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Isocurvature perturbations in the inflationary literature typically involve quantum fluc-

tuations of bosonic field degrees of freedom. In this work, we consider isocurvature per-

turbations from fermionic quantum fluctuations during inflation. When a stable massive

fermion is coupled to a non-conformal sector different from the scalar metric perturbations,

observably large amplitude scale invariant isocurvature perturbations can be generated. In

addition to the computation of the isocurvature two-point function, an estimate of the local

non-Gaussianities is also given and found to be promising for observations in a corner of

the parameter space. The results provide a new class of cosmological probes for theories

with stable massive fermions. On the technical side, we explicitly renormalize the composite

operator in curved spacetime and show that gravitational Ward identities play an important

role in suppressing certain contributions to the fermionic isocurvature perturbations.

1. INTRODUCTION

The Cosmic Microwave Background (CMB) measurements [1–4] and the Large Scale Structure

(LSS) observations [5, 6] are consistent with single field inflationary models which can seed approx-

imately adiabatic, scale-invariant, and Gaussian primordial density perturbations [7–15]. However,

from the multi-field nature of the Standard Model of particle physics, one may naturally guess that

there would be more than one light degrees of freedom during inflation which may be responsi-

ble for generating isocurvature primordial perturbation initial conditions. Indeed, in any slow-roll

inflationary scenario, non-inflaton degrees of freedom must eventually turn on in order to reheat

successfully.1 Hence, isocurvature scenarios are theoretically well motivated.

Isocurvature perturbations have been studied in various scenarios, such as double inflation [16–

18], curvaton scenario [19–21], axions [22–27] and gravitationally produced superheavy dark matter

[28–31]. Isocurvature perturbations also can generate rich density perturbation phenomenology.

∗Electronic address: danielchung@wisc.edu
†Electronic address: hyoo6@wisc.edu
‡Electronic address: pzhou@wisc.edu
1 Even though the reheat degrees of freedom do not need to be dynamically important during the quasi-dS era,
multiple fields are certainly lurking in the scenario.
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For example, unlike standard single field inflationary scenarios, isocurvature perturbations are able

to generate large primordial local non-Gaussianities [28, 31–45]. However, most previous studies

of isocurvature perturbations focused on bosonic degrees of freedom such as axions and curvatons.

Fermionic isocurvature degrees of freedom such as gravitinos were only discussed in the literature

associated with the decay products of the inflaton or other scalars [46–49]. Furthermore, these

fermions discussed in the literature were characterized only by their dependence on the entropy

temperature fluctuation δT which was assumed to be directly linked to the curvature perturbation

ζ, in a manner consistent with the “separate universe” picture of δN formalism [50]. Such previously

discussed fermionic isocurvature scenarios lead to strong correlation or anticorrelation with the

curvature perturbation ζ. One can intuitively characterize these previous fermionic isocurvature

works as having no fermionic quantum fluctuation information from the inflationary era.

In contrast, we examine in this paper a fermionic isocurvature scenario that is not (significantly)

correlated with ζ and has fermionic quantum fluctuation information during inflation encoded in the

isocurvature correlator. In our scenario, the horizon length scale interaction dynamics of the fermion

particles is important, in sharp contrast with the “separate universe” picture of δN formalism. As we

will show, although classical gravitational field interactions alone are sufficient to generate enough

fermions during the exit process of inflation to saturate the phenomenologically required cold dark

matter abundance [51, 52], fermion propagators in the classical FRW background is insufficient to

produce any observable isocurvature perturbations because of the fact that massless fermions enjoy

a classical conformal symmetry.2 Hence, any large fermion isocurvature correlator must involve

couplings to a conformal symmetry breaking sector.

For illustrating the existence of such fermionic isocurvature perturbations, we minimally extend

the single field inflation by adding a stable massive fermion field coupled through a Yukawa coupling

to a light non-inflaton scalar field whose mass is much lighter than the fermion field (hence, there

are no decays of the scalars to the fermions). The light non-inflaton scalar field (which is minimally

coupled to gravity) serves as a conformal symmetry breaking sector through which the fermions will

attain appreciable correlations. We compute the isocurvature two-point function of fermions that

are gravitationally produced during inflation and identify the phenomenologically viable parameter

space. We also estimate the local non-Gaussianity and show that it may be observationally large

in a particular parametric regime.

At the technical level, treating fermionic isocurvature fluctuations during inflation requires com-

2 Even with the massive fermions, we will be naturally concerned with light fermions where mψ/H � 1.
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posite operator renormalization in quasi-dS spacetime because the fermionic energy-momentum

tensor is a composite bilinear operator (i.e. fermions cannot get VEVs) and the leading two-point

function contribution involves a one loop 1PI diagram. To our knowledge, this paper is the first pa-

per to apply composite fermion operator renormalization in inflationary spacetime to treat isocurva-

ture perturbations. Indeed, an improper treatment of the operator renormalization can in principle

lead to answers that are many orders of magnitude off as we pointed out with bosonic composite

operators [53]. We also show that a gravitational Ward identity plays an important role in suppress-

ing the scalar metric perturbation interaction contribution to the isocurvature two-point function

(thereby justifying our introduction of another scalar sector).

This paper is presented in the following order. In Sec. 2, we motivate and discuss the fermion

isocurvature model. Next, we review the definition of the gauge-invariant variables and the quantum

operator associated with the cold dark matter (CDM) isocurvature in Sec. 3. In subsection 3.1, we

present the regulator and the renormalization conditions for our isocurvature operator. We explain

the constraints on the Yukawa coupling coming from the self-consistency of our simplified scenario

in Sec. 4. In Sec. 5, we compute the isocurvature 2-point function. The leading order and the next

leading order results are given in subsection 5.1 and 5.2, and the power spectrum is presented in

subsection 5.3. In Sec. 6, we discuss the numerical implications of our results and non-Gaussianities.

Afterwards in Sec. 7, we discuss the explicit computation of how a diffeomorphism Ward identity

plays a role in suppressing the scalar metric perturbation contribution to the isocurvature two-point

function. Finally, in Sec. 8 we summarize and conclude. Some technical details of the computations

are given in the Appendices.

2. FERMION ISOCURVATURE MODEL

As is well known, if any small mass fermion field degrees of freedom exist during inflation

which is usually assumed to be a Bunch-Davies vacuum state, fermion particles will be produced

gravitationally (see e.g. [51, 52, 54]). The inhomogeneities of the gravitationally produced fermions

will generically not align with the inhomogeneities of the inflaton, depending on its interactions. If

most of the radiation in the universe comes from the inflaton decay, then the misalignment of the

inhomogeneities of the fermions and the inflaton will lead to isocurvature perturbations [55–57].

Now, to motivate our fermion model with Yukawa interactions, it is important to understand

why interactions to conformal symmetry breaking sector is required. It is also well known that
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massless fermion classical action enjoys a conformal symmetry:

gµν → e2σ(x)gµν (1)

ψ → e−3σ(x)/2ψ. (2)

Since FRW spacetime can be written as a conformal transformation of the Minkowski space (i.e.

a = exp(σ)), we would expect for a tree level fermion propagating on an FRW spacetime without

any interactions with a conformal symmetry breaking sector

〈ψ̄ψ(t, ~x)ψ̄ψ(t, ~y)〉conn = 〈ψ̄MψM (t, ~x)ψ̄MψM (t, ~y)〉conna−6 (3)

where ψM is the Minkowski fermion. At leading order, there are no other scales in this function

except |~x− ~y|. Hence, we conclude

〈ψ̄ψ(t, ~x)ψ̄ψ(t, ~y)〉conn ∼
1

a6|~x− ~y|6
(4)

in the massless limit.3 We expect this to be the dominant contribution in the limit thatmψ/H � 1.

When mψ/H � 1, we also expect there can be factors multiplying this that vanishes exponentially

fast as mψ/H →∞ (we show this explicitly in Sec. 5.1). Hence, we expect Eq. (4) to be the leading

order of magnitude composite correlator if the theory is approximately conformally invariant. As

we will show below, the comoving gauge isocurvature perturbations is proportional to

〈
δρ

(C)
ψ

ρ̄ψ

δρ
(C)
ψ

ρ̄ψ
〉 ∼ 〈ψ̄ψ(t, ~x)ψ̄ψ(t, ~y)〉conn〈

ψ̄ψ
〉2 . (5)

where one sees the appearance of the suppressed correlator computed in Eq. (4). Because of this

suppression, fermionic isocurvature perturbations require nontrivial interactions with a conformal

symmetry breaking sector.

If the conformal symmetry breaking sector is just the ζ sector of the inflaton, then its effective

coupling to the fermions is suppressed because there is an infinitesimal shift symmetry of the

ζ coming from a residual diffeomorphism symmetry in the comoving gauge. (We will explain

this explicitly in Sec. 7 in terms of a Ward identity.) Hence, to generate an observable fermionic

correlator during the horizon exit, another conformal symmetry breaking sector must be introduced

which does not suffer from derivative coupling suppression similar to ζ.4 We thus introduce a

3 The scaling behavior of the two-point correlator is similar to that of correlators considered in Ref. [58] in the
context of conformal field theories.

4 Although we have not investigated the suppression for the tensor perturbation interactions with a full computation,
we expect a similar suppression of the tensor perturbation interactions.
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Yukawa coupling to a light non-inflaton scalar and demonstrate that this interaction can induce

observable isocurvature fluctuations.5

Given this motivation, let us now specify the model studied in this paper. We use one real

scalar φ slow-roll inflaton degree of freedom that dominates the energy density during inflation and

then perturbatively decays to the SM sector to reheat the universe. We also introduce another

minimally coupled light real scalar degree of freedom σ which has no coupling to φ or the SM

sector (necessary for reheating) stronger than gravity.6 As we explained, the main role of σ is to

provide a conformal symmetry breaking sector which can couple to the Dirac fermions ψ through

a Yukawa coupling. We assume ψ is charged under a conserved discrete charge such that the one

particle states are stable and can act as dark matter. Note that since we do not require all of the

dark matter to come from the fermions, this system is consistent with the existence of the weakly

interacting massive particle (WIMP) dark matter. Because ψ is too weakly interacting with the

SM to be produced directly, gravitational production of ψ during and after inflation is significant

and gives rise to non-thermal cold dark matter (CDM) and its isocurvature perturbations.

Such a model is described by the action7

S =

ˆ
(dx) {Linf [gµν , φ] + LSM+CDM [gµν , {Ψ}] + LRH [gµν , φ, {Ψ}]

+− 1

2
gµν∂µσ∂νσ −

1

2
m2
σσ

2 − y

4!
σ4 + ψ̄(iγa∇ea −mψ)ψ − λσψ̄ψ

}
, (6)

where M2
p = 1

8πG = 1, (dx) ≡
√
−gd4x, and Linf and LSM+CDM are the Lagrangians for the

inflaton and the SM+CDM sectors, and LRH describes the sector responsible for reheating. Because

an interesting parameter region exists for our scenario in which the ψ constitute a tiny fraction of the

total dark matter content, the Lagrangian LSM+CDM describes the CDM sector different from ψ to

make the scenario phenomenologically viable. Note that natural heavy dark matter candidates for ψ

exist in the context of string phenomenology [59, 60]. Furthermore, many extensions of the Standard

Model also possess superheavy dark matter candidates (see, e.g., [61–71]). Since there are many

scalar field degrees of freedom in typical BSMs, the possibility of identifying one of these scalars with

σ is also plausible. Although the cosmological phenomenology of weakly interacting dark matter

on large scales have been investigated already in literature (see, e.g., [19, 28, 30, 31, 72, 73]), our

5 Note that this introduction of a light scalar is not particularly attractive from a model building perspective since
we provide no explicit mechanism to protect its light mass. We defer the challenge of building an attractive model
to a future work since the purpose of this paper is to demonstrate the basic physics mechanism.

6 For now, we will consider this as a tuning and will not address serious model building issues in this paper. It is
plausible that this kind of scenario can be realized in the context of SUSY hidden sector.

7 Our metric convention is (−,+,+,+) .
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work is the first to describe fermionic fluctuation correlations during inflation. Note that although

Eq. (6) has a quartic term σ4, we will focus on the parametric region in which the quartic coupling y

will be small and tuned against radiative generated quartic couplings from the Yukawa interaction

to keep the effects of the σ interactions to a minimum. Hence, our effective parametric domain will

be controlled by {λ,mσ,mψ}.

We focus on a particular parametric region of {λ,mσ,mψ} such that σ only assists in generating

large scale density perturbations of ψ, and the density perturbations and the relic abundance from

the σ particles vanish or are suppressed compared to those from the ψ particles. For example,

requiring the correlator 〈σσ〉|t∗ relevant for the isocurvature perturbations not be suppressed gives

the condition mσ/H(t∗) < 1 where t∗ is the time at which the fermion production ends. This

implies mσ < mψ is the relevant parameter region. Furthermore, in order to prevent any large

isocurvature perturbations and relic abundance of σ, we assume that the σ particles decay before

σ becomes an important fluid component of the evolution of the universe (e.g. before matter-

radiation equality). Note however that this restriction is a matter of simplicity. In general, we note

that a weakly interacting and stable σ may also be phenomenologically allowed without problems

regarding the relic abundance and the isocurvature from σ. Moreover, for simplicity, we restrict

λ such that 1) σσ → ψ̄ψ via the Yukawa interactions is suppressed compared to the gravitational

process in producing ψ̄ψ 2) any σ+gravity→ ψ̄ψ processes are estimated to be unimportant. This

restriction is approximately equivalent to being in a parametric region where tree-level propagator

neglecting resumption of the Yukawa interactions is valid.

In addition, in order to detach our model from the details of the inflationary model of φ, we focus

on the light fermion ψ, such that mψ < He, where He is the Hubble scale at the end of inflation.

This is because the gravitational particles production is generally sensitive to how the inflation ends

in a such way that an extra suppression factor exp
(
−cm2

ψ/H
2
e

)
(where c is a number depending

on how the inflation connected with the post inflationary era) appears in the estimation of the

gravitationally produced particle number density nψ. (Throughout the paper, we will sometime

distinguish He from Hinf which is defined to be the expansion rate during inflation.) On the other

hands, if mψ < He, the factor becomes simply an O(1) number, and particularly, for fermions we

can estimate the number density nψ(t∗) as O(0.1)m3
ψ at H(t∗) ∼ mψ regardless of how the inflation

ends [51]. The physics of this universality is tied to the conformal symmetry of the fermions in the

massless limit.

At this point, we emphasize that our model is different from other fermionic (e.g., gravitino)

isocurvature models in literature (e.g. [49, 74, 75]). We explicitly predict the amplitudes of fermion
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density perturbations from a joint effect of the gravitational particle production and σ modulation

on mψ via the matter loop diagrams. In contrast, in Refs. [49, 74, 75] the fermions are produced

from the on shell inflatons and/or curvatons (the latter has the closest identification in our model

with σ) after the end of inflation. A sharp observable contrast of our model with these other

models is that our scenario predicts an uncorrelated type of isocurvature (i.e. curvature-isocurvature

cross correlation is negligible) while these other models purportedly generate correlated type of

isocurvature. This is a consequence of the fact that these other models do not describe any fermionic

fluctuations during inflation while in our model, the expansion during inflation imparts work to

virtual fermionic fluctuations to put them on shell.

3. OPERATOR FOR ISOCURVATURE PERTURBATION

Recall that the scalar perturbation of the metric is parametrized as

δg(S)
µν =

 −E aF,i

aF,i a
2[Aδij +B,ij ]

 . (7)

The gauge-invariant variables are constructed by combining metric perturbations and other pertur-

bations, such as density perturbations. For example, the conventional first-order gauge-invariant

perturbation associated with the energy density of a fluid a is defined (see, e.g., [76] and references

therein) by

ζa ≡
A

2
−Hδρa

˙̄ρa
. (8)

In particular, we define the conventional curvature perturbation as

ζ ≡ A

2
−Hδρtot

˙̄ρtot
, (9)

where

δρtot =
∑
i

δρi, ρ̄tot =
∑
i

ρ̄i. (10)

This quantity ζ is conserved when modes are stretched out of the horizon even through the reheat-

ing era as long as it is set by the adiabatic initial condition, i.e., ζ = ζa for any fluid a. Furthermore,

if perturbations are generated solely by inflaton during inflation, such as the single field inflation,

superhorizon perturbations automatically satisfy the adiabatic initial condition and the perturba-

tions are conserved so that we can match them with those during the early radiation dominated

(RD) era, ζφ(tinf ) = ζγ(tRD) = ζm(tRD) = · · · .



8

On the other hand, an isocurvature perturbation is defined by a relative density perturbation

between two different fluids

δSij ≡ 3 (ζi − ζj) = −3H

(
δρi
˙̄ρi
− δρj

˙̄ρj

)
. (11)

In general, it may arise during inflation if there are more than one degree of freedom. Although

their mixing with perturbations of different fluids can lead to the failure of the conservation of

the curvature perturbation ζ, such effects are negligible as for any species i whose ρ̄i + P̄i is suffi-

ciently smaller than ρ̄tot + P̄tot until the Universe reaches radiation domination. Particularly, for

gravitationally produced fermions, we have

ρ̄ψ + P̄ψ
ρ̄tot + P̄tot

∣∣∣∣
t∗

∼
ρ̄ψ
ρ̄tot

∣∣∣∣
t∗

∼
m2
ψ

M2
p

� ∆2
ζ , (12)

where t∗ is the time that the gravitational fermion production ends, H(t∗) ∼ mψ. Hence, we expect

the superhorizon curvature perturbation to be approximately conserved through the reheating,

ζ(tRD) ≈ ζφ(tinf ).

The dominant fraction of the produced fermions are non-relativistic.8 Then the fermion energy

density behaves as 9

d

dt
ρ̄ψ(t) ≈ −3Hρ̄ψ for t > t∗, (13)

and from Eq. (11) a general CDM isocurvature is written as

δS =
δρCDM
ρ̄CDM

− 3

4

δργ
ρ̄γ

. (14)

As discussed in Sec. 2, the CDM may include decay products of the inflaton φ. Thus the CDM

density perturbation is generally expressed as

δρCDM
ρ̄CDM

= ωψ
δρψ
ρ̄ψ

+ (1− ωψ)
δρm
ρ̄m

, (15)

where the subscript m denotes the CDM component associated with the inflaton decay products

(such as WIMPs of minimal supersymmetric models), and

ωψ ≡ ρ̄ψ/ (ρ̄ψ + ρ̄m) . (16)

8 This is a valid assumption because gravitationally excited fermion modes that contributions to the energy density
are less than the fermion mass, i.e., |βk|2 for k/a . mψ, where βk is the Bogoliubov coefficient. See Appendix B
for the detail.

9 One can find that ρ̄ψ ∝ a−3(t) for t > t∗ if ρ̄ψ is renormalized by the adiabatic subtraction. See Appendix B and
Ref. [54]. Then we can treat ψ as a pressure less matter.
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In particular, in the comoving gauge (δρφ/ ˙̄ρφ = δρm/ ˙̄ρm = δργ/ ˙̄ργ = 0), the CDM isocurvature

becomes

δ
(C)
S ≈ ωψ

δρ
(C)
ψ

ρ̄ψ
, (17)

where the superscript denotes the gauge choice.

Under the non-relativistic assumption, we also approximate the fermion mass term mψψ̄ψ as its

energy density10

ρψ ≈ mψψ̄ψ, (18)

and then the the fermion isocurvature perturbation becomes

δ
(C)
S ≈ ωψ

ρψ − 〈ρψ〉
〈ρψ〉

= ωψ
ψ̄ψ −

〈
ψ̄ψ
〉〈

ψ̄ψ
〉 . (19)

Notice that as it is a quantum composite operator, we renormalize it with regulators and counter-

terms invariant under the underlying gauge symmetry, diffeomorphism in this case. In the following

subsection, we present the technical detail of the composite operator renormalization. From now

on, we will use the comoving gauge in calculating the correlation function and drop the superscript

(C) for convenience.

3.1. Regularization and Renormalization for Isocurvature Perturbation

In this subsection, we explain our regularization procedure and renormalization scheme that

determines the counter-terms. The most crucial renormalization condition that the isocurvature

perturbations are sensitive to is Eq. (38).

For the convenience of preserving covariance and incorporating the adiabatic vacuum boundary

condition, we use Pauli-Villars (PV) regularization [77]. This involves the replacements

ψ → ψ +
∑
n

ψn, σ → σ +
∑
n

σn, (20)

10 Using the adiabatic vacuum prescription, the renormalized energy density is approximated in the non-relativistic
case as 〈

(ρψ)r
〉
≈ mψ 〈Nψ〉 = 2mψ

ˆ
d3k

(2π3)

1

a3
|βk|2 ,

where Nψ is a fermion number operator, and the subscript r denotes that the operator is a renormalized composite
operator. This quantity is in accord with

mψ

〈(
ψ̄ψ
)
r

〉
= 2mψ

ˆ
d3k

(2π3)

mψ

ωp
|βk|2 ≈ 2mψ

ˆ
d3k

(2π3)
|βk|2 .

In particular,
(
ψ̄ψ
)
has an advantage in constructing gauge-invariant variables because it is manifestly 4-scalar,

but Nψ.
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Figure 1: Diagrams determining counter-terms where the solid line corresponds to the fermion line and the

dashed lines corresponds to σ lines. It is convenient to truncate the external σ legs on diagrams c), d), and

e) with zero momentum insertion, making these mass insertions.

and the addition of the Pauli-Villars part in the free Lagrangian

LPV =
∑
n=1

Cn(−1

2
gµν∂νσn∂νσn −

1

2
M2
nσ

2
n) (21)

+
∑
n=1

Dnψ̄n(iγa∇a −mn)ψn. (22)

For notational simplicity, we let C0 = 1, M0 = mσ and D0 = 1, m0 = mψ, and let index N =

0, 1, · · · and n = 1, 2, · · · . We require the following constraints for scalar regulators

∑
N

C−1
N = 0,

∑
N

C−1
N M2

N = 0,
∑
N

C−1
N M4

N = 0, · · · (23)

and the following constraints for fermion regulators

∑
N

D−1
N = 0,

∑
N

D−1
N mN = 0,

∑
N

D−1
N m2

N = 0, · · · (24)

where we need to introduce sufficient numbers of PV fields and constraints to cancel all the diver-

gences. Notice that the additional constraints in the fermions with odd powers of mN .

With the operator dimension and the symmetry considered, the renormalized operator is written
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as

(ψ̄ψ)x,r = (ψ̄x)r(ψx)r(1 + δZ1) + δZ2(σx,r)
3 + δZ3(σx,r)

2

+δZ4σx,r + δZ5 + δZ6�σx,r + δZ7R+ δZ8Rσx,r (25)

where each field operator should be understood as including a sum of the PV fields as in Eq. (20).

Then we give the renormalization conditions to determine the counter terms. For δZi which are

not coupled to R,Rµν , Rαβµν and their derivatives, we can go to the Minkowski space and impose

the renormalization conditions there. (Of course, we do not need to separate the curved space

contribution and the flat space contribution with two computations, but we present this here this

way here for clarity in the physical partition.) We define the renormalized operator ψ̄ψ at one-loop

order, such that it measures the number density of the fermion particles. First, we require its

expectation value in the flat space vacuum to vanish:

〈vac|ψ̄ψ(x)|vac〉flat +
∑
n=1

〈vac|ψ̄nψn(x)|vac〉flat + δZ5 = 0 (26)

⇒ −
ˆ

d4p

(2π)4

∑
N

D−1
N Tr

{
1

i

−/p+mN

p2 +m2
N − iε

}
+ δZ5 = 0. (27)

This corresponds to the evaluation of diagram (a) in Fig. 1.

Next, we impose the renormalization condition consistent with the fact that as far as the fermion

sector is concerned, a shift of σ by a constant in the tree-level action is equivalent to a shift in the

mass of the fermion. More explicitly, we demand that if σ is shifted as σ → σ + c, the one-point

function satisfies

〈vac|(ψ̄ψ)x,r|vac〉flat = 〈vac|
[
(ψ̄ψ)x,r + ∆(ψ̄ψ)x,r

]
|vac〉flat,LI=−λcψ̄yψy (28)

where ∆(ψ̄ψ)x,r corresponds to a shift in the σ dependent composite operator counter-terms and

LI corresponds to c dependent mass shift Lagrangian term. This leads to diagrams (c)-(e) in Fig. 1

with the external σ propagators truncated and fixes δZ2, δZ3, δZ4:

−(−iλ)3

ˆ
d4k

(2π)4
Tr


(∑

M

D−1
M

1

i

−/k +mM

k2 +m2
M − iε

)4
+ δZ2 = 0 (29)

−(−iλ)2

ˆ
d4k

(2π)4
Tr


(∑

M

D−1
M

1

i

−/k +mM

k2 +m2
M − iε

)3
+ δZ3 = 0, (30)
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and

−iλ
ˆ
d4y〈(ψ̄ψ)x(ψ̄ψ)y〉+ δZ4 = 0 (31)

⇒ −iλ
ˆ

d4k

(2π)4
(−)Tr


(∑

M

D−1
M

1

i

−/k +mM

k2 +m2
M − iε

)2
+ δZ4 = 0. (32)

Furthermore, we require ψ̄ψ to have no loop corrections when contracted with on-shell fermion.

This leads to the diagram (b) of Fig. 1 (where we have set the composite operator momentum to

be 0 for convenience) and fixes δZ1:

δZ1 + (iλ)2

ˆ
d4k

(2π)4

∑
L,M,N

C−1
L D−1

M D−1
N

1

i

1

k2 +M2
L − iε

×1

i

[−/k − /p+mM ]

(k + p)2 +m2
M − iε

× 1

i

[−/k − /p+mN ]

(k + p)2 +m2
N − iε

= 0. (33)

Similarly, we demand ψ̄ψ to have no loop corrections when contracted with on-shell scalar line.

Explicitly, the diagram corresponds to the diagram (e) of Fig. 1 determining δZ6 :

−iλ
ˆ
d4y〈(ψ̄ψ)x(ψ̄ψ)y〉eip·y + δZ4 − p2δZ6 = 0 (34)

⇒ iλ

ˆ
d4k

(2π)4
Tr

{∑
M

D−1
M

1

i

−/k +mM

k2 +m2
M − iε

×
∑
N

D−1
N

1

i

−/k − /p+mN

(k + p)2 +m2
N − iε

}
+ δZ4 − p2δZ6 = 0, (35)

where p2 = −m2
σ.

For δZi that depend on curved spacetime nature, we match the renormalized result to that from

the adiabatic subtraction. In order to fix δZ7, we impose the number density 〈in|(ψ̄ψ)r,x|in〉 to be

the density defined by the adiabatic prescription (See, e.g., [29, 51, 52, 54, 78–80]):

nψ ≡ 〈in|ψ̄ψ(x)|in〉+
∑
n=1

〈in|ψ̄nψ(x)n|in〉+ δZ5 + δZ7R(x) (36)

= 〈in|ψ̄ψ(x)|in〉 − 〈WKB, vac, tx|ψ̄ψ(x)|WKB, vac, tx〉, (37)

where |WKB, vac, tx〉 is the WKB vacuum defined at tx by the adiabatic prescription. The diagram

of interest is diagram (a) of Fig. 1, and the divergent part of δZ7 determined this way is linear in

the fermion mass.
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In order to determine δZ8, we repeat the consideration analogous to Eq. (32) on a background

field σ(x) = c, where c is an infinitesimal constant. Since a constant σ shift is equivalent to a shift

of the fermion mass, we want to choose δZ8 to get

λ∂mnψ(x) = −iλ
ˆ
CTP

(dy)
∑
N,M

〈in|P{ψ̄M (x)ψN (x)ψ̄N (y)ψM (y)}|in〉conn

+δZ4 + δZ8R(x), (38)

where the subscript CTP denotes closed-time-path, and P is the path-ordering operator for a “in-in”

exception value. (For example, see Refs. [81, 82]). Note that diagram of interest corresponds to (e)

of Fig. 1. As we will see later, this renormalization condition plays a crucial role in determining the

isocurvature correlator. The solution for all the δZi can be expressed in terms of Feynman param-

eter integrals. However, such explicit expressions are not relevant to determine the isocurvature

correlation function. In contrast the left hand side of Eq. (38) is important.

To summarize, we have given a prescription to regularize and renormalize the composite operator

ψ̄ψ. The renormalization conditions ensure that 〈in|(ψ̄ψ)r,x|in〉 agrees with that defined by the

adiabatic prescription in curved spacetime, and they also ensure that a constant shift in σ is

equivalent to a constant shift in the fermion mass. Note that because the gravitational production

of fermions are still in flux when mψ < H , we evaluate the number density nψ later than t∗, where

H(t∗) ∼ mψ, as far as the renormalization conditions are concerned.

4. SCENARIO CONSTRAINTS ON SCALAR FIELD σ

In this section, we explain the constraints on the Yukawa coupling λ that comes from requiring σ

to behave as an unscreened long range force carrier whose on-shell particle states do not significantly

participate in ψ production.

We will find that 〈σσ〉|t∗ power spectrum relevant for the isocurvature perturbations is not

suppressed if mσ/H(t∗) < 1 where t∗ is the time at which H(t∗) = mψ (i.e. t∗ is the time at which

the fermion + anti-fermion number freezes [51]). This implies mσ < mψ is the relevant parameter

region for the scenario of this paper. Furthermore, in order to prevent any large isocurvature

perturbations and relic abundance of σ, we assume that 〈σ〉 = 0 and the σ particles decay before σ

becomes an important fluid component of the evolution of the universe (e.g. before matter-radiation

equality). Note however that this restriction is a matter of simplicity. There exist parameter regions

in (mσ, λ) such that σ survives as a long-lived weakly interacting particle (i.e. a dark matter).

However, in such cases, the constraints from the relic abundance and the isocurvature of σ restrict
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the σ mass to be very small, e.g., mσ . 10−6eV for Hinf ∼ 1013GeV. (See, e.g, [72, 83–85] for the

parametric bounds for the QCD axion produced by inflation.) In principle, it is possible to build a

model that has such small mσ with help of some underlying symmetry, such as a shift symmetry.

Although we assume thatmσ < mψ, σ would generally acquire a plasma mass correction through

interactions with an ensemble of ψ particles. Thus we consider the effect of the produced ψ on the

σ correlator and show that the effect is negligible. We expect the fermions do not affect scalar

modes before horizon exit because the mass correction by the fermion is still small compared to the

Hubble friction during inflation. After the scalar mode exits the horizon, the fermions exert a tiny

computable drag on σ. The equation of motion of σ from the action (6)11 is written as

0 =
〈
in
∣∣[(�−m2

σ)σx − λψ̄ψx + δZ0 + δZRRx + δZσ�σx − δm2
σσx + δZξRxσx

]
[· · · ]

∣∣ in〉 (39)

= (�x −m2
σ) 〈σx [· · · ]〉+ iλ2

ˆ x

(dz)〈[ψ̄ψx, ψ̄ψz]〉 〈σz [· · · ]〉+
(
δZσ�x − δm2

σ + δZξRx
)
〈σx [· · · ]〉

+
(
δZ0 + δZRRx − λ〈ψ̄ψx〉

)
〈[· · · ]〉+O(λ3, y), (40)

where [· · · ] denotes any quantum operators in the correlation function. We choose the counter

term δZ0 and δZR such that the tadpole 〈σ〉 vanishes, i.e.,
(
δZ0 + δZRR− λ

〈
ψ̄ψ
〉)

= 0, where

the PV regulator is assumed. Moreover, when σ varies very slowly outside the horizon, we factor

〈σz [· · · ]〉 out of the integral in Eq. (40), and we renormalize the integral using the counter terms(
δZσ�x − δm2

σ + δZξRx
)
〈σx [· · · ]〉 such that the result is consistent with that obtained by the

adiabatic subtraction12:

iλ2

ˆ x

(dz)〈[ψ̄ψx, ψ̄ψz]〉+
(
−δm2

σ + δZξRx
)

= −λ2

(
∂nψ
∂mψ

)
, (41)

where nψ is the renormalized fermion number density defined by Eq. (37), and we have used Eq. (38)

in the derivation. Therefore, we find the effective mass of σ when it slowly varies (i.e., k/a � H

and mσ � H)

meff
σ = m2

σ + ∆m2
σ(t) ≈ m2

σ + λ2∂nψ(t)

∂mψ
. (42)

11 The counter-terms appearing in the action includes

Sc.t. 3
ˆ

(dx)

[
−1

2
δZσ (∂σ)2 − 1

2
δm2

σσ
2 + δZ0σ + δZRRσ + δZξRσ

2

]
.

Note that the the linear σ terms exist in the action because the action does not preserve the Z2 symmetry due to
the Yukawa coupling.

12 In other words, we identify −δm2
σ and δZξ with δZ4 and δZ8 in Eq. (38), and δZσ� is neglected since σ is slowly

varying.
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Because we estimate nψ . O(0.1) (mψH)3/2 when mψ . H,13 based on dimensional analysis, we

expect that the mass correction by the ψ loop is

∆m2
σ(t) ≈ λ2∂nψ(t)

∂mψ
∼


O(0.1 or less)λ2m

1/2
ψ H3/2 for mψ < H(t)

O(0.1)λ2m2
ψ for mψ > H(t)

. (43)

Therefore, in general, before the fermion production ends mψ < H, this scalar mass correction

∆m2
σ does not ruin the stability of our scenario m2

σ + ∆m2
σ(t) < m2

ψ < H2(t) as long as m2
σ < m2

ψ.

Next, we ask the question of which parametric region would be consistent with the simplifying

assumption that ψ particles are primarily produced gravitationally and not by σ. To this end, we

first consider the annihilation σσ → ψ̄ψ. The annihilation is the most significant at the end of

inflation because ψ particles produced from σ before the end of inflation are diluted, and σσ → ψ̄ψ

after the end of inflation is also limited because the allowed kinematic phase space is redshifted.

Thus we compare the number density of the produced ψ from σ at the end of inflation, nσ→ψ with

that of gravitationally produced ψ, nψ(t∗) ∼ m3
ψ, and we require their ratio to be small:(

ae
a(t∗)

)3 nσ→ψ(te)

nψ(t∗)
∼
(

ae
a(t∗)

)3 nσΓ(σσ → ψψ)∆t|te
nψ(t∗)

(44)

∼
(
H(t∗)

He

)2 H3
e · λ4

16π2He · 1
He

H3(t∗)
∼ λ4

16π2

He

mψ
. 1, (45)

where the subscript e means a variable is evaluated at the end of inflation te.

Even though mσ < mψ, the decay production of ψ through σ → ψ̄ψ may still be possible if σ

is sufficiently off shell due to its interactions with finite density of ψ in the subhorizon region (the

subhorizon physics here is different from the superhorizon physics considered in Eq. (42)). To turn

off this channel, we require that the σ mass corrections from the fermion number density at the

time of end of inflation be small. This requires

λκ
He/(2π)

mψ
. 1 (46)

13 Note that the adiabatic prescription to determine the number density nψ does not apply for modes mψ < k/a <√
mψH when mψ < H because vacuum varies non-adiabatically, i.e., the adiabaticity parameter εk ≡

mψkpH

ωk
& 1,

where kp = k/a and ωk =
√
k2
p +m2

ψ. See Appendix B for detail. However, we can estimate the upper bound of
the number density as

nψ(t) =

ˆ
d3kp
(2π)3

|βk|2 .
ˆ √mψH d3kp

(2π)3

1

2
∼ O(0.1) (mψH)3/2 for t < t∗.
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where κ & O(1). To see how κ & O(1) can come about, consider the following estimate of subhorizon

thermal effect. The maximum effective number density of fermions at the end of inflation is

nψ(te) . 4mψ

(
He

2π

)2

. (47)

The energy density associated with these fermions is

∆V ∼ nψ(te)

√(
He

2π

)2

+ λ2σ2 (48)

where we neglected mσ � He/(2π). This leads to an effective mσ correction of

∆m2
σ ∼ nψ(te)

λ2

He/(2π)
. 4λ2mψ

(
He

2π

)
. (49)

Kinematically blocking the σ decay into ψ, we find

4λ2

(
He

2π

)
< mψ (50)

which corresponds to κ = 2. Note that this condition is more restrictive than Eq. (45).

In sum, requiring σ to behave as an unscreened long range force carrier whose on-shell particle

states do not significantly participate in ψ production gives a constraint on λ. The strongest

condition is given by Eq. (46) with κ & O(1).

5. ISOCURVATURE TWO-POINT FUNCTION

In this section, we evaluate the two-point function of the renormalized isocurvature operator δS ,

given by Eq. (19). The average number density was computed in [51], the result is summarized

in Appendix B. We only need to evaluate 〈(ψ̄ψ)x,r(ψ̄ψ)y,r〉c. Since we want to use the quantum

computation to set the initial condition for the subsequent classical fluid evolution, we will choose

the time of the evaluation such that both the quantum and the classical fluid descriptions apply.

We take x0 = y0 = ηf at time after the particle production ends, since the fluid description cannot

describe the particle production process. We will take the separation |~x−~y| to be large enough such

that the intersection of their past light-cone I−(x) ∩ I−(y) lives deep within the inflationary era.

This ensures that the contributions from late-time short distance physics (e.g. reheating, phase

transition) are minimized. The relevant diagrams for 〈(ψ̄ψ)x,r(ψ̄ψ)y,r〉c are given in Fig. (2). The

crossed dot represent (ψ̄ψ)x,r insertion, the solid dot represent the Yukawa interaction vertex, the

dashed line represent the scalar σ propagator, and the solid line represent the fermion propagator.
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Figure 2: The leading order and the next leading order contribution to
〈
ψ̄ψxψ̄ψy

〉
, the cross-dot vertices

corresponds to ψ̄ψ insertion. By comparing the large r (r ≡ |~x − ~y|) behavior of the equal-time correlator

of the fermion and the scalar field, we want to show that diagram (b) dominates in the limit r →∞.

5.1. Leading order result

We first consider the leading order diagram (a) in Fig (2). The diagram is explicitly written as

〈ψ̄ψxψ̄ψy〉(a) = −Tr
[
〈ψxψ̄y〉〈ψyψ̄x〉

]
=
∑
i,j

V̄i,xUj,xŪj,yVi,y (51)

Using a contour integration technique, we can evaluate the mode-sum analytically. The details are

in given Appendix C. The result14 is

〈ψ̄ψxψ̄ψy〉LO =


1

π4a6
x|~x−~y|6

(
1 +O

[(
mψ
Hinf

)2
])

(mψ � Hinf )

1
π4a6

x|~x−~y|6
(4π)

(
mψ
Hinf

)3
exp(−2π

mψ
Hinf

) (mψ � Hinf )

(52)

where Hinf is the expansion rate during inflation. We can understand this result by backtracking

the two points x, y to the time when they were deep inside the horizon, and see what happened as

they grow apart.

In the heavy mass case (mψ � Hinf ), the Compton radius m−1
ψ is smaller than the horizon

radius H−1
inf . The physical separation rphys will first grow to the Compton wavelength, and trigger

the exponential suppression factor exp(−2mψrphys) in the correlator.

〈ψ̄ψxψ̄ψy〉flat,mψrphys>1 ∼
m3
ψ

4π3r3
phys

exp(−2mψrphys) (53)

14 Note that we do not consider the the heavy mass case, mψ � Hinf where Hinf is the expansion rate during
inflation, for the isocurvature because the estimation of the particle production depends on how the inflation ends
as described in Section 2. However, we provide the leading order of the two-point function to develop better
intuition for the behavior of super horizon modes of ψ.
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As the physical separation rphys grows further to exceed the horizon radius H−1
inf , the correlator

would freeze and start decreasing as (ar/aη)
6, where ar = 1/(Hinfr) denote the scale factor at the

horizon crossing. Substituting ar = 1
Hinf r

and rphys = H−1
inf , we recover the heavy mass formula:

(
ar
aη

)6 m3
ψ

4π3r3
phys

exp(−2mψrphys) ∼
1

a6
xr

6

(
mψ

Hinf

)3

exp(−2
mψ

Hinf
). (54)

In the light mass case (mψ � Hinf ), the physical distance will cross the horizon radius first,

without the exponential suppression of exp(−2mψrphys). From the flat space UV limit result 1
r6
phys

,

〈ψ̄ψxψ̄ψy〉flat,mrphys<1 ∼
1

r6
phys

(55)

we use ar = 1
Hinf r

and rphys = H−1
inf to obtain

(
ar
aη

)6 1

r6
phys

∼ 1

a6
xr

6
(56)

Thus we recover the light mass result.

Unfortunately, the fractional relic density fluctuation at CMB scale15 is too small

〈δρxδρy〉
〈ρ̄ψ〉2

∼
m2
ψ/(π

4a6r6
CMB)

m2
ψm

6
ψ(a6
∗/a

6)
∼
(

1

a∗mψrCMB

)6

. (57)

where rCMB is the comoving distance for typical CMB observation scale and the subscript ∗ denotes

the time when fermion production ends. Let aCMB denotes the scale factor when CMB scale exits

the horizon then we have

r−1
CMB ∼ aCMBHinf (58)

Assuming the fermion production ends during reheating when mψ = H(t∗), and H ∝ a−α during

reheating, then we have

aeHinf

a∗mψ
∼ aeHe

a∗H∗
∼
(
ae
a∗

)1−α
∼
(
He

H∗

)1− 1
α

(59)

Assuming that inflation ends 50 efolds after the CMB scale exits horizon and a MD-like reheating,

i.e., α = 3/2, then we have

〈δρxδρy〉
〈ρ̄ψ〉2

∼
(
aCMBHinf

a∗mψ

)6

∼
(
aCMB

ae

aeHinf

a∗mψ

)6

∼ e−300

(
He

mψ

)2

(60)

15 Since 〈δρδρ〉 is frozen as long as the two points are outside of horizon, we can extrapolate this large spatial
separation result obtained at the end of inflation to the recombination time.
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Using the fermion relic abundance formula (for TRH = 109GeV and g∗ = 100 case) ωψ ∼

(mψ/1010GeV)2, we obtain

〈δρxδρy〉
ρ2
tot

∼ ω2
ψ

〈δρxδρy〉
〈ρ̄ψ〉2

∼ e−300

(
He

1010GeV

)2

(61)

We thus find that generically the pure fermion isocurvature is very small on scales relevant for the

CMB.

5.2. Next leading order result

We consider the diagrams (b)-(e) in Fig. 2, which contain the effects of the Yukawa interaction to

the fermion production. We can perturbatively compute the diagrams using the “in-in” formalism

(e.g. see Refs. [86, 87] and references therein).

Firstly, we estimate which diagram gives the largest contribution when x and y have large

spatial separations. From the fact that equal-time correlator 〈σxσy〉 scales as r2ν−3 where ν2 =

9/4 −m2
σ/H

2 from Eq. (A13) and 〈ψxψ̄y〉 scales as r−3, we expect that diagrams that have fewer

fermion lines stretched between x and y decreases slower as r → ∞. Thus, we conclude diagram

(b) gives the dominant contribution to the two-point function.

For diagram (b), we expand it using commutators

Ib(x, y) = 〈(ψ̄ψ)x,r(ψ̄ψ)y,r〉c,diag(b) (62)

= 4(iλ)2

ˆ x

(dz)

ˆ y

(dw)〈ψ̄ψ[xψ̄ψz]〉〈ψ̄ψ[yψ̄ψw]〉〈σ{zσw}〉

+4(iλ)2

ˆ x

(dz)

ˆ y

(dw)〈ψ̄ψ{xψ̄ψz}〉〈ψ̄ψ[yψ̄ψw]〉〈σ[wσz]〉Θ(w0 − z0)

+4(iλ)2

ˆ x

(dz)

ˆ y

(dw)〈ψ̄ψ[xψ̄ψz]〉〈ψ̄ψ{yψ̄ψw}〉〈σ[zσw]〉Θ(z0 − w0) (63)

≈ (iλ)2

ˆ x

(dz)

ˆ y

(dw)〈[ψ̄ψx, ψ̄ψz]〉〈[ψ̄ψy, ψ̄ψw]〉〈σ{zσw}〉 (64)

where (dz) =
√
−det (gµν)d4z, [· · · ] means anti-symmetrization and {· · · } means symmetrization,

and we have implicitly assumed the PV regulator. From the scalar and fermion mode functions

in de Sitter spacetime, we know 〈[σx1 , σx2 ]〉 is suppressed by a−2ν relative to 〈{σx1 , σx2}〉, whereas

〈[ψ̄ψx1 , ψ̄ψx2 ]〉 is suppressed by a−1 relative to 〈{ψ̄ψx1 , ψ̄ψx2}〉. The last line is obtained by keeping

only the dominant contribution.

Since the fermion particle production ends at t∗ and the previously produced particles have been

diluted away, we expect the z and w integrals to peak around the time t∗. For late time and large

spatial separations, the scalar correlator 〈σ{zσw}〉 is slowly varying with respect to changes in z and
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w. Thus we may approximately take 〈σ{zσw}〉 = 〈σ{z0σw0}〉, where z0 = (t∗, ~x) and w0 = (t∗, ~y),

and factor it outside of the z, w integral:

Ib(x, y) ≈ (iλ)2〈σ{z0σw0}〉[
ˆ x

(dz)〈[ψ̄ψx, ψ̄ψz]〉][
ˆ y

(dw)〈[ψ̄ψy, ψ̄ψw]〉] (65)

The remaining fermion integral
´ x

(dz)〈[ψ̄ψx, ψ̄ψz]〉 is quadratically divergent. The counter-

terms δZ4σ + δZ8Rσ in (ψ̄ψ)r is in place to cancel such divergences. Furthermore, our choice of

the renormalization conditions given in Section 3.1 ensures that a constant shift in σ is equivalent

to a shift of the fermion mass (see Eq. (38)). An explicit computation of the fermion loop integral

using the adiabatic subtraction is given in Appendix D. Thus we have

〈(δS)r,x(δS)r,y〉NLO ≈ ω2
ψλ

2[∂m lnnψ|x][∂m lnnψ|y]〈σ{(~x,t∗)σ(~y,t∗)}〉 (66)

where t∗ is the time when fermion production ends (i.e. mψ ∼ H(t∗)) and ∂m denotes the derivative

with respect to mψ. Note that 〈(δS)r,x(δS)r,y〉NLO freezes for t > t∗ since ∂mnψ and nψ behaves

as a−3 after the fermion production ends. We will discuss the numerical implications of this result

below.

To summarize, we computed the isocurvature correlation function to the next leading order, as

in Eq. (66). Intuitively, the light scalar’s quantum fluctuation modulate the fermion’s mass, which

affect the fermion relic abundance. In the same line of thought, we may extrapolate this result to

estimate higher order corrections

〈(δS)r,x(δS)r,y〉full ≈ ω2
ψ

〈nψ (mψ + λσ(~x, t∗))nψ (mψ + λσ(~y, t∗))〉σ
n2
ψ

(67)

where we have treated nψ to be a function of its mass and the expectation value is taken with

respect of the σ field.

5.3. Isocurvature Power Spectrum

In the long wavelength limit, which corresponds to the low multipoles in the angular CMB

anisotropy, the temperature fluctuations dominantly come from the Sach-Wolfe term [18], which is

expressed as

∆T

T
= −1

5
ζ − 2

5
δS . (68)
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Then the power spectrum of the temperature fluctuations

∆2
∆T
T

(k) ≡ k3

2π2

ˆ
d3x

〈
∆T

T
(t, ~x)

∆T

T
(t,~0)

〉
e−i

~k·~x =
1

25
∆2
ζ(k) +

4

25
∆2
δS

(k), (69)

∆2
ζ(k) ≡ k3

2π2

ˆ
d3x

〈
ζ(t, ~x)ζ(t,~0)

〉
e−i

~k·~x, (70)

∆2
δS

(k) ≡ k3

2π2

ˆ
d3x

〈
δS(t, ~x)δS(t,~0)

〉
e−i

~k·~x, (71)

where the cross-correlation contribution 〈ζδS〉 has been neglected because of the reason explained

in Section 7. When the leading term approximation (66) is valid, Eq. (66) yields the isocurvature

power spectrum

∆2
δS

(t, k) = ω2
ψ(t)λ2

(
∂mnψ(mψ)

nψ

)2

∆2
σ(t∗, k) +O(λ4), (72)

which includes the extra factor ω2
ψ due to the thermal relics. Furthermore, when the mass of scalar

field σ is sufficiently light such that σ does not start its coherent oscillation until the fermion particle

production ends, i.e., mσ < H(t∗) < Hinf , the power spectrum for σ is

∆2
σ(t∗, k) ≈ H2(tk)

4π2
(73)

where tk is the time when the scale k exits horizon. Note that we have already shown that the

correction of mσ due to the fermion loop is negligible in Section 4. Therefore, the isocurvature

power spectrum becomes

∆2
δS

(k) ≈ ω2
ψλ

2

(
∂mnψ(mψ)

nψ

)2 H2(tk)

4π2
. (74)

The currently known parametric bounds for this isocurvature power spectrum is presented in Section

6.1.

6. RESULT AND DISCUSSION

6.1. Parameter bounds

In this subsection, we present the allowed parameter region in the fermion isocurvature model

from the observational constraints using the dark matter relic abundance and the CDM isocurvature

power-spectrum. In this scenario, there are 5 independent parameters: mψ, Hinf , λ, TRH and mσ,

where Hinf is the Hubble scale during inflation and TRH is the reheating temperature. We assume

Hinf and TRH are free parameters governed entirely by the inflaton and the reheating sector. As
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discussed in Section 2, as long as mσ � mψ, the exact value of the scalar mass mσ is numerically

unimportant in this model. Therefore, we are basically left with two parameter, namely λ and

mψ.16

For the light fermion, mψ < Hinf , the fermion particle number freezes when H(t∗) ∼ mψ as

reviewed in Appendix B. In particular, the Yukawa coupling works effectively as a mass shift in

our scenario meff = |mψ + λσ(t∗)|. The fermion relic abundance (B3) becomes

Ωψh
2 ∼ 3r

( meff

1011GeV

)2
(

TRH
109GeV

)
, (75)

where the extra factor r comes from the difference in the effective masses at t∗ and later time, at

which the energy density of ψ is not negligible, such as the MD era. For example, if σ is treated

as a Gaussian random variable with
√
〈σ2〉 ∼ Hinf/2π, we can approximate r ≈ mψ/ 〈meff 〉 and

write

Ωψh
2 ∼


(

mψ

1011GeV

)2 (
TRH

109GeV

)
if mψ > λHinf/2π

2πmψ
λHinf

(
λHinf

1011GeV

)2 (
TRH

109GeV

)
if mψ < λHinf/2π

, (76)

where O(1) factors are neglected.

Furthermore, from the result (74) in Sec. 5.3, the fractional isocurvature amplitude [88] becomes

αS ≡
∆2
δS

∆2
ζ + ∆2

δS

∼ λ2

2

( mψ

104GeV

)2
(

H

1013GeV

)2( TRH
109GeV

)2

, (77)

where we have used

∂mnψ
nψ

∼


m−1
ψ for mψ > λHinf/2π

2πλ−1H−1
inf for mψ < λHinf/2π

, (78)

because the number density nψ at the time t∗ is determined by only one dimensionful scale meff ∼

H(t∗). The current observational bound [1, 89, 90] of the isocurvature for the uncorrelated case,

i.e. 〈ζδS〉 = 0, is αS < 0.016 (95% CL) from the Planck+WP9 combined data, which yields the

constraints on the parameters λ andmψ. Combining the above consideration, we have the parameter

plot shown in Fig. 3. We emphasize that the parameter region beyond the (left diagonal) bound

from the σ annihilation, Eq. 50, is not necessarily excluded. Due to the uncertainty of the σ

annihilation effect, we provide it as a conservative bound of this model.

16 Note that we implicitly assume that if mψ and TRH are such that the dark matter relic abundance is not saturated
by the ψ energy density, the other CDM sector in Eq. (6) is adjusted to provide the rest of the dark matter. Note
that when the ψ dark matter abundance is small, no large tuning is needed to make this occur since the well known
WIMP miracle can saturate the dark matter abundance.
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Figure 3: Bounds on the fermion mass and Yukawa coupling for various inflationary Hubble scales. The

vertical bound corresponds to the total dark matter relic density constraint, and the right diagonal one cor-

responds to the constraints from the CDM isocurvature, respectively. The left diagonal one is a conservative

bound from the σ annihilation of this model, Eq. (50), which may be relaxed. The splitting dashed lines in

each region separates the small mass and large mass correction regime. In this plot, we set TRH = 109GeV.

The case that mψ < λHinf/(2π) (which we will refer to as large mass correction regime) is

potentially the most interesting case because the fermion number density nψ depends on |mψ+λσ|,

not mψ + λσ as the sign of the fermion mass is irrelevant for particle production17. This may lead

to interesting features such as large non-Gaussianities when the effective mass varies from negative

to positive depending on the local Hubble patches at t∗. However, this parametric region has couple

of problems: 1) the perturbative calculation of nψ may be unsuitable since we are not resuming

the large mass corrections; 2) Eq. (46) may not be satisfied. Hence, for the rest of this section,

we primarily focus on the case that mψ > λHinf/(2π), which we will refer to as the small mass

correction regime.

17 The sign of the fermion mass changes under a chiral transformation.
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Figure 4: The leading order diagrams to 3-point function 〈δSδSδS〉 is shown. The cross-dot vertices corre-

sponds to ψ̄ψ/nψ insertions.

6.2. Non-Gaussianities

In this subsection, we compute the bi-spectrum BS(~p1, ~p2, ~p3) defined by

(2π)3 δ(3)(
∑
i

~pi)BS(~p1, ~p2, ~p3) =

ˆ
d3x1d

3x2d
3x3e

−i
∑
i ~pi·~xi 〈δS(~x1)δS(~x2)δS(~x3)〉 . (79)

The fermion density fluctuation is intrinsically non-Gaussian since nψ is the non-linear function of

σ, which is treated as a Gaussian random variable. When the effective mass fluctuation due to λσ

is small, we can Taylor-expand the number density with respect to λσ,

nψ (mψ + λσ) = nψ (mψ) + λ
(
∂mψnψ(mψ)

)
σ +

1

2
λ2
(
∂2
mψ
nψ(mψ)

)
σ2 +O(λ3). (80)

Then the bispectrum is written as

BS(~p1, ~p2, ~p3) = λ4ω3
ψ

(∂mnψ)2 (∂2
mnψ

)
n3
ψ

[
∆2
σ(p1)∆2

σ(p2) + 2 perms
]

+O(λ6), (81)

which is shown diagrammatically in Fig. 4. Now we compare this with the observational non-

Gaussianities using the conventional non-Gaussian parameter fNL defined by

Bζ(~p1, ~p2, ~p3) ≡ 6

5
fNL

[
∆2
ζ(p1)∆2

ζ(p2) + 2 perms
]
. (82)

Identifying Bζ as the bispectrum of the temperature fluctuation using Eq.(68) and comparing

it with BS , we find in the squeezed triangle limit

fSNL =
8BS

Bζ |fNL=1
= 8

5

6
λ4ω3

ψ

(∂mnψ)2 (∂2
mnψ

)
n3
ψ

∆2
σ(p1)∆2

σ(p2) + 2 perms.
∆2
ζ(p1)∆2

ζ(p2) + 2 perms.
. (83)

The factor 8 arises because the radiation transfer function for isocurvature is twice larger than that

for adiabatic perturbation for the low multipoles of the CMB anisotropy as shown in Eq. (68).

Although the isocurvature non-Gaussianities parameter fSNL should not be compared directly with

fNL defined by the curvature perturbation [91], this can be done with the extra O(1) correction
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factor [31, 34, 74, 92–94]. The reason why ∂2
mnψ appears instead of a first derivative is because of

the squeezed triangle limit allows the short distance propagator to become important. Furthermore,

subhorizon physics via the Yukawa interaction, in principle, gives rise to the non-Gaussianities of

other types, e.g., the equilateral type. We postpone this study for future work.

In order to obtain the functional structure of nψ(m,H; t), which relies on the background be-

havior, we specialize to the case of the inflaton coherent oscillation reheating scenarios, in which

the total fermion number freezes during the reheating. During the early stage of the reheating

when the inflaton field oscillates coherently, the equation of state of the inflaton is zero and the

background behaves like the matter dominated (MD) era. After approximating the early stage of

the reheating to the MD-like era (i.e. inflaton coherent oscillations period), we get (see Eq. (B2))

nψ(t) ∼
m3
ψ

3π2

(
a(tm)

at

)3

∼ mψH
2
e

(
ae
at

)3

(84)

However, this leading order result gives ∂2
mψ
nψ = 0 which renders fSNL = 0 via Eq.(83).

To find the non-zero result of fSNL, we need to study the mass dependence of nψ in more detail,

which in turn requires the knowledge of |βk(t;m)|2. To this point, we have approximated our

spectrum by |βk(t;m)|2 ∼ 1/2Θ(k∗ − k), where k∗ = a(t∗)m and t∗is the time when m = H.

However, in general the spectrum should contain more than one characteristic scale, such as ke =

a(te)He where te marks the end of inflation. Thus, in general, the number density should contain

a correction factor f( mHe ) i.e.

nψ ∼ mψH
2
e

(
ae
at

)3

f(
mψ

He
) (85)

and f(0) = 1. This higher order correction to nψ would render ∂2
mnψ 6= 0 for the MD-like reheating

scenario.

For simplicity, if we assume that f(x) = 1 +a1x
18, then in the limit where ∆2

σ, ∆2
ζ , and ∆2

δS
are

scale invariant, we find

fSNL ∼ a1

(
αS(λ,mψ, He, TRH)

0.02

)2(Ωψh
2(mψ, TRH)

10−7

)−1(
mψ/He

10−1

)
. (86)

Although we would naively guess a1 ∼ O(1), the justification of the Taylor expansion for f(x) and

the estimation of the coefficient a1 will be left for future work since the main thrust of this work is

the computation of isocurvature perturbations and not the non-Gaussianities. The maximum fNL

18 On very general grounds, nψ cuts off exponentially at very large masses, mψ & He, as shown in Appendix B and
Refs. [30, 31, 51, 52, 78]. From this, we qualitative estimate the correction factor f from this exponential cut-off,
which gives an O(1) value for a1.
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for the mψ & λHinf/(2π) case (consistent with small mass correction case) is achieved when this

inequality is saturated and αS is at its phenomenological maximum. We find this maximum to be

at

fSNL,max ∼ O(100)a1
mψ

Hinf/(2π)
. (87)

Recall that our scenario assumes that 2πmψ/Hinf < 1. Hence, although fSNL cannot be made

arbitrarily large, there may exist a parametric regime in which fSNL is observable depending on

a1. Note that this extremum value corresponds to making the inhomogeneities O(1) while staying

consistent with phenomenology through the ωψ dilution factor: i.e. at this parametric point, the

fermion abundance is Ωψh
2 ≈ 10−6 while most of the CDM is made up of assumed dark matter

different from ψ.

7. NATURAL SUPPRESSION OF GRAVITATIONAL COUPLING TO THE INFLATON

As briefly discussed in 2, the gravity induced coupling of the fermion to the inflaton give a

suppressed contribution to the isocurvature correlation function. We would like to consider this in

more detail in this section. In addition, the argument below also shows that 〈ψ̄ψζ〉 cross-correlation

is negligible, justifying the classification of this fermionic isocurvature perturbations as uncorrelated.

First, consider the ζψψ interaction given by Eq. (F17) following the argument given in Ref. [53].

In this case, the most important coupling term is a2ζδijT
ij
ψ ∈ Hint because the other interactions are

derivatively suppressed, and decays as O(1/a2) or faster. Since ζ also freezes outside the horizon,

using the similar argument given surrounding Eq. (65) we can factor the ζ correlation function out

of the dominantly contributing integral, which corresponds to the diagram (b). Then we have

Iζψψ(x, y) ≈ (i)2〈ζ{z0ζw0}〉[
ˆ t

tr

dtz

ˆ
d3z a3(tz)〈[ψ̄ψx, T i

ψ i(z)]〉]

×[

ˆ t

tr

dtw

ˆ
d3w a3(tw)〈[ψ̄ψy, T i

ψ i(w)]〉] +O

(
a2(tr)

a2(t)

)
(88)

where z0 = (t∗, ~x), w0 = (t∗, ~y), t = x0 = y0, and tr denotes the time that the comoving distance

r = |~x− ~y| crosses the horizon during inflation. In the integral, we have assumed the PV regulator.

Note that λ
´

(dz)T i
ψ i is a generator of the spatial dilatation, xi → (1 +λ)xi which is an element of

diffeomorphism. Thus, we haveˆ t

−∞
dtz

ˆ
d3z a3(tz)〈[ψ̄ψx, T i

ψ i(z)]〉 = 0 (89)

because ψ̄ψ is a diffeomorphism invariant scalar. Indeed, this is a Ward identity similar to that

of Ref. [53]. Although the integral in Eq. (88) does not completely vanish (because of the time
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integral limit being tr and not −∞), the mode function of ψ decays as 1/a3 (as shown Appendix

C) because of the classical conformal symmetry characterizing the massless fermionic sector19, we

have
ˆ t

tr

dtz

ˆ
d3z a3(tz)〈[ψ̄ψx, T i

ψ i(z)]〉 ∼ O
(
a3(tr)

a3(t)

)
. (90)

In a similar manner, we can have

〈
ζx
(
ψ̄ψ
)
y

〉
∼ O

(
a2(tr)

a2(t)

)
. (91)

Therefore, we can conclude that large scale density perturbations of ψ particles generated by ζ

interaction and the curvature and isocurvature cross-correlation via the ζψ̄ψ are negligible.

8. SUMMARY AND CONCLUSION

In this work, we have presented a fermionic isocurvature scenario which contains fermionic field

fluctuation information during inflation. To our knowledge, this is the first work that describes

isocurvature inhomogeneities of fermionic fields during inflation. Because massless free fermions

have a tree-level conformal symmetry, such isocurvature models must couple to a conformal sym-

metry breaking sector. Because the ζ sector coupling to fermion ψ is suppressed due to the dilatation

symmetry, an additional scalar sector σ is coupled to ψ (with mass mψ) through a Yukawa coupling

with strength λ. Composite operator renormalization in curved spacetime plays an important role

in determining the isocurvature perturbations. We have computed the fermion isocurvature two

point correlation function which has its dominant contribution in the long wavelength limit coming

at one loop 1PI level. We have also estimated the local non-Gaussianity and found a value that is

promising for observability for a particular corner of the parameter space.

As far as the existence proof inspired “minimal” model of this paper is concerned, a large phe-

nomenologically viable parameter region spanned by {λ,mψ} exists for various inflationary models

controlled by {Hinf , TRH}. The large λ parameter region is bounded either by current CMB con-

straints on isocurvature perturbations or the constraint of σ not decaying to ψ. The large mψ

19 Thus, the result is different for a scalar case, which is minimally coupled to gravity. In particular, the cross-
correlation for the light scalar case is computed in Ref. [53] and is

〈
ζ (t, ~x)σ2 (t, ~y)

〉
∼ O

((
a(tr)

a(t)

)3−2ν

,

(
a(tr)

a(t)

)2
)
,

where ν ≡
√

9
4
− m2

σ
H2 .
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region is constrained by the relic abundance non-overclosure. The small mψ region is constrained

by requiring that σ not decay to ψ (for a fixed λ and Hinf ). The large non-Gaussianity para-

metric region is associated with largest λ consistent with isocurvature bounds and the simplifying

assumption mψ & λHinf/(2π). This intuitively corresponds to a large fermion inhomogeneity

(i.e. δρψ/ρ̄ψ ∼ O(1)) with a tiny ρ̄ψ/(ρ̄ψ + ρ̄m) where ρ̄m corresponds to an adiabatic cold dark

matter component that helps saturate the phenomenologically measured cold dark matter abun-

dance.

Our results regarding the gravitational fermion production give good dynamical intuition on

many models with dynamical fermions existing during inflation. One shortcoming of the explicit

model used in the current work is the tuning of the σ sector imposed to keep it light and to prevent

any σ decay into ψ. In addition to model building issues, it would be interesting to consider in the

future non-Gaussianities from such models more completely and carefully beyond the estimation

presented in this work. It may also be interesting to see what UV model fermionic sector built

independently of cosmological motivation can be constrained using the analysis presented in this

paper.
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Appendix A: Scalar and Spinor fields in Curved spacetime

First we list the relevant results about scalar field. Consider the following action

S =

ˆ
d4x
√
|g|
{
−1

2
gαβ∂αφ∂βφ−

1

2
m2φ2 − 1

2
ξRφ2

}
, (A1)

This gives rises to equation of motion

1√
|g|
∂µ(gµν

√
|g|∂νφ)− (m2 + ξR)φ = 0 (A2)

Scalar product between two solutions are defined as

(φ1, φ2) = −i
ˆ

Σ
[φ1∂µφ

∗
2 − φ2∂µφ

∗
1]
√
|gΣ|dΣµ (A3)

where Σ is a spacelike hypersurface.
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For FRW metric, we can use mode decomposition

φ(x) =

ˆ
d3k(c~ku~k(x) + c†~k

u∗~k(x)) (A4)

with the normalization condition

[c~k, c
†
~p] = δ3(~k − ~p) (A5)

(u~k, u~p) = δ3(~k − ~p) (A6)

The mode functions can be written explicitly as

u~k(x) =
ei
~k·~x

(2π)3/2a(η)
fk(η) (A7)

fk∂ηf
∗
k − f∗k∂ηfk = i (A8)

The time-part of the mode function obeys the differential equation

d2

dη2
fk,η + {k2 + a2

η[m
2 + (ξ − 1

6
R(η))]}fk,η = 0 (A9)

where R(η) = 6a−1∂2
ηa, and η is the conformal time. For de Sitter spacetime, the mode solution

for a minimally coupled scalar (ξ = 0) is

fk(η) =
1√
2k

√
π

2

(
k

aH

)
ei
π
2

(ν+ 1
2

)H(1)
ν (

k

aH
) (A10)

where ν2 = 9
4 −

m2

H2 .

The following relations of first kind of Hankel functions are useful

H(1)
ν (z) → −iΓ(ν)

π

(
2

z

)ν
(z → 0) (A11)

H(1)
ν (z) →

√
2

πz
e−i

π
2

(ν+ 1
2

)eiz (z →∞) (A12)

From the mode expansion, we may construct the equal-time correlator in dS spacetime. In

particular, we are interested in the large separation limit. For light scalar, when ν is real, we have

〈σxσy〉 ≈
H2

8π

Γ(3
2 − ν)

Γ(3
2)Γ(1− ν) sin(νπ)

(aHr)2ν−3 (A13)

For heavy scalar, when ν = iα and if α ∼ m
H � 1, then

〈σxσy〉 ≈
H3/2m1/2

π3/2
e−

m
H
π sin[2

m

H
ln(aHr)− 1

4
π](aHr)−3 (A14)

Next, we give the result for spinor field. Consider the free Dirac field ψ action

S =

ˆ
(dx)

(
iψ̄γµ∇µψ −mψ̄ψ

)
. (A15)
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where (dx) = d4x
√
|gx| and γµ ≡ γaeµa with vierbein eµa . The covariant derivatives for ψ is defined

by

∇µψ = ∂µψ +
1

2
ωabµ Σabψ (A16)

and the spin-connection is defined by

ωabµ = eaν∇µebν (A17)

and the Lorentz generator on the spinor field is given by

Σab = −1

4
[γa, γb], (A18)

where the γ matrices satisfy the {γa, γb} = −2ηab with η ≡ diag(−1, 1, 1, 1). Note that the sign

convention is chosen such that [Σ12,Σ23] = Σ13.

Extremizing the action with respect to δψ̄ and δψ yields the equations of motion:

(iγµ∇µ −m)ψ = 0, ∇µψ̄(−iγµ)− ψ̄m = 0. (A19)

The solution space can be endowed with a scalar product as

(ψ1, ψ2)Σ =

ˆ
dΣnµψ̄1γ

µψ2 (A20)

in which Σ is an arbitrary space-like hypersurface, dΣ is the volume 3-form on this hypersurface

computed with the induced metric, and nµ is the future-pointing time-like unit vector normal to

Σ. The current conservation condition

∇µ(ψ̄1γ
µψ2) = 0 (A21)

implies the integral in the scalar product is independent of the choice of Σ.

If we adopt the Dirac basis for the γ matrices, i.e.

γ0 =

 I 0

0 −I

 , γi =

 0 σi

−σi 0

 (A22)

the mode functions can be written as

U~k,r(x) =
1

a
3/2
x

ei
~k·~x

(2π)3/2

 uA,k,x0

r uB,k,x0

⊗ hk̂,r (A23)

V~k,r(x) = −iγ2U∗~k,r(x) =
1

a
3/2
x

e−i
~k·~x

(2π)3/2

 r u∗B,k,x0

−u∗A,k,x0

⊗ (−iσ2)h∗
k̂,r

(A24)
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where hk̂,r is eigenvector of k̂ · ~σ. The normalization conditions requires

h†
k̂,r
hk̂,s = δrs (A25)

|uA,k,η|2 + |uB,k,η|2 = 1. (A26)

The time dependent parts of the mode functions obey the following equation

i
d

dη

 uA

uB

 =

 am k

k −am

 uA

uB

 . (A27)

In the special case of the de Sitter background with Bunch-Davies boundary condition, we have uA

uB

in

k,η

=


√

π
4 ( k

aHe
)ei

π
2

(1−i m
He

))H
(1)
1
2
−i m

He

( k
aH )√

π
4 ( k

aHe
)ei

π
2

(1+im
H

))H
(1)
1
2

+i m
He

( k
aH )

 (A28)

if |kx0| � 1 −→

 1√
2π
e
π
2
m
H e−im(t−te)+imH ln(2k/aeH)Γ(1

2 − i
m
H )

1√
2π
e−

π
2
m
H e+im(t−te)−imH ln(2k/aeH)Γ(1

2 + imH )

 (A29)

Since the interaction picture operator ψ(x) obeys the same classical equations, Eq. (A19), we

can expand the operator using {Ui, Vi} as the basis:

ψ(x) =
∑
i

aiUi(x) + b†iVi(x) (A30)

and the normalization conditions on Ui, Vi gives the usual canonical anti-commutation relations of

the creation and annihilation operators.

The first order WKB approximation is defined as uA

uB

WKB

k,η

=

√ω+am
2ω√

ω−am
2ω

 e−i
´ η ωdη′ (A31)

In the following, when we talk about fermion particle, we are implicitly referring to the WKB-mode.

Thus one can introduce the time-dependent Bogoliubov coefficients {αk,η, βk,η} between the

in-modes and WKB-modes: uA

uB

in

k,η

= αk,η

 uA

uB

WKB

k,η

+ βk,η

 u∗B

−u∗A

WKB

. (A32)

Clearly, (α, β) → (1, 0) as η → −∞ . We may also note that the Bogoliubov coefficients obey

normalization condition as

|αk,η|2 + |βk,η|2 = 1. (A33)

in agreement with fermion statistics.

Using Eq. (A32), (A31) and (A27), we can derive the evolution equation for the Bogoliubov

coefficients, as shown in Eq. (B1).
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Appendix B: Review of fermion particle production

In this section, we give a brief review of the main result about fermion production during

inflation [51]. The fermion number density can be obtained by solving this equations of Bogoliubov

coefficients

∂η

 αk,η

βk,η

 =
a2mkH

2ω2

 0 e2i
´ η ωdη′

−e−i
´ η ωdη′ 0

 αk,η

βk,η

 (B1)

We define the non-adiabaticity for a mode k as εk,η =
mkpH
ω3
p

, where subscript p stand for “physical”,

ωp = ω/a etc. As the system evolves from an initial vacuum condition of

 αk,η

βk,η

 =

 1

0

, βk,η

will only increase significantly when εk,η ∼ O(1). This implies the following results,

1. In the heavy mass limit (mψ � Hinf ), εk,η is always suppressed by H
mψ

, we get |βk,η|2 ∼

exp[−C mψ
H(ηk) ]� 1, where C is some order one constant and H(ηk) is the Hubble rate at the

most non-adiabatic moment for mode k.

2. In the light mass limit (mψ � Hinf ), εk,η is largest when kp ∼ mψ, we call this time ηk. If

mψ < H(ηk), we have |βk|2 ∼ 1
2 , otherwise it is suppressed by exp[−C mψ

H(ηk) ] as well.

Since the heavy fermion production is always exponentially suppressed by mψ/H ratio, we focus

on the light fermion case. The energy density at time t is given by

ρ(t) ∼
m4
ψ

3π2

(
a(t∗)

a(t)

)3

, (B2)

where t∗ is the time when H(t) = mψ. If t∗ occurs during reheating, one get the relic abundance

today time as

Ωψh
2 ∼ 3

( mψ

1011GeV

)2
(

TRH
109GeV

)
. (B3)

Appendix C: Asymptotic behavior of 〈ψxψ̄y〉 at large r

In this section we derive the result about leading order contribution to 〈nψ,xnψ,y〉, i.e. Eq. (52).

By Wick contraction, this reduces to computing the field correlator 〈ψxψ̄y〉. The standard way to

compute the correlator is to plug in the mode decomposition Eq. (A30) and compute the mode

functions {Ui, Vi}. The difficulties lie in how to obtain the mode functions on a curved spacetime.

For inflationary background spacetime, one can use the de Sitter spacetime as an approximation
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and obtain exact analytic solutions. However, it is unclear how do these mode solutions evolve

after inflation ends. Such postinflationary solutions are relevant for our computation because the

particle production freezes out after the end of inflation. Here we give an approach that answers

this question.

First, we plug in the mode decomposition to the equal-time correlator:

〈ψxψ̄y〉

=

ˆ
d3k

1

a3
x

ei
~k·~r

(2π)3

 |uA,k,x0 |2 ⊗ I2 −uA,k,x0u∗B,k,x0 ⊗ (k̂ · ~σ)

uB,k,x0u∗A,k,x0 ⊗ (k̂ · ~σ) −|uB,k,x0 |2 ⊗ I2

 (C1)

where we have performed the spin-sum in the last step. Since

ˆ
d3k

ei
~k·~r

(2π)3
|uA,k,x0 |2 =

ˆ
d3k

ei
~k·~r

(2π)3
(1− |uB,k,x0 |2) (C2)

= δ3(~r)−
ˆ
d3k

ei
~k·~r

(2π)3
|uB,k,x0 |2 (C3)

and ~r 6= 0, we see the diagonal elements are the same. Then we perform the angular integral d2k̂.

Recall that
ˆ
d3k ei

~k·~rf(k) =

ˆ
4πk2dk

sin(kr)

kr
f(k) (C4)

ˆ
d3k ei

~k·~rk̂if(k) = (−ir̂i∂r)
ˆ

4πk2dk
sin(kr)

kr

f(k)

k
(C5)

After the angular integral, we have

〈ψxψ̄y〉 =

ˆ
4πk2dk

(2π)3

 A B

B∗ C

 (C6)

A = |uA,k,η|2 ·
sin(kr)

kr
(C7)

B = (ir̂ · ~σ)uA,k,ηu
∗
B,k,η · ∂r

sin(kr)

kr

1

k
(C8)

C = −|uB,k,η|2 ·
sin(kr)

kr
(C9)

It is sufficient to study these two integrals for the diagonal and off-diagonal elements.

I11 = I22 =

ˆ ∞
0

4πk2dk

(2π)3
|uA,k,η|2 ·

sin(kr)

kr
(C10)

I12 = I∗21 = ∂r

ˆ ∞
0

4πk2dk

(2π)3
uA,k,ηu

∗
B,k,η

sin(kr)

kr

1

k
(C11)

Now, we only need to find the mode function uA, uB, and perform the mode sum.
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Let’s consider the mode functions first. Since we are interested in evaluating the fermion field

correlator at a time when the fermion production has ended, i.e. when m� H(x0) and in the limit

r → ∞, we can make the following approximations about the mode functions {uA,k,x0 , uB,k,x0}.

First, since the particle production has stopped, the non-adiabatic parameter is suppressed by H(t)
m ,

thus we can approximately replace the Bogoliubov coefficients by their late time asymptotic values,

i.e.

αk,x0 ≈ αk, βk,x0 ≈ βk. (C12)

Second, since we want to capture the particle production effect on the correlator and the produced

particles are non-relativistic at the time of production, by the time x0 which is sufficiently long

after the production has ended, we may approximate the produced modes all have k � a(x0)m.

Thus, the WKB modes can be approximated by uA

uB

WKB

k,η,IR

=

√ω+am
2ω√

ω−am
2ω

 e−i
´ η ωdη′ →

 1√
2

0

 e−i
´ η ωdη′ . (C13)

Combining these two approximations, we have

 uA

uB

in

k,η,IR

≈

 αk
1√
2
e−i

´ η ωdη′

−βk 1√
2
ei
´ η ωdη′

 (C14)

Thus we can easily evaluate I11, I12:

2π2I11,IR =
1

r
Im
ˆ ∞

0
kdk

1

2
[1− n(k)] · eikr (C15)

We note that for the contribution from 1 vanishes

1

r
Im
ˆ ∞

0
kdk [1] · eikr =

1

r
Im
ˆ ∞

0
(is)ids [1] · e−sr = 0 (C16)

For the contribution from n(k) , we may assume it to be a real analytic function on R+and can be

analytically continuated to upper-right quadrant of the complex k plane. The location of singularity

of n(k) determines contour of k. For example, we may consider the n(k) for heavy fermion case

(m > Hinf ):

n(k)heavy = exp

[
−4(k/anad)

2

mH
− 4m

H

]
(C17)
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where anad is at the non-adiabatic time point. In this case, the non-adiabatic time is the transition

from de Sitter era to the reheating era, i.e. anad = ae. One can apply steepest descent to find that

2π2I11,heavy,IR

≈ −1

r
exp[−4m

H
− 1

16
mHr2](a2

emH)Im[−i1
4

√
mHaer

1

2

√
π] (C18)

=
1

8

√
πa3

e(mH)
3
2 exp[−4m

H
− 1

16
a2
emHr

2] (C19)

For light fermion, we may approximate the number density spectrum as

n(k)light =
1

1 + exp( k2

(anadm)2 )
(C20)

where the non-adiabatic point occurs when H drops below m, i.e. anad = a(η∗) = a∗. This ansatz

is only used to mimic the cut-off of the spectrum at k ∼ anadm. The singularity lies at

k2

a2
∗m

2
= (2n+ 1)πi, n = 0, 1, 2 · · · (C21)

or k∗,n = a∗m
√

(2n+ 1)πe
π
4
i. Again, one can perform the steepest descent around the n = 0

singularity k∗ = a∗m
√
πe

π
4
i. Let δ = (k − k∗)/a∗m, we have

2π2I11,light,IR = πa3
∗
m2

a∗r
exp[−

√
π

2
a∗mr] cos(

√
π

2
a∗mr) (C22)

For both the heavy and light fermion case, I11 ∝ exp(−a∗Mr), where a∗M is the scale that n(k)

cuts off. We should also remind ourself that the UV vacuum contributions also exist, which scales

as

I11,UV ∝ exp[−aηmr] (C23)

due to the singularity at k = aηm in the mode functions uWKB
A , uWKB

B . Thus we have shown that

the diagonal element of Eq. (C6) is always exponentially suppressed.

Next, we turn to look at the off diagonal element I12. Unlike the I11 case, whose integrand |uA|2

has constant asymptotic value in the IR region, the I12’s IR contribution

uA,k,ηu
∗
B,k,η = αkβ

∗
ke
−2i
´ η ωdη′ (C24)

contains e−2imt time dependence. Physically, if we decompose the in-state into WKB vacuum and

excitation state

|in,vac〉 =∼ |WKB,vac〉+ ∼ |WKB,2-particles〉+ ∼ |WKB,4-particles〉 (C25)



36

then this term comes from the interference term

〈WKB, vac|ψxψ̄y|WKB, 2-particles〉 ∈ 〈in, vac|ψxψ̄y|in, vac〉. (C26)

If we care about r large enough, for example corresponding to the CMB observation scale at

recombination, we may assume the relevant k scale exit horizon and become non-relativistic during

inflation. Thus we may safely use the dS mode function to evaluate I12,IR,CMB.

Recall that during dS era, we have Eq. (A28), where we choose the end of inflation time te as

the reference point. Thus

uA,k,ηu
∗
B,k,η =

1

2π
e−2im(t−te)+2im

H
ln(2k/aeH)Γ2(

1

2
− im

H
) (C27)

Performing the integral using steepest descent, we find the leading contribution comes from k ∼ 0

singularity in uA,k,ηu
∗
B,k,η. We note that the k dependent phase factor e2im

H
ln(2k/H) cannot be

absorbed by a redefinition of the mode functions uA,k,η, uB,k,η, since this phase factor depends on

the relative phase of uA,k,η, uB,k,η which is fixed by the Bunch-Davies initial condition.

Plugging in the Eq. (C11), we have

2π2I12,IR

= −e−2im(t−t(r))+iφ(m
H

)r−3

√
2πmH

sinh(2πmH )

(
1 +

(m
H

)2
)

(C28)

where φ(mH ) = Arg(Γ(2 + ix)Γ(1
2 − ix)) and t(r) is the time when a(tr)Hr = 4. We may consider

the light mass limit

2π2I12,IR,light ≈ −e−2im(t−t(r))r−3 (C29)

and the heavy mass limit

2π2I12,IR,heavy ≈ −(4π)
1
2

(m
H

) 3
2

exp(−πm
H

)e−2im(t−t(r))r−3 (C30)

We may also consider the effect of having an IR cut-off kIR, which is the scale that exit horizon

at the beginning of inflation. Such an IR cut-off will introduce a exp(−kIRr) type of exponen-

tial suppression factor. However, for observable universe with comoving radius Robs, as long as

kIRRobs � 1, we may ignore this suppression factor.

After evaluating the matrix element for the fermion correlators, we find that

1. For the light fermion case, i.e. m� Hinf , in the limit r →∞

〈ψxψ̄y〉 ≈
1

a3
x

1

2π2

 A B

B∗ A

 (C31)
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where

A =
1

2
πa3
∗
m2

a∗r
exp[−

√
π

2
a∗mr] cos(

√
π

2
a∗mr) (C32)

B = −ir̂ · ~σe−2im(t−tr)r−3 (C33)

where a∗ in evaluated at η∗.

2. For the heavy fermion case, i.e. m� Hinf , in the limit r →∞, we find in Eq. (C31)

A =
1

16

√
πa3

e(mHe)
3
2 exp[−4m

He
− 1

16
a2
emHer

2] (C34)

B = −ir̂ · ~σ(4π)
1
2

(
m

He

) 3
2

exp(−π m
He

)e−2im(t−t(r))r−3 (C35)

and ae is evaluated at the end of inflation.

Finally, we plug in the field correlator to 〈nψ,xnψ,y〉, and drop the term that are exponentially

suppressed when r →∞, to get Eq. (52).

Appendix D: Relative suppression of Commutators

In this subsection, we want compare the dependence on the scale factor a(t) between

〈in|[Ox, Oy]|in〉 and 〈in|{Ox, Oy}|in〉, where Ox is a bosonic hermitian operator and x, y are space-

time points located near the end of inflation. For simplicity, we take H as a constant. In particular,

we are interested in the cases where O = σ, ψ̄ψ, ζ. We want to show that the commutator of O

suffers from additional suppression factor compared to the anti-commutator.

In general, the diagonal matrix elements of products of hermitian operator obeys

(〈in|OxOy|in〉)∗ = 〈in|OyOx|in〉 (D1)

therefore

〈in|[Ox, Oy]|in〉 = 2iIm〈in|OxOy|in〉 (D2)

〈in|{Ox, Oy}|in〉 = 2Re〈in|OxOy|in〉 (D3)

We can just study 〈in|OxOy|in〉. We may use the mode expansion of the field operator to evaluate

such an expression, and focus on modes that are outside of horizon at both times ηx, ηy.

We shall first take O = σ, and we assume that the scalar is light, i.e. mσ <
3
2H, such that ν is

real:

〈in|σxσy|in〉 =

ˆ
4πk2dk

[
´
d2k̂ei

~k·(~x−~y)]

(2π)3a
3/2
x a

3/2
y

1

H

π

4
[JxJy + YxYy + i(YxJy − JxYy)] (D4)
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where Jx = Jν( k
axH

), Yx = Yν( k
axH

) are the first and second kinds of Bessel functions with real val-

ues. The d2k̂ is the angular integral with normalization
´
d2k̂ = 1, and

´
d2k̂ei

~k·(~x−~y) = sin(kr)/kr

is real. If we focus on the k modes that are outside of horizon, i.e. k/aH � 1, we may use the

small argument expansion of the Bessel function, i.e. when (0 < z <
√

1 + ν)

Jν(z) ≈ 1

Γ(α+ 1)

(z
2

)ν
(D5)

Yν(z) ≈ −Γ(α)

π

(
2

z

)ν
. (D6)

Then, under the common scaling of ax → λax, ay → λay, with λ increasing, we see the various term

in the correlator scales as

a−3/2
x a−3/2

y JxJy ∝ λ−2ν−3 (D7)

a−3/2
x a−3/2

y YxYy ∝ λ2ν−3 (D8)

a−3/2
x a−3/2

y (YxJy − JxYy) ∝ λ−3 (D9)

Thus, we see under this common scaling, the IR contribution to the two point functions are

〈in|{σx, σy}|in〉IR = 2

ˆ
IR

4πk2dk
[
´
d2k̂ei

~k·(~x−~y)]

(2π)3a
3/2
x a

3/2
y

1

H

π

4
(JxJy + YxYy) ∝ λ2ν−3 (D10)

〈in|[σx, σy]|in〉IR = 2i

ˆ
IR

4πk2dk
[
´
d2k̂ei

~k·(~x−~y)]

(2π)3a
3/2
x a

3/2
y

1

H

π

4
(YxJy − JxYy) ∝ λ−3 (D11)

Thus, we have shown under the scaling a→ λa, the commutator of σ is suppressed by λ−2ν factor

relative to its anti-commutator. For small mass scalar, λ−2ν ≈ λ−3+ 2m2

3H2 .

For the case of O = ζ, we have similar statements as the scalar case with ν = 3
2 , i.e. 〈[ζx, ζy]〉IR

is suppressed by λ−3 relative to 〈{ζx, ζy}〉IR under the scaling of a→ λa.

Next, we consider the case of O = ψ̄ψ. Using the mode decomposition Eq.(A30) and mode

functions Eq. (A23,A24), we have

〈ψ̄ψxψ̄ψy〉 =
∑
i,j

1

a3
xa

3
y

ei(
~ki+~kj)·(~x−~y)

(2π)6
[hTi (iσ2)hj ][h

†
j(−iσ2)h∗i ]Fij,xF

∗
ij,y (D12)

where

Fij,x = riuB,i,xuA,j,x + (i↔ j) (D13)

Fij,xF
∗
ij,y = 2[riuB,i,xuA,j,x + (i↔ j)](riu

∗
B,i,yu

∗
A,j,y) (D14)

= 2[uB,i,xuA,j,xu
∗
B,i,yu

∗
A,j,y + rirjuB,i,xuA,j,xu

∗
B,j,yu

∗
A,i,y]. (D15)
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We note that in Eq. (D12), the factor ei(~ki+~kj)·(~x−~y) after angular average is real, and the factor

[hTi (iσ2)hj ][h
†
j(−iσ2)h∗i ] = |[hTi (iσ2)hj ]|2 is also real, thus the imaginary and real part of Fij,xF ∗ij,y

correspond to the commutator and anti-commutator respectively.

Next, we consider the two terms in Eq. (D15) one by one, using explicit expression of Eq. (A29)

to get

uB,i,xuA,j,xu
∗
B,i,yu

∗
A,j,y =

√
π

4

ki
axH

√
π

4

kj
axH

√
π

4

ki
ayH

√
π

4

kj
ayH

(J+,i,x + iY+,i,x)(J−,j,x + iY−,j,x)(J−,i,y − iY−,i,y)(J+,j,y − iY+,j,y)(D16)

where

J±,i,x = J 1
2
±im

H
(
ki
axH

), Y±,i,x = Y 1
2
±im

H
(
ki
axH

). (D17)

Using the small z expansion of Bessel function again, where Re (ν) = 1
2 in all the cases, we can

extract its scaling behavior under a→ λa,

(J+,i,x + iY+,i,x)(J−,j,x + iY−,j,x)(J−,i,y − iY−,i,y)(J+,j,y − iY+,j,y)

= Y+,i,xY−,j,xY−,i,yY+,j,y · · · · · · ∝ λ2, real

−iJ+,i,xY−,j,xY−,i,yY+,j,y − iY+,i,xJ−,j,xY−,i,yY+,j,y · · · · · · ∝ λ1, imaginary

+iY+,i,xY−,j,xJ−,i,yY+,j,y + iY+,i,xY−,j,xY−,i,yJ+,j,y · · · · · · ∝ λ1, imaginary

+terms subdominant in λexpansion. (D18)

Thus the imaginary part is suppressed by λ−1 relative to the real part. We can do similar analysis

to the second part rirjuB,i,xuA,j,xu∗B,j,yu
∗
A,i,y in Eq. (D15) and found the same behavior. Thus, for

ψ̄ψ operator, we have the following scaling law

〈{ψ̄ψx, ψ̄ψy}〉IR ∝ λ−6 (D19)

〈[ψ̄ψx, ψ̄ψy]〉IR ∝ λ−7. (D20)

Thus, we see the commutator for ψ̄ψ gives additional suppression of a−1 factor compared with

the anti-commutator, whereas the commutator for σ and ζ gives additional suppression of a−3

factor.
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Appendix E: Explicit check of the mass insertion formula

In this section, we show that the particle production part of the following equation holds using

the adiabatic subtraction.

−i
ˆ y

(dw)〈[ψ̄ψx, ψ̄ψz]〉 = ∂m〈ψ̄ψx〉 = ∂mnΨ(x) (E1)

Expressing both side of Eq.(E1) using the mode sum, we see the left hand side is

−i
ˆ y

(dw)〈[ψ̄ψx, ψ̄ψw]〉 =
16

a3
x

ˆ y0

dw0 aw

ˆ
d3k

(2π)3
Im[(uA,kuB,k)x(uA,kuB,k)

∗
w] (E2)

and the right hand side is

∂m〈ψ̄ψx〉 =
2

a3
x

ˆ
d3k

(2π)3
∂m(|uB|2 − |uA|2) (E3)

Thus, we only need to check for each given k, the following equation is right

∂m(|uB|2 − |uA|2) = 8

ˆ y0

dw0 awIm[(uA,kuB,k)x(uA,kuB,k)
∗
w] (E4)

From the left hand side, we have

∂m(|uB|2 − |uA|2) = −2Re

( u∗A u∗B

)
σ3

∂

∂m

 uA

uB


k,x

 (E5)

and upon expressing mode function at time x0 in term of evolution operator acting on the initial

value, we have

∂

∂m

 uA

uB


k,x

= −i
ˆ x0

ηi

dz0 U(x0 ← z0)
∂

∂m

 am k

k −am

 U(z0 ← ηi)

 uA

uB


k,i

(E6)

Combining these two expression, we can obtain the desired result after some algebra.

However, the remaining d3k integrals in Eq. (E2) and Eq. (E3) are UV divergent. To make

them finite, we express both side in terms of Bogoliubov coefficients and dropped the pure vacuum

contribution to get

−i
ˆ x0

(dw)〈[ψ̄ψx, ψ̄ψw]〉 ≈ 16

ˆ
d3k

(2πax)3
(
am

ωk
)x

ˆ x

dηw aw(
am

ω
)wIm[(αβ)x(αβ)∗w] (E7)

∂m〈ψ̄ψx〉 ≈
2

a3
x

ˆ
d3k

(2π)3
∂m[2|βk,x|2

axm

ωk,x
] ≈ 4

a3
x

ˆ
d3k

(2π)3
(
axm

ωk,x
)∂m|βk,x|2 (E8)

Now, we only need to check

∂m|βk,x|2 = 4

ˆ x

dηw aw(
am

ω
)wIm[(αβ)x(αβ)∗w] (E9)
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Suppose, x0 is late enough such that βk,x is constant and equals to its value at asymptotic future

βk, then we get

∂m|βk|2 = 4

ˆ x0

ηi

dz0az
am

ω
Im(αkβk)x(αβ)∗z (E10)

Thus, Eq. (E1) is compatible with the Bogoliubov projection.

Appendix F: Gravitational Interaction

Here we derive the gravitational interaction. Consider the action

S = SEH + Sφ + Sσ + Sψ (F1)

=

ˆ
(dx)

{
1

2
M2
pR+ [−1

2
gµν∂µφ∂νφ− V (φ)] + [−1

2
gµν∂µσ∂νσ −

1

2
m2
σσ

2]

+ψ̄(iγµ∇µ −mψ)ψ − λσψ̄ψ
}
, (F2)

where M2
p = 1

8πG = 1. The metric is given in ADM formalism20 [95] by

gµν =

 −N2 + hijN
iN j hijN

j

hijN
j hij

 , gµν =

 −N−2 N iN−2

N iN−2 hij −N iN jN−2

 , (F3)

where hij is the metric tensor on the constant time hypersurface, and hij is the inverse metric.

We use Latin indices i, j · · · for objects on the 3-dimensional constant time hypersurface, and we

use hij and hij to raise and lower the indices. Then we use the Hamiltonian and the momentum

constraints to determine the lapse function N and the shift vector N i:

0 =
1

N
[R(3) − 1

N2
(EijE

ij − E2)]− 2NT 00 (F4)

0 =
2

N
∇(3)
i [

1

N
(Eij − Ehij)] + 2N jT 00 + 2T 0j , (F5)

where Tµν is the total matter stress tensor, R(3) is the Ricci scalar calculated with the three-metric

hij , and

Eij =
1

2
(ḣij −∇(3)

i Nj −∇(3)
j Ni). (F6)

E = Eijh
ij . (F7)

In order to consider the perturbation around the background configuration

φ(0) = φ̄(t), σ(0) = 0, g(0)
µν =

 −1 0

0 a2(t)δij

 (F8)

20 We use (−+ ++) sign convention for the metric, and physical time t .
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where the background fields satisfy the background equations of motion

3H2 =
1

2
˙̄φ2 + V (φ̄) (F9)

Ḣ = −1

2
˙̄φ2 (F10)

¨̄φ+ 3H ˙̄φ+ V ′(φ̄) = 0, (F11)

we choose the comoving gauge, defined by 21

δφ = 0, γii = 0, ∂iγij = 0 (F12)

where

hij = a2(t)[eΓ]ij , Γij = 2ζδij + γij . (F13)

Then we solve the constraint equations (F4) and (F5) perturbatively using ζ and γ, and putting

their solutions for N and N i back into the action, we can get the perturbed action:

S(C) = S
(C)
ζζ + S(C)

σσ + S
(C)
ψψ + S(C)

γγ + S
(C)
ζζζ + S

(C)
ζσσ + S

(C)
ζψψ + S

(C)
ζσσ · · · . (F14)

For the interaction terms S(C)
ζσσ and S(C)

ζψψ, we need the solutions of N and N i up to linear order in ζ

N (1,C) = 1 +
ζ̇

H
, N

(1,C)
i = ∂i[−

ζ

H
+ ε

a2

∇2
ζ̇], (F15)

where ε ≡ Ḣ/H2. Hence, the metric perturbations becomes

δg(C)
µν =

 −2 ζ̇
H (− ζ

H + ε a
2

∇2 ζ̇),i

(− ζ
H + ε a

2

∇2 ζ̇),i a
2 (δij2ζ + γij)

 , (F16)

and we have the ζ-matter cubic interaction action

S
(C)
ζσσ + S

(C)
ζψψ =

1

2

ˆ
d4x
√
−g
(
Tµνσ + Tµνψ

)
δg(C)
µν , (F17)

where Tµνσ and Tµνψ is the stress energy tensors for σ and ψ, respectively, which are written as

Tµνσ = gµαgνβ∂ασ∂βσ + gµνLσ, (F18)

Tµνψ = − i
2

[ψ̄γ(µ∇ν)ψ −∇(µ(ψ̄)γν)ψ] + gµνRe (Lψ) . (F19)

Particularly, up to the cubic interaction, Lint = −Hint. Thus S(C)
ζσσ + S

(C)
ζψψ = −

´
dtHζσσ(t) +

Hζψψ(t).
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