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We propose an (optimal) estimator for a CMB bispectrum containing logarithmically spaced
oscillations. There is tremendous theoretical interest in such bispectra, and they are predicted by a
plethora of models, including axion monodromy models of inflation and initial state modifications.
The number of resolved logarithmical oscillations in the bispectrum is limited due to the discrete
resolution of the multipole bispectrum. We derive a simple relation between the maximum number
of resolved oscillations and the frequency. We investigate several ways to factorize the primordial
bispectrum, and conclude that a one dimensional expansion in the sum of the momenta

∑
ki = kt is

the most efficient and flexible approach. We compare the expansion to the exact result in multipole
space and show for ωeff = 100 that O(103) modes are sufficient for an accurate reconstruction. We
compute the expected σfNL and find that within an effective field theory (EFT) the overall signal

to noise scales as S/N ∝ ω3/2. Using only the temperature data we find S/N ∼ O(1− 102) for the
frequency domain set by the EFT.

I. INTRODUCTION

In the last decade we have come to establish an increasingly clear picture of the early Universe through precise
cosmological measurements [1, 2]. We now know that the fluctuations produced in the early Universe are scalar-like,
adiabatic, almost scale free, Gaussian and at the order of 10−5 in amplitude [3, 4]. Although the model that produced
these fluctuations is still under debate, one can consider these stringent conditions on the type of fluctuations any
model of the early Universe has to produce. This is a tremendous achievement; it is astonishing we can make such
precise measurements of an event that occurred billions of years ago. Current and future experiments will have
the important task to mine for new observables that can probe beyond the LCDM model; searching for traces of
tensor fluctuations; non-adiabatic contributions, deviations from scale invariance, deviations from Gaussianity, and
deviations from a black body through spectral distortions. All these observables can be considered extra degrees of
freedom (although in most models (some of) these are correlated) which allow us to further refine our understanding
of the early Universe.

Characteristic deviations from scale invariance are a generic prediction of a broad class of models [5–9], that also
produce potentially measurable levels of non-Gaussianity[10–16]. The details of the models differ, but we can broadly
distinguish two classes1: one in which the inflaton action is modified at a fixed time, and one in which the action is
modified by a fixed (frequency) scale in physical time.

When inflation is modified at a fixed time, the resulting feature has linearly spaced oscillations. The linearity of
the oscillation is accompanied by a damping, because at the level of the action the modification must be sudden, or at
the very least localized. All modes will be in a different stage of their evolution and hence will be affected differently.
For example, if one modifies the equation of state (i.e. the slow roll parameter) at some time during inflation, this
leads to linear decaying features in the correlation function [17, 18]. Similarly, in boundary effective field theory, there
is a fixed time at which the effective prescription of inflation breaks down [9]. This can lead to linear oscillations in
the correlation function through a modification of the initial state at that time, of which the amplitude decays as a
function of scale (smaller scales are further away from the hyper surface).

When inflation is excited at a fixed frequency/scale in physical time, oscillations will be logarithmically spaced
[5, 19]. This can be best understood by realizing that the a modification of the form eiωt are logarithmic in conformal
time τ and convert to logarithmic features in k at freeze-out. For example, in axion monodromy has a characteristic
frequency (the symmetry breaking scale or axion decay constant). The effective sinusoidal potential, which explicitly
depends on this scale, leads to non-decaying logarithmically spaced oscillations in the power and higher order spectra.
Similarly, in the New Physics Hyper-surface (NPH) scenario [20], there is a scale at which the Bunch Davies vacuum

1 In principle one could think of other possibilities. The models presented here appear naturally.
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breaks down. This again results in logarithmically spaced oscillations. These examples are for single clock inflationary
models, but similar examples exist when multiple fields are present [6, 7].

Consider the following very simple derivation [9, 20]. In any inflationary background, we can write down the
solutions that solve the e.o.m. for the inflaton φ as a linear combination of growing and decaying modes, i.e.,

φk = N(k) [uk + β(k)u∗k] ,

φ∗k = N(k) [u∗k + β(k)∗uk] . (1)

The normalization is such that |N(k)|2 = 1/(1 − |β(k)|2). In canonical model, in order to match our solutions to
Bunch Davies in the infinite past one usually picks the decaying mode as the solution, i.e. β(k) = 0, where β is
referred to as a Bogolyubov parameter which allows one to rotate the initial condition into a non-Bunch Davies state
(still a pure state though, see e.g. [21] for mixed states). The power spectrum of fluctuations for the above inflaton
are computed through Pφ(k) ∝ |φφ∗|, i.e.

P (k) ∝ 1

1− |β(k)|2
(
1 + |β(k)|2 + e2iψβ(k)∗ + e−2iψβ(k)

)
|uk|2 (2)

where we wrote the complex mode as uk = |uk|eiψ. The spectrum is computed at horizon crossing, when the comoving
mode k = aH, hence the phase is k independent. In the assumption that the corrections are small (β � 1, we can
write

Pφ(k) ' P0 (1 + 2|β(k)| cos(α(k) + ψ)) (3)

where P0 corresponds to the usual spectrum without modifications. Here we wrote the complex Bogolyubov parameter
as β(k) = |β|eiα(k). This very simple derivation shows an effective oscillation to the power spectrum, induced by a
resonance between the decaying and growing modes. In e.g. in NPH α ∝ Λ/H, where the inflaton is excited at a
fixed scale Λ. During inflation H(k) ∝ 1/ log k and hence the resulting oscillation is logarithmically as expected. For
axion monodromy, the solution the e.o.m. lead to an effective Bogolyubov coefficient with a phase αk ∝ φk/f [10, 22],
with f the axion decay constant while φk grows logarithmically in k. Generally speaking then, if one is able to write
the solution to the e.o.m. as an effective Bogolyubov transformation (or more complex rotation) with a time or scale
dependent phase, features will appear in the power spectrum through this line of argument 2.

The argument above is more complicated for higher order correlation functions, which measure the (self) interactions
of the field. The argument for a linear or logarithmically spaced oscillation holds for higher N-point function, but
although again quite generally, the solutions to the e.o.m. can be written as a superposition of growing and decaying
modes, the interaction Hamiltonian determines the precise scale dependence of the features as well as which mechanism
causes the oscillation. For example, in axion monodromy resonance between the wavelength of the fluctuations and
the background dominates compared to the resonance between the decaying and growing modes3. Since initial state
modifications and an oscillating potential are truly different physical effects, they can actually appear at the same
time, and under some circumstances enhance one another as was studied in Ref. [23]. The measured frequency and
amplitude in the power spectrum and the bispectrum (and higher order spectra) will be correlated and a combined
analysis of these features would give profound insight in the model governing the early Universe.

Unfortunately the oscillating nature of the corrections to scale invariance render these difficult to detect; even the
well constrained power spectrum could still contain features that have been undetected thus far [22, 24–35]4. For the
bispectrum this is even more true; the signal to noise in each mode is generally small and one relies on measuring the
overlap of a model template with a data vector containing all observed modes. As a consequence, applying the wrong
template leads to an underestimate of the non-Gaussian signal. In fact, if the templates are completely orthogonal
the measured bispectrum would be zero. In the case of an oscillating bispectrum, the overlap with other templates
is typically very small. As a result, even if current estimates suggest that the fluctuations are Gaussian, if resonance
has occurred in the early Universe, large non-Gaussianities could have been produced, and, until now, remained

2 In principle, for an oscillating potential the growing solution by itself might have an oscillatory component. For the axion monodromy
for example, this component is subdominant. However, this is not true for higher order correlation function, as we will argue later.

3 More precisely, the bispectrum is not enhanced in the enfolded limit (i.e. when kj = kj+1 + kj+2). Due to the combination of initial
conditions and an oscillating potential, these bispectra could potentially contain both logarithmic and linear oscillations. We hope to
present a more careful analysis of this in a forthcoming publication.

4 In recent work by the authors of Ref. [35] it was pointed out that drifting of the frequency of the oscillations could result in a non-
detection. A preliminary analysis of the Planck 2013 data was performed but no significant evidence was found, however only part of
parameter space was explored.
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undetected. It must be noted for single field models of inflation within the context of an effective field theory one
generally expects signal in the higher order correlation functions will be smaller than the signal in the power spectrum
[36], however multi-field counter examples exist [37] where the introduction of an extra degree of freedom allows the
power spectrum features to be suppressed compared to the bispectrum. For non-BD vacua, no such bound exists
and higher order correlation functions can have an enhanced signal [38]. Ultimately however, even for the case of a
smaller signal to noise, a joint analysis of the power spectrum and higher order correlation functions will lead to a
better constraint on the parameter space.

In this paper we study the logarithmically oscillating bispectrum in detail. We examine how the projection from
primordial space to multipole space restricts the range of shape parameters that can be searched for in the CMB, and
on what multipole scales the oscillations are most visible. To do this, we evaluate the CMB bispectrum numerically
by two different methods. We also describe an estimator for these oscillations in the CMB data. An obstacle in
constraining the logarithmically oscillating bispectra in the data is the fact that these bispectra are not factorizable.
We will show that an expansion in separable modes, similar to the one presented in [39] and [40] (see also e.g.
Refs. [41, 42]), but modified to exploit the special form of the shape under consideration, is the most efficient way to
factorize these type of spectra. Our approach uses a one-dimensional expansion in terms of linear oscillations, which
allows to cover the frequency space with considerably less modes than a general three-dimensional expansion would
need.

An optimal estimator for linear spaced oscillations has been presented in [43] and in [44] the angular correlation
function was considered as an alternative to the bispectrum. The developers of the mode expansion method have
recently presented important work on possible issues with jointly measuring oscillations in the power and bi-spectrum
[45]. The first constraints on oscillating bispectra using modal reconstruction (limited to very low frequencies), were
presented in [4].

The paper will be organized as follows. In section II we make some preliminary observations about the logarithmi-
cally oscillating bispectrum. In section III we calculate the CMB bispectrum exactly via a change of variables and
discuss an approach to make the shape separable. In section IV we describe our estimator, and calculate the expected
signal to noise and degeneracy in the CMB for the parameters under consideration. We conclude in section V.

II. LOGARITHMIC OSCILLATIONS IN THE BISPECTRUM

The general translation and rotation invariant primordial bispectrum of the curvature potential Φ can be written
as [11]

〈Φ(k1)Φ(k2)Φ(k3)〉 = (2π)3δ(k1,2,3)BΦ(k1, k2, k3), (4)

where the primordial bispectrum BΦ is a function of the magnitude of the wave numbers ki and fNL is the amplitude
of the bispectrum.

In this paper, we are primarily interested in a logarithmically oscillating primordial bispectrum of the form

BΦ(k1, k2, k3) =
6∆2

ΦfNL

(k1k2k3)2
sin

(
ω log

kt
k∗

+ φ

)
. (5)

where kt = k1 + k2 + k3. As explained in the introduction, oscillating spectra are a result of a resonance between
the fluctuations and the background, and are usually referred to as resonance non-Gaussianity. The pivot scale k∗ is
conveniently set to be 1 Mpc−1 for the remainder of this paper and wave numbers k are measured in Mpc−1. The
free parameters are then the oscillation frequency ω and the phase φ and the overall amplitude fNL.

The reduced CMB multipole bispectrum is related to the primordial one through geometric projection and evolution

b`1`2`3 =

(
2

π

)3 ∫
x2dx

∏
i

∫
dkik

2
iBΦ(k1, k2, k3)1/3∆`i(ki)j`i(kix) (6)

where the spherical Bessel functions j`(kx) are geometrical factors and the transfer functions ∆`(k) reflect the evolution
of the modes as the enter the horizon during the late time expansion history the Universe. The integral goes over
conformal distance x, with recombination at xrec ≈ 14000 Mpc.

Before calculating the CMB bispectrum for the primordial shape in eq. (5), we obtain a basic understanding of
the possible parameter space of oscillations that can be seen in the CMB. To help intuition, we translate kt into
multipoles `t via ` ' kxrec, using the fact that the transfer functions peak strongly at recombination. We plot the
primordial power spectrum (ignoring the scaling factor) as a function of `t in Fig. 1 for different values of ω. We note
that the maximum resolution that can be obtained in multipole space is ∆` = 2. The plot thus illustrates the fact
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FIG. 1: Examples of oscillating primordial bispectra sin
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FIG. 2: Lowest multipole `min above which the oscillations can be resolved and number of oscillations Nosc resolved between
`min and `max = 3000.

that fast oscillations, due to the logarithmic stretching, are resolved at high multipoles but not at low multipoles.
More explicitly, we find that for a given frequency ω and a given minimum resolution in multipole space ∆` = 2, the
oscillations can be resolved above

`min(ω,∆`) =
∆`(

−1 + e
2π
ω

) (7)

Assuming a multipole resolution `max, the total number of resolved oscillations is

Nosc(ω,∆`) =
ω log

(
`max
∆l (−1 + e

2π
ω )
)

2π
(8)

These functions are shown in Fig. 2. We note that a maximum of Nosc = 552 is obtained at ω = 3576, for which
`min = 1102.

Some experimental constraints have already been set on logarithmic oscillations in [4]. However, a large part of the
parameter space has not yet been probed.

III. CALCULATION OF THE CMB BISPECTRUM

We now discuss how to solve the integral in eq. (6). If BΦ(k1, k2, k3) is factorizable, the number of computations
scales as `3, while for an non-factorizable shape the computation scales as `5. Hence, factorizability is key for the
computation to be trackable. The shape of eq. (5) is clearly not factorable, given the factor kt within the logarithm.
In the following we will discuss several possibilities to tackle this problem.
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For notational simplicity we now assume that

BΦ(k1, k2, k3) =
sin(ω log kt/k?)

k2
1k

2
2k

2
3

, (9)

omitting the phase and the amplitude.

A. Separability via an integral representation

First, as was suggested in [46], in principle one can write any non-factoriziable shape in integrable form, of which
the integrand is of the factorable form. The full computation of the projected bispectrum scales as n ∗ `3 with n the
number of steps in the integration. As long as n is not too large, the computation is feasible. We rewrite

BΦ(k1, k2, k3) =
1

2i

eiω log at − e−iω log at

k2
1k

2
2k

2
3

, (10)

with at = kt/k∗ and realize that e±iω log at = elog a±iωt = a±iωt . An example of a factorizable integral representation is

k±iωatt =
kt

Γ(1∓ iω)

∫ ∞
0

t∓iωekt×tdt. (11)

We can simplify this further. The gamma functions can be written as

Γ(1 + iω) = Γ(1− iω)∗ = |Γ(1 + iω)|eiΘ. (12)

The norm of the gamma functions can be derived and we obtain

|Γ(1 + iω)|2 =
πω

sinhπω
. (13)

The phase Θ can also be derived and is given by

Θ =
i

2
log

(
− Γ(iω)

Γ(−iω)

)
. (14)

Note that because Θ is real, the log has to be imaginary, i.e.

Γ(iω)

Γ(−iω)
= eis, (15)

and s has to be computed numerically. Putting all this together, we find

sin(ω log at) =
( πω

sinhπω

)1/2

at

∫ ∞
0

sin(ω log t− θ)e−attdt, (16)

with the phase derived from the ratio above. We can further transform this integral, first making the substitution
Θ = ω log Θ̃, then t = t̃Θ̃ and eventually t̃ = es. We find

sin(ω log at) = Θ̃
( πω

sinhπω

)1/2

at

∫ ∞
−∞

sin(ωs)e−ate
s+sds. (17)

Thus, we have successfully transformed our logarithmically oscillating function into an infinite sum over linear oscilla-
tions, with a factorizable weighting function, e−ate

s+s. We show the integrand in Fig. 3. Although this representation
is factorizable, for this method to be feasible, we require the number of steps in s to be small. We find that for this
representation, this not possible. Hence, although one can lower the computational cost from `5 to n`3, n is still too
large. The source of this problem lies in the power exponential, which causes nearby points to have vastly different
amplitudes. We have considered special integration techniques for fast oscillating functions, but have not been able
to significantly reduce the computational costs. As such, we can not apply the above parametrization to build an
efficient KSW estimator.
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FIG. 3: The integrand of the expansion for sin(ω log at). Although this function appears integrable, numerically it is very
unstable and not usable for an efficient KSW estimator, prompting us to explore other approaches.

B. Separability via a change of coordinates

Alternatively, one can try and rewrite the integral through a coordinate transformation, under which the integral
in eq. (6) becomes factorable form for this shape. Such a transformation exists, and was proposed in [47]

k1 = ka = k(1− β),

k2 = kb =
1

2
k(1 + α+ β),

k3 = kc =
1

2
k(1− α+ β). (18)

Note that k1 + k2 + k3 = kt = (a + b + c)k = 2k, hence k = kt/2. The parameters have the following domains
0 ≤ k ≤ ∞, 0 ≤ β ≤ 1 and −(1− β) ≤ α(1− β). The volume element can be computed through the determinant of
the Jacobian, i.e. Det Jij = k2, and dk1dk2dk3 = k2dkdαdβ.

For this particular shape, the integral becomes

b`1`2`3 =

(
2

π

)3 ∫
dαdβ(α, β)IT(α, β)IG(α, β), (19)

with

IT(α, β) =

∫
dk

k
∆`1(ak)∆`2(bk)∆`3(ck) cosω log 2k, (20)

IG(α, β) =

∫
x2dxj`1(ax)j`2(bx)j`2(cx), (21)

(22)

where we used

BΦ(k1, k2, k3) =
1

k6

1

(abc)2
cosω log 2k. (23)

While this form of the integral reduces the computational cost of evaluating the bispectrum, it cannot be used
to construct a KSW type estimator, which avoids the costly summing over all a`m triplets. To construct such an
estimator, we thus need yet another approach. We will however use this parametrization as an exact result of the
integral above which allows us to test our expansion.

C. Evaluating the integral

We use the parametrization above in order to compute the integral for the logarithmic oscillations since it drastically
simplifies the computation. First, however, we need make sure this integral actually produces known results. In order
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FIG. 4: The ratio between the analytical SW approximation and the numerical equivalent. As pointed out by Fergusson and
Shellard, one gets a deviation at low high ` due to early truncation. For our purposes, these errors are small enough, as we only
need these computations to compare with our expansion. This spectrum was generated with 1000 steps in the α− β plane.

to address the accuracy of our code, we use the following approximation for the constant bispectrum shape [47] in the
SW limit. The constant shape is given by

Bconstant
Φ (k1, k2, k3) =

1

k2
1k

2
2k

2
3

. (24)

The easiest way to compute the above integral is to perform the integrals over k first. They are finite and given by∫ ∞
0

dkj`(kx)j`(k∆η∗) =
π

2(∆η∗)`+1

x`

1 + 2`
for x < ∆η∗,∫ ∞

0

dkj`(kx)j`(k∆η∗) =
π

2x`+1

∆η`∗
1 + 2`

for x > ∆η∗. (25)

Consequently we can cut the integral over x into two pieces, the first one running from η∗ < x < ∆η∗ and the second
one running from ∆η∗ < x < η0. This leads to the following result

bconstant
`1`2`3 =

1

(2`1 + 1)

1

(2`2 + 1)

1

(2`3 + 1)

{
1

`t + 3

[
1−

(
η∗

∆η∗

)`t+3
]

+
1

`t

[
1−

(
∆η∗
η0

)`t]}
. (26)

Here `t = `1 + `2 + `3. Given the typical values for η∗ and η0, (η∗/∆η∗)
`t+3 � 1 for all values of `1, `2 and `3.

bconstant
`1`2`3 =

1

(2`1 + 1)

1

(2`2 + 1)

1

(2`3 + 1)

{
1

`t + 3
+

1

`t

[
1−

(
∆η∗
η0

)`t]}
. (27)

This result is equivalent to the result found in [47]. We use this to collaborate our code. We have modified CAMB
[48] by adding a module that computes this bispectrum5 using the parametrization above. As was pointed out in
[47], because of the substructure in the tetrahedral, it requires quite a lot of sampling in the α, β plane to get small
errors. They suggested a recursion step to speed up the calculation. It turns out that the structure of CAMB is not
ideal for such an implementation, and given that we only use this for testing, we decided to run our code with high
resolution instead, with 1000x1000 steps in the α−β plane. We MPI parallelized the computation and precomputing
the geometrical integral for `1 = `2 = `3 using 20 cores takes about 40 hours. Computing the alpha beta integral
takes about the same. In Fig. 4 we show our result for the numerical computation of the constant shape in the SW
limit divided by the analytical result. As can be seen, we find good agreement up to ` = 1000, when they start to
deviate because of the early truncation in the Bessel functions. We use the exact result to compare our expansion
used in the next section.

5 Send and email to daanmeerburg@gmail.com if you want a copy of the code.
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FIG. 5: The ratio between the oscillating shape for ω = 100 and the constant shape. For large frequencies the ratio is always
< 1, making this shape hard to observe unless the amplitude fNL is large.

IV. A FOURIER EXPANSION APPROACH TO LOGARITHMIC OSCILLATIONS

To create an estimator for logarithmic oscillations that is computationally tractable, we use an expansion in terms
of linear oscillations. This approach is similar to the modal expansion in [39], but is different in its details and more
refined to this specific shape. Our approach uses the observation that the shape function in eq. (4) is a function of
f(kt), making it effectively one dimensional in (the diagonal mode) kt = k1 + k2 + k3 coordinates and as such the
expansion is more efficient. The fact that this shape is better expanded using linear oscillating modes was pointed
out in [40]. Although that setup was similar to [39], including off-diagonal Fourier modes, it was already shown that
only Fourier modes of kt contributed to the reconstruction.

A. Fourier modal expansion of the shape function

Any shape function of the form S(kt) can be developed in a Fourier series as

S(kt) =

N∑
n=0

(
an cos

2πnkt
∆kt

+ bn sin
2πnkt
∆kt

)
, (28)

where ∆k is the supported interval and the real Fourier coefficients are

an =
2

∆kt

∫ kmax

kmin

dktS(kt) cos
2πnkt
∆kt

bn =
2

∆kt

∫ kmax

kmin

dktS(kt) sin
2πnkt
∆kt

, (29)

except for n = 0 where the coefficients are (a02 , 0).
The crucial property of this expansion is that the Fourier mode functions are of separable form, since sin(k1+k2+k3)

and cos(k1 + k2 + k3) can be factorized in k1, k2, k3. Here we are primarily interested in the logarithmic oscillation
shape S(kt) = sin (ω log(kt) + φ). To make use of the Fourier expansion, the shape function must be periodic on the
window (kmin, kmax). We achieve this by asymptotically setting the function to zero on both sides of the k window,
using a generalized normal distribution of the form

g(k) = e(
|k−µ|
α )

β

, (30)

as a damping window. The primordial bispectrum expansion therefore becomes

BΦ(k1, k2, k3) =
6∆2

Φ

(k1k2k3)2
g(k) sin (ω log(kt) + φ) (31)

= 6
( N∑
n=0

an
(
An(k1)An(k2)An(k3)− [An(k1)Bn(k2)Bn(k3) + 2 perm.]

)
+bn

(
−Bn(k1)Bn(k2)Bn(k3) + [Bn(k1)An(k2)An(k3) + 2 perm.]

))
(32)
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where

An(k) =
∆

2/3
Φ

k2
cos

2πnk

∆kt
Bn(k) =

∆
2/3
Φ

k2
sin

2πnk

∆kt
. (33)

The above expansion is only of practical use if the modes can be cut off at some reasonable number N . In the
present case, we only want to resolve structures in the shape function that are larger than ∆` = 2, as discussed in
section 2. As an example, if `max = 2000, we will therefore need about N = 1000 modes (note that also the window
function must be resolvable with this number of modes). An expansion with 600 modes is shown in Fig. 6 for ω = 20,
using the parameters in table I. While the range ` < 50 is not optimally covered, we will see below that this range
does not contribute significantly to the CMB bispectrum anyway.

Let us again stress the differences of our approach to the standard modal expansion. First, this is a one dimensional
expansion with expansion coefficients an, bn, unlike the conventional modal expansion for arbitrary shapes, which
has tensor coefficients cijk. Second, the mode functions that we use are orthogonal a priori, and consist of linear
oscillations of form sin(ω(k1 + k2 + k3)). When determining the coefficients an, bn, we do not integrate over the usual
bispectrum trapezoid in k1, k2, k3, but rather over the one-dimensional variable kt.

Linear oscillations are by themselves a physically well-motivated shape. When searching for such linear oscillations,
one has to scan the frequency space and thus has to calculate a large number of modes. It is then practical to combine
a search for linear modes with a search for logarithmic modes using our approach, given that these modes are already
computed to begin with.

B. Results for the CMB bispectrum using the Fourier expansion

From the separable expansion for the primordial shape function, it is straight forward to calculate the CMB
multipole bispectrum. Using Eq. (5) and Eq. (31) one obtains

b`1`2`3 = 6
(∫

x2dx
∑
n

an
(
An`1(x)An`2(x)An`3(x)−

[
An`1(x)Bn`2(x)Bn`3(x) + 2 perm.

] )
+bn

(
−Bn`1(x)Bn`2(x)Bn`3(x) +

[
Bn`1(x)An`2(x)An`3(x) + 2 perm.

] ))
(34)
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multipole `max 2000
primordial kmin 10−5

primordial kmax 0.5
modes (each sine and cosine) 600
damping α 0.12475
damping β 1000

TABLE I: Parameters for the Fourier expansion used in this analysis.
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FIG. 7: Comparison between the modal expansion result and the exact result. Top: ` = `1 = `2 = `3. Bottom: `1 = 100, ` =
`2 = `3 with ω = 50. Other frequencies work with comparable precision.

where we have defined the functions

An` (x) =
2

π

∫
dkk2An(k)j`(kx)∆`(k)

Bn` (x) =
2

π

∫
dkk2Bn(k)j`(kx)∆`(k)

(35)

Here j` are spherical Bessel functions and ∆` are the CMB radiation transfer functions that we evaluate numerically
using CAMB [48]. When evaluating the integral numerically, it must be ensured that the sampling is sufficient to
resolve both the oscillations in the shape function as well as the oscillations in the Bessel functions.

We compare the bispectrum obtained with the Fourier expansion method to the exact results from section III C.
The parameters we used for this example are summarized in table I. Fig. 7 shows the comparison for ω = 50. We plot
again the ratio of the bispectrum to the constant bispectrum, for two different axes in multipole space, ` = `1 = `2 = `3
and `1 = 100, ` = `2 = `3 . We find that the Fourier expansion is in excellent agreement with the exact result. We
did not attempt to compare the full bispectra at all multipole combinations, since the exact numerical calculation is
extremely costly. We can therefore not measure the error in the expanded bispectrum. However the one-dimensional
results suggests that the expansion works as expected.
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C. The KSW estimator for logarithmic oscillations

Using the Fourier expansion in separable modes, we can now write down the KSW estimator for the CMB maps.
As in the case of linear models, we can estimate amplitude and the phase explicitly by separating the bispectrum in
its sine and cosine components as

Bfeat
Φ (k1, k2, k3) =

6∆2
Φ

(k1k2k3)2
[f1 sin (ln(k1 + k2 + k3)) + f2 cos (ln(k1 + k2 + k3))] , (36)

where fNL =
√
f2

1 + f2
2 and Φ = arctan ( f2f1 ). The estimator for the two components is then given by

fi =
∑
j

(F−1)ijSj , (37)

The estimators Si are the sum of cubic and linear terms, Si = Scub
i + Slin

i . The cubic terms are

Scub
i =

∑
n

ain

∫
r2dr

∫
dΩ
[
−A3

n(r, n̂) + (3An(r, n̂)Bn(r, n̂)Bn(r, n̂))
]

+
∑
n

bin

∫
r2dr

∫
dΩ
[
B3
n(r, n̂)− (3An(r, n̂)An(r, n̂)Bn(r, n̂))

]
, (38)

where the expansion coefficients {a1, b1} and {a2, b2} are those of the sine and cosine contributions in eq. (36). The
linear terms are given by

Slin
i =− 3

∑
n

ain

∫
r2dr

∫
dΩ
[
−An(r, n̂)

〈
A2
n(r, n̂)

〉
+An(r, n̂)

〈
B2
n(r, n̂)

〉
+ 2Bn(r, n̂) 〈An(r, n̂)Bn(r, n̂)〉

]
− 3

∑
n

bin

∫
r2dr

∫
dΩ
[
Bn(r, n̂)

〈
B2
n(r, n̂)

〉
−Bn(r, n̂)

〈
A2
n(r, n̂)

〉
− 2An(r, n̂) 〈An(r, n̂)Bn(r, n̂)〉

]
, (39)

where the expectation values have to be evaluated by Monte Carlo averaging over Gaussian map realisations generated
with the same beam, mask and noise properties as expected in the data. The KSW filtered maps are given by

An(r, n̂) =
∑
`m

(C−1a)`mA
n
` (r)Y`m(n̂),

Bn(r, n̂) =
∑
`m

(C−1a)`mB
n
` (r)Y`m(n̂). (40)

The Fisher matrix that normalizes the estimator is given by

Fij =
1

6

∑
`m

∑
`′m′

Gm1m2m3

`1`2`3
bi`1`2`3(C−1)`1m2,`′1m

′
1
(C−1)`2m2,`′2m

′
2

× (C−1)`3m3,`′3m
′
3
bj`′1`′2`′3

G
m′1m

′
2m
′
3

`′1`
′
2`
′
3

. (41)

We compute the Fisher matrix in the next section.
The third parameter that has to be determined, besides the amplitude and phase of the oscillation, is the frequency.

This parameter hast to be scanned over. The modal expansion allows to do this with a minimum of additional
computational effort, since only the factors cn depend on these parameters. In the next section we study degeneracy
of frequency and phase, and the sensitivity with which they can be obtained.

D. Precision forecast an parameter degeneracies

To obtain the normalization of the KSW estimator, and equivalently to determine the precision with which oscillation
parameters can be obtained, one has to evaluate the Fisher matrix. For simplicity we work in the approximation of a
`-diagonal m-independent covariance matrix C` = CCMB

` +N`, where N` is the diagonal noise power spectrum of the
experiment. Neglecting the off-diagonal covariance matrix elements gives almost optimal fNL estimates, even in the
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FIG. 8: Fisher forecast for the precision on the amplitude fNL on the shape in eq. (5), assuming an optimal CMB experiment
with `max = 2000. We see that approximately σω ∝ ω.

conditions of the Planck experiment. The Fisher matrix element between two logarithmic oscillation bispectra B,B′

of different frequency or phase is then

FBB′ =
1

6

∑
l

Gm1m2m3

`1`2`3

(
∑
n anb

n
`1`2`3

)(
∑
m amb

m
`1`2`3

)

C`1C`2C`3
, (42)

where we schematically wrote the mode bispectra with indices n,m, including both the sine and cosine contribution.
The diagonal elements (B,B) gives the normalization of the estimator for a particular logarithmic bispectrum B. The

corresponding amplitude estimator f̂B has a variance of σf = 1√
FBB

. When evaluating the Fisher matrix for a large

number of frequencies and phases, one would like to calculate the Fisher matrix of the mode bispectra Fmode
nm so that

one can quickly evaluate the Fisher matrix for any mode sum by

FBB′ = anF
mode
nm am. (43)

The mode Fisher matrix for our 600 sine and cosine modes has 0.5 × 1200 × 1200 = 720.000 elements. First pre-
calculating all mode bispectra takes about 500 hours on 12 cores, and 1 tera byte of hard disc storage space. Calculating
a single Fisher matrix entry between two mode bispectra takes of order of a minute. That would result in about 12000
CPU hours to calculate the mode Fisher matrix. One could reduce this by interpolation and approximations.

For this paper we chose a computationally less challenging approach. We first sum the modes to calculate each
100 logarithmic bispectra from ω = 1 to ω = 100 for sine and cosine phase. Then we calculate the Fisher matrix
directly for these logarithmic bispectra, resulting in only 20.000 Fisher matrix elements. The normalization we chose
is according to eq. (5), where ∆2

Φ = 9.04× 10−16. We assume full sky coverage, no noise, and `max = 2000. For these
parameters, the sensitivity on the amplitude fNL at a given frequency ω is shown in Fig. 8, assuming for simplicity
φ = 0. One can compare this to σfconstant

NL
' 230 for the same ideal experiment, using the same normalization (i.e.

setting ω = 0, φ = π/2 in the oscillating shape). Although there is some resonance between the transfer functions
and the primordial bispectrum shape, the signal to noise is always smaller than the constant shape.

To assess how precise the frequency ω is resolved in the CMB, we plot the correlation matrix between the amplitudes

(fi, fj) of frequencies (ωi, ωj), given by corr(fi, fj) =
Fij√
FiiFjj

. In Fig. 9 (left) this is shown for sine to sine and in

Fig. 9 (right) for sine to cosine. The plots show that the frequency resolution is about ∆ω = 1, independent of the
frequency. Further, there is a strong degeneracy between frequency and phase, as seen in the sine to cosine plot. This
suggests that it is sufficient to scan for example for the sine component of the oscillation in a data set.

E. Comparison to model predictions

We compare our result for the sensitivity on fNL with the parameters favored by a recent study of resonant non-
Gaussianities in effective field theory of inflation with a broken shift symmetry [36]. This setting also includes models
of axion monodromy. To be concrete, we use the shape function in Eq. (37) of [36], neglecting the 1/ω suppressed
cosine term. Matching the resulting shape function to our definition in eq. (5), we find that in our conventions

f res
NL =

1

6
εosc

√
2ππ4ω5/2. (44)
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FIG. 9: Correlation matrix of logarithmic oscillations. Left: Sine to sine correlation. The frequency resolution is about ∆ω = 1.
Right: Sine to cosine correlation. A strong degeneracy between neighboring frequencies and their phase is observed.
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FIG. 10: Signal-to-noise ratio S/N = fNL

√
FBB for different oscillation parameters εosc as a function of the oscillation frequency

ω, based on the study in [36]. The dashed black line indicates the asymptotic scaling behaviour. Frequencies of order O(101)
are observable, depending on εosc.

In this model the amplitude grows as ω5/2. On the other hand for a fixed primordial amplitude we have approximately
σω ∝ ω and hence the signal-to-noise ratio increases as S/N ∝ ω3/2. In Fig. 10 we show the signal-to-noise for various
values of the oscillation parameter εosc, which is constrained to be smaller than the slow roll parameter, i.e. εosc . εsr.
We find that for a large range of allowed parameters oscillations are observable. Note that the perturbative control
on the EFT should break down around ω ∼ O(102) [36].

V. CONCLUSIONS

In this paper we developed an optimal estimator for resonant non-Gaussianities after carefully considering several
options to factorize the primordial spectrum. Our expansion in a basis of linear oscillations differs from the usual
modal expansion [39] in that it is effectively one dimensional, so only relatively few modes are needed to obtain high
overlap even for very high frequencies. At the same time, the existing pipeline developed to look for linear oscillations
[43] can be utilized to search for log oscillations at relatively little additional computational cost. We computed the



14

expected signal to noise of a cosmic variance limited experiment with `max = 2000. We find that the S/N ∝ ω3/2,
thus although the expected signal for a constant spectrum would decay as a function of frequency, for resonant non-
Gaussianity the power law behaviour of the amplitude compensates for this. Unfortunately, the frequency can not be
increased indefinitely in the EFT or axion monodromy (for non Bunch Davies vacua the constraint on the amplitude

is determined by back reaction, see e.g. [38]) as one loses perturbative control when the frequency gets of order φ̇1/2.
We find that within these limits S/N ∼ O(1 − 102) just by using temperature data alone. We plan to apply the
proposed estimator on Planck CMB data in a forthcoming publication.

The example bispectrum worked out here is representative of a bispectrum that comes about in models with a
discrete shift symmetry. Other models that produce logarithmic oscillations and are indistinguishable from these
models at the level of power spectrum, produce different shapes for the bispectrum [11, 12]. To cover those shapes
would for example require one to expand in Kj = kt−kj . This is more challenging, since it is effectively a 2 dimensional
shape, and would therefore require new modes. It would also require a separate pipeline, since one can not expand
this shape in linear oscillations as a function of kt which are part of the existing pipeline. It was shown generally that
these shapes are really hard to expand in modes [40] and further investigation is needed to find the optimal expansion
for these shapes.

In very recent work [35], it was shown that the frequency of the oscillation in axion monodromy could drift, leading
to a possible non-detection in the power spectrum when a fixed frequency template is applied to the data. The
bispectrum has not been computed yet, but if the drift is still only a function of kt, we expect the estimator can still
be applied. In case there is additional k dependence off the kt direction, our estimator might still be applicable if the
drifting is factorized.

Eventually, the estimator presented here (including polarization) should be applied jointly with estimates of the
power spectrum. Such an analysis is computationally challenging; a first attempt has been made to investigate the
possible presence of correlated noise in both signals in Ref. [45].We plan to further explore the possibility of jointly
constraining N-point correlation functions in the future.

We have access to unprecedented CMB temperature data, with polarization data following soon, including ground
based CMB experiments to further map out the details on small scales. The effort in the next decade will be to find
any deviations away from single-field slow-roll, including measurable levels of non-Gaussianity. The work presented
in the paper will allow us to probe a part of parameter space which has so far been unexplored and as such will
contribute in this effort.
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