The bot-
tom panel shows how a filter cavity will either maintain
the same sensitivity as the baseline in the tens of Hertz
region (“Lossy”) or do better (“Lossless”) while reaching
the same sensitivity as frequency-independent squeezing
at high frequency. The generation of these PSDs is ex-
plained in [23].

Figure 1. (Top) The PSDs for the baseline LIGO (black solid)
and Virgo (blue dotted) detectors and for a LIGO detector
with frequency-independent squeezing (red dashed). (Bot-
tom) The PSDs for a squeezed LIGO detector with lossy
(green dashed) and lossless (magenta dotted) filter cavities;
the design Advanced LIGO curve (solid line) is given for ref-
erence.

B. Simulated GW signals

We considered 222 CBC sources, half of which con-
sisted of two neutron stars (BNS), and the other half
of two stellar-mass black holes (BBH). We modeled BNS
events using the frequency-domain TaylorF2 (TF2) wave-
form working at 3.5 Post-Newtonian (PN) phase order,
while keeping a Newtonian amplitude order. TF2 wave-
forms can be explicitly written in the Fourier domain,
see e.g. [26]. The waveforms were terminated at the
innermost-stable circular orbit (ISCO) frequency [26]. In
Sec. III A 2 we will report on the measurability of neu-
tron star’s tidal deformability. For those simulations, we
included the known 5 PN and 6 PN tidal phase terms in
the phase of TF2. Explicit expressions for these terms
can be found in the appendix 5 of [9].

To model GW emitted by BBH, we used IMRPhenomB
(IMRb) waveforms [27] with (anti-)aligned spins. IMRb
are better suited for the larger masses of BBH, since the
merger and ringdown phases [27] (which TF2 does not
model) may be in a sensitive part of the detectors, and
we will want to take them into account. IMRb waveforms
do have a phenomenological merger and ringdown, tuned
against numerical simulations. Here again we worked at
3.5 PN phase order, while keeping a Newtonian ampli-
tude order.

For both families of events, the sources were randomly
distributed on the sky and given random orientations.
Neutron star masses were generated uniformly in the re-
alistic range [1.4 − 2.3] M�, whereas for black holes the
range was [5 − 25] M�. Black holes were given random
reduced spins [28] (along the direction of the orbital an-
gular momentum) in the range ±[0.1 − 0.9], a negative
sign indicating that spin and orbital angular momentum
are anti-aligned. We ignored spins for neutron stars, since
known pulsars in binary systems have spins smaller than
0.05 [29]. Mass, position, orientation, and spin were kept
fixed while analyzing events with different network con-
figurations.

The distances of the sources were uniform in volume,
and thus represented an astrophysically realistic distri-
bution. We imposed a cut on the SNR of the sources,
only analyzing signals with network SNR in the range
[12 − 40], with SNR 12 roughly corresponding to the
threshold value for detection of a CBC signal. The opti-
mal network SNR, ρ, is defined as usual:

ρ2 =
∑

D∈detectors

4

∫ fhigh

flow

df
|hD(f)|2

SD(f)
(2)

where hD(f) and SD(f) are the waveform and one-
sided PSD, respectively, at the D-th detector.

We first generated the set of simulated events for the
baseline network in the way just described. If one had
to analyze the same events with a different network (e.g.
“Lossy”) the resulting SNR would be different as a result
of different network sensitivities. In this case it would be
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impossible to disentangle the effects of the different SNR
from the effect of the shape of the PSDs. More impor-
tantly, the distribution of SNRs in the second network
might not be astrophysically sound, since there would be
a population of missing threshold SNR events (which are
the majority).

Because of this, we modified the distances of simulated
events in a network-dependent fashion so that the result-
ing SNR are the same across networks for corresponding
events. The differences we see in the parameter estima-
tion capabilities are thus not due to a different SNR, but
only on the way the SNR is distributed in the bandwidth
of each detector.

1. Parameter estimation

In order to extract the parameters of the simu-
lated signals buried into interferometers’ noise, we used
LALInference, the parameter estimation algorithm put
in place by the LIGO-Virgo Collaboration [30]. Accurate
parameter estimation of CBC signals can be dealt with
using a Bayesian approach, which allows for any prior
information about the problem on hand to be taken into
account.

We are interested in the posterior distribution of the

unknown source parameters ~θ given the GW data ~d:

p(~θ|~d). ~d indicates the data of all interferometers par-

ticipating in the analysis; in our case, ~d ≡ {dH , dL, dV },
where the superscripts refer to the LIGO Hanford, LIGO
Livingston, and Virgo data streams respectively.

One can use Bayes’ theorem to write the posterior dis-

tribution for ~θ as:

p(~θ|~d) ∝ p(~d|~θ)p(~θ) (3)

The first term on the right hand side in Eq. 3 is the like-
lihood of the data given the parameters, whereas the sec-
ond one is the prior distribution of the parameters. Un-
der our working hypothesis of stationary Gaussian noise,
and taking into account that the noise in each detector
is effectively independent from all others’, the likelihood
can be written as:

p(~d|~θ) ∝
∏

i={H,L,V }

e−
1
2 〈d

i−hi(~θ)|di−hi(~θ)〉. (4)

In the expression above, di is the data of the i-th inter-

ferometer, hi(~θ) is the waveform template (TF2 for BNS,

IMRb for BBH) calculated with parameters ~θ, and the
angular brackets represent a noise-weighted scalar prod-
uct:

〈a|b〉 ≡ 4Re

∫
df
ã∗(f)b̃(f)

S(f)

.

The prior distribution of ~θ represents what is known
of the CBC sources before the data is analyzed. We used
isotropic priors on the sky position and orientation of
the sources. The prior on the distance was uniform in
volume, p(D) ∝ D2. The prior for all other parameters
was uniform with prior bounds large enough to ensure
the posterior distribution would not be cut [31].
LALInference uses Monte Carlo methods to explore

the multi-dimensional parameter space in an efficient and
reliable way and to estimate the full multi-dimensional

posterior distribution of ~θ, from which all the interest-
ing 1-D distributions can be obtained via marginaliza-
tion. We used the nested sampling [32, 33] flavor of
LALInference, in which one first calculates the Bayesian
evidence for the signal model [33] and obtains the poste-

rior distribution for ~θ as a by-product. We point the in-
terested readers to [30, 33] for more details on the nested
sampling technique and its implementation for GW pa-
rameter estimation.

III. RESULTS

A. BNS

In this section we report the results for BNS sources.
We will first compare the “Baseline” and “Squeezed” net-
works, deferring to Sec. III A 3 the analysis of the “Lossy”
and “Lossless” networks.

In Sec. III A 1 we will consider the simplest (and least
computationally expensive) case of BNS systems with-
out tidal deformability. In this case the waveform (WF)
depends on 9 unknown parameters. They are:

• Chirp massM and mass ratio Q. They are defined
in terms of the two component masses as M ≡[
m3

1m
3
2

m1+m2

] 1
5

and Q ≡ m1/m2;

• Coalescence time tc and phase φc. These are the
time of the coalescence and the phase of the WF at
that time;

• Polarization ψ. This is the Eulerian angle between
the line of nodes and the x-axis of the signal frame,
e.g. [34];

• Luminosity distance DL;

• Right ascension α and declination δ;

• Orbital inclination ι, i.e. the angle between the
orbital angular momentum and the line of sight.

Tidal parameters will be taken into account for a sub-
set of events in Sec. III A 2, which adds 2 additional un-
known parameters to the problem.
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1. Baseline vs. Squeezed

As previously mentioned, we kept all source parame-
ters, except for the distance, fixed while simulating events
analyzed with different networks. The first interesting
question is by how much one needs to modify the dis-
tance of BNS events to find the same SNR in the different
network configurations. This is shown in Fig. 2.

It is clearly visible that the distributions of distances
for the “Baseline” and “Squeezed” networks are nearly
identical, and we calculate the average difference in the
distances to be ∼ 1%. This implies that, from a de-
tection point of view, there is no advantage in using
the “Squeezed” network. Given the significantly dif-
ferent shape of PSDs for the baseline and squeezed
LIGO (Fig. 1, top), the fact that the two networks have
the same sensitivity implies that the SNR lost by the
“Squeezed” configuration at low frequencies is nearly
identically compensated for at high frequencies. This is
confirmed in Table I, where we show how the SNR is
(on average) distributed among the interferometers, and
how it is distributed in four (arbitrarily chosen) frequency
bins.

Figure 2. A cumulative histogram of the injected distance for
the BNS events for each network (where the SNR distribu-
tion is identical for all networks). Note that the distances of
the squeezed events are very similar to those of the baseline
events, which implies that the squeezed and baseline networks
have very similar network sensitivities. On the other hand,
the distances of events for the lossy and lossless networks are
further than for the baseline network, which implies that these
two networks have greater network sensitivity (with the loss-
less network being most sensitive).

We see that, on average, each of the two LIGO in-
struments are responsible for ∼ 40% of the total squared
SNR, in both the “Baseline” and “Squeezed” networks.
We also see how the relative importance of the low-
frequency (30-60 Hz) and high-frequency (200Hz-ISCO)
bins is flipped in the two configurations. This is obviously
expected, and quantifies the differences between the two
PSDs we have qualitatively described above.

We can now consider parameter estimation. Before

reporting our results, we can make a few general consid-
erations that will help in predicting and understanding
them. Due to the higher noise floor at low frequencies,
we may expect the “Squeezed” network to do worse than
the “Baseline” for those parameters which enter the WF’s
phase at low Post-Newtonian orders. Roughly speaking,
this happens because the k-th PN orders gets multiplied

by f
k−5

3 [26], which is larger at low frequencies when
k < 5 (i.e. for PN orders below the 2.5PN). Low PN
terms should thus be more sensitive to the behavior of
the instrument at low frequencies. For example, the chirp
mass M already enters the WF at Newtonian order (i.e.
0 PN), while the mass ratio enters at 1 PN, and its mea-
surement is significantly helped by higher PN terms ([26],
Table II). We thus expect errors for the mass ratio to be
unchanged or better when considering the “Squeezed”
network, whereas the measurability ofM should degrade.

The opposite is true for the sky localization capa-
bilities of LIGO-Virgo. Since GW detectors are ap-
proximately omnidirectional antennae, most information
about the position of the sources comes from time tri-
angulation [35]. Furthermore, the precision of the mea-
surement of arrival time for CBC is more sensitive to the
high-frequency part of the spectrum (see e.g. [36]). We
thus expect the “Squeezed” network to do better than the
“Baseline” in pinning down the position of BNS sources.

In Table II we report the results of the LALInference
analysis. Specific to sky localization, we consider the 1-σ
errors in the measurement of the WF’s arrival time and
the 67% and 90% confidence interval for sky localization.
We can see how the increased high-frequency sensitivity
of the LIGO detectors in the “Squeezed” network leads
to a significant improvement in the timing and sky local-
ization measurements. On average, the 90% confidence
level sky localization areas decreases from 17 Deg2 to
12 Deg2 while transitioning from the “Baseline” to the
“Squeezed” network. That is a ∼ 30% improvement. We
notice how this matches with the improvement in the
LIGO timing errors. Given that BNS are expected to also
be luminous in the electromagnetic spectrum [37, 38], a
more precise sky localization will increase the chances of
a joint EM-GW detection, which could boost the scien-
tific payoff for both fields (see e.g. [39–41]).

Finally, we note that the timing errors in Virgo
get slightly better. This is because the events in the
“Squeezed” scenario are slightly closer than in the “Base-
line”. The measured SNRs in Virgo are thus higher than
in the “Baseline” even though the network SNR is the
same, leading to smaller errors. We will see later that
the contrary happens for the “Lossy” and “Lossless” net-
works.

We can now focus on the mass parameters. We report
in Table II the average 1-σ error (in percent, relative
to the true value) for M and Q. The trends confirm our
qualitative guess: the chirp mass estimation gets less pre-
cise, while the contrary happens to Q. Even though these
variations may look significant, in reality they are smaller
than systematic errors due to WF uncertainties. It must,
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Table I. The average SNR2 distribution for BNS events, used to characterize the distribution of network sensitivity. Each
percentage is the ratio of the the squared SNR in each detector/bin to the square of the total network SNR, averaged over all
events. The first three columns describe the fraction of average squared SNR in the LIGO Hanford (H), LIGO Livingston (L),
and Virgo (V) detectors, respectively. The last four columns describe the fraction of squared network SNR in four frequency
bins.

PSD H (%) L (%) V (%) 30-60 Hz (%) 60-200 Hz (%) 200-512 Hz (%) 512 Hz-ISCO (%)

Baseline 39.3 40.2 20.5 27.9 55.4 14.5 2.2
Squeezed 39.1 40.0 20.9 12.5 52.3 29.1 6.1

Lossy 41.5 42.3 16.2 21.9 52.7 21.0 4.4
Lossless 42.7 43.5 13.8 29.2 49.5 17.7 3.6

Table II. Parameter estimation errors averaged over the entire ensemble of BNS events. The first two columns give the relative
errors for the mass parameters M and Q. The next three columns give the timing errors for each instrument, in milliseconds.
The last two columns give the areas of the measured 90% and 67% confidence regions of source location for each detector.
To ensure the events represented a realistic distribution, and to disentangle the effect of bandwidth and sensitivity, the SNR
was kept fix in the first four rows. The bottom two rows report the analysis of BNS events at the same distance they had in
the “Baseline” network. We notice that sky localization for “Lossy” and “Lossless” is limited, for events at fixed SNR, by the
imbalance of sensitivity across the network (Table I). For events at fixed distance they deliver instead a significant improvement
with respect to the “Baseline”. See Sec. III A 3 and Appendix A for more details.

PSD ΓM (%) ΓQ (%) σtH
(ms) σtL

(ms) σtV
(ms) 90% Conf (deg2) 67% Conf (deg2)

Fixed SNR

Baseline 1.4× 10−2 7.6 0.26 0.31 1.4 17 8.7

Squeezed 1.6× 10−2 7.3 0.18 0.21 1.3 12 6.0

Lossy 1.3× 10−2 7.1 0.19 0.23 2.2 17 8.2

Lossless 1.2× 10−2 7.0 0.21 0.25 2.7 20 10
Fixed Distance

Lossy 1.1× 10−2 6.1 0.16 0.19 1.5 13 6.2

Lossless 0.95× 10−2 5.7 0.15 0.20 1.4 12 6.1

in fact, always be taken into account that the waveforms
used for the analysis are only an approximate represen-
tation of what nature will produce. For example, it has
been shown in [42] how the differences in the posterior
distribution ofM one obtains using different WF families
are comparable to the 1-σ errors of each posterior. To be
more precise, typical systematic WF differences for BNS
in [42] are ∼ 0.1%, i.e. a factor of ∼ 10 larger than the
differences we find, due to quantum squeezing. We will
come back to this point later while discussing the BBH
results.

In summary, for the simulated set of BNS signals con-
sidered in this section, the “Squeezed” network achieves
a significant improvement in sky localization capabilities,
as compared to the baseline network, without losing any
meaningful mass estimation capabilities and maintaining
the same network sensitivity.

2. Tidal Parameters

We have seen that the numerical results we found in
the previous section confirmed the trends we would have
expected from simple qualitative considerations. In par-
ticular, we saw that parameters entering the PN series at
higher orders benefited more from using the “Squeezed”
network. We may thus expect that the tidal deformabil-
ity parameters [43], which are formally 5 PN and 6 PN,
would be measured significantly better by the “Squeezed”
network. Precise measurement of neutron stars’ tidal de-
formability has been shown to be possible with GW data

alone [8, 9], and could be pivotal for a better understand-
ing of the behavior of nuclear matter in extreme condi-
tions.

To verify whether the measurability of tidal parameter
would benefit from squeezing, we have compared the per-
formances of the “Baseline” and “Squeezed” networks for
a set of 13 BNS systems. We chose the simulated BNS
events to have the same masses, orientations, equation
of state, and SNRs as those used by Wade et al. in [9].
Similarly to [9] we chose to run the analysis with a zero-
noise realization [44]. To help comparing our results with
Wade et al., we use their parametrization of the tidal de-
formability of the two objects ([9], eqs. 5 and 6; see
also [45]). This introduces 2 new (unknown) parameters

(Λ̃ and δΛ̃), bringing the total number of unknown pa-

rameters to 11. Λ̃ is a dimensionless tidal deformability
parameter which takes into account the deformability of
both stars, and reduces to Gλ [c/(Gm)]

5
for equal mass

binaries (m1 = m2 = m), with λ = (2/3)k2R
5/G, where

R is the neutron star’s radius and k2 the second Love
number. Similarly, δΛ̃ is defined in such a way that it is
zero for equal mass systems.

The results of the measurements of tidal parameters
are given in Table III. First, we notice how the results for
the “Baseline” network are consistent with those of [9].
They are not identical because we let the position of our
sources vary over the sky (though the sky positions are
identical for corresponding “Baseline” and “Squeezed”
network events). Similarly to [9], none of our simula-

tions were able to measure or constrain δΛ̃, both for the
“Baseline” and “Squeezed” networks.
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Table III. A comparison of the tidal deformability Λ̃ measurement capabilities for the “Baseline” and “Squeezed” networks. The
first three columns give the neutron star component masses and the value of Λ̃ used for each run, mimicking those presented
in [9]. The remaining columns compare the measured relative error ΓΛ̃ for the baseline and squeezed networks for events of
network SNR of 20 and 30.

ρ = 20 ρ = 30

m1 (M�) m2 (M�) Λ̃ ΓΛ̃base
(%) ΓΛ̃sqz

(%) ΓΛ̃base
(%) ΓΛ̃sqz

(%)

1.20 1.20 1135.630 22 14 10 7
1.35 1.20 820.610 30 17 16 10
1.35 1.35 590.944 28 22 16 13
1.50 1.35 435.585 35 28 22 18
1.65 1.35 328.177 53 39 36 28
1.50 1.50 318.786 42 31 29 21
1.80 1.35 252.398 78 56 48 39
1.95 1.35 197.899 110 70 60 46
1.65 1.65 175.963 54 44 40 33
2.10 1.35 157.974 140 79 69 52
1.80 1.80 98.191 72 64 52 47
1.95 1.95 54.670 120 85 80 63
2.10 2.10 29.844 190 140 120 99

Figure 3. Plots of the posterior density distributions of
Λ̃ as recovered by the “Baseline” (blue, continuous) and
“Squeezed” (red, dashed) networks, for the BNS system

with Λ̃ = 197.899 and SNR 20 (top) and the system with

Λ̃ = 820.610 and SNR 30 (bottom).

We see that the “Squeezed” network performs better
than the baseline network in measuring Λ̃, with aver-
age improvements of ∼ 30% for SNR 20 systems and ∼
20% for SNR 30 systems. Fig. 3 shows examples of the
posterior distribution for individual events. These are
improvements which could prove to be significant when

placing EOS constraints. However, it should be noted
that because the phase of gravitational waveforms cur-
rently used for match-filtering is only known up to 3.5PN,
whereas tidal parameters enter the GW phase at 5PN and
6PN, a bias may be introduced by the missing PN terms
on the measured tidal parameters [46]. Currently, this
systematic waveform uncertainty is estimated at 50% [9],
which will be the dominant uncertainty in the measure-
ment of Λ̃, even at high SNR. Work is ongoing to calcu-
late the missing high-PN orders and reduce systematic
errors. Irrespective of eventual unresolved bias, it seems
safe to assume that the “Squeezed” network would yield
a smaller statistical error than the “Baseline” network
for tidal measurements.

3. “Lossy” and “Lossless”

We now present the results for the “Lossy” and “Loss-
less” networks using a set of equal SNR events. The
bottom panel of Fig. 1 shows that the noise will be less-
than-or-equal-to the “Baseline” PSD across the entire
bandwidth. Table I reveals that for the “Lossy” net-
work, an average of 75% of the network SNR is located
below 200 Hz. For the “Lossless” network this number
is 79%. Comparing these numbers to those of the “Base-
line” network (83%) and “Squeezed” network (65%), we
see that both the “Lossy” and “Lossless” networks are
more sensitive at high frequencies and less sensitive at
low frequencies than the baseline network for equal SNR
events, but these differences in sensitivity are not as large
as for the “Squeezed” network.

We see from Table II that the sky localization capa-
bility of the “Lossy” network is similar to that of the
“Baseline” network, with average (90%, 67%) confidence
level areas of sky location being (17, 8.2) deg2. On the
other hand, the “Lossless” network performs worse than
the “Baseline” network, with average (90%, 67%) confi-
dence level areas of sky location being (20, 10) deg2. This
can be explained by taking into account how the SNR is
distributed across the frequencies and detectors.
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We first notice that, since the two LIGO observato-
ries are more sensitive in the “Lossy” and “Lossless”
networks than in the “Squeezed” and “Baseline” net-
works and Virgo keeps the same PSD, Virgo’s contribu-
tion to the network SNR is smaller. This is shown in Ta-
ble I: Virgo’s average percent contribution to the squared
network SNR decreases from ∼ 21% for the “Baseline”
and “Squeezed” networks to ∼ 15% for the “Lossy” and
“Lossless”. Since time triangulation yields important in-
formation about the sky position of the source, having a
more uneven distribution of the SNR across the detectors
hurts sky localization.

At the same time, as seen above, the detector’s high-
frequency sensitivity also impacts sky localization. Thus,
the increased high-frequency sensitivity of the LIGO de-
tector in the “Lossy” and “Lossless” networks helps com-
pensate for the increased imbalance of sensitivity among
the detectors. In summary, the better timing capabilities
of the LIGO detectors (high-frequency sensitivity gains)
is compensated for by the worse timing capability of the
Virgo detector (network sensitivity imbalance) to make
the resulting sky areas of the “Lossy” network compara-
ble to the “Baseline” network and the resulting sky areas
of the “Lossless” network worse than the “Baseline” net-
work.

From Table II we see that the errors on the estimation
of the mass parameters for the “Lossy” and “Lossless”
networks are smaller than for the “Baseline” network.
It is worth stressing again that, especially for the chirp
mass, we are already at the point where the uncertainty
will be dominated by waveform systematics. Thus, the
improvements to the mass parameters we found here will
not be significant until better waveforms become avail-
able.

What we described in this section may seem counter
intuitive: we considered better LIGO instruments and
found out that the parameter estimation precision was
comparable (mass parameters) or worse (sky localiza-
tion). However, we must keep in mind that the “Lossy”
and “Lossless” networks will have a larger horizon dis-
tance than the “Baseline” network. This implies that,
even though their performances may seem similar to the
“Baseline” for the average BNS event, they will detect
more events at any given SNR (since “Lossy” and “Loss-
less” will be probing a larger volume of Universe). The
larger number of detections will have a significant im-
pact in all those studies which rely on several tens of
detected GWs to be successful (e.g. tests of General
Relativity [47, 48] and the equation of state of neutron
stars [8]). For the same reasons, the probability of hav-
ing a large SNR event is bigger for the “Lossless” and
“Lossy” networks than for the “Baseline” network. Fi-
nally, since Virgo is considering the use of squeezing, it
is likely that its contribution to the network SNR will be
larger than what was considered here, and the issues de-
scribed above will be avoided. In Appendix A, we give an
example of what parameter estimation would look like for
the same events detected by the “Baseline” (i.e. keeping

all parameters to be the same, including distance) when
using the “Lossy” and “Lossless” networks.

B. BBH Results

1. “Baseline” and “Squeezed”

In our analysis of BNS systems we have seen how the
distance range of the “Squeezed” and “Baseline” net-
works was the same. This holds because the better sen-
sitivity at high frequency of the “Squeezed” network was
compensated for by the worsening of sensitivity in the
tens of Hertz region. The situation could be different for
more massive systems, since the maximum frequency of
a CBC system in the LIGO-Virgo band is inversely pro-
portional to the system’s total mass [26][49]. For massive
enough systems it may be the case that the improvement
at high frequencies is not fully taken advantage of since
the waveforms end at lower frequencies than their BNS
counterparts.

We find that, in order to achieve the same SNR,
the BBH events must be typically placed closer for the
“Squeezed” network (by ∼ 3% on average), which implies
that the “Squeezed” network is only slightly less sensi-
tive than the “Baseline” to BBH over the mass range
we considered (we don’t show a plot since it would look
qualitatively similar to Fig. 2).

Table IV shows how the SNR squared is distributed in
4 different frequency bins. A comparison with Table I
makes it clear that the frequency-dependent sensitivity
distribution is very similar to that of the BNS simula-
tions, with only a slight shift of network sensitivities to-
wards low frequencies. Thus, although solar-mass BBH
signals are shorter than BNS signals, we do expect to find
parameter estimation trends similar to what is seen for
BNS signals.

In Table V we report the average errors for the BBH
mass parameters. The errors on the estimation of the
chirp mass are larger than those for BNS (for correspond-
ing networks). This is clearly to be expected, since BBH
signals are shorter, and thus fewer WF cycles are avail-
able for matched filtering. The 5-fold increase in the mass
ratio errors is also due to the known degeneracy between
component mass and (aligned) spins [50]. Table V shows
the same trends we saw for BNS. In particular, the errors
on the chirp mass get larger in the “Squeezed” network
as compared to the “Baseline” network, whereas Q is es-
timated more precisely. However it is still the case that
the improvement in the chirp mass estimation is smaller
when compared to systematics. We will come back to
this point in the next section. Neither network was able
to measure the (aligned) spin magnitudes well, with rela-
tive errors being of the order of 70% on average for both
networks.

Even though BBH are not expected to be luminous in
the electromagnetic spectrum, making an EM follow-up
program of BBH less interesting than for BNS, for com-
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Table IV. The average SNR2 distribution for equal-network-SNR BBH events, used to characterize the distribution of network
sensitivity. Each percentage is the ratio of the square of the SNR in each detector/bin to the square of the total network SNR,
averaged over all events. The first three columns describe the fraction of average SNR2 in the Hanford, (H), Livingston (L),
and Virgo detectors, respectively. The last four columns describe the fraction of network SNR2 in each frequency range.

PSD H (%) L (%) V (%) 30-60 Hz (%) 60-200 Hz (%) 200-512 Hz (%) 512-1024 Hz (%)

Baseline 39.3 40.1 20.6 30.4 54.3 14.0 1.3
Squeezed 38.7 39.5 21.8 14.2 52.7 29.5 3.6

Table V. The average parameter estimation capabilities for equal-network-SNR BBH events. The first two columns give the
average relative errors for the mass parameters M and Q. The next three columns give the average timing errors for each
instrument, in milliseconds. The last two columns give the average areas of the measured 90% and 67% confidence regions of
source location for each detector. All quantities are averaged over the entire ensemble of BBH events.

PSD ΓM (%) ΓQ (%) σtH
(ms) σtL

(ms) σtV
(ms) 90% Conf (deg2) 67% Conf (deg2)

Baseline 0.95 30 0.74 0.76 2.3 21 11
Squeezed 1.2 25 0.61 0.64 2.0 15 7.3

pleteness we report in Table V the size of the sky error
regions. The average (90,67)% confidence areas of sky lo-
cation were (21,11) deg2 for the “Baseline” network and
(15,7.3) deg2 for the “Squeezed” network, corresponding
to relative decreases of 29% and 34%, respectively with
respect to the baseline network.

Given the similarities between the conclusions drawn
about the BNS and BBH events from the comparison of
“Baseline” and “Squeezed”, we do not repeat the simula-
tions with the “Lossy” and “Lossless” networks for BBH
events.

2. Systematics

Throughout this paper, we have made claims that the
systematic uncertainties in M are larger than our mea-
sured uncertainties, thus partially limiting the impor-
tance of the changes on M errors among the detector
networks. While previous studies showed that system-
atics are indeed the dominating source of error for well-
measured BNS chirp masses [42], the larger uncertainties
in M for BBH events are not so clearly negligible com-
pared to waveform systematic errors. We have verified
if this is the case by re-running the parameter estima-
tion simulations for all BBH events in the “Baseline” net-
work scenario using an IMRPhenomC (IMRc) waveform
model [51] to recover the signal instead of IMRb. The
idea is that the systematic differences between two dif-
ferent waveform approximants should be somewhat rep-
resentative of the difference between any of them and the
“real” gravitational wave signals.

After re-analyzing all BBH signals with IMRc, we es-
timate the systematic waveform error by comparing the
median M values for both WF families. The posterior
distributions of the chirp mass for aM = 11.43 M� sys-
tem obtained with the two IMR models is shown in Fig. 4.
For that particular event, the medians are separated by
2.8 standard deviations.

On average, we found the difference in Mmedian to
be 1.4 standard deviations (using the standard deviation

Figure 4. The posterior density distributions forM obtained
with both the IMRb and IMRc waveforms for a BBH event
withM = 11.43 M� (analyzed with the “Baseline” network).
The absolute separation of the distribution medians is 2.8
times larger than the standard deviation of the IMRb mode.

calculated with the IMRb runs). This is an average 1.2%
offset with respect to the injected value. We also found
the difference in Qmedian to be 0.65 standard deviations,
which is a 20% offset with respect to the injected value. A
quick comparison with the relative random errors given in
Table V shows how systematics and statistical errors are
comparable, and thus the different performances of the
“Squeezed” and “Baseline” networks for the estimation
of the chirp mass are indeed negligible.

IV. CONCLUSIONS

In this paper we analyzed the impact of squeezed states
of light on the estimation of parameters for gravita-
tional waves emitted by compact binaries and detected
by LIGO and Virgo. We considered a baseline network,
where LIGO and Virgo had their design sensitivities [2]
and compared it with three networks where the LIGO
instruments used squeezed light. These three networks
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represent plausible implementations of squeezing in GW
detectors: a simple frequency-independent squeezer with-
out a filter cavity (“Squeezed”); a squeezer with a lossy
filter cavity (“Lossy”) and a squeezer with a lossless filter
cavity (“Lossless”).

We showed that for binary neutron star signals the
“Baseline” and “Squeezed” networks have essentially the
same sensitivity, which means that a simple squeezer
will not yield more detections. On the other hand, we
found that the sky localization is improved by 30% with
the “Squeezed” network, which could prove to be a non-
negligible improvement for the electromagnetic follow-up
of GW events. We also showed that the statistical mea-
surability of neutron star tidal deformability increases by
30% with the implementation of frequency-independent
squeezing. Though current waveforms may not be totally
reliable at the PN order at which the tidal parameters
enter, we expect that this improvement is representative
of what can achieved with future, more reliable wave-
forms. Since frequency-independent squeezing degrades
the sensitivity of the instruments in the low-frequency
region, these improvements come at the cost of a ∼15%
decrease in the measurability of chirp mass; however this
loss is effectively negligible compared to limiting system-
atic waveform errors.

We also showed that implementations of both lossy and
lossless frequency-dependent squeezing improve the over-
all network sensitivity, increasing the average distance of
BNS events by 16% and 28% respectively. This corre-
sponds to a non-negligible increase in the detection rates
of BNS by a factor of ∼ 1.5 for “Lossy” and ∼ 2 for “Loss-
less” with respect to the baseline Advanced LIGO-Virgo
network. Due to the large boost in LIGO’s sensitivity,
the SNR of the average event detected by the “Lossy”
and “Lossless” networks will mostly be accumulated by
the LIGO observatories, degrading the networks’ sky lo-
calization capabilities. We showed how sky localization
for events at fixed SNR stays the same for the “Lossy”
network and worsens by 15% for the “Lossless” network
as compared with the “Baseline” network. Finally, for
these networks too, it is the case that the measurability
of mass parameters is comparable to the “Baseline” net-
work once one takes into account that statistical errors
for those parameters are smaller than systematics.

We also analyzed signals emitted by binary black holes,
for which we found similar numerical values of the im-
provements (or degradation) due to squeezing. BBH
events were analyzed using two different waveform fam-
ilies (IMRPhenomB and IMRPhenomC) to get explicit
estimates of potential systematics introduced by the WF
approximant. We found that on average the medians of
the chirp mass estimated with the two WFs are 1.4 σ
away. The effect is smaller for the mass ratio, where the
medians are separated by an average of 0.7 σ.

In summary, implementing quantum squeezing can
be expected to increase the scientific payoff of ground
based gravitational wave detectors even it its sim-
plest, frequency-independent version, though frequency-

dependent squeezing will be required to increase the net-
work’s detection rate.
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Appendix A: “Lossy” and “Lossless”: Same Distance

In Sec. III A 3 we analyzed the BNS events considered
for the “Baseline” network, changing the distance of each
of them so that the network SNR would be the same in all
networks. We found that the sky localization precision
does not improve using frequency-dependent squeezing,
but rather stays the same (“Lossy”) or worsens (“Loss-
less”). As already underlined, this happens because we
considered events at a fixed network SNR: since the two
LIGO detectors get more sensitive while Virgo (in our
simulations) stays the same, the SNR is much more un-
evenly distributed across the network for the “Lossy” and
“Lossless” networks, which negatively affects sky local-
ization.

Another interesting question is what would happen if
the same events were to be detected with these more sen-
sitive networks, i.e., to compare the effects of squeezing
for equal-distance rather than equal-SNR events. In this
appendix we re-analyze the BNS events keeping their dis-
tances (and everything else) to be identical to the “Base-
line” configuration.

The main findings were given on Table II and reported
on Table VI here below.

We see that the sky (90%, 60%) confidence regions of
sky location are (13, 6.2) deg2 for the “Lossy” network
and (12, 6.1) deg2 for the “Lossless” network. These rep-
resent a ∼ 30% improvement with respect to the “Base-
line” network. This improvement is due to both the
higher SNR and the better high-frequency sensitivity. We
also see from Table VI that the “Lossy” and “Lossless”
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Table VI. The average parameter estimation capabilities of the “Lossy” and “Lossless” networks for BNS events identical to
those of the baseline network (i.e., at the same distance). Note that these results are averaged over all BNS events, and that
the distribution of these events is not the expected distribution of detected events for the “Lossy” and “Lossless” networks.

PSD ΓM (%) ΓQ (%) σtH
(ms) σtL

(ms) σtV
(ms) 90% Conf (deg2) 67% Conf (deg2)

Baseline 1.4× 10−2 7.6 0.26 0.31 1.4 17 8.7

Lossy 1.1× 10−2 6.1 0.16 0.19 1.5 13 6.2

Lossless 0.95× 10−2 5.7 0.15 0.20 1.4 12 6.1

networks have better mass estimation capabilities than
the “Baseline” network for identical events. The “Lossy”
network has the same low-frequency sensitivity as the
“Baseline” network and is more sensitive in the most sen-
sitive region. Its average uncertainty in M is 21% lower
than the “Baseline”. The “Lossless” network is more
sensitive than the “Baseline” network in the whole band,
and its uncertainty in M is 32% better than the “Base-
line” network. These results indicate that the precision
in the measurement of M does not only come from the
tens of Hertz region, but over a range of frequencies ex-
tending into the most sensitive bandwidth of the baseline
network. Nevertheless, these improvements to the mea-
surement of M are again negligible compared to current

waveform systematic errors. Finally, we see that the mea-
sured uncertainty in Q is 6.1% for the “Lossy” network
and 5.7% for the “Lossless” network, corresponding to
relative improvements of 20% and 25%, respectively, with
respect to the “Baseline” network. We have seen earlier
that Q is best estimated at higher frequencies than M
but at lower frequencies than sky position. The results of
this appendix confirm such a statement, as the measur-
ability of Q improves as a result of both increases in the
high-frequency sensitivity (i.e., in going from the “Base-
line” network to the “Lossy” network) and increases in
low-frequency sensitivity (i.e., in going from the “Lossy”
network to the “Lossless” network).
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