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We compare two holographic arguments that impose especially strong bounds on the amount of
inflation. One comes from the de Sitter Equilibrium cosmology and the other from the work of
Banks and Fischler. We find that simple versions of these two approaches yield the same bound
on the number of e-foldings. A careful examination reveals that while these pictures are similar
in spirit, they are not necessarily identical prescriptions. We apply the two pictures to specific
cosmologies which expose potentially important differences and which also demonstrate ways these
seemingly simple proposals can be tricky to implement in practice.

I. INTRODUCTION

There have been a number of attempts to apply
notions of holography towards constraints on infla-
tion. [1–3]. The motivation is simple: holography
implies an encoding of bulk information in correla-
tions on a boundary, while inflation promotes quan-
tum fluctuations to all scales and (while it lasts)
seems to a provide a fertile source for new infor-
mation. Where these notions come in conflict we
can look to place limits on the amount of inflation
allowed; but the strength and form of the limits will
depend strongly on the particular holographic ap-
proach adopted.

Holographic limits on inflation are of particular
interest in the context of “eternal inflation” [4–
6], which uses simple extrapolations within effec-
tive field theory (EFT) to suggest that at some
high level inflation continues forever, giving birth
to unbounded numbers of “pocket universes”. Holo-
graphic limits may give hints about how a deeper
theory would lead to a breakdown of the EFT, and
perhaps dramatically alter the eternal inflation pic-
ture (and perhaps resolve the notorious measure
problems associated with eternal inflation)[7, 8].

One example of an inflation model limited by
holographic arguments is the de Sitter Equilibrium
(dSE) picture [1, 8, 9]. In that picture the universe is
fundamentally finite, with a maximum entropy asso-
ciated with the asymptotic de Sitter horizon at late
times. Because of the finite Hilbert space, the stan-
dard EFT description of inflation will fail if asked
to model a length of inflation producing enough vol-
ume to exceed the universe’s maximum information
content. In [1] this bound manifests as a sharp pre-
diction for spatial curvature of our universe, as a
function of initial bubble curvature. In this paper we
will show the bounds achieved in dSE are identical to
those found by Banks and Fischler (BF) [3] despite a
treatment that incorporates holography differently.

However, we show that specific assumptions cho-
sen by BF in addition to their maximum-entropy
method of deriving a bound on inflation are needed
together to enforce the same geometric principles
used in the dSE curvature prediction. As demon-
strated in [10], adjusting those assumptions to ones
more representative of our own universe can modify
the prediction for a maximum number of e-foldings
of inflation. Although not immediately apparent,
some of those modifications would result in different
physical pictures and indeed could produce different
bounds from the dSE case. Each picture has origi-
nally been presented in fairly simple terms, and our
work exposes ways the simple definitions appear to
be insufficient to allow for a full implementation in
all cases. This is how the additional assumptions
can become especially important. It appears that a
geometric interpretation of the holographic principle
along the lines of [1] is useful to clarify a number of
these issues.

Our paper is organized as follows. In Sec. II we
quickly present versions of each picture (BF1 and
dSE) with many simplifying cosmological assump-
tions and approximations. As we show, these ap-
proximations cause the two pictures to converge not
only on each other, but also on cosmologies with past
histories similar to ours (thus suggesting that these
ideas are quite relevant to our universe). In Secs. III
and IV we study this apparent correspondence. In

1 We will repeatedly refer to the result found in the first
half of the paper by Banks and Fischler [3] as the BF pic-
ture. The project of our paper is a comparison between the
holographic principle underlying this particular result and
the one within the dSE picture, and to that purpose we
will add specifications, and reflect upon assumptions and
motivations for the “BF picture”. These reflections and
modifications are entirely those of this paper’s authors and
we do not mean to attribute them to Banks and Fischler.



Sec. V we begin to tease apart the two pictures by
examining the assumptions required for each. In the
first step we simply ask what additional clarifica-
tions are needed in each picture for applications to
more realistic and specific cosmologies. It is gener-
ally possible to ensure that the BF and dSE pictures
return the same results, but the process of picking
the “correct” choice of assumptions to match the
two begins to look ad hoc. Finally we examine the
two principles with cosmologies that are paramet-
rically connected to ours but substantially altered.
In this manner we can better expose conceptual dif-
ferences between the two approaches when pushed
away from their convergence near our own relatively
simple cosmological history.

II. HOLOGRAPHY IN DSE AND BF

A. General discussion

In both the dSE and BF pictures, the future of
our universe is asymptotically de Sitter, with a fun-
damental cosmological constant Λ. In both of these
pictures the entropy 3π/Λ associated with the de Sit-
ter horizon represents the finite amount of informa-
tion associated with the entire universe. In such a
picture it is expected that physics can describe semi-
classical spacetimes with a maximum of one hori-
zon volume (although different observers can observe
different realizations of such a volume by swapping
out information encoded non-locally at the de Sitter
horizon with the interior).

Though the horizon entropy is important in the
setup of dSE cosmology, Banks and Fischler do not
use it in their calculation of the bound on the num-
ber of e-foldings. Instead, the universe is modeled as
a fluid-filled cavity the size of the apparent horizon,
and the entropy within that cavity is used to obtain
the bound.

It is important to distinguish between these holo-
graphic principles and other variants that physi-
cally differ and result in different (or no) bounds
on the amount of inflation. For example, the covari-
ant Bousso entropy bound [11] is formulated on the
past light cone of an observer. Placing such bounds
on the past light cone does not restrict the number
of e-foldings of inflation [12]. In a similar manner
Kaloper et al. [13] interpret the BF bound as only
placing limitations on the number of e-foldings of
inflation that will ever be observable. In contrast,
in the dSE picture the entire universe is eventually
observable so there is no distinction to be made be-

tween observable and total e-foldings.

Numerous authors have proposed bounds on infla-
tion under a variety of assumptions. For example,
Arkani-Hamed et al. found a much less stringent
bound of Ntotal < S (where S is the entropy of the
final asymptotic de Sitter space) by demanding non-
eternal inflation [2] . Albrecht et al. also put for-
ward another holographic inflation bound by using
the slowly changing apparent horizon to estimate the
entropy of metric fluctuations expelled during the
slow roll period of inflation [14]. Bousso’s D-bound
originates from the requirement that entropy not de-
crease during the transition to empty de Sitter space
and works by positing that the entropy gained from
the increased horizon area must exceed that of the
matter entropy that was lost [15]. Another approach
to quantum gravity is known as dS/CFT [16, 17],
and is a proposed analog of the AdS/CFT corre-
spondence relating a de Sitter space in n dimensions
to a conformal field theory in n−1 dimensions. The
possible relationship of this approach with its infinite
dimensional Hilbert space to the BF picture with its
finite dimensional Hilbert space is explored in [18].
That relationship, should it exist at all, is certainly
not a trivial one. Other tools such as the Hartle-
Hawking wave function [19] and dS/dS [20] also
seem not so closely related to the two pictures we
consider systematically here, which makes the same
sorts of comparisons difficult. An nice overview of
all these approaches to de Sitter space can be found
in [21].

These bounds each emerge from fundamentally
different holographic principles and we feel each is
interesting in its own right. Here we restrict our at-
tention only to the bounds from the dSE and BF
pictures because they seem to admit direct compar-
ison.

Finally, for a given holographic principle it is im-
portant to distinguish between an absolute bound
on the length of inflation for any universe (e.g. al-
lowing for the most extreme variations in reheating,
matter fraction, etc. consistent with some set of cos-
mological assumptions), and a bound on inflation for
a universe consistent with the one we observe. The
first bound is of more interest for exploring a multi-
verse of cosmologies, either to understand the allow-
able regions within a theory or for making predic-
tions within a multiverse. Constructing the second
type of bound is more relevant for direct connections
to observations. For now we will restrict ourselves
to simplifying assumptions relevant for our universe,
but later (in Sec. V) we will expand our focus to a
broader range of cosmologies.
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B. dSE bound basics

In de Sitter Equilibrium, the universe originates
as a fluctuation from an equilibrium de Sitter state.
This avoids the problem of initial conditions since
the universe would have been always fluctuating
about a de Sitter equilibrium, with the big bang
cosmology as a fluctuation that is just now returning
to equilibrium during cosmological constant domina-
tion. In dSE, the universe has a finite entropy and
a finite Hilbert space, and ergodicity is assumed, so
that every microstate will be eventually realized in
some fluctuation over an extremely long recurrence
time.2 Under the de Sitter Equilibrium picture’s as-
sumption of a finite universe whose size is set by a
fundamental cosmological constant [8], an observer
near the universe’s final approach towards de Sit-
ter space should be able to see essentially all that
there is in the universe. Requiring the past hori-
zon3 of such a “maximal observer” to contain all
scales produced by inflation puts a bound on the
maximal length of inflation, which could otherwise
generate structure that grew to physical scales arbi-
trarily larger than the universe’s size by the time of
the maximal observer.

C. Banks Fischler bound basics

Banks and Fischler [3] follow the entropy to ex-
amine how an ultimate size limit for the universe re-
stricts the length of inflation. They note a number
of results restricting the maximum entropy within a
sphere for a non-collapsing fluid with a given equa-
tion of state, and then demand that the ultimate
entropy of the universe be no larger than that limit
calculated for a sphere of the universe’s ultimate size,
for the appropriate fluid. As an initial patch inflates
its volume increases, so the limit on the length of
inflation arises by requiring that upon reheating the
total entropy of the entire inflated region does not

2 In everyday equilibrium systems it would seem that fixing
the temperature (or total energy) of a system plays a role
similar to initial conditions, in that it selects one state from
many possible ones. In the dSE picture the temperature
is set by the value of Λ, which is assumed to be a more
fundamental feature. In any case the assumed ergodicity is
among states consistent with the specific value of Λ.

3 The past horizon hP is the maximal distance from which
information can reach an observer at a given time, defined
in Eqn. (16).

exceed this calculated fundamental limit.4

D. The connection between the two pictures

The BF and dSE pictures use holography-inspired
principles that are very similar and amount to re-
stricting the ultimate radius of the universe to ap-
proximately the de Sitter radius. In both pictures,
by the onset of de Sitter domination we expect an
observer to be able in principle to observe every-
thing produced during inflation, rather than allow-
ing some matter to remain forever out of reach.
From these two facts it appears as though the two
approaches are guaranteed to deliver essentially the
same bounds on inflation, and to a certain degree
this is true. However, as we will see in Sec. V, the
pictures are not necessarily physically identical, and
can only be made so with the buttressing of enough
simplifying assumptions to force the two pictures to
describe identical scenarios. The logical differences
between the two remain of interest and investigat-
ing what is required to bring the two into alignment
helps to clarify both pictures.

E. Counting e-foldings in dSE: A geometrical
picture

Figure 1 shows the evolution of the Hubble radius
RH ≡ cH−1. Also shown is hP , the past horizon of
an event late in the cosmological constant dominated
regime. Specifically, if the event is the observation
of a photon which travels freely before the observa-
tion, hP is the distance between the photon and the
observer prior to observation. Owing to the forma-
tion of an event horizon as we approach a de Sitter
background, the past horizons of events at any time
in the de Sitter regime are much the same. Any of
these observers can see essentially as much volume as
any observer ever will. Even today (a = a0) we are
not too far off from being such “maximal observers”,
since Λ is already quite dominant. The cosmological
parameters for the curves shown match our universe
with reasonably fast reheating assumed.

The formulation of dSE cosmology [1] requires the
entire universe to be contained within the past hori-

4 Though both dSE and BF may seem somewhat acausal,
they are not. In both cases, the number of e-foldings is
restricted by the dimensionality of the Hilbert space, which
is a fundamental parameter of the theory.
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FIG. 1: The evolution of various length scales with scale
factor a plotted during inflation and the subsequent stan-
dard big bang expansion (SBB) up to the dS scale for
a simple model of our universe. Plotted are the Hubble
length (dot-dashed) and the past horizon hP of an event
late in the de Sitter era (solid). The radiation-matter
transition occurs at ln(a/a0) = −8.1 and shows up as a
very slight kink in the dot-dashed curve. Markers J ,K,L
and M aid the discussion in the text.

zon of such a maximal observer. If our classical de-
scription of inflation begins earlier than shown in
Fig. 1, there would be scales which never re-entered
the horizon of this maximal observer, and which
would represent physical scales larger than the fi-
nite size (∼ Λ−1/2) assumed for the universe. This
requirement places a limit on the amount of inflation
allowed in dSE.

The form of the dSE constraint leads to a par-
ticularly simple connection with the cosmic curva-
ture. Through most of the universe’s history, the
past horizon scale evolves ∼ a. Because the spatial
curvature radius also evolves ∼ a, one can make a
sharp prediction for today’s measured spatial cur-
vature density Ωk in terms of the spatial curvature
of the bubble that began inflation [1]. Due to the
geometric nature of this picture the details of re-
heating and the subsequent evolution of the universe
can modify the length of inflation, but they do not
change the prediction for the curvature. Thus cur-
vature is a more robust reflection of the dSE bound
than number of e-foldings. Nonetheless, one can ap-
ply this geometric framework to derive bounds on
the length of inflation as well.5

5 Here we apply the ideas from [3] to FRW cosmologies with
nonzero curvature. While this is consistent with [3] (where
curvature is not mentioned explicitly), we note that those

The geometric notions in dSE allow us to calcu-
late calculate the bound on the length of inflation
in the dSE picture because the curvature prediction
amounts to considering the geometry of a plot such
as Fig. 1. For simplicity we’ll approximate the evolu-
tion of the physical photon distance by two line seg-
ments (replacing the smooth transition region near
a = a0 with a sharp corner). For the segment rep-
resenting past evolution, the distance evolution is
proportional to a, so its slope is unity in Fig. 1. We
will also assume that during inflation the Hubble pa-
rameter HI is approximately constant and the sub-
sequent reheating is rapid. After reheating we treat
the universe as a perfect fluid with a single equation
of state p = wρ right up to the beginning of the dS
stage (which sets in with H = HΛ at scale factor
aΛ). Thus we are also representing the RH curve in
Fig. 1 with straight line segments meeting at sharp
corners. Since most of the logarithmic range of a is
in the radiation era (vs matter era), and the slope
of the RH curve during the matter era is not that
different from the radiation case, one can achieve a
good approximation to Fig. 1 by taking w = 1/3 in
our linear approximation.

With these simplifications and the dSE assump-
tion fixing the beginning of inflation on the past hori-
zon line, the increase in the Hubble radius H−1 from
inflation to dS must equal the increase in the scale

factor over the same time: ln
H−1

Λ

H−1
I

= ln aΛ

aI
. On Fig. 1

this corresponds to setting the lengths JM = LM .
To find the number of e-foldings for inflation (JK ),

we simply start with the e-fold increase in the Hub-
ble length (JM ) and subtract off the e-folds of a
“eaten up” during the standard big bang expansion
(SBB) of the fluid to the dS scale (KM ). Since
H−1 ∼ ρ−1/2 and ρ ∼ a−3(1+w), H−1 ∼ a3(1+w)/2,
which gives us the slope during SBB. Thus the in-
crease of a during SBB is given by 2

3(1+w) ln HI

HΛ
, and

the number of e-foldings Ne of inflation is

Ne = JM −KM (1)

Ne = ln
HI

HΛ
(1− 2

3(1 + w)
) (2)

= f ln
HI

HΛ
, f ≡ 1

3
(3− 2

(1 + w)
) (3)

In the case of radiation (w = 1/3), f = 1/2 and
the universe’s history is evenly split: the magnitude

authors have elsewhere explored a related direction in which
the curvature is required to be zero as a consequence of their
fundamental starting point [22–25].
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of the universe’s expansion during inflation equals
that from reheating through the start of Λ domina-
tion. For GUT-scaleHI ≈ 1040 s−1 and the observed
HΛ ≈ 10−18 s−1, that gives Ne = 1

2 ln HI

HΛ
≈ 67 e-

foldings. Decreasing HI will increase RH during in-
flation, raising the horizontal line segment in Fig. 1,
and thus decreasing the bound on Ne, assuming the
other elements of the calculation are held fixed.

III. ENTROPY BOUNDS FOR FLUIDS
SYSTEMS

A. Overview

Banks and Fischler’s holographic approach in-
volves counting the entropy in a cavity the size of
the apparent horizon. With this method of en-
tropy counting, putting a bound on inflation involves
putting a bound on the entropy within this cavity.
Thus we will find it useful to discuss bounds on the
amount of entropy that can be contained within a
cavity of size R without it collapsing due to gravity.
Banks and Fischler examine a number of approaches
to bound the entropy of a fluid system. In each case
the scaling obtained for fluids with equation of state
p = wρ is of the form

S ≤ β
(
R

lp

)3− 2
1+w

, (4)

where lp is the Planck length and β is a constant
determined by the thermodynamic relation for the
entropy density of the fluid, discussed in more detail
in Sec. V C. For radiation, β = O(1) in these units
one Planck volume should contain at most roughly
one unit of entropy. The common form (Eqn. 4) for
these results formed the basis of the derivation for
the BF inflation bound. Banks and Fischler derived
their bound in a simple cosmology and we next re-
produce their argument in the remainder of this sec-
tion.

B. Critical (flat) FRW universes without dark
energy

We write the Friedmann equation as

H2 =
8πG

3
ρtot −

k

a2
. (5)

Using the thermodynamic relation for the entropy
density

σ = βρ
1

1+w (6)

of a fluid with equation of state p = wρ, we can cal-
culate the total entropy contained within a Hubble
volume H−3 for a flat (k = 0) universe:

S = H−3σ = βH−3ρ
1

1+w = βH−3+ 2
1+w (7)

The factor β is at most O(1) for a single species
(for σ and ρ expressed in Planck units) but can be
significantly smaller, as discussed in Sec. V C.

C. Universes with Λ > 0

Similar results exist for certain cases in universes
with a cosmological constant [3]. Fischler et al. [26]
consider how much entropy can be stuffed into a
region without it collapsing by relating the energy
density to the entropy density using the thermody-
namic relation (6), and then solving the Friedmann
equations. They point out that for static solutions in
matter-dominated (w = 0) universes, there is a met-
ric sign change at precisely the same entropy bound
given by Eqn. (4). Fischler et al. show that violat-
ing this bound in the collapsing phase of a universe
with positive Λ causes a big crunch [26].

In both dSE and the BF approach the finite size
of the universe places an upper limit on the radius
of a fluid-filled sphere. This maximum radius would
then imply a maximum theoretical entropy for such
a fluid-filled universe. The repeated appearance of
the relation (4) encouraged BF [3] to ask what lim-
itations on inflation could result if one demands the
global entropy produced during inflation to remain
less than this entropy bound evaluated at the max-
imal radius

√
3/Λ. Our paper seeks to compare

the resulting bound on inflation with related results
within dSE.

D. BF e-fold counting

Banks and Fischler [3] arrived at a formula for e-
foldings identical to Eqn. 1 in the first half of their
paper.6 BF adopt a holographically inspired view
that functionally bounds space within a cavity of ra-
dius Λ−

1
2 . As discussed in Sec. III B, filling a cavity

of this size with a fluid of equation of state p = ρw

6 With the addition of a “holographic gauge” condition, they
later produce a different estimate. As dSE cosmology does
not incorporate an analogous condition, we will restrict our
comparison to the first estimate.
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results in a maximum entropy S <∼ R3− 2
1+w . Their

approach is to assume that the inflaton reheats into
a fluid with state parameter w at a density ρi ∼ H2

I ,

with an entropy density σi = βρ
1

1+w

i . At the reheat-
ing time there are e3Ne Hubble patches. The goal
is to ensure that if we sum all the entropy in these
patches, we do not exceed the limit

Smax ∼ H
−(3− 2

1+w )

Λ (8)

for the asymptotic apparent horizon ∼ H−1
Λ .

The entropy Si in a single Hubble volume after
reheating is

Si = H−3
I σi (9)

= H−3
I βρ

1
1+w

i (10)

∼ H−(3− 2
1+w )

I (11)

where HI is the value of the Hubble constant at the
end of inflation and (as in [3]) we have suppressed
pre-factors such as β. Thus the entire volume of e3Ne

Hubble patches must obey

e3NeSi ≤ Smax (12)

e3NeH
−(3− 2

1+w )

I ≤ H−(3− 2
1+w )

Λ (13)

(14)

giving

Ne ≤
1

3
(3− 2

1 + w
) ln

HI

HΛ
(15)

which is identical to the dSE case (Eqn. 1).

IV. HOW THE BF AND DSE BOUNDS
WIND UP THE SAME

We would like to relate the BF result as closely
as possible to the dSE result. We can phrase the
dSE bound most simply as the requirement that the
increase in physical volume a3 from the beginning of
inflation to the beginning of the dS era equals the
increase in Hubble volume over the same period. At
first glance the BF bound does not depend on such
geometric notions; it merely demands the global en-
tropy produced at reheating be no more than the
maximum allowed for a fluid that can fill a cavity
the size of the de Sitter horizon without collapse.

In order to connect the BF picture and the ge-
ometric ideas from dSE one can follow a comoving
region of space through the evolution of the universe.

We focus on the region C bounded by the apparent
horizon when inflation starts. (The dashed line in
Fig. 2 shows the size of region C.) During inflation,
C expands exponentially, but the size of the appar-
ent horizon A stays the same. After reheating the
resulting radiation dominated universe C expands
too, but the region that is contained within the ap-
parent horizon A expands faster. This is also the
case during matter domination. When we reach cos-
mological constant domination, both A and C have
become very large and we put a bound on inflation
by requiring A to be contained within C at all times.7

Since C describes a comoving region the entropy in
this region is conserved assuming adiabatic evolu-
tion.

Because the underlying restriction on the size of
the universe is the same in both approaches, it may
seem that the bounds on inflation are destined to
be identical. But while this restriction is explicit in
the derivation for the dSE case, it does not appear
directly in the BF derivation. The assumed adia-
batic expansion of the universe is naturally tracked
by comoving volumes of constant entropy, and it is
this translation to the language of comoving volumes
that allows contact with the geometric dSE picture.
As we will discuss in Sec. V, adiabaticity is only one
of several assumptions required for the simplest ver-
sion of BF to agree with dSE.

We will show that relaxing the simplifying as-
sumptions behind the BF bound can lead to a phys-
ically different scenario with different limits on the
length of inflation or predictions for curvature. Only
by explicitly requiring a geometric statement of the
holographic principle as part of the BF analysis do
we ensure that it is actually imposing the same con-
straint as in the dSE analysis.

In the next section, we will expand the investiga-
tion into the assumptions required in order to match
the BF and dSE pictures. We will look at more com-
plicated examples consistent with our universe and
also more general cases. Considering these cases will
reveal some issues that arise when pursuing a rigor-
ous holographic bound valid for all cosmologies.

7 Imposing this requirement at all times is implicit in the BF
analysis for simple cosmologies but in general represents an
additional assumption.

6



V. RE-EXAMINING ASSUMPTIONS FOR
THE BF AND DSE BOUNDS

A. Overview

Here we give a more detailed account of key as-
sumptions and simplifications that go into the BF
and dSE bounds. This will help us examine how
these assumptions relate to the equivalence (or not)
of the BF and dSE bounds. First we give a descrip-
tive list of these assumptions and then elaborate on
each one in separate subsections.

Horizons: Both BF and dSE involve identifying
horizons, but there are subtleties in using these hori-
zons that need to be understood in order to make a
sharp comparison.

Prefactor: The simple thermodynamic entropy
scaling relation of Eqn. (6) has a pre-factor that re-
quires scrutiny.

Net equation of state: The BF picture relies
on a fluid with a single equation of state through-
out the cosmic evolution. There are choices involved
in defining a single effective equation of state for a
realistic universe composed of multiple fluids with
different equations of state.

Adiabaticity of the fluid: We also need to ac-
count for possibly substantial ordinary entropy pro-
duction that does not necessarily change the cosmo-
logical equation of state, such as particle decays or
stellar processes.

Black holes: Universes do form black holes, and
we need to examine the BF approach of excluding
black hole entropy.

TOV equation: We will examine solutions
of maximum entropy permissible within a non-
collapsing universe with cosmological constant, rep-
resented by the Tolman-Oppenheimer-Volkoff equa-
tion. This will allow us to generalize beyond the
homogeneous.

Alternate cosmologies: We will explore how
well the two pictures can describe non-collapsing cos-
mologies that exhibit a loitering period of slow ex-
pansion, allowing observation of an arbitrarily large
volume of the universe.

A careful look at each of these issues will help us
get a better understanding of the challenges involved
in formulating such types of holographic bounds,
both for our universe, and in general.

B. Choice of horizons

Banks and Fischler count the entropy at the exit
of inflation by modeling the universe as a fluid-filled
sphere with a size equivalent to the apparent hori-
zon [3]. In dSE, the past horizon is used, specifically

hP (a1) ≡ a1

∫ aΛ

a1

da

a2H
. (16)

Figure 2 shows the evolution of both these horizons
in a way which allows us to visually express the
bounds on the number of e-foldings of inflation in
both the dSE and BF pictures.

We evaluate the BF bound by requiring that the
entropy always be less than the maximal entropy
contained within the fluid-filled cavity the size of
the apparent horizon. Assuming adiabaticity co-
moving regions contain constant entropy and can be
represented by R ∝ a lines in Fig. 5. The heavy
dashed line in Fig. 5 (also shown as a dashed line
in Fig. 2) indicates the largest comoving region ever
contained within the apparent horizon (solid curve),
and is thus the natural focus of the BF analysis. To
calculate the BF bound on the number of e-foldings
geometrically we follow the dashed line in Fig. 2 back
to where it intersects the apparent horizon in the in-
flationary epoch, which marks the earliest allowed
start to inflation in the BF picture. We read off the
bound on the number of e-foldings as the horizon-
tal distance between this intersection and the end of
inflation.

In the dSE picture the universe is bounded by
the past horizon which can be well approximated by
hP ∝ a (the dotted line in Fig. 4) for most of the evo-
lution of the universe. We can see how this approx-
imation can be used to picture the dSE bound in a
similar way to how we just described the BF bound:
The earliest allowed start to inflation in the dSE
picture is given by where the dotted line in Fig. 4
intersects the apparent horizon in the inflationary
epoch.

The hP ∝ a approximation breaks down at both
early and late times. In the late time era of cos-
mological constant domination (shown in detail in
Fig. 3), looking back from a later time does not no-
ticeably change the past horizon. This is a nice fea-
ture since it means that it does not matter when we
choose to observe as long as it is during cosmologi-
cal constant domination. However the breakdown of
the approximation at early times (detailed in Fig. 4)
presents some problems for constructing an accurate
prescription for a bound on inflation. The past hori-
zon approaches the apparent horizon at early times

7
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FIG. 2: Evolution of length scales R with scale factor
a. Plotted are the size of the apparent horizon A (dot-
dashed) and the past horizon hP of an event late in the
de Sitter era (solid). The dashed line C tracks the co-
moving volume of space with the maximal entropy that
can be contained in the fluid cavity of BF assuming adia-
baticity. Zoomed versions of the boxed regions are shown
in Figs. 3 and 4. (In these zoomed figures the differences
between C and hp appear clearly).

but never crosses it, seemingly implying that there
is no bound. However, in the dSE picture we are
inclined to say that the deviation from the approx-
imation at early times occurs at a time where we
expect new physics and the breakdown of the ef-
fective field theory (EFT). Without a clear picture
of what lies beyond the EFT we simply use the in-
tersection of dotted line (the R ∝ a extrapolation
of the past horizon) with the dot-dashed curve (the
apparent horizon) to indicate the effective start to
inflation.

The distinction between the two horizons seems
like a small technical difference, but as we will see
in Sec. V H, the distinction can become problematic
for universes with large curvature or periods of slow
expansion.

C. Thermodynamic relation for entropy
density

The expression for the entropy density of an adi-

abatically expanding fluid, σ = βρ
1

1+w , comes from
statistical mechanics. We would like to evaluate the
proportionality factor to make this relation more
precise. For a particle species in thermodynamic
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FIG. 3: Close-up of Fig. 2 near the era of cosmological
constant domination. The dot-dashed curve is the ap-
parent horizon and the solid curves show past horizons
for events at a few different times in the de Sitter era.
The feature that these past horizons all approach each
other at early times is due their being defined relative
to events in the de Sitter era. The dashed line tracks
the comoving volume of space with the maximal entropy
that can be contained in the fluid cavity of BF assuming
adiabaticity.

equilibrium,

ρ =
g

(2π)3

∫
E

d3p

e(E−µ)/T ± 1
(17)

P =
g

(2π)3

∫
p2

3E

d3p

e(E−µ)/T ± 1
(18)

σ =
ρ+ P

T
, (19)

where ρ is the energy density, P is the pressure, σ
is the entropy density, and g is the total number of
internal degrees of freedom. For example, in the case
of relativistic particles,

ρ = g
π2

30

(kT )4

(h̄c)3
(20)

σ = gk
2π2

45

(
kT

h̄c

)3

(21)

σ ≈ 1.0098g
1
4 k(h̄c)−

3
4 ρ

3
4 , (22)

where g = gB + 7
8gF is the total effective number of

internal degrees of freedom, and gB and gF are the
number of spin states for bosons and fermions re-
spectively. We find that the pre-factor in this case is
indeed of order one (as long as the number of internal
degrees of freedom is not extraordinarily large). If
we have a fluid of relativistic particles at the Planck
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FIG. 4: Close-up of Fig. 2 plotted near the beginning of
inflation. Plotted are the size of the apparent horizon
(dot-dashed) and the same hP curves shown in Figs. 2
and 3 (solid). The dashed line tracks the comoving vol-
ume of space with the maximal entropy that can be con-
tained in the fluid cavity of BF assuming adiabaticity.
The dotted line shows the approximation hP ∝ a. The
difference between the dotted and dashed lines corre-
sponds to an extra 1.3 e-foldings of inflation more in the
dSE picture than in the BF picture.
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increasing entropy
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FIG. 5: Evolution of various length scales vs. scale factor
a. Plotted are the size of the apparent horizon (solid) and
a few lines of constant entropy (dashed). The comoving
volume of space with the maximal entropy that can be
contained in the fluid cavity of BF assuming adiabaticity
is the thick central dashed line tangent to the solid curve.

density in thermal equilibrium, it will be at roughly
Planck temperature and if it is contained in a Planck
volume, we see from the expression above that it will
have of order one unit of entropy as expected.

We will also look at what happens during the early
universe in a typical model where a thermal relic
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FIG. 6: The generic behavior of entropy density as a
function of time during freeze-out. As the universe cools,
the number of particles drops until the particles cannot
find each other to annihilate and freeze out. The solid
line indicates the equilibrium abundance, while the dot-
ted line is the actual particle abundance.

decouples non-relativistically. A typical scenario is
that the inflaton reheats into relativistic particles,
some of which are massive and will eventually cool
and become non-relativistic. The non-relativistic
matter will then typically freeze out and as it does
so, asymptote to a constant comoving number den-
sity.

In general, non-relativistic matter will possess less
entropy than radiation. If we trace the matter’s his-
tory back to a time when its temperature was higher
than its mass, it had the same entropy per degree
of freedom as the relativistic case. However during
its transition to a non-relativistic fluid the matter’s
comoving number density (and entropy density) ex-
hibits a characteristic drop as it cools before asymp-
toting to a constant value again during freeze-out
(Fig. 6). The entropy from the annihilation of parti-
cles is deposited in the radiation. The resulting pre-
factor β can be many orders of magnitude smaller
than for relativistic matter.

The concept of thermal wavelength is a good way
to see the proportionality factors. A fluid in a box
the size of the thermal wavelength (not a box of
Planck volume) should have entropy of order one.
For the same energy density, matter will always have
a larger thermal wavelength than radiation.
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D. Equation of state

A cosmology like our own universe is not domi-
nated by a single fluid equation of state from reheat-
ing until cosmological constant domination. Even in
the simplest one-component case, the transition to
an asymptotic de Sitter state modifies the effective
equation of state, rounding off the sharp corners in
pictures like Fig. 1 and adjusting the crudest esti-
mates for inflation bounds. For example, the simple
entropy scaling of Eqn. (6) will begin to fail around
the time the dominant fluid energy density drops
to near ρΛ (see Fig. 3). In addition, the important
transition from radiation to matter domination in
our universe’s history sits somewhat uncomfortably
with the one fluid model of BF.

Perhaps the simplest resolution is to define an ef-
fective equation of state for the entire universe’s his-
tory (in effect drawing the straight line JL on Fig. 1)
and then proceed with the BF formulation. But
there is something contrived about this approach.
It requires supplying the entire subsequent evolution
of the universe as an input to a calculation formally
made at the end of reheating. In fact the motivation
for this choice is an attempt to keep the BF picture
in compliance with a more geometric approach to the
holographic principle, along the lines of the dSE pic-
ture. If we insisted on calculating the BF bound in
our universe using the radiation fluid that dominated
after reheating and through most of the expansion
history of the universe, we would calculate a larger
maximum number of e-foldings of inflation than if we
input the actual effective ‘mixed’ equation of state.8

In Sec. V E we will see other problematic examples
involving changing fluid constituents. It should be
pointed out that there is not an immediate “cor-
rect” choice for equation of state; no matter how we
choose we are forced to decide which clarifications
of BF seem most reasonable (or least unappealing).
This is a pattern we will see again.

8 Following [26, 27] we note that the change from radiation
to matter domination is the reason the CMB entropy is less
than the maximal BF bound for radiation. We can estimate
the entropy density of the CMB radiation by using the value
of ρr in Eqn. (22). Since ρ ∝ H2

Λ = H2
0ΩΛ in the BF bound

while ρr ∝ H2
0Ωr, the actual CMB has less entropy than

the BF bound by a factor of
(

ΩΛ
Ωr

)3/4
.

E. Adiabaticity assumptions

Our own universe’s early evolution was well ap-
proximated as adiabatic, but even with the exclu-
sion of purely gravitational entropy its subsequent
history included substantial non-adiabaticity. And
there is no requirement that similar cosmologies be
even as approximately entropy-conserving as ours,
as it is no great theoretical challenge to come up with
mechanisms to increase entropy. Moreover, the BF
bound was derived under the principle of maximiz-
ing entropy that could be packed into a sphere with-
out collapsing. One might even wonder whether the
maximal entropy non-collapsing solutions indeed are
the uniform density solutions assumed so far. (We
will further discuss this in Sec. V G and conclude
that the homogeneity assumption is OK.) If the uni-
verse reheats into a state which does not have maxi-
mal entropy (a realistic case), we are forced to decide
among multiple interpretations of the BF bound. A
treatment of increasing entropy in the Banks and
Fischler picture could alter the inflation bound in
either direction, depending on how one modifies the
BF procedure.

One way to characterize adiabaticity (or its lack)
during a cosmology dominated by a single fluid is
simply by using the pre-factor β in the expression

σ = βρ
1

1+w . In the BF picture for a universe with a
fixed effective equation of state but substantial non-
adiabaticity, deciding how to handle this pre-factor
β is non-trivial.

A simple example of entropy production that is
difficult to handle in the BF picture is the produc-
tion of light from stars, and the subsequent thermal-
ization of that light by dust. This process converts
high energy photons into many lower energy ones.
The energy density is conserved, yet the tempera-
ture decreases. Using σ = ρ+P

T , we can see that
here the entropy will be greatly increased, yet the
equation of state remains the same.

For an extreme example of non-adiabaticity, a
long period of reheating can have an effective equa-
tion of state equivalent to non-relativistic matter,
and subsequently upon final exit of reheating gains
the stiffer equation of state for radiation. At con-

stant energy densities, σ = βρ
1

1+w increases enor-
mously. A hypothetical universe dominated by mat-
ter with a decay time shorter than tΛ would be an-
other such scenario. It is not so obvious in either
example exactly when one should calculate the post-
inflation entropy that is to be compared to the en-
tropy bound for the final state of matter. Whichever
choice one makes, any of the non-adiabatic scenar-
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ios will have a lowered initial entropy compared to
an analogous adiabatic cosmology with similar final
matter configuration.

For an illustration of how these choices reflect
truly different versions of the BF holographic pic-
ture, consider the above example of a universe dom-
inated by unstable matter followed by a decay back
to radiation. Inflation would end with

S ∼ e3NeH−3
I H

2
1+w

I = e3NeH−1
I , (23)

whereas the bound would be9

S < H
−3+ 2

1+w

Λ = H
−3/2
Λ . (24)

This allows

3Ne + (− lnHI) < (−3/2) lnHΛ (25)

Ne < (3/2) ln(
HΛ

HI
)−1 + (1/6) lnH−1

I ,

(26)

a much larger bound than the one finds in the purely
radiation-dominated universe:

Ne < (3/2) ln(
HΛ

HI
)−1. (27)

The result of the extra inflation in this calculation is
that some radiation produced after reheating never
reenters the apparent horizon by the time of Lambda
domination, since the subsequent evolution under
matter domination does not increase H−1 quickly
enough to “catch” the biggest scales produced at
the start of inflation.

A universe with matter that never reenters the
maximal observer’s horizon is one that is physically
different from the one described by dSE. One could
of course resolve the difference by carefully formu-
lating the BF bound so as to anticipate the exact
degree of non-adiabaticity within the cosmological
solution chosen. Or one could interpret the larger
bound on e-foldings in the BF picture as simply
a high estimate, less stringent than could be ob-
tained with more careful analysis. It is worth noting
that as formulated the dSE bound is not sensitive
to these particular concerns over entropy produc-
tion. For this reason any attempt to match the BF

9 There is entropy production in the decay of the matter,
but it is not clear whether it would be enough to saturate
the bound for a new equation of state. In particular, this
relation assumes that all the matter decayed to radiation,
which is then in thermal equilibrium.

and dSE bounds more exactly in realistic cosmolo-
gies will generally require clarifications or modifi-
cations to the setup of BF. There is no guarantee
that such modifications will be defensible without
the guidance of some organizing principle. We find
the geometric ideas within dSE offer a useful ap-
proach.

There is a further problem with accommodating
entropy production within the BF framework. We
obtain the bound on the e-foldings of inflation using
only the entropy at reheating. If we are to accept
that entropy only present at a later time can influ-
ence the evolution of the universe during inflation,
then we see no reason that all sources of future en-
tropy should not similarly affect inflation. These
considerations make the BF bound seem rather ad
hoc. A geometric picture such as dSE does not suffer
from this problem (neither does BF with the require-
ment of adiabaticity).

F. Black hole formation

In our universe, the dominant contribution to the
entropy is the de Sitter horizon, and after that, black
holes [28]. If included in the BF calculation, the en-
tropy of black hole formation would completely in-
validate the adiabatic approximation, requiring ei-
ther a very different approach or resulting in a sub-
stantially weaker bound on the total number of e-
foldings. However, Banks and Fischler explicitly ex-
clude black hole entropy, and the universe is treated
as if it were uniform density (effectively replacing the
mass in black holes with a contribution to the uni-
form cosmological energy and entropy density). But
if we are to truly ignore black hole entropy as being
hidden behind the horizon, then they would instead
contribute no entropy at all. Carefully implement-
ing the BF prescription by properly accounting for
the hidden black hole matter will therefore reduce
the counted entropy of our universe with every black
hole formed. In any case, in our universe the mass
fraction of black holes is small, so this approximation
makes no practical difference in the comparison to
the dSE case.10 But the formal exclusion is a real ef-
fect on the entropy counting and thus the calculation
of entropy bounds; in comparison, the large-scale ge-
ometric approach of the dSE picture is unaffected by
local replacement of matter with black holes.

10 We leave open the question of potentially substantial dif-
ferences in universes with a large black hole fraction.
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G. Tolman-Oppenheimer-Volkoff equation

We have discussed various methods for estimat-
ing the maximum entropy of a homogeneous region
with a particular fluid equation of state, but Banks
and Fischler ask what bounds arise for the most
general fluid configuration, and use the Tolman-
Oppenheimer-Volkoff (TOV) equation to go beyond
the homogeneous case. The TOV equation deter-
mines the equilibrium solution which optimizes the
amount of entropy which may be stuffed within a
volume without collapsing to a black hole.11 Here
we further extend Banks and Fischler’s TOV work
to the case of a universe with a cosmological con-
stant.

The TOV equation

dp

dr
= − (ρ+ p)(Gm(r) + 4πGr3p)

r(r − 2Gm(r))
(28)

has families of solutions with different central densi-
ties, one of which is the homogeneous solution [33].
Including the cosmological constant, the TOV equa-
tion becomes the TOV-Λ equation, where p = p+pΛ

and m(r) =
∫ r

0
4πr′

2
ρdr′ + 4π/3ρΛr

3.
Our universe is extremely homogeneous on the

largest scales, so any non-uniform TOV solution is a
poor fit to our universe. However, we would like to
know if the BF bound actually favors a different uni-
verse. Applying the dSE and BF pictures in these
universes may also better illuminate differences be-
tween the two approaches.

The solutions to the TOV-Λ equation resemble
an Einstein static universe. They are closed static
universes of finite size which extend out to the ap-
parent horizon and have the average energy density
in matter equal to roughly twice the energy density
of the cosmological constant. Figure 7 shows some
illustrative solutions.

We find that the inhomogeneity of the TOV so-
lutions does not significantly increase the entropy
over the Einstein static universe, so in the end there
is no point in considering the inhomogeneous case.
Furthermore, the Einstein static universe does not
have an asymptotic de Sitter future so we cannot
directly apply either the BF or dSE bounds. As we

11 Although the TOV equation assumes spherical symme-
try and hydrostatic equilibrium, a series of papers [29–32]
showed that the TOV solutions are also the maximal en-
tropy solutions for any configuration of a fluid, independent
of symmetry (in cases that do not collapse).
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FIG. 7: The variation of energy density as a function of
distance coordinate for several TOV-Λ universes. Note
how the energy density tends to oscillate around the fixed
value that would correspond to the Einstein Static uni-
verse. The behavior of these curves is governed by the
central density and the equation of state parameter w
of the fluid. Fluids with w → 0 oscillate more than
fluids with w → 1. Shown are curves for a fluid with
w = 0.3. The straight central line corresponds to the
Einstein static universe, which is a member of the fam-
ily of solutions. These plots are normalized by the energy
density of this Einstein static universe (ρES) and the ap-
parent horizon of the Einstein static universe (rES).

will discuss in the next section, we can however ex-
amine “loitering universes” with slightly less matter
content than the Einstein static universe.

H. Other cosmologies

In other cosmologies, the discrepancy between the
dSE and BF bounds can become more pronounced.
In the case of a loitering universe (Fig. 8) the Hub-
ble constant becomes very small for an extended pe-
riod of time before heading on to de Sitter expan-
sion. During the loitering phase of slow expansion,
these are approximately Einstein Static universes
and their large curvature causes the Hubble length
to deviate substantially from the apparent horizon.
The slow expansion causes the Hubble horizon and
consequently the past horizon to become very large,
as shown in Fig. 9; however, the apparent horizon is
largely unaffected as shown in Fig. 10.

If we fine tune the ratios of densities of fluid com-
ponents and the cosmological constant, an observer
can see an arbitrarily large volume of the universe
within her past horizon. This is troublesome for
holographic ideas in general, and especially we see
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FIG. 8: The evolution of the scale factor vs. time for
a loitering universe. Because the expansion slows down
during the loitering phase, the Hubble length becomes
very large. Here a0 is set arbitrarily at the inflection
point.

that the dSE picture would have an arbitrarily weak
limit on e-foldings in an arbitrarily fine-tuned loi-
tering cosmology. Furthermore, the picture of BF
would still have a strong bound on e-foldings, in spite
of being able to observe an arbitrarily large region
of space. This would indicate an arbitrarily large
observable entropy12, in spite of reaching an asymp-
totic de Sitter final state. In our view neither the BF
nor the dSE pictures as currently described in the lit-
erature can be applied without further elaboration
to the loitering cosmologies. These cosmologies,
while they do not describe our universe, are interest-
ing and useful as test cases because they allow much
more entropy to be observed while still possessing
the same final asymptotic de Sitter state. And it is
important to note that even a small-curvature uni-
verse of the correct sign has a little bit of this loi-
tering behavior and the more finely tuned solutions
are smoothly connected to ours in model parame-
ters. Thus, in a systematic application of these holo-
graphic principles to some ensemble of cosmologies
the dSE and possibly also BF approaches could favor
the loitering direction.

12 There would be negligible cosmological redshift within an
arbitrarily large observable region because of the slow ex-
pansion during the loitering phase.
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FIG. 9: Evolution of length scales R for the loitering
universe shown in Fig. 8 vs. a shown near the era of
cosmological constant domination. Plotted are the Hub-
ble length (dot-dashed) and the past horizon hP of an
event late in the de Sitter era (solid). The dotted line
shows the approximation hP ∝ a. Notice that the loi-
tering phase causes the horizons to be larger, allowing
more of the universe to be observed. The upturns in the
curves of Hubble length and past horizon near a = a0

depend on the duration of the loitering phase, and can
be increased arbitrarily (though the level of fine tuning
also increases similarly).
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FIG. 10: More information about the same loitering uni-
verse shown in Fig. 9, also plotted vs. scale factor a
and shown near the era of cosmological constant domi-
nation. Plotted are the apparent horizon (dot-dashed)
and the past horizon of an event late in the de Sitter era
(solid). The dashed line tracks the comoving volume of
space with the maximal entropy that can be contained
in the fluid cavity of BF assuming adiabaticity. Increas-
ing the duration of the loitering phase of this cosmology
increases the allowed e-foldings in dSE arbitrarily, while
having little effect on the BF bound. This illustrates how
the BF and dSE bounds can become arbitrarily different
in a loitering universe.
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VI. SHOULD THE BOUNDS BE
SATURATED?

We have directed our analysis to the task of com-
paring upper bounds on inflation that arise in the BF
and dSE pictures for cosmology. A separate question
is: how close to this bound should we expect a uni-
verse described by one of these pictures to be? In the
dSE picture there are some reasons to expect a typ-
ical universe to be near the bound; essentially, the
mechanism starting inflation makes it more likely to
start high on the inflaton potential. In the BF pic-
ture things are less clear. Its statement as a bound
on entropy encourages us to think about maximiza-
tion because of our experience with the second law of
thermodynamics. But we are also used to thinking
of the universe as having an extremely low entropy
initial state. It is actually only because BF exclude
gravitational and horizon entropy that we can even
begin thinking about the universe as being near a
kind of entropy maximum. Without additional prin-
ciples (such as we have in the dSE case) we do not
see a particular reason that the BF bound need be
near saturation.

A closely related question is: if we interpret ob-
servations of our own universe within the BF or
dSE picture, should we expect the inflation experi-
enced by our own universe to saturate these bounds?
The added wrinkle is that observations have already
established an effective floor on the number of e-
foldings. Thus the typical bound on inflation within
the BF picture or the dSE picture amounts to “just
a few e-foldings more than what we have observed”.
This apparent coincidence is really the coincidence
that we are living at a time that makes us nearly
“maximal observers” so we can already see most of
what we will ever see. At least in the BF case, it is
observation-based priors that drive us close to sat-
urating the bound. More generally both of these
models have the feature that the bounds are not far
above the minimum amount of inflation we expect
based on observations.

VII. CONCLUSIONS

We have shown that the entropy bound of Banks
and Fischler and that of dSE coincide for a very re-

strictive set of assumptions and a simplified cosmol-
ogy. Yet closer investigation reveals that even this
result requires approximations within the models,
and indeed the conceptual and practical differences
between them are minimized by the choice of cos-
mology. Attempting to perform the comparison on a
cosmology more closely resembling our own (with its
multiple equations of state or failures of adiabatic-
ity) raises many technical issues that in aggregate
call into question how fundamental the correspon-
dence is between these two approaches.

Examining even more exotic cosmologies as test
cases merely heightens these issues, and moreover
shows that the project of implementing either ap-
proach as a consistent, rigorous principle across cos-
mologies is not quite as straightforward as it might
appear. While the phrasing of the BF bound in
terms of entropy sounds pleasingly universal, the de-
tails of its implementation rely heavily on the cosmo-
logical history of the universe to which it applies. As
we have seen while attempting this implementation,
it is roughly possible to map the BF picture onto the
dSE picture by carefully working backwards to en-
tropy from geometric notions in which the dSE pic-
ture is originally phrased. Because these geometric
ideas are more robust under variations in cosmolog-
ical history, we ultimately find them a more practi-
cal and compelling basis for formulating a predictive
holographic principle for finite universes with infla-
tion. Moreover, the unexpected complexities arising
from examining unusual cosmologies such as the loi-
tering universes suggest a need to further sharpen
such a principle.
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