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We match the density of energy eigenstates of a local field theory with that of a random Hamilto-
nian order by order in a Taylor expansion. In our previous work we assumed Lorentz symmetry of
the field theory, which entered through the dispersion relation. Here we extend that work to consider
a generalized dispersion relation and show that the Lorentz symmetric case is preferred, in that the
Lorentz symmetric dispersion relation give a better approximation to a random Hamiltonian than
the other local dispersion relations we considered.

1. INTRODUCTION

We consider the question “can a random Hamiltonian
be interpreted as a field theory to a sufficiently good ap-
proximation to describe the observed physical world?”.
We posed this question in earlier work [1, 2] from the
point of view of a comparison of the energy eigenvalue
spectrum, and found an affirmative answer. In that work
we considered only field theories with a dispersion rela-
tion given by Lorentz symmetry. The dispersion relation
is the only way the presumed Lorentz invariance of the
field theory entered into our calculations. In this work we
extend our previous analysis to include a one parameter
family of possible dispersion relations. We also include
the dimension of space d (as was already analyzed in [2]).
Our analysis shows that choosing a Lorentz invariant dis-
persion relation makes it easier to approximate the field
theory density of states by that of a random Hamilto-
nian. We thus conclude that in a physical picture where
local field theory is just an approximate interpretation
of a physical world which is fundamentally described by
a random Hamiltonian, field theories with a Lorentz in-
variant dispersion relation are favored.

As emphasized in our earlier work, the comparison at
the level of the density of energy eigenstates is only one
check one can make on this set of ideas. To more fully de-
velop our line of thinking one must explore the mapping
between energy eigenstates and the fields representing
observable particles or their constituents. This analysis
could lead in principle to some symmetries and represen-
tations being favored over others. If such predictions are
sharp enough one may even have a chance to falsify these
ideas. In this paper we limit ourselves to a comparison
at the level of energy spectra. We find it intriguing that
already at this level the Lorentz invariant dispersion re-
lation is favored. Still, our results are only sensitive to
Lorentz invariance through the dispersion relation, there-
fore, our approach is unable to discern a Lorentz invari-
ant theory from a non-invariant one that has the same
dispersion relation – such as field theories in noncom-

mutative spacetime [3] which generically break Lorentz
symmetry but preserve P 2, unaltered, as a Casimir op-
erator. To discriminate such theories other quantities
beyond the densities of states should be probed involv-
ing other quantum numbers such as spin, for example, to
specify the field content and the invariances unambigu-
ously.
Our past work on this topic was motivated by the

“clock ambiguity” in quantum gravity. That motivation
and how it takes us to the comparison of energy spectra
is discussed at length in [1] and [2]. In this paper we
focus more narrowly on extending our formalism to gen-
eralized dispersion relations and interpreting our results.
We feel that this technical work will be of interest to a
wider group that may bring different motivations than
our own. In section 2 we lay out our basic technical ap-
proach in a manner that is fairly self-contained. The key
new technical ingredient of this paper is our derivation of
the density of states for field theories with a generalized
dispersion relation. We present two such derivations, one
using statistical mechanics (section 3) and one using scal-
ing arguments (section 4), and discuss the relationship
between these two approaches in section 5. In section
6 we integrate the generalized dispersion relation results
into the framework presented in section 2 and show how
this leads to our main conclusions. Section 7 reviews our
conclusions and explores some interesting directions for
further study.

2. OUR BASIC APPROACH

If the evolution of the world around us were most fun-
damentally described by a random Hamiltonian, could
that Hamiltonian be approximated to a sufficient degree
by a field theory to allow us to interpret the physical
world in terms of a field theory? In [1] we addressed that
question at the level of the spectrum of energy eigenval-
ues. We found that the spectrum of a sufficiently large
random Hamiltonian could approximate that of a free
field theory over a sufficiently large range of energies to
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allow the former to be approximated by the latter on
scales relevant to our data about the physical world. In
this section we review that work with an eye toward the
topic of this paper: The extension of that analysis to field
theories with a generalized dispersion relation.
The distribution of eigenvalues for a random Hamil-

tonian, represented as an NH × NH Hermitian matrix,
follows under quite general assumptions the Wigner semi-
circle rule in the large NH limit, for example, the distri-
bution of eigenvalues of a large Hermitian matrix with
elements drawn from a Gaussian distribution.
On the other hand, the density of states for a free

field theory grows at large energies like an exponential
of a power of the energy. On the face of it, these two
forms for dN/dE are dramatically different. In order
to press forward with the comparison we introduced a
general parametrization for the random Hamiltonian and
field theory spectral densities respectively:

dNR

dE
=







aNH

EM

(

1−
(

E−ES

EM

)β
)γ

|E − ES | < EM

0 otherwise ,
(1)

dNF

dE
=

B

E
exp

{

b

(

E

kV

)α}

. (2)

The parameters EM and ES represent the maximum
eigenvalue of the random Hamiltonian and an offset en-
ergy between the two descriptions, kV (≡ 2π/L) is the
resolution in k-space set by putting the field theory in a
box of size L and B, b, α and γ are dimensionless param-
eters. Since we have not yet explored the emergence of
gravity in this picture we initially allow the energy off-
set ES to be a free parameter. The value of kV sets a
scale at which continuum field theory breaks down. The
standard expression

N = expS (3)

leads to

B = αS . (4)

Which relates parameters in Eqn. 2 to the entropy S.
Throughout this paper we we use units where ~ = c =
kB = 1.
We expand both Eqns. 1 and 2 in a Taylor series around

a given central energy E0 = ρUVU = 1080GeV (using
the energy density ρU and volume VU of the observed
Universe today). We explore the discrepancies at each
order in (E −E0) to find the level of agreement between
the two descriptions.
Requiring exact equality at zeroth order sets the size of

the space of the random Hamiltonian to be exponentially
large:

NH =
B

a

EM

E0

[

1−
(

E0 − ES

EM

)β
]−γ

exp

[

b

(

E0

kV

)α]

.(5)

More generally, this expression should be seen to only
give a lower bound on NH , since we currently only know
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FIG. 1: A plot of the density of energy eigenvalues for a
random Hamiltonian using Eqn. 1 and a field theory using
Eqn. 2 matching the zeroth and first order terms in a Taylor
expansion around E0 (the vertical line).

upper bounds on kV (which gives a scale of breakdown
of continuum field theory).
Requiring equality at first order (as well as equality

at zeroth order) sets the offset energy ES in terms of
the energy of the Universe E0 by the following implicit
expression:

−βγ
E0

E0 − ES

(

E0−ES

EM

)β

1−
(

E0−ES

EM

)β
= αb

(

E0

kV

)α

. (6)

Figure 1 gives examples of the two density of states curves
equated at zeroth and first order according to the above
analysis. Assuming equality and 0th and 1st order, the
relative difference at second order is fixed and given by

∆2 ≡ ∆dN
dE

dN
dE |E0

≈ α2b2

γ

(

E0

kV

)2α
(E − E0)

2

E2
0

. (7)

In [1] we considered specific values for the parameters
in Eqn. 7 based on properties of the observed physical
world and found that ∆2 is small for realistic values. We
concluded that the hypothesis that the laws of physics
could most fundamentally be given by a random Hamil-
tonian, and just interpreted to a good approximation as
a field theory had passed our “energy spectrum test”.
The goal of this paper is to repeat the above analysis

with a generalized dispersion relation used to get the field
theory density of states. Since Lorentz invariance enters
only though the dispersion relation, we hope to learn to
what extent Lorentz invariant field theories are preferred
when a random Hamiltonian is approximated by a field
theory. To this end we introduce a general dispersion
relation with two parameters, m and g, of the following
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form:

E (p) = p
( p

m

)g

. (8)

Here E represents the energy of a single particle with
momentum p, and should not be confused with E, the
energy at which we evaluate the density of states N(E).
In generalE represents the energy of multi-particle states
(generally comprised of particles with with more than
one energy). When the power g vanishes we recover the
dispersion relation of relativistic massless particles and
deviations from g = 0 break Lorentz symmetry. The
energy scale m is needed to keep the dimensions correct
for nonzero values of g. A discussion of possible values
of m, which is critical for the interpretation of this work,
takes place in Section 6.

There are a number of arguments to discard dispersion
relations with negative values of g (see [4] and references
therein for related studies); a very direct one is as follows:
If we allow g < 0, the group velocity, ∂E/∂p (proportional
to pg), becomes divergently large for packets with com-
ponents of low momentum. Thus, if we require signals
to propagate at a finite speed (below a certain cutoff of
accessible momenta) we are restricted to consider non-
negative values of g.

We conclude this section with some comments about
additional assumptions and points of view implied by
our framework. The formulas for the field theory den-
sities of states quoted here (and generalized in the rest of
this paper using Eqn. 8) assume flat space (Minkowski
spacetime for g=0). Following the approach developed
in earlier work [1, 2] and similar in spirit to what we
have discussed here for field theory, we consider the pos-
sibility that general relativity gives only an approximate
description of physics that need only be valid around the
observed state of the Universe. Thus the field theory
in Minkowski space and its extensions which we consider
here, without any explicit account made for gravity, seem
like a reasonable place to start. To the extent that we can
argue here that Lorentz invariant theories are favored we
will be led to consider fields in different representations
of the Lorentz group, including spin-2. This can lead to
the emergence of general relativity, as discussed briefly
in section 7.

3. THE DENSITY OF STATES FOR A

GENERALIZED DISPERSION RELATION: STAT

MECH APPROACH

3.1. Outline

For a thermodynamic system at temperature T in a
volume V , the density of states is given by

dN(E)

dE
=

d

dE
eS(E) , (9)

where

S ≡ V s = V
ρ+ P

T
, (10)

gives the (extensive) entropy S in terms of the intensive
quantities pressure P and energy density ρ. In this sec-
tion we construct statistical mechanical expressions for
S(T ) and E(T ) and then invert the latter to allow us to
write

S(E) = S(T (E)) . (11)

Although such a manipulation is only valid in the thermo-
dynamic limit, we expect this to be a good approximation
for a system the size of the observable Universe.

3.2. Energy density

For a homogeneous statistical system of degrees of free-
dom of degeneracy n in d space dimensions the energy
density is given by

ρ(T ) =
n

(2π)d

∫

E(p)f(p)ddp . (12)

Throughout this paper we take degeneracy n = 1 for
simplicity, without impacting our main points. For a
free field theory in states of no net charge (and thus zero
chemical potential, characteristic of the observed Uni-
verse) the momentum distribution f(p) is given by

f(p) =
1

eE(p)/T ± 1
(13)

where the upper/lower signs are for Fermi/Bose statistics
respectively.
Using Eqn. 8 in Eqn. 12 gives

ρ(T ) =
n

(2π)d

∫

p
(

p
m

)g

ep(
p
m )

g
/T ± 1

ddp

= T (Tmg)
d/(g+1)

F (g, d) . (14)

Here F is O(1) and is given by

F (g, d) ≡ n

(2π)d

∫

zg+1

ezg+1 ± 1
ddz

=
n

(2π)d
2πd/2

Γ(d/2)

1

g + 1

∫ ∞

0

yd/(g+1)

ey ± 1
dy . (15)

To arrive at Eqn. 15 we changed variables in Eqn. 14 us-

ing z ≡ p (Tmg)
−1/(g+1)

and then y ≡ zg+1. We show
explicitly in section 6 that F (g, d) is sufficiently slowly
varying and close to unity that it can be safely neglected
when building intuition about the expressions we are cal-
culating. (Still, for completeness we keep it in for our
final analysis.)
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3.3. Pressure

There are some additional subtleties in defining pres-
sure for a generalized dispersion relation. We start by
rewriting the thermodynamic relation P = −∂E/∂V in
the following way

P = −∂E

∂V
= − n

(2π)d

∫

∂p

∂V

dE(p)
dp

f(p)ddp (16)

Next, as in standard kinetic theory, we associate a vol-
ume expansion δV = Aδx to the pressure on the area
A due to elastic reflection of a particle with momentum
px, that results in δpx = −2pxAδx. For a expansion in d
dimensions this generalizes to

∂p

∂V
= −2

d
p , (17)

since δx ∼ δr/
√
d and px ∼ p/

√
d. Thus,

P =
2

d

n

(2π)d

∫

p
dE
dp

f(p)ddp , (18)

Using the dispersion relation of Eqn. 8, namely,

p
dE(p)
dp

= (g + 1)E(p) , (19)

we find

P =
2g + 2

d
ρ . (20)

3.4. The statistical result

We find it convenient to write the volume V in terms
of the inverse length given by

kV ≡ V −1/d . (21)

We are now in a position to complete the approach out-
lined in section 3.1 using the expressions for P (T ) and
ρ(T ) derived in the previous two sections. The result is

S(E, g, d) =

d+ 2g + 2

d
F

g+1

d+g+1

(

E

kV

)
d

d+g+1
(

m

kV

)

gd
d+g+1

.(22)

Note that both of the exponentiated factors in Eqn. 22
are greater than unity. The quantity kV sets the energy
scale for the breakdown of field theory, and it should
certainly be smaller thanm for the generalized dispersion
relation to have any meaning, leading to m/kV > 1. The
factor with E is discussed explicitly in section 2.

4. THE DENSITY OF STATES FOR A

GENERALIZED DISPERSION RELATION:

SCALING APPROACH

4.1. Outline

In this section we arrive at a result equivalent to
Eqn. 22 via an alternative approach. We consider a ther-
modynamic system characterized by its total energy, en-
tropy, volume and energy scale m. We then make two
assumptions:

1. The energy is an extensive function of volume and
entropy.

i.e., under a scaling of V and S by a factor λ,

E(λV, λS) = λ E(V, S) . (23)

2. The total energy is parametrized by the following
ansatz:

E = Ens

(

Ens

m

)g̃

, (24)

where Ens stands for the energy in the case where
there are no other scales (such as m) entering in the
description of the system. This no-scale energy,
by dimensional analysis, must be proportional to
V −1/d, i.e.,

V 1/dEns(V, S) ≡ h(S) , (25)

is a function of entropy only.

Note that in Eqn. 24 we parametrized the dependence on
the extra scale m as a power law in analogy with Eqn. 8.

4.2. The scaling result

Rescaling volume and entropy by λ we get from Eqn. 23
and Eqn. 25

E(V, S) =
1

λ
E(λV, λS)

=
h(λS)

λ1+1/dV 1/d

(

h(λS)

mλ1/dV 1/d

)g̃

=

[

(h(λS))
g̃+1

(λS)(d+g̃+1)/d

]

S(d+g̃+1)/d

V (g̃+1)/dmg̃
, (26)

that is consistent only if the quantity in square brackets
is independent of S. This implies

S(E, g̃, d) = S0(g̃, d)

(

E

kV

)
d

d+g̃+1
(

m

kV

)

g̃d
d+g̃+1

. (27)

The similarity with Eqn. 22 is suggestive of a close rela-
tion to the statistical approach that will be explained in
the next section[14].
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5. COMPARISON OF THE TWO APPROACHES

The two approaches to obtain the density of states are
designed to reflect different physical properties. The first
one deals with variations of the energy density and pres-
sure due to an altered dispersion relation in a way proper
to statistical mechanics; using the representation of those
quantities in terms of momentum distribution functions.
The change in the dispersion relation is taken as the mea-
sure of breaking of Lorentz invariance. The second ap-
proach, in contrast, is centered in the response of the
system to changes of scale, that is, in the breaking of
conformality in the system. The results show, however a
tight interplay of the two approaches. Indeed, if we con-
sider a single particle state, we obtain a particular case
of Eqn. 24, namely,

E = Ens
(Ens

m

)g̃

, (28)

where Ens is the no-scale energy for a single particle. But,
since we assumed the total energy to be extensive, we can
sum all single particle states (with their corresponding
density, for example, in momentum space) to obtain the
total energy, namely,

E = V
n

(2π)d

∫

f(p)E(p) ddp , (29)

where E(p) should be replaced with the expression on the
rhs of Eqn. 28. Thus, by making the identifications

Ens(p) ≡ p , (30)

g̃ ≡ g , (31)

we see that Eqn. 28 coincides with the dispersion rela-
tion Eqn. 8 and the energy density becomes equivalent
to the one derived in the statistical approach. Further-
more, setting the undetermined factor S0(g, d) in Eqn. 27

to (d+ 2g + 2)F
g+1

d+g+1 /d, makes the entropy identical to
the statistical counterpart in Eqn. 22.
We note though that this last step is done simply by

construction, and is not a derivation. The price to pay
for the simplicity and generality of the scaling argument
is that the coefficient S0 remains undetermined, while
its numerical value is explicit in the statistical mechanics
approach.

6. ANALYSIS

We are now ready to take up our original goal: The
comparison of the field theory density of states with the
Wigner semicircle. We have generalized the field theory
density of states to include the parameter g which deter-
mines the dispersion relation according to Eqn. 8. Since
our results preserve the general form taken in Eqn. 2 for
the field theory density of states, we can continue to use
the formalism reviewed in section 2.

Specifically, comparing Eqn. 22 with Eqns. 2 and 3
leads to

b ≡ 2g + 2 + d

d
F

g+1

d+g+1

(

m

kV

)

gd
d+g+1

, (32)

α ≡ d

d+ g + 1
, (33)

∆2 ≈ α2b2

γ

(

E0

kV

)2α
∆E2

E2
0

=
α2

γ
S(E0)

2∆E2

E2
0

. (34)

where

S (E0, g, d) =

d+ 2g + 2

d
F

g+1

d+g+1

(

E0

kV

)
d

d+g+1
(

m

kV

)

gd
d+g+1

. (35)

Recall that ∆2 measures the fractional discrepancy be-
tween the field theory and Wigner densities of states
when evaluated over an energy range ∆E centered at
energy E0. The main new ingredient here is that ∆2

now has a dependence on the dispersion relation via the
parameter g. We start with an analysis of this new g
dependence and then place this in the context of a full
analysis of all the parameters in ∆2, the rest of which
have already been analyzed in [1] and [2].
The smaller the value of ∆2, the better the field theory

can be approximated by the Wigner semicircle (and thus
by a random Hamiltonian). We therefor expect values of
g that lead to smaller ∆2 to be strongly favored in our
scheme, because these values will lead much more easily
to a field theoretic interpretation of a random Hamilto-
nian.
The dominant contribution to the g dependence of ∆2

comes from the S(E0)
2 factor in Eqn. 34. In turn, the

dominant contributions to the g dependence of S(E0)
come from the appearance of g in the exponents of E0 and
m in Eqn. 35. Figure 2 illustrates that the exponent of
the E factor in Eqn. 35 decreases with increasing g, while
the exponent of the m factor grows with g. The values of
g that lead to smaller values of ∆2 thus depend on which
factor dominates. Since (as discussed near Eqn. 22) both
exponentiated factors in Eqn. 35 are always greater than
unity, the question of which behavior dominates is related
in a simple way to the relative sizes of m, E0 and kV . A
helpful quantity is

mc ≡
(

E0k
d
V

)1/(d+1)
. (36)

Evaluating Eqn. 35 at m = mc gives

S (m = mc, g, d) =
d+ 2g + 2

d
F

g+1

d+g+1

(

mc

kV

)d

. (37)

Equation 37 shows that when m is set to the critical
valuemc the two exponentiated factors in Eqn. 35 can be
collected into a single factor which has no g dependence,
as illustrated in Fig. 3.
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FIG. 2: The exponents of the E factor (solid) m factor
(dashed) in Eqn. 35 evaluated at d ∈ {1, 2, 3, 4} (height of
the curve increases with with increasing d). Note that the E
exponent decreases with increasing g while the m exponent
grows.
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FIG. 3: The entropy S(E0, g) for d = 3 for m/mc = 0.01,
0.1, 1, 10 and 100 in order of lowest to highest curves. We
see that taking m = mc removes the g-dependence of S. For
m > mc, S increases with g, whereas S decreases for m < mc

. (Here E0 = 1080GeV and kV = 1025GeV )

Figure 3 also shows that values of the dispersion rela-
tion scale m less than mc make S decrease as a function
of g and thus favor divergently large values of g, whereas
m > mc causes g = 0 to be favored. Since large g cor-
responds to a non-local field theory, we conclude that to
make a local field theoretic approximation to a random
Hamiltonian one must choose m > mc in the dispersion
relation. Having made that choice, the Lorentz symmet-
ric case, g = 0 is favored, in that g = 0 minimizes ∆2 and
thus can be best approximated by the random Hamilto-
nian.
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FIG. 4: The value of the prefactor P (defined in Eqn. 38)
as a function of g. The three curves show d = 2, d = 3 and
d = 4, lowest to highest. The fact that P (g, d) = O(1) for a
wide range of values is why we can neglect P when building
intuition about the dependence of ∆2 on g.

For completeness we now examine the dependence of
∆2 on g from contributions other than the dominant E
and m factors in S. We define the “prefactor” P from
Eqns. 34 and 35 as

P (g, d) ≡ d+ 2g + 2

d
α2F

g+1

d+g+1 . (38)

which contains additional g-dependence not accounted
for by the exponents of the E and m factors in Eqn. 35.
Figure 4 shows explicitly that P is O(1) for a range of
parameters as claimed. Still, for m very close to mc the
shape of P (g) can have an impact, as illustrated in Fig. 5.

Since we have argued that the g dependence of ∆2

drives us to the the Lorentz symmetric case already con-
sidered in earlier work, our analysis of the dependence
of ∆2 on the other parameters carries over unchanged.
In particular, in [2] we considered the same d depen-
dence used here and came to the intriguing conclusion
that the d = 3 case put ∆2 right at the edge of values
allowed by current data. To achieve that one had to take
kV ≈ mγ = 1025GeV , where mγ is the upper bound
on the photon mass. Since kV denotes the scale where
continuum field theory breaks down (not necessarily the
scale of any actual volume V ), this seems to be a very
reasonable choice. Note also that in [2] we simply took
b = 1 in Eqn. 2. Here we have derived an explicit for-
mula for b (given by Eqn. 32), which indeed is O(1) for
the g = 0 case.
As already discussed, ∆2 quantifies the degree to which

the density of states curves for a field theory and a ran-
dom Hamiltonian can over lap over an energy range ∆E.
Figure 6 gives an explicit illustration of what is going
on, where one can see how the two curves match more
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FIG. 5: This figure is similar to Fig. 3 but shows values of m
much closer to mc (m/mc = 0.9, 0.95, 1, 1.05 and 1.25). For
m so close to mc the non-trivial shape of the prefactor shown
in Fig. 4 becomes visible and can lead to local minimum
somewhat away from g = 0. That shifts the value of m for
which g = 0 is preferred to a value slightly higher than mc.

closely for the g = 0 case. In this figure, some differences
between the curves from one panel to the next reflect the
different impacts of enforcing equality at zeroth and first
order (Eqns. 5 and 6) for different values of g.

7. DISCUSSION AND CONCLUSIONS

We have calculated the density of states for a free field
theory with an arbitrary power law dispersion relation.
This allowed us to extend our earlier work examining the
degree to which a random Hamiltonian could be approx-
imated by a local field theory. Our conclusion is that
choosing the Lorentz invariant E(p) = p dispersion rela-
tion reduces the discrepancy between the energy eigen-
value spectrum of a local field theory and that of the ran-
dom Hamiltonian, as compared with the other dispersion
relations considered. In this sense, Lorentz symmetry is
favored by our analysis. This is the concrete result from
our work.
As discussed in [1, 2], quite a few steps still need to be

taken to check the viability of the “random Hamiltonian”
picture. The work presented here offers additional hints
about specific areas for further investigation. As empha-
sized in the introduction, by focusing on the dispersion
relation we are unable to directly draw conclusions about
the full Lorentz symmetry of the theory, although it is
possible that preferences (for or against) could emerge
from a deeper analysis that connects the eigenstates to
observable particles. In any case, imposing Lorentz in-
variance on the field theory will be a quite generic way to
ensure the preferred dispersion relation. One then would
expect massless spin-1 and spin-2 representation could
turn up in the interpretation of a random Hamiltonian
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FIG. 6: N−1

H dN/dE for random Hamiltonians (dashed lines)
and field theory (solid lines) matching the zeroth and first or-
der terms in an expansion around E0 as a function of E/E0

for g = 0 (upper panel), g = 1 (center) and g = 2 (lower). The
Lorentz symmetric (g = 0) case gives the broadest overlap,
illustrating the main conclusion of this paper. The plots cor-
respond to d = 3, β = 2, γ = 1/2, k = 10−3EM , E0 = 8EM

and m = EM . The parameters NH and ES were solved for as
explained in section 2.

as a field theory. According to general arguments [5–
11] these fields would lead to gauge forces and general
relativity respectively. If we assume that the random
Hamiltonian is the correct underlying theory, this pic-
ture should provide a systematic and hopefully testable
way in which local field theory, gauge theory and gravity
will break down.
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Looking more specifically at the technical results in
this paper, we chose m > mc (with mc defined in Eqn.
36) to avoid favoring arbitrarily large powers of momen-
tum p in the dispersion relation

E (p) = p
( p

m

)g

(39)

which would give a nonlocal field theory. This led to a
preference for g = 0 which seems to eliminate m from the
picture altogether. However, mc may show up in some
higher order way: The two values considered in [1] and [2]
for kV are kV = (VU )

1/d (where VU is the Hubble volume)
and kV = mγ . Continuing to use E0 = ρUVU = 1080GeV
as we have here and in our earlier work, these give
mc = ρ1/d and mc ≈ 1GeV respectively. Both are in-
teresting scales for physics in our world. Note the scale
ρ1/d is associated with both the dark energy and the neu-
trino mass[15]. One way mc could enter is through the
fact (illustrated in Fig. 5) that local Lorentz symme-
try breaking theories are preferred for m very close to
mc. We find it intriguing that other authors have associ-
ated neutrino mass with Lorentz-violation[12], while our
scheme appears to associate Lorentz-violation with the

neutrino mass scale.
The idea that physics at its most fundamental is sim-

ply described by a random Hamiltonian is a curious idea
which we motivated in previous work on the clock ambi-
guity. There is much still to be explored before such an
idea could look seriously viable. Still, we find it interest-
ing that this idea has passed as many tests as it has so far.
In particular, this paper shows that the random Hamilto-
nian picture predicts that we would interpret the physical
world using theories with Lorentz symmetric dispersion
relations. We find this result quite remarkable.
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