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Abstract
We study a quantum field in elliptic de Sitter space dS4/Z2 – the spacetime obtained from

identifying antipodal points in dS4. We find that the operator algebra and Hilbert space cannot

be defined for the entire space, but only for observable causal patches. This makes the system

into an explicit realization of the horizon complementarity principle. In the absence of a global

quantum theory, we propose a recipe for translating operators and states between observers. This

translation involves information loss, in accordance with the fact that two observers see different

patches of the spacetime. As a check, we recover the thermal state at the de Sitter temperature as

a state that appears the same to all observers. This thermal state arises from the same functional

that, in ordinary dS4, describes the Bunch-Davies vacuum.
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I. INTRODUCTION AND SUMMARY

Causal horizons hide parts of spacetime from an observer’s view. In the presence of strong

curvature, one often finds that no observer has access to the entire spacetime. This is the case

for black holes, as well as for de Sitter space with its cosmological horizons. A useful prejudice

in physics says that a theory should only contain objects that are in principle measurable.

By this standard, if no one can see the entire world, then we shouldn’t speak about its

quantum state. Moreover, if the world-picture available to each observer is the maximal

attainable one, then there shouldn’t be any additional information outside the observer’s

patch: the descriptions of the different causal patches should somehow be equivalent. In

particular, the two sides of each horizon should contain the same information. Together,

these ideas form the horizon complementarity principle [1, 2], proposed as a resolution to

the black hole information paradox [3].

In normal circumstances, quantum field theory (QFT) seems to know nothing about

these considerations: one can always define a Hilbert space on a Cauchy slice, regardless

of whether the entire slice is observable. Horizon complementarity is then delegated to the

domain of quantum gravity, which we do not understand well enough to explore the idea in

depth.

In this paper, we explore a peculiar spacetime, in which something very similar to horizon

complementarity applies to ordinary QFT. The spacetime is elliptic de Sitter space dS4/Z2

– the quotient of ordinary de Sitter space dS4, i.e. the hyperboloid xµxµ = 1 in R1,4, by the

antipodal map x↔ −x. It was proposed in [4–6] as a preferred alternative to ordinary dS4

for understanding quantum gravity with a positive cosmological constant. Elliptic de Sitter

space is globally not time-orientable, but it doesn’t contain closed timelike loops. Thus, the

non-orientability cannot be detected by any observer. In fact, one can make the case that

dS4/Z2 is no less realistic than global dS4. In all the applications to real-world cosmology,

one only uses a half of dS4. Instead of ignoring the other half, one might as well identify it

with the first one.

The antipodal map in dS4 interchanges the inside and the outside of every cosmological

horizon. Thus, in dS4/Z2, the two sides of each horizon are the same – globally, the horizon

has only one side. This is a very literal realization of the idea that the two sides should encode

the same information. More surprisingly, we will see that the global non-orientability in time
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precludes the standard quantization of a field on dS4/Z2. Instead, we can only quantize in

a region where a positive time direction can be chosen consistently. In our geometry, such

regions coincide with the causal patches of observers. Thus, the system is realizing another

element of horizon complementarity – a quantum description only exists for individual causal

patches.

This puts us in a fascinating situation. On one hand, we are outside conventional quan-

tum mechanics, making contact with some of the deep issues in quantum gravity. On the

other hand, we are dealing with ordinary, even free, QFT, where the equations are under

full control. The immediate question to ask is – if the observers are all associated with

different Hilbert spaces, can we relate their world-pictures? We will present and motivate

a particular recipe for translating operators and states between observers, making use of a

global structure that is more primitive than a Hilbert space or an operator algebra.

The above statements apply to any QFT on dS4/Z2 (although, to be well-defined on this

background, the theory must be parity-invariant [7]). For simplicity, we will mostly consider

a conformally coupled massless scalar F , with field equation:

�F = 2F , (1)

where we used the Ricci scalar R = 12 in de Sitter space of unit radius. For this particular

theory, we will be able to go one step further and ask: what state will appear the same to

all observers under our state-translation recipe? A non-trivial calculation shows that the

answer is the thermal state at T = 1/2π, which is the correct temperature for the de Sitter

cosmological horizon [8]. We view this as a successful check of our proposed framework.

The rest of the paper is structured as follows. In section II, we review in further detail

the geometry of dS4/Z2 and the causal patches associated with observers. In section III, we

review the solutions of the field equation (1), which we parametrize in terms of asymptotic

boundary data. In section IV, we show that this solution space is not a phase space, since it

doesn’t admit Poisson brackets that preserve the de Sitter symmetries. One can only define

Poisson brackets in a causal patch, after breaking the symmetry and choosing an observer.

Upon quantization, this leads directly to a separate Hilbert space for each observer. In

section V, we propose a recipe for translating operators between these Hilbert spaces. In

section VI, we apply this recipe to produce an operator that looks the same to all observers,

based on the Euclidean action functional. In section VII, we use the result to motivate a
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translation recipe for states. The above operator then becomes the de Sitter thermal state.

In section VIII, we conclude and discuss future directions.

II. ELLIPTIC DE SITTER SPACE

A. Topology, observers and horizons

We define de Sitter space dS4 as the hyperboloid of unit spacelike radius in 4+1d flat

space R1,4 with metric signature (−,+,+,+,+):

dS4 = {xµ ∈ R1,4|xµxµ = 1} . (2)

The isometry group SO(4, 1) of dS4 is then realized as the rotation group in the 4+1d space.

The asymptotic boundary of dS4 is composed of two conformal 3-spheres – one at past infinity

(I−) and the other at future infinity (I+). In the 4+1d picture, I± correspond to the 3-

spheres of future-pointing and past-pointing null directions. Local Weyl transformations

on I± correspond to rescalings `µ → λ`µ of the lightcone in R1,4; for a field on I± with

conformal weight ∆, this induces the rescaling f → λ−∆f .

Elliptic de Sitter space dS4/Z2 is obtained by identifying antipodal points xµ ↔ −xµ.

See figures 1-2. The resulting spacetime still looks locally like dS4, but its global properties

are different. In particular, I− becomes identified with I+, so the asymptotic boundary

is now a single 3-sphere I. Topologically, de Sitter space dS4 is a cylinder R × S3, where

the S3 boundaries correspond to I±. One way to obtain elliptic de Sitter space dS4/Z2 is

to cut the cylinder in half along an equatorial S3 slice, and then fold this S3 into a S3/Z2

by identifying antipodal points. See figure 3. Thus, we can single out two preferred types

of spatial slices in dS4/Z2. One is the asymptotic slice I, with topology S3. The other is

an equatorial slice, with topology S3/Z2 (there is a 4d set of such slices, corresponding to

spacelike 4-planes through the origin in R1,4).

An observer in dS4 follows a timelike worldline, which begins at some point pi ∈ I− and

ends at some point pf ∈ I+. These two points can be encoded as two null directions in R1,4.

The lightcones of pi,f are the observer’s past and future cosmological horizons, respectively.

They refocus at the antipodal points −pi and −pf on I±. The horizons intersect at a 2-

sphere, known as the bifurcation surface. They divide the spacetime into four quadrants;

the quadrant containing the observer’s worldline is known as his static patch. The observer
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FIG. 1. This illustrates dS4 embedded in R4,1. To get dS4/Z2, the upper half (light gray) and

the lower part (dark gray) are identified via the antipodal map, illustrated by black arrows. We

also show an observer O together with his future and past horizons T ±O . The rings in the figure

represent 3-spheres; the central ring becomes an S3/Z2 due to the antipodal identification.

in dS4 can see half of the spacetime, up to his future horizon, and can influence half of the

spacetime, up to his past horizon. Though we will picture the observer as traveling along

the geodesic from pi to pf , this is not essential: any worldline with the same two endpoints

is associated with the same horizons.

The points pi,f also single out a particular Killing field ξµ from the de Sitter symmetry

group SO(4, 1). The vector field ξµ is future-pointing timelike in the static patch, past-

pointing timelike in its antipode, spacelike in the past and future quadrants, null on the

horizons, and vanishing on the bifurcation surface. See figure 4. The geodesic from pi to pf
runs along ξµ. In the 4+1d picture, ξµ corresponds to the boost generator in the plane of

the two null directions pi,f . The full residual symmetry after picking the pi,f is R × O(3),

where the R corresponds to the “time translations” generated by ξµ, and the O(3) is the

group of spatial rotations and reflections around the pi → pf geodesic.

In dS4/Z2, the two endpoints pi,f of the observer’s worldline are both on the same asymp-

totic 3-sphere I. We can still specify one point as initial and the other as final, thus choosing

a direction for the observer’s proper time. The lightcones of pi,f still function as horizons,
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FIG. 2. This is the Penrose diagram corresponding to figure 1. It shows the full dS4 spacetime,

along with the antipodal identification that turns it into dS4/Z2, again illustrated by arrows. A

point in this diagram represents a 2-sphere, except on the left and right boundary (worldline of

the observer O), where a point represents an actual point. The Penrose diagram also shows the

identified future and past infinity I.

each one now refocusing back at its starting point. Each horizon is antipodally identified

with itself, so that the only independent horizon points are from pi/pf up to the bifurcation

surface. The bifurcation surface is also identified with itself, becoming an S2/Z2. The two

sides of each horizon are identified with each other. As a result, the observer can now see

the entire spacetime except his own future horizon, and can influence the entire spacetime

except his past horizon. We see that this geometry fits well with the ideas of horizon com-

plementarity. On one hand, the two sides of each horizon carry the same information. On

the other hand, different observers have access to almost the same data: each one sees the

same spacetime, but with a different surface subtracted.

B. Observer-adapted coordinates

Consider an observer in dS4/Z2. We can choose a frame in R1,4 so that the endpoints

pi,f of the observer’s worldline correspond to the null directions (1,∓1, 0, 0, 0), where we’ve

used the antipodal map to make both null directions future-pointing. We can now choose

coordinates in dS4/Z2 adapted to our observer, e.g. the static coordinates in his static patch.
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FIG. 3. This Penrose diagram shows all of dS4/Z2, without embedding into dS4. It has the

topology of a cylinder where one of the two S3 boundaries was folded into an S3/Z2. Thus, elliptic

de Sitter space has only a single boundary I ∼= S3. The diagram also shows a light flash that starts

on the observer’s future horizon at (η, θ, φ) and hits I at (t = η, θ, ϕ), thus relating the coordinate

η on the horizon with t on I.

T +
O T −O
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FIG. 4. This Penrose diagram shows the Killing vector field ξ that is timelike in the observer’s

causal diamond (dark region) and spacelike in its complement. It becomes null on the observer’s

future and past horizons T ±O . On the horizon, we have ξ = ∂η in the coordinates (η, θ, ϕ); on I,

we have ξ = ∂t in the coordinates (t, θ, ϕ).

In the following, we will only need explicit coordinates on I and on the observer’s future

horizon.

We can represent I as the following section of the lightcone in R1,4:

`µ(t, θ, ϕ) = (cosh t, sinh t, cos θ, sin θ cosϕ, sin θ sinϕ) , (3)
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where (t, θ, ϕ) are coordinates on I, adapted to the residual R × O(3) symmetry. t ranges

from −∞ at pi to ∞ at pf . The coordinates (3) are singular at pi,f , making the topology

of I appear like a cylinder R × S2. In fact, the metric of the section (3) is also that of a

cylinder:

d`µd`µ = dt2 + dθ2 + sin2 θ dϕ2 ; d3` = dt d(cos θ) dϕ . (4)

When performing calculations for the given observer, this will be our chosen representative

of the conformal class of metrics on I. Translations in the “time” coordinate t are generated

by the Killing field ξµ, which generates time translations in the static patch. On I, the

vector ξµ and the coordinate t are spacelike.

Similarly, we will use coordinates (η, θ, ϕ) on the observer’s future horizon, such that a

point on the horizon is represented in R1,4 as:

xµ = (eη, eη, cos θ, sin θ cosϕ, sin θ sinϕ) . (5)

The coordinate η ranges from −∞ at the bifurcation surface to ∞ at pf . Again, the Killing

field ξµ generates translations in η, while the O(3) symmetry acts on (θ, ϕ). On the horizon,

ξµ and the coordinate η are null. The coordinates (5) are singular at pf and at the bifurcation

surface. Our coordinates for the horizon and I are directly related: a radial light flash from

the horizon point (η, θ, ϕ) will hit I at (t, θ, ϕ), where t = η.

III. CONFORMALLY COUPLED MASSLESS SCALAR

We now introduce a real scalar field F , subject to the field equation (1). There are two

ways to define such a field on dS4/Z2. One is to start with an antipodally even field in

dS4, which will then live in the trivial bundle on dS4/Z2. The other is to start with an

antipodally odd field, which will live on a twisted bundle on dS4/Z2, changing its sign along

incontractible cycles. We will focus on the antipodally even case.

To discuss asymptotic boundary data, we follow the usual procedure of conformal com-

pletion: we introduce a time coordinate z such that z → 0 on I, and the rescaled metric

z2gµν is regular at z = 0. In a neighborhood of I, we can use z together with (t, θ, ϕ)

from section II B as coordinates on dS4/Z2. The general solution of the field equation (1) in
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ordinary dS4 has the asymptotic behavior:

F = zΦ(t, θ, ϕ) + z2 Π(t, θ, ϕ) + . . . , (6)

where the higher-order terms in z are all determined by the Dirichlet boundary data Φ and

the Neumann boundary data Π. We view Φ and Π as fields on I, with respective conformal

weights 1 and 2. For an antipodally even/odd field F , the Φ/Π boundary data vanishes [9].

Thus, in our dS4/Z2 setup, a solution F (x) is uniquely determined by the Neumann data Π:

F (x) =
∫
I

Π(`)G(x; `) d3` . (7)

Here, `µ(t, θ, ϕ) stands for a boundary point in the parametrization (3), and the boundary-

to-bulk propagator G(x; `) reads [7]:

G(x; `) = 1
4π δ(x · `) , (8)

where x · ` ≡ xµ`
µ is the scalar product in R1,4.

We can thus identify the space of solutions Γ with the space of Neumann boundary data

Π(`) on the 3-sphere I. In observer-adapted coordinates, we can parametrize this space of

boundary data using Fourier modes in t and spherical harmonics in (θ, ϕ):

Π(t, θ, ϕ) =
∫ ∞

0

dω

2π

∞∑
l=0

l∑
m=−l

(
e−iωt Ylm(θ, ϕ) c∗lm(ω) + c.c.

)
. (9)

The boundary data is now parametrized by the complex coefficients clm(ω). Due to the

R × O(3) symmetry, each (ω, l,m) component of (9) yields a bulk solution with frequency

ω and angular momentum numbers (l,m) in the static patch. Strictly speaking, (9) is not a

function on I ∼= S3, but on the R× S2 obtained by removing the two points pi,f . However,

this distinction will not bother us. Any function on S3 is also a function on R×S2; conversely,

any function on R×S2 is a singular, generalized function on S3, which can be viewed as the

limit of a sequence of honest functions.

For more general field theories, one will similarly find that only one of the (Dirich-

let/Neumann) boundary data on I is independent. However, the other type of boundary

data will not in general vanish.
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IV. PHASE SPACE AND QUANTIZATION

A. There is no dS-invariant symplectic form

Usually, the space of boundary data (or the space of solutions) comes naturally equipped

with a symplectic form, which defines the Poisson brackets and makes it into a phase space.

If we start with the phase space ΓdS4 of ordinary dS4 and restrict to the submanifold Γ of

antipodally symmetric fields, the restriction of the standard symplectic form vanishes. Put

differently, our solution space Γ in dS4/Z2 is a Lagrangian submanifold of the ordinary phase

space ΓdS4 .

For the particular field theory (1), this result is immediate. Indeed, the asymptotic

boundary data Φ and Π are canonical conjugates in ordinary dS4, while in dS4/Z2, one of

them is constrained to vanish. For more general field theories, the result is easier to see in

terms of an equatorial S3 slice in the bulk, which becomes an S3/Z2 under the antipodal

identification. There, the standard symplectic form reads:

Ω(δ1, δ2) =
∫
dV

(
δ1F (x)δ2Ḟ (x)− δ2F (x)δ1Ḟ (x)

)
. (10)

This form vanishes on the subspace of antipodally even/odd solutions, since the Ḟ/F con-

tributions (respectively) cancel at antipodal points. Alternatively, if one thinks in terms of

dS4/Z2, one would try to integrate (10) over an S3/Z2 slice. However, the expression is then

ill-defined: due to the global non-orientability, one cannot consistently choose a positive

time direction along which to define Ḟ .

Not only does the standard symplectic form vanish, but it’s also impossible to find a

different one that would respect the de Sitter symmetries:

Theorem 1. Consider the space of boundary data f(`) with conformal weight ∆ on I (e.g.

Π(`) with ∆ = 2). There is no symplectic form on this space that is invariant under the

SO(4, 1) de Sitter group.

Proof. Let us use the representation of I via light-like vectors `µ ∈ R1,4. Now, any symplectic

form can be written as:

Ω(f1, f2) =
∫
d3`1d

3`2 f1(`1) f2(`2)G(`1, `2) , (11)

10



where the kernel G(`1, `2) has conformal weight 3−∆ in each argument, and is antisymmetric

under `1 ↔ `2. For Ω to be invariant under SO(4, 1), the same must be true of G. However,

the only independent invariant that can be constructed from `1, `2 is the inner product `1 ·`2,

which is symmetric rather than antisymmetric under `1 ↔ `2.

B. Observer-dependent phase space and quantization

In the absence of a global symplectic form, we can still use the standard symplectic form

in an observer’s static patch. Consider an equatorial S3/Z2 slice containing the observer’s

S2/Z2 bifurcation surface, but with the bifurcation surface excised. The remaining region,

with the topology of an open ball, is precisely the region of space that is visible to the

observer. In this region, we can consistently choose a unit timelike normal (pointing in the

direction of ξµ), which becomes discontinuous at the bifurcation surface. We can then use

this normal to define Ḟ , and plug that into the symplectic form (10). The result agrees with

the standard symplectic form in dS4, restricted to the static patch.

The symplectic form thus constructed is genuinely observer-dependent. This is easiest to

see for two observers whose bifurcation surfaces share an S3/Z2 equatorial slice (we will say

in this case that the observers “share the S3/Z2”). The two symplectic forms are then given

by the integral (10) over the same S3/Z2 slice, but with opposite signs for Ḟ in a certain

region. On the other hand, this picture shows that formally, the two observers agree on

phase space volumes: in the (F, Ḟ ) basis on the shared S3/Z2, their symplectic forms are

block-diagonal, and only differ in signs. While not every two observers share an S3/Z2, we

can always find a third observer that shares an S3/Z2 with each one. Thus, the notion of

phase space volume is common to all observers.

In quantum theory, the Poisson brackets, i.e. the inverse of the symplectic form, translate

directly into an operator algebra, of which the Hilbert space is a representation. Thus, our

statements above concerning symplectic forms translate directly into the quantum context.

There is no global operator algebra or Hilbert space, since there is no observer-independent

symplectic form. Instead, each observer assigns a different algebra to the field operators

F̂ (x), leading to a different Hilbert space for each observer. Individually, each of these

Hilbert spaces is just the ordinary Hilbert space in a static patch of dS4. A state in each

Hilbert space can be represented as a functional ψ[F (x)] over the field values on an S3/Z2.
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However, even for observers that share an S3/Z2, one cannot compare these states directly,

i.e. there is no natural map between the Hilbert spaces, since the operator algebras are

different. For instance, the physical meaning of the derivative δ/δF acting on ψ[F ] is

observer-dependent, since different observers assign different signs to the momentum Ḟ .

C. Decomposition into harmonic oscillators

Consider an observer, with his associated symmetry group R×O(3) of time translations

and rotations. The free field (1) can be decomposed into modes with frequency ω and angular

momentum numbers (l,m). Each mode behaves as an independent harmonic oscillator.

Since our observer-dependent symplectic form is just the standard symplectic form in the

static patch, it induces the standard commutation relations on the associated raising and

lowering operators:

[âlm(ω), â†l′m′(ω′)] = 2πδ(ω − ω′)δll′δmm′ ;

[âlm(ω), âl′m′(ω′)] = [â†lm(ω), â†l′m′(ω′)] = 0 .
(12)

Now, recall the decomposition (9) of the boundary data on I in terms of coefficients

clm(ω). From symmetry, these coefficients must coincide with the classical counterparts

alm(ω) of the lowering operators âlm(ω), up to normalization:

alm(ω) = Nl(ω)clm(ω) . (13)

The complex phases of the normalization coefficients Nl(ω) are arbitrary. Their absolute

values can be computed by evolving the boundary data (9) into the bulk, and requiring that

the energy in the static patch (with respect to the Killing field ξµ) takes the form:

E =
∫ ∞

0

dω

2π
∑
lm

ω |alm(ω)|2 . (14)

The energy is easiest to evaluate on the horizon, using the coordinates (5). The calculation

is given in Appendix A. The result reads:

|Nl(ω)|2 =


1

2ω

l/2∏
k=1

(2k − 1)2 + ω2

(2k)2 + ω2 l even

ω

2(1 + ω2)

(l−1)/2∏
k=1

(2k)2 + ω2

(2k + 1)2 + ω2 l odd
. (15)
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An observer’s a’s and a∗’s are just linear functionals of the field. Therefore, the a’s and

a∗’s of two different observers are linear combinations of each other. This may look at

first like a Bogoliubov transformation, but it isn’t: the commutation relations (12) are not

preserved. This is just another way of saying that the two observers have different symplectic

forms, and thus different operator algebras.

V. TRANSLATING OPERATORS BETWEEN OBSERVERS: THE WIGNER-

WEYL TRANSFORM

Now that we have a separate Hilbert space for each observer, how can we translate infor-

mation between them? In this section, we will take a first step by proposing a translation

recipe for operators between observers. In section VII, we will augment this with a transla-

tion recipe for states.

The different observers share the same space Γ of boundary data, or, equivalently, of

classical solutions (again, if we allow singular data, then this is true despite the removed

points pi,f ). The observers can therefore agree on the notion of functionals A[Π(`)] over Γ.

Since they also agree on a notion of phase space volume, we can perform functional integrals

over Γ. Thus, in particular, the observers agree on classical probability distributions on Γ.

Given an observer with his symplectic form, Γ becomes a proper phase space. A functional

A[Π(`)] is then a functional over phase space, which can be translated into an operator on

the observer’s Hilbert space. To do this, we use the harmonic oscillator decomposition

(9) to write our functional as A[clm(ω), c∗lm(ω)] (the normalization (13) of the oscillators

is not essential here). We then expand A[clm(ω), c∗lm(ω)] in a Taylor series. It can now

be reinterpreted as an operator, once we choose an operator ordering convention for each

term. We pick symmetric ordering, since this is the convention on which all observers can

agree. Indeed, on one hand, the c’s and c∗’s for two observers are just linear combinations

of each other, and so symmetric ordering for one set is the same as symmetric ordering for

another. On the other hand, the positive-frequency condition that distinguishes c’s from c∗’s

is different between observers, so they cannot agree on the meaning of e.g. normal ordering.

The procedure described above for translating functionals A[Π(`)] into operators Â is the

well-known Wigner-Weyl transform for quantum mechanics in phase space; see e.g. [10].

The transform also works in the opposite direction: starting with an operator Â, we expand
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it in symmetrized products of ĉ’s and ĉ†’s, and then reinterpret the result as a functional in

the c’s and c∗’s.

Thus, our recipe for translating operators between observers is as follows. Starting from

an operator Â1 on one observer’s Hilbert space, we perform the Wigner-Weyl transform to

obtain a functional A[Π(`)], which can then be transformed again into an operator Â2 on

the other observer’s Hilbert space. See figure 5. This recipe preserves Hermiticity, since

Hermitian operators simply map to real functionals. It preserves the trace tr Â, since the

latter can be computed by integrating the functional A over Γ. Finally, it preserves the

traced product tr(ÂB̂), since this can again be computed by integrating the product of the

two functionals AB. More detailed properties of the operators, such as their spectrum or

their positive-definiteness, are not preserved. The operator algebra is also not preserved:

e.g. for operators linear in ĉ’s and ĉ†’s, the observers’ different symplectic forms translate

directly into different algebras. Finally, the traced product tr(ÂB̂Ĉ . . . ) of more than two

operators is not preserved: one can still write this as an integral over Γ, but the product

of functionals must now be written as a Moyal ?-product, which depends on the symplectic

form.

Observer 1
Â1 : H1 → H1

Observer 2
Â2 : H2 → H2

Wigner
transform

Weyl
transform

A : Γ → C
Functional on the space of boundary data

FIG. 5. Translation of operators between observers using the Wigner-Weyl transform.

Under our recipe, the field operator F̂ (x) gets mapped to itself, being a linear combination

of ĉ’s and ĉ†’s. The corresponding functional on the space of boundary data is the propagator

(7). If we use observer-adapted coordinates, then of course F̂ (x) is mapped to itself only after

the appropriate coordinate transformation. A different behavior is exhibited by functionals

A[Π(`)] that are invariant under the de Sitter group SO(4, 1). Such a functional will appear

the same in every observer’s coordinates; as a result, the operator Â will appear the same

to every observer without a coordinate transformation. In the next section, we study a

particular case of this type.
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VI. HARTLE-HAWKING FUNCTIONAL

A. The functional in observer-adapted coordinates

An important example of a de Sitter-invariant functional is the exponent of the Euclidean

on-shell action with boundary data Π(`):

Ψ[Π(`)] ∼ e−SE [Π(`)] , (16)

where we left the normalization unspecified. In ordinary dS4, this functional would be the

wavefunction of the Bunch-Davies vacuum [11], or the Hartle-Hawking state [12], in the Π(`)

basis. Indeed, since we are in a free theory, on-shell action fully captures the path integral.

In our dS4/Z2 setup, the functional (16) will eventually play the role of a thermal state. For

now, let us simply translate it into an operator on some observer’s Hilbert space.

The Euclidean action in (16) can be calculated as the renormalized action in Euclidean

AdS4 (i.e. 4d hyperbolic space) with boundary data Π(`) [13]. The Euclidean AdS4 can

be conveniently represented in the same 4+1d picture as dS4, as the hyperboloid of e.g.

future-pointing unit timelike vectors. The two spacetimes then explicitly share the same

asymptotic 3-sphere of null directions `µ. The appropriate action reads:

SE =
∫
M
d4x
√
g
(
−1

2(∇F )2 + F 2
)

+
∫
∂M

d3x
√
q
(1

2 Ḟ
2 + 2FḞ + F 2

)
. (17)

Here,M is the EAdS4 space truncated at a large but finite 3-sphere ∂M. √g is the EAdS4

4-volume density, √q is the volume density on ∂M, and Ḟ is the derivative of F along an

outgoing unit normal to ∂M. The boundary terms in (17) are chosen so that the action’s

variation is proportional to ΦδΠ. The overall sign is chosen to make the on-shell action

positive (see below). On-shell, the action (17) reads:

SE[Π(`)] = −1
2

∫
I
d3`ΦE(`)Π(`) , (18)

where ΦE(`) is the Dirichlet boundary data induced by the Neumann data Π(`) on EAdS4

(recall that in the Lorentzian dS4/Z2, the Dirichlet data Φ(`) vanishes). We can compute

ΦE(`) using the boundary 2-point function [14, 15]:

ΦE(`) =
∫
d3`′GE(`; `′) Π(`′) ; GE(`; `′) = 1

4π2 ·
1

` · `′ . (19)
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The Euclidean action (18) is thus quadratic in the boundary data Π(`). In the oscillator

decomposition (9), it is constrained by symmetry to take the form:

SE[Π(`)] =
∫ ∞

0

dω

2π
∑
lm

Sl(ω) |clm(ω)|2 . (20)

Using eqs. (18)-(19), we can compute the coefficients Sl(ω) as:

Sl(ω) =


1
ω

tanh ωπ2

l/2∏
k=1

(2k − 1)2 + ω2

(2k)2 + ω2 l even

ω

1 + ω2 coth ωπ2

(l−1)/2∏
k=1

(2k)2 + ω2

(2k + 1)2 + ω2 l odd
. (21)

The calculation is performed in Appendix B. We conclude that in terms of the normalized

oscillators (13),(15), the Hartle-Hawking functional (16) reads simply:

Ψ[Π(`)] ∼ exp
(
−2

∫ ∞
0

dω

2π
∑
lm

tanh
(
π

2 (ω + il)
)
|alm(ω)|2

)
, (22)

where we made use of the analytical continuation:

tanh
(
x+ lπi

2

)
=

 tanh(x) l even

coth(x) l odd
. (23)

B. Transforming into an operator on the observer’s Hilbert space

The Wigner-Weyl transform of Gaussians such as (22) is well-known, since this is the

form of the Wigner distribution for a thermal state:

W (a, a∗) ∼ exp
(
−2 tanh βω2 |a|

2
)
←→ Ŵ ∼ exp

(
−βω â†â

)
. (24)

We use eq. (24), continued to complex β, as a purely mathematical statement: so far, the

functional (22) does not have the interpretation of a state. Applying (24) to (22), we obtain

the operator:

Ψ̂ ∼ R̂ e−πĤ , (25)

where Ĥ is the observer’s Hamiltonian for t translations:

Ĥ =
∫ ∞

0

dω

2π
∑
lm

ω â†lm(ω) âlm(ω) , (26)
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and R̂ is the antipodal operator on the (θ, ϕ) 2-sphere:

R̂ = (−1)L̂ ; L̂ =
∫ ∞

0

dω

2π
∑
lm

l â†lm(ω) âlm(ω) . (27)

R̂ has eigenvalues ±1, depending on the number of odd-l quanta. We notice that Ψ̂ is almost,

but not quite, the density operator of a thermal state. In particular, due to the factor of R̂,

it is not positive definite.

VII. TRANSLATING STATES BETWEEN OBSERVERS

A. From a global “meta-state” into states for individual observers

In section V, we’ve discussed the translation of operators between the different observers’

Hilbert spaces. Now, the density matrix of a state is a particular case of an operator. Can

we, then, translate states between observers by directly applying the operator translation

recipe? The answer is no: the translation of operators through the Wigner-Weyl transform

will not preserve the non-negativity of eigenvalues, which is a necessary property for a density

matrix.

On the other hand, recall that the translation of operators does preserve Hermiticity, and

any Hermitian operator can be made positive-semidefinite by taking the square. Notice also

that the operator (25), which we derived from the Hartle-Hawking functional, becomes a

thermal density matrix upon squaring. This leads us to propose the following recipe:

Definition 1. Consider a real functional Ψ : Γ → R on the space of boundary data. Such

a functional is defined independently from any observer. Given an observer, we translate it

into a density matrix ρ̂ = Ψ̂2 on the observer’s Hilbert space, by first applying the Wigner-

Weyl transform to get the Hermitian operator Ψ̂, and then squaring this operator to ensure

non-negative eigenvalues.

Definition 1 postulates a functional Ψ which encodes a “God’s eye” view of the entire

spacetime, while not being a state in any Hilbert space. From this “meta-state”, we can

deduce the (generally, mixed) state that would be visible to each observer. The procedure

involves a loss of information, since we lose track of signs when squaring the operator Ψ̂.
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For the particular case when the “meta-state” is the Hartle-Hawking functional (16), our

definition leads, through (25), to the following density matrix for each observer:

ρ̂ = Ψ̂2 ∼ e−2πĤ . (28)

We recognize this as the thermal state at the de Sitter temperature T = 1/2π.

In the above, we haven’t kept track of the normalization of our functionals and states. In

particular, the trace of the density matrix (28) can be fixed to 1 by appropriately normalizing

the Hartle-Hawking functional (16). Importantly, this is always possible under Definition 1.

Indeed, the state’s normalization tr ρ̂ = tr(Ψ̂2) is preserved by the Wigner-Weyl transforms,

being the traced product of two Ψ̂’s. By normalizing the “meta-state” functional Ψ such

that Ψ2 has a unit integral over Γ, we can ensure that the resulting density matrix for every

observer has unit trace. Note that the squaring recipe ρ̂ = Ψ̂2 is special in this respect: if

we attempted to make Ψ̂ positive-semidefinite by e.g. raising it to the fourth power, tr ρ̂

would not be preserved, since it would now be the traced product of more than two Ψ̂’s.

In the semiclassical limit, all operator products reduce to ordinary products of functionals

on Γ. Definition 1 then produces a classical probability distribution ρ = Ψ2, on which all

observers agree. On the other hand, for general quantum states, different observers will

disagree on the expectation values of operators (which are in turn translated between the

observers’ Hilbert spaces through Wigner-Weyl transforms, as in section V). This is because

the expectation value tr(ρ̂Â) = tr(Ψ̂2Â) of an operator Â is the traced product of three

operators that undergo Wigner-Weyl transforms.

The disagreement on expectation values can be already be seen for the observer-

independent thermal state (28). Indeed, this state appears the same to each observer

in his own coordinate system. The same points in spacetime are assigned different coordi-

nates by the different observers, leading to different correlation functions. Note that the

state (28) is not semiclassical, since it is near vacuum for high frequencies ω.

B. From a pure state for one observer into a mixed state for another

The operator squaring in Definition 1 is in general not invertible. However, it is invertible,

up to an overall sign, if the density matrix ρ̂ has unit rank, i.e. if the state is pure. This

allows us to formulate a translation recipe directly from one observer to another, when the
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Functional on Γ (up to sign):

Ψ : Γ → R

Weyl
transform

Wigner
transform

Operator: Ψ̂1 : H1 → H1

Squaring
for pure states:
square root
(up to sign)

Density Operator: ρ̂1 = (Ψ̂1)2

FIG. 6. Translation recipe for density operators: a functional Ψ gives rise to an operator Ψ̂1 for a

specific observer 1. The density operator is then calculated as its square ρ̂1 = (Ψ̂1)2. If ρ̂1 is pure,

we can go backwards to reconstruct Ψ̂1 and Ψ up to an overall sign ambiguity; we can then run

the translation forward again, obtaining a mixed state ρ̂2 in another observer’s Hilbert space.

first observer has the full knowledge of a pure state:

Definition 2. Consider a pure state, i.e. a rank-1 density matrix ρ̂1, on the Hilbert space

of an observer. We can take the square root Ψ̂1 of ρ̂1, up to an overall sign. We then

perform the Wigner-Weyl transform into a functional Ψ. The latter can be translated into

a (generally mixed) state ρ̂2 for a second observer, following Definition 1. The overall sign

ambiguity disappears when squaring the operator on the second observer’s side.

As before, the state’s normalization is preserved. On the other hand, the purity of the

state is not, because the unit rank of the operator Ψ̂ is not preserved by the Wigner-Weyl

transforms. In particular, the purity of a state ρ̂ can be measured via tr ρ̂2 = tr Ψ̂4; this is

not preserved under the Wigner-Weyl transforms, because it is the traced product of more

than two Ψ̂’s. Again, we see that the state translation involves information loss. On one

hand, if we start with a mixed state, we cannot translate it into another observer’s Hilbert

space, due to the ambiguous square root. On the other hand, if we start with a pure state,

we can perform the translation through Definition 2, but this results in a mixed state for

the other observer. The state translation procedures in Definitions 1-2 are summarized in
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figure 6.

VIII. DISCUSSION

In this paper, we considered a concrete four-dimensional system – a scalar field in elliptic

de Sitter space dS4/Z2 – which exhibits the concepts of horizon complementarity. Through

this system, we could explicitly study a situation where each observable region is associated

with a Hilbert space, but these do not derive from a global Hilbert space for the entire

world. We proposed a one-to-one translation recipe between operators on the different

Hilbert spaces, based on the Wigner-Weyl transform. We then proposed a translation recipe

for states, which comes in two versions. In Definition 1, we have a global “meta-state” which

descends into proper states for individual observers; in Definition 2, we have a pure state

for one observer which gets translated into a mixed state for a second observer, with the

“meta-state” appearing as an intermediate step.

Our state-translation recipe preserves the normalization and positive-semidefiniteness of

the density matrix, and yields observer-independent predictions in the semiclassical limit.

On the other hand, in the quantum regime, it involves information loss, and assigns observer-

dependent expectation values to operators. Remarkably, if one starts from the Hartle-

Hawking functional (16) as the “meta-state”, one obtains the thermal state (28) at the de

Sitter temperature for every observer. Moreover, this is the only sensible observer-invariant

Gaussian state that one can obtain. Indeed, SE[Π(`)] is the only SO(4, 1)-invariant quadratic

functional over the boundary data Π(`). The remaining freedom in choosing the “meta-state”

is to take e−αSE with a constant coefficient α 6= 1. However, based on our results for e−SE ,

it is easy to find that the corresponding state will have diverging temperature Tl(ω) ∼ ω for

the high-frequency modes.

It will be interesting to further investigate the information loss in our state-translation

recipe. Can it be related more directly to fact that each observer cannot see his own horizon?

We’ve argued above that the horizon’s removal should not be seen as affecting the classical

solution space. Similarly, we believe that the information loss at the quantum level should

be associated not with the field value at the horizon itself, but with correlations across it:

the main effect of removing the horizon is not the absence of a zero-measure set of points,

but the change in the spacetime’s connectivity. It would be interesting to probe this idea,
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and to see if it can be related to the notion of horizon entropy as entanglement entropy in

the QFT (see e.g. [16]). One route to approach these issues may be to study one observer’s

vacuum, and work out the resulting mixed states for other observers.

The general considerations in this paper, as well as the operator/state translation recipes,

make sense for any QFT in dS4/Z2. The exception is the calculation of the thermal state from

the Hartle-Hawking functional. Our free massless conformally-coupled scalar (1) is special

in that it has only one of the two types of boundary data – in this case, the Neumann data

Π(`) – non-vanishing on I. Changing the mass or adding interactions ruins this property.

Without it, it is unclear which boundary data we should feed into the Hartle-Hawking

functional (16), making our calculation ill-defined. On the other hand, free massless gauge

fields do have the property that only one type of asymptotic data is non-vanishing, for all

values of the spin [7]. One can therefore repeat our calculation for such fields, as well as

for the antipodally-odd version of the scalar (1). It would be interesting to know if the

T = 1/2π thermal state is again obtained, and if so, to understand the mechanism behind

this.

Unfortunately, our story cannot be generalized to gravitationally perturbed, asymp-

totically dS4/Z2 spacetimes. This is because such spacetimes have closed timelike loops

[4, 17, 18], which pure dS4/Z2 avoids marginally. In particular, this prevents us from con-

sidering dynamical gravity in asymptotically dS4/Z2.

There is, however, a tantalizing possibility to extend this paper’s insights into a quantum-

gravitational setting. That setting is Vasiliev’s theory of higher-spin gravity [19]. This is an

interacting theory of massless gauge fields of all spins, along with a massless conformally-

coupled scalar. As found recently in [7], this theory satisfies the property that only one

type of boundary data for each field in dS4/Z2 is non-vanishing on I, order by order in

perturbation theory. One can then speak sensibly about the generalization of the (no longer

Gaussian) Hartle-Hawking functional (16). Moreover, it is precisely this functional that

appears in the holographic dS/CFT proposal [20] for higher-spin gravity, as the dual of the

CFT partition function. As for the issue of closed timelike loops, it is not obviously a problem

in higher-spin gravity, since the interactions are very different from General Relativity, and

appear to be non-local. Thus, we have a potential link between a global holographic model

on I and the thermal states inside observers’ causal patches. This would be a great step

forward for the application of dS/CFT to the observer-related puzzles in de Sitter space.
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Appendix A: Normalization of harmonic oscillators on I

In this Appendix, we calculate the normalization coefficients (15) that relate the harmonic

oscillators (alm(ω), a∗lm(ω)) with commutation relations (12) to the functions (clm(ω), c∗lm(ω))

in the Fourier expansion (9) of the boundary data Π(`). We will do this by calculating the

energy of a solution (9) with respect to the observer’s time-translation generator ξµ, and

comparing to eq. (14). To calculate the energy, we should integrate the stress tensor over a

spatial slice in the static patch. In practice, it is easier to take the limit where the spatial

slice becomes the observer’s e.g. future horizon.

1. Propagating the field to the horizon

Let us find the solution F (x) on the future horizon from the asymptotic Neumann data

(9). We use the horizon coordinates (η, θ, ϕ) from section II B. From symmetry, we know

that F will take the form:

F (η, θ, ϕ) = 1
2

∫ ∞
0

dω

2π
∑
lm

(
Il(ω) e−iωη Ylm(θ, ϕ) c∗lm(ω) + c.c.

)
, (A1)

for some functions Il(ω), where the factor of 1/2 is chosen for later convenience. To find the

coefficients Il(ω), we can focus on an m = 0 mode:

Π(t, θ, ϕ) = e−iωt Yl0(θ, ϕ) + c.c. =
√

2l + 1
4π e−iωtPl(cos θ) + c.c. , (A2)

where Pl(u) are the Legendre polynomials. Plugging into (A1), we get:

F (η, θ, ϕ) = 1
2

√
2l + 1

4π Il(ω) e−iωηPl(cos θ) + c.c. (A3)
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On the other hand, we can use the boundary-to-bulk propagator (7)-(8) to calculate the

field at e.g. the horizon point xµ = (eη, eη, 1, 0, 0). For a boundary point parametrized by a

null vector `µ(t, θ, ϕ) as in (3), the propagator reads:

G(x; `) = 1
4πδ(x · `) = 1

4πδ(cos θ − eη−t) . (A4)

Integrating the propagator over the boundary, we get:

F (η, 0, 0) = 1
2

√
2l + 1

4π e−iωη
∫ 1

0
du uiω−1Pl(u) + c.c. . (A5)

Comparing with (A3), we identify the integral in (A5) as our desired coefficient Il(ω).

2. Evaluating the integral Il(ω)

Let us now calculate the integral:

Il(ω) =
∫ 1

0
uiω−1Pl(u)du . (A6)

Using the standard recursion relation for Legendre polynomials:

(l + 1)Pl+1(u) = (2l + 1)uPl(u)− lPl−1(u) , (A7)

we get the following recursion relation for Il(ω):

Il+1(ω) = 2l + 1
l + 1 Il(ω − i)−

l

l + 1 Il−1(ω) . (A8)

The initial values for this recursion relation can be calculated directly, using the regulariza-

tion uiω−1 → uiω−1+ε in the integral (A6):

I0(ω) = 1
iω

; I1(ω) = 1
1 + iω

. (A9)

After calculating Il(ω) for the first few l’s, we can guess the general expression:

Il(ω) =


1
iω

l/2∏
k=1

ω + (2k − 1)i
ω − 2ki l even

1
1 + iω

(l−1)/2∏
k=1

ω + 2ki
ω − (2k + 1)i l odd

. (A10)

This ansatz can be verified by checking that it satisfies the recursion relation (A8) and agrees

with the initial values (A9).
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3. Energy of a given solution

Having translated the field (9) from I to the future horizon T +, we are able to determine

its energy. The stress energy tensor is given by:

Tµν = ∂µF∂νF + gµν(. . . ) . (A11)

The piece proportional to gµν will not contribute, because we will contract with a null vector.

The energy on the horizon is given by:

E =
∫
T +

Tµν ξ
µSνd3x . (A12)

Here, the 3d vector density Sµ is the horizon’s area current, and ξµ is the observer’s time-

translation Killing field, which becomes null on the horizon. Both Sµ and ξµ point along the

horizon’s null normal. Specifically, ξµ generates translations in the null coordinate η. Using

the expression (A11) for the stress tensor, this gives:

E =
∫ ∞
−∞

dη
∫
dΩ

(
∂F

∂η

)2

= 1
2

∫ ∞
0

dω

2π
∑
lm

ω2|Il(ω)|2 |clm(ω)|2 . (A13)

Using the expression (A10) for Il(ω) and comparing with eq. (14), we obtain the normal-

ization coefficients (15) for the harmonic oscillators.

Appendix B: Euclidean action in the harmonic oscillator basis

In this Appendix, we prove the expression (21) for the expansion coefficients of the

Euclidean on-shell action (18) in an observer’s oscillator basis.

1. An integral expression

The coefficients in the action’s expansion (20) can be identified with coefficients in the

asymptotic Dirichlet data ΦE(`) that is induced in EAdS4 by our Neumann data (9). Indeed,

from symmetry, ΦE must take the form:

ΦE(t, θ, ϕ) = −
∫ ∞

0

dω

2π
∑
lm

(
Sl(ω) e−iωt Ylm(θ, ϕ) c∗lm(ω) + c.c.

)
, (B1)

for some unknown functions Sl(ω). We will see below that these functions are real. One can

then plug them into the expression (18) for the action, and find that they coincide with the
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Sl(ω) in the action’s expansion (20). To find these functions explicitly, we again restrict to

the Π(`) configuration (A2) with a single m = 0 mode. Plugging into (B1), we get:

ΦE(t, θ, ϕ) = −
√

2l + 1
4π e−iωtPl(cos θ)Sl(ω) + c.c. . (B2)

On the other hand, we can evaluate ΦE explicitly using the 2-point function (19), e.g. at

the point (t, θ, ϕ) = (t, 0, 0). The 2-point function reads:

GE(`; `′) = 1
4π2 ·

1
` · `′ = 1

4π2(cos θ′ − cosh(t− t′)) , (B3)

where we used the parametrization (3) for the boundary points `(t, 0, 0) and `′(t′, θ′, ϕ′).

Integrating this over `′, we get:

ΦE(t, 0, 0) = 1
4π2

√
2l + 1

4π

∫ ∞
−∞

dt′
∫
dΩ′ e−iωt

′
Pl(cos θ)

cos θ′ − cosh(t− t′) + c.c. . (B4)

The integration over ϕ′ gives a factor of 2π. We then perform the substitutions u = cos θ′

and τ = t′ − t, which give:

ΦE(t, 0, 0) = 1
2π

√
2l + 1

4π e−iωt
∫ ∞
−∞

dτ
∫ 1

−1
du

e−iωτPl(u)
u− cosh τ + c.c. , (B5)

from which we read off:

Sl(ω) = 1
2π

∫ ∞
−∞

dτ
∫ 1

−1
du

e−iωτPl(u)
cosh τ − u , (B6)

which is indeed real after the τ integration.

2. Evaluating the integral

Let us now prove that the integral (B6) evaluates to (21). First, for any function f(ω),

we define the Fourier transform and its inverse as:

f̃(τ) :=
∫ ∞
−∞

f(ω)eiωτdω ; f(ω) = 1
2π

∫ ∞
−∞

f̃(τ)e−iωτdτ . (B7)

Thus, the Fourier transform of (B6) reads:

S̃l(τ) =
∫ 1

−1

Pl(u) du
cosh τ − u . (B8)
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It remains to prove that this coincides with the Fourier transform of (21). We will do this

by recursion in l. For l = 0, 1, we can evaluate (B8) explicitly, as:

S̃0(τ) = 2 log
(

coth τ2

)
; S̃1(τ) = 2 cosh τ log

(
coth τ2

)
− 2 . (B9)

We can then use the recursion relation (A7) for the Legendre polynomials, along with the

identity (for l > 0):
∫ 1

−1

uPl(u) du
cosh τ − u = cosh τ

∫ 1

−1

Pl(u) du
cosh τ − u , (B10)

to get the following recursion relation for the integrals (B8):

(l + 1)S̃l+1(τ) = (2l + 1) cosh τ S̃l(τ)− l S̃l−1(τ) . (B11)

It remains to show that the Fourier transform of (21) also satisfies the recursion relation

(B11) and the initial conditions (B9). Let us denote the expression (21) as Sl(ω), to dis-

tinguish it from the expression (B6) with which we are comparing. We can calculate the

Fourier transform of Sl(ω) explicitly via Cauchy’s theorem.

First, we notice that Sl(ω) is symmetric in ω, ensuring that S̃l(τ) is symmetric in τ , as it

should be to agree with (B8). We can therefore restrict to τ > 0. To compute the Fourier

transform, we notice that Sl(ω) is a meromorphic function, with behavior Sl(ω) ∼ ω−1 for

|ω| → ∞ in the complex plane. Therefore, we have:

S̃l(τ) =
∫ ∞
−∞

Sl(ω) eiωτdω =
∫
C
Sl(ω) eiωτdω , (B12)

where C is a closed half-circle around the upper half of the complex plane. Sl(ω) has only

simple poles, located at ω = (2n + 1)i for even l and at ω = 2ni for odd l, where n ∈ Z.

Summing up the residues in the upper half-plane, we find that the Fourier transform (B12)

is given by:

S̃l(τ) =
∞∑
n=0


4e−(2n+1)τ

2n+ 1

l/2∏
k=1

(2k − 1)2 − (2n+ 1)2

(2k)2 − (2n+ 1)2 l even

8ne−2nτ

4n2 − 1

(l−1)/2∏
k=1

(2k)2 − (2n)2

(2k + 1)2 − (2n)2 l odd
. (B13)

We can now explicitly check that this satisfies the recursion relation (B11) with initial

conditions (B9). Checking the recursion relation is a straightforward exercise. For the initial
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conditions, we find:

S̃0(τ) =
∞∑
n=0

4e−(2n+1)τ

2n+ 1 = 4 artanh(e−τ ) ;

S̃1(τ) =
∞∑
n=0

8ne−2nτ

4n2 − 1 = 4 cosh τ artanh(e−τ )− 2 .
(B14)

For τ > 0, we have 2 artanh(e−τ ) = log
(
coth τ

2

)
, which proves that S̃l(τ) indeed satisfies

the initial conditions (B9).

27



[1] L. Susskind, L. Thorlacius and J. Uglum, “The Stretched horizon and black hole complemen-

tarity,” Phys. Rev. D 48, 3743 (1993) [hep-th/9306069].

[2] L. Dyson, M. Kleban and L. Susskind, “Disturbing implications of a cosmological constant,”

JHEP 0210, 011 (2002) [hep-th/0208013].

[3] S. W. Hawking, “Breakdown of Predictability in Gravitational Collapse,” Phys. Rev. D 14,

2460 (1976).

[4] M. K. Parikh, I. Savonije and E. P. Verlinde, “Elliptic de Sitter space: dS/Z(2),” Phys. Rev.

D 67, 064005 (2003) [hep-th/0209120].

[5] M. K. Parikh and E. P. Verlinde, “De sitter space with finitely many states: A Toy story,”

hep-th/0403140.

[6] M. K. Parikh and E. P. Verlinde, “De Sitter holography with a finite number of states,” JHEP

0501, 054 (2005) [hep-th/0410227].

[7] Y. Neiman, “Antipodally symmetric gauge fields and higher-spin gravity in de Sitter space,”

arXiv:1406.3291 [hep-th].

[8] G. W. Gibbons and S. W. Hawking, “Cosmological Event Horizons, Thermodynamics, and

Particle Creation,” Phys. Rev. D 15, 2738 (1977).

[9] G. S. Ng and A. Strominger, “State/Operator Correspondence in Higher-Spin dS/CFT,” Class.

Quant. Grav. 30, 104002 (2013) [arXiv:1204.1057 [hep-th]].

[10] W. B. Case, “Wigner functions and Weyl transforms for pedestrians,” Am. J. Phys. 76, 937

(2008).

[11] T. S. Bunch and P. C. W. Davies, “Quantum Field Theory in de Sitter Space: Renormalization

by Point Splitting,” Proc. Roy. Soc. Lond. A 360, 117 (1978).

[12] J. B. Hartle and S. W. Hawking, “Wave Function of the Universe,” Phys. Rev. D 28, 2960

(1983).

[13] J. M. Maldacena, “Non-Gaussian features of primordial fluctuations in single field inflationary

models,” JHEP 0305, 013 (2003) [astro-ph/0210603].

[14] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253 (1998)

[hep-th/9802150].

[15] D. Z. Freedman, S. D. Mathur, A. Matusis and L. Rastelli, “Correlation functions in the

28



CFT(d) / AdS(d+1) correspondence,” Nucl. Phys. B 546, 96 (1999) [hep-th/9804058].

[16] E. Bianchi and R. C. Myers, “On the Architecture of Spacetime Geometry,” arXiv:1212.5183

[hep-th].

[17] S. Gao and R. M. Wald, “Theorems on gravitational time delay and related issues,” Class.

Quant. Grav. 17, 4999 (2000) [gr-qc/0007021].

[18] F. Leblond, D. Marolf and R. C. Myers, “Tall tales from de Sitter space 1: Renormalization

group flows,” JHEP 0206, 052 (2002) [hep-th/0202094].

[19] M. A. Vasiliev, “Higher spin gauge theories: Star product and AdS space,” In *Shifman, M.A.

(ed.): The many faces of the superworld* 533-610 [hep-th/9910096].

[20] D. Anninos, T. Hartman and A. Strominger, “Higher Spin Realization of the dS/CFT Corre-

spondence,” arXiv:1108.5735 [hep-th].

29


	Horizon complementarity in elliptic de Sitter space
	Abstract
	Introduction and summary
	Elliptic de Sitter space
	Topology, observers and horizons
	Observer-adapted coordinates

	Conformally coupled massless scalar
	Phase space and quantization
	There is no dS-invariant symplectic form
	Observer-dependent phase space and quantization
	Decomposition into harmonic oscillators

	Translating operators between observers: the Wigner-Weyl transform
	Hartle-Hawking functional
	The functional in observer-adapted coordinates
	Transforming into an operator on the observer's Hilbert space

	Translating states between observers
	From a global ``meta-state'' into states for individual observers
	From a pure state for one observer into a mixed state for another

	Discussion
	Acknowledgements
	Normalization of harmonic oscillators on Scri
	Propagating the field to the horizon
	Evaluating the integral I(l,omega)
	Energy of a given solution

	Euclidean action in the harmonic oscillator basis
	An integral expression
	Evaluating the integral

	References


