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Abstract

We describe a hybrid axion-monodromy inflation model motivated by the Dante’s Inferno sce-

nario. In Dante’s Inferno, a two-field potential features a stable trench along which a linear

combination of the two fields slowly rolls, rendering the dynamics essentially identical to that of

single-field chaotic inflation. A shift symmetry allows for the Lyth bound to be effectively evaded

as in other axion-monodromy models. In our proposal, the potential is concave downward near the

origin and the inflaton trajectory is a gradual downward spiral, ending at a point where the trench

becomes unstable. There, the fields begin falling rapidly towards the minimum of the potential

and inflation terminates as in a hybrid model. We find parameter choices that reproduce observed

features of the cosmic microwave background, and discuss our model in light of recent results from

the BICEP2 and Planck experiments.
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I. INTRODUCTION

The B-modes in the polarization of the cosmic microwave background (CMB) reported

by the BICEP2 collaboration [1] may be due to primordial gravitational waves [2, 3], or may

be due to conventional polarization-dependent processes such as scattering off of galactic

dust [4, 5], as suggested by recent measurements by the Planck collaboration [6]. Tensor

modes in primordial gravitational waves could produce an observably large B-mode po-

larization signal if the scale of inflation is high enough, typically around the GUT scale.

However, the Lyth bound [7] implies that generically in such scenarios, the inflaton varies

over a super-Planckian range of field values during inflation. This would render an effective

field theory treatment invalid, so possibilities for evading the Lyth bound are of practical

interest. One possibility is that the slow-roll parameter ǫ varies by a large multiplicative

factor during inflation, which renders the Lyth-bound analysis invalid [8, 9]. Another possi-

bility is that the inflaton is an axion with an associated shift symmetry. In such a scenario,

super-Planckian values of the inflaton field are identified with sub-Planckian values plus

additional fluxes of one or more other fields [10]. These axion-monodromy models provide

a framework consistent with effective field theory which could accommodate an observably

large amplitude in tensor modes.

A simplified scenario incorporating the axion-monodromy idea, improving on inflation

models with two axions [11], is known as Dante’s Inferno [12]. The two axions of the Dante’s

Inferno model play different roles: one has an explicitly broken shift symmetry while the

other maintains a discrete shift symmetry. The periodic nature of the two-field potential

gives rise to a trench that extends down to the minimum of the potential. The inflaton

field is identified with the linear combination of fields that slowly rolls down the trench,

and can wind many times during inflation while neither of the two fields ever takes super-

Planckian values. Hence, this model is amenable to an effective-field-theory treatment even

if significant power in tensor modes is produced during inflation. The inflationary dynamics

in the Dante’s Inferno scenario is controlled by the shape of the potential along the one-

dimensional trench, and the scenario makes the same predictions as a single-field chaotic

inflation model. The Lagrangian for the two fields, r and θ, in the Dante’s Inferno model is

given by [12]

L =
1

2
(∂µr)

2 +
1

2
(∂µθ)

2 − V (r, θ) , (1.1)
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FIG. 1: The potential as a function of r and θ in Dante’s Inferno with a quadratic shift-symmetry-

breaking potential, as in Ref. [12]. The field θ is represented in cylindrical coordinates with period

2πfθ.

where the potential V (r, θ) respects the discrete shift symmetry in θ and the broken shift

symmetry in r:

V (r, θ) = W (r) + Λ4

[

1− cos

(

r

fr
− θ

fθ

)]

. (1.2)

The potential W (r) explicitly breaks the shift symmetry of the field r, which in a string

theory realization could be due to nonperturbative effects related to moduli stabilization [12].

Assuming W (r) = 1

2
m2r2, the cosine term in V (r, θ) gives rise to a staircase-like trench in the

potential, as shown in Fig. 1, where the coordinate θ is wrapped in cylindrical coordinates

to reflect the shift symmetry. With this choice of W (r), the inflaton accelerates along the

trench, both before and for some time after the end inflation, with the transition occurring

when the slow roll conditions (e.g. ǫ < 1) are violated. The dynamics of the inflaton field

can be described by an effective one-dimensional inflaton potential that is quadratic [12],

so that the predictions for inflationary observables are identical to those of an analogous

chaotic inflation model [13]. In particular, the scenario allows for relatively large power in

tensor modes, with ratio of tensor to scalar amplitudes r = 0.14.

We present a variation of the Dante’s Inferno scenario in which the inflaton trench be-

comes unstable for a range of inflaton field values. In this scenario, the slow-roll conditions
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break down only after the inflaton rolls off the trench and begins moving rapidly in an in-

dependent direction in field space. Thus, inflation ends as in a hybrid model. In hybrid

inflation, the waterfall field has an effective squared mass that depends on the inflaton field

value. At a critical point, this squared mass becomes negative and the system rapidly evolves

to its global minimum. In our scenario, the same is true for a linear combination of the fields

r and θ: one linear combination is identified as the inflaton and the effective squared mass

of the remaining combination depends on the inflaton field value. When this squared mass

becomes negative, the combination of fields that rolls quickly towards the potential mini-

mum (and then oscillates about it) acts as the waterfall field of hybrid inflation [14]. Hence,

we refer to this scenario as Dante’s Waterfall. The model has the same Lagrangian as the

Dante’s Inferno model, Eqs. (1.1)-(1.2), but with a symmetry-breaking potential

W (r) = −1

2
m2r2 +

λ

4!
r4 +

3

2

m4

λ
. (1.3)

An inflation model with a similar symmetry-breaking potential has been considered recently

in Ref. [15]. The last term in Eq. (1.3) is included so that the full potential V (r, θ) vanishes

at its global minimum. This is the usual fine-tuning of the cosmological constant. With this

form for W (r), the potential V (r, θ) is as in Fig. 2. In the typical Dante’s Inferno scenario,

the trench is unstable only for large field values not relevant during inflation. However, in

the present scenario, depending on the choice of model parameters, it is possible for the

trench to become unstable for a range of intermediate field values. This is the scenario we

consider here. We analyze cosmological observables analytically under certain assumptions

in Sec. II, and more generally in Sec. III. We conclude in Sec. IV.

II. SINGLE-FIELD EFFECTIVE THEORY

By a field rotation the potential, Eqs. (1.2)-(1.3), can be written

V = −1

2
m2r2 +

λ

4!
r4 +

3

2

m4

λ
+ Λ4 [1− cos(r̃/f)] , (2.1)

where r = c r̃ + s θ̃, θ = c θ̃ − s r̃, and s ≡ sin ξ, c ≡ cos ξ define the field rotation. In terms

of the parameters in Eqs. (1.2)-(1.3),

sin ξ =
fr

√

f 2
r + f 2

θ

, cos ξ =
fθ

√

f 2
r + f 2

θ

, and f =
frfθ

√

f 2
r + f 2

θ

. (2.2)
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FIG. 2: The potential as a function of r and θ in Dante’s Waterfall, with symmetry-breaking

potential W (r) as in Eq. (1.3). The field θ is represented in cylindrical coordinates with period

2πfθ.

We assume for most of our analysis that sin ξ ≪ 1, or equivalently, fr ≪ fθ. The trench in

field space is given by ∂V (r̃, θ̃)/∂r̃ = 0, or

−m2c r +
λ

6
c r3 +

Λ4

f
sin(r̃/f) = 0 . (2.3)

We have expressed this equation in terms of r and r̃ = c r−s θ to present it in a notationally

compact form and to facilitate comparison with Ref. [12] where the same mixed notation

was used. The trench defines an effective one-dimensional potential along which the inflaton

field slowly rolls. During inflation, motion along the trench continues provided the stability

condition ∂2V (r̃, θ̃)/∂r̃2 > 0 is satisfied. The end of inflation occurs at a point satisfying

Eq. (2.3) where ∂2V/∂r̃2 = 0, that is

−m2c2 +
λ

2
c2r2 +

Λ4

f 2
cos(r̃/f) = 0 . (2.4)

As we will see, the fields then rapidly deviate from their original trajectory and approach

the global minimum of the potential.
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As in the model of Ref. [12], there are limits of our model where inflation can be described

by the evolution of a single field with canonically normalized kinetic terms. This is the field

associated with the direction in field space given by Eq. (2.3), assuming one is in a field

region where

|cf(m2r − λr3/6)|/Λ4 ≪ 1 , (2.5)

and one chooses

s c f 2m2/Λ4 ≪ 1 . (2.6)

Eq. (2.5) allows one to approximate sin(r̃/f) ≈ r̃/f , leading to a linear relationship between

r̃ and θ̃:

r̃ =

[

f 2m2s c

Λ4 − f 2m2c2

]

θ̃ ≈ s c

(

f 2m2

Λ4

)

θ̃ . (2.7)

Identifying θ̃ ≡ φ as the inflaton in the single field effective theory, Eq. (2.6) assures that the

inflaton kinetic terms are canonical, up to small corrections of order (s cm2f 2/Λ4)2. We will

make the further simplifying assumption in what follows that both s ≪ 1 and f 2m2/Λ4 ≪ 1.

Eliminating r̃(θ̃) from Eq. (2.1) using Eq. (2.7), one obtains the effective single-field

inflaton potential

Veff = −1

2
m2

eff φ
2 + V0 , (2.8)

where

meff ≡ ms , V0 ≡
3

2λ
m4 , and φ ≡ θ̃. (2.9)

In the case where fr ≪ fθ, s ≈ fr/fθ and meff = mfr/fθ, as in the model of Ref. [12].

We now use this effective description to study a point in model parameter space that is

viable. One should keep in mind that such solutions are approximate since the assumptions

that justify the single-field approximation will generally fail somewhere near the end of the

trajectory in field space, the point where the waterfall occurs, as determined by Eq. (2.4).

This affects the calculation of the number of e-folds of inflation occurring between the initial

and final field values, φi and φf , respectively, which we aim to hold fixed between 50 and 60.

However, since most of inflation occurs on the part of the trajectory where the single-field

approximation is valid, our solutions should be qualitatively trustworthy, as we check in

Sec. III. This is not very different from the case in non-hybrid inflation models, where one

computes the number of e-folds by first declaring that the end of inflation corresponds to

the value of the slow-roll parameter ǫ = 1. Here, we define the end of inflation as φf = θ̃f ,

where (r̃f , θ̃f ) lies on a trench and satisfies ∂2V/∂r̃2 = 0.
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To find an acceptable solution, we first require that our effective theory provide the correct

values for the spectral index ns and the the amplitude of the scalar perturbations ∆2
R, since

these quantities are relatively well measured. For definiteness, we assume the experimental

central values [16]. We first define the slow-roll parameters

ǫ ≡ M2
P

16π

(

V ′

V

)2

, η ≡ M2
P

8π

V ′′

V
, γ ≡ M4

P

64π2

V ′V ′′′

V 2
, (2.10)

where the derivatives of the potential are with respect to φ. In general, it follows from

Eq. (2.8) that γ = 0,

ǫ =
M2

P

4π

φ2

(2V0/m2
eff

− φ2)
2

and η = −M2
P

4π

1

(2V0/m
2
eff

− φ2)
. (2.11)

The spectral index ns and scalar amplitude ∆2
R may be expressed as

ns = [1− 6ǫ+ 2η]φ=φi
, (2.12)

∆2
R =

[

8

3M4
P

V

ǫ

]

φ=φi

(2.13)

where φi is the value of the inflaton field 50-60 e-folds before the end of inflation, when the

largest distance scales that are currently observable exited the horizon. Using Eq. (2.11)

one finds

ns = 1− M2
P

4π

[

6φ2
i

(2V0/m
2
eff

− φ2
i )

2
+

2

(2V0/m
2
eff

− φ2
i )

]

, (2.14)

∆2
R =

16π

3M6
P

m2
eff

φ2
i

[

2V0

m2
eff

− φ2
i

]3

. (2.15)

Our formulae assume 2V0/m
2
eff − φ2

i > 0, which is consistent with our numerical results. We

work henceforth in units where MP = 1.

Taking meff as an input parameter, and setting ns = 0.9603 and ∆2
R = 2.2 × 10−9 [16],

we find that Eqs. (2.14) and (2.15) only have solutions if meff . 8.31× 10−7. For example,

the choice meff = 1.2× 10−7 yields

V0 = 2.885× 10−14 and φi = 0.0838 . (2.16)

We can now ask whether there is an acceptable trajectory in the full theory with θ̃ beginning

at φi, and terminating at a point where d2V/dr̃2 = 0 such that 50 to 60 e-folds of inflation

is obtained. With meff and V0 fixed, we constrain two degrees of freedom in the parameter

space of the complete theory. We choose the value of s and fix

m = meff/s (2.17)
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and

λ =
3

2

m4
eff

s4
1

V0

. (2.18)

Specifying Λ and f then completely determines Eq. (2.1). Consider the following choice of

parameters, that are consistent with Eqs. (2.16), (2.17) and (2.18):

s = 0.0010 ,

λ = 1.078× 10−2 ,

Λ = 0.0001 ,

m = 0.00012 ,

f = 2.453× 10−5 . (2.19)

One can verify that the following points in field space are continuously connected by a

solution to Eq. (2.3)

(r̃, θ̃)i = (8.099× 10−6, 8.377× 10−2) ,

(r̃, θ̃)f = (3.647× 10−5, 2.485× 10−1) . (2.20)

In addition, (r̃, θ̃)f satisfies Eq. (2.4). Identifying φf = θ̃f , one can now evaluate the number

of e-folds,

N =
2
√
π

MP

∫ φf

φi

1√
ǫ
dφ (2.21)

=
4π

M2
P

[

2V0

m2
eff

ln(φf/φi)−
1

2
(φ2

f − φ2
i )

]

, (2.22)

from which one obtains N = 54.4.

The remaining cosmological parameters of interest can be expressed in terms of the slow-

roll parameters. We represent the ratio of tensor-to-scalar amplitudes by r (to distinguish

it from the field r), which is given by

r = [16 ǫ]φ=φi
, (2.23)

and the running of the spectral index by

nr =
[

16ǫη − 24ǫ2 − 2γ
]

φ=φi
. (2.24)

In the present example, one finds

r = 5.585× 10−4 ,

nr = −1.114× 10−5 . (2.25)
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There are consistent with current bounds [16], given the lingering questions surrounding the

current BICEP2 measurement of r. We will discuss larger possible values of r later in this

section.

It is worth returning to the inequalities that we assumed at the beginning of this section.

For the example given, the condition in Eq. (2.6) is satisfied, with the left-hand-side evaluat-

ing to ≈ 8.7×10−5. The condition in Eq. (2.5) is satisfied at the beginning of the trajectory,

where the left-hand-side is ≈ 0.324, and fails at the end, as we anticipated earlier, where

the same quantity is ≈ 0.996.

To better visualize the solution, we first note that in the original (r, θ) coordinate system,

the global minimum is located at

rmin =

√

6

λ
m = 2.831× 10−3 , (2.26)

while the initial and final r values are

ri = 9.187× 10−5

rf = 2.850× 10−4 . (2.27)

The trajectory in this example is far from the global minimum at positive r and moving

toward it, as one might expect. A plot of the trajectory in r̃ − θ̃ space during inflation is

shown in Fig. 3.

One can confirm the end of inflation in this example by studying the time evolution of

the fields in the full theory, r̃(t) and θ̃(t), which satisfy the coupled equations of motion

¨̃r + 3H ˙̃r +
∂V

∂r̃
= 0 ,

¨̃θ + 3H ˙̃θ +
∂V

∂θ̃
= 0 . (2.28)

For definiteness, we assume that ˙̃r and ˙̃θ are initially vanishing; qualitatively similar solutions

are obtained for other choices, providing that the slow-roll conditions are satisfied. The

results are shown in Fig. 4, with the time variable tr = H0 t where H0 ≡ H(t = 0) is the

Hubble parameter at the beginning of inflation. Notice that θ̃(tr) pauses for a brief interval

near θ̃f (around tr ≈ 50), at precisely the same time that r̃(tr) rapidly increases away from

r̃f : this is the waterfall. The fields then oscillate as they approach the global minimum, the

period when reheating presumably occurs.
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FIG. 3: Trajectory in field space, θ̃(r̃), during inflation.

~
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t
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FIG. 4: Time-evolution of the fields: (a) r̃(t), (b) θ̃(t). The time is in units of the inverse Hubble

parameter at the beginning of inflation and the Planck mass has been set to one.

The example we have presented is useful in illustrating the qualitative features of a typical

solution. We now investigate whether solutions with larger values of the parameter r, i.e.

larger tensor perturbations, are possible. Given the constraints of Eqs. (2.14) and (2.15),

specification of meff determines φi and hence also the parameter r in our effective theory. It

follows that

r(meff) =
2

9πC2
0

[

C1 ± (C2
1 − 4C0m

2
eff)

1/2
]

, (2.29)

where

C0 =
[

∆2
R/(144 π)

]1/3
and C1 = 6 π C2

0 (1− ns) . (2.30)

Numerically, C0 = 1.694 × 10−4 and C1 = 2.164 × 10−8. For these values, Eq. (2.29) is

maximized when rmax+ = 0.107 or rmax− = 0.053, depending on the sign of the square root,
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which corresponds to different possible solutions for φi. We can make further progress by

considering the number of e-folds, given in Eq. (2.22). As a function of φf , this expression

is maximized when φ2
f = 2V0/m

2
eff . The value at the maximum, Nmax, is thus a function of

meff , like r, and depends on the same sign choice appearing in Eq. (2.29). We find that for

the positive square root, Nmax is below 42.4 for any meff ; hence, these solutions are excluded.

For the negative square root, Nmax falls below the desired range, 50 to 60, before meff is

large enough to yield rmax− = 0.053. We find numerically that N > 50 forces r < 0.03.

Hence, we expect on general grounds that

r < 0.03 , (2.31)

provided that Eq. (2.8) is an accurate effective description of the theory. Whether a choice

of parameters and field trajectory exists in the complete theory for which this bound is

saturated is not guaranteed. However, it is not hard to discover solutions that are of order

this bound. Following the approach of this section, one can check, for example, that the

parameter choice

s = 0.01 ,

λ = 1.635× 10−5 ,

Λ = 5.0× 10−5 ,

m = 5.0× 10−5 ,

f = 2.610× 10−7 , (2.32)

is consistent with the trajectory

(r̃, θ̃)i = (1.120× 10−7, 0.406) ,

(r̃, θ̃)f = (4.099× 10−7, 1.105) . (2.33)

This leads to the values r = 0.011 and N = 51.1

III. NUMERICAL ANALYSIS

In the previous section we obtained an approximation for the shape of the one-dimensional

potential, Eq. (2.8), which followed from the linear relation in Eq. (2.7). This relation breaks
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down before the end of inflation. In this section, we find the shape of the trench and compute

observables numerically, allowing us to test the validity of our previous approximation.

We again choose fr ≪ fθ and identify θ̃ as the inflaton field. Along the trench, Eq. (2.3), r̃

is non-dynamical to lowest order in fr/fθ and corrections to the θ̃ kinetic terms are negligible.

This can be verified by differentiating Eq. (2.3), which yields

˙̃r
˙̃
θ
=

sc f 2(m2 − 1

2
λr2)

Λ4 cos(r̃/f)− c2 f 2(m2 − 1

2
λr2)

. (3.1)

In the region of field space where m2 > 1

2
λr2, as long as

Λ4 cos(r̃/f)

f 2
≥ c2 (2m2 − λr2) , (3.2)

the kinetic terms for r̃ and θ̃ sum to

1

2
˙̃r2 +

1

2
˙̃θ2 ≤ (1 + tan2 ξ)

1

2
˙̃θ2 . (3.3)

In this case, the θ̃ kinetic terms remain canonically normalized to leading order in fr/fθ.

The potential of the effective single-field description of the theory is given by

V (θ̃) ≡ V (r̃t(θ̃), θ̃) , (3.4)

where r̃t(θ̃) is the solution to the trench equation Eq. (2.3). Derivatives of Eq. (3.4) with

respect to θ̃ can be computed numerically to obtain the slow-roll parameters and the infla-

tionary observables discussed in Sec. II.

To test the accuracy of the quadratic form of the effective single-field potential, Eq. (2.8),

we evaluate observables following from Eq. (3.4) using the same parameters, Eqs. (2.19) and

(2.20). Following from Eqs. (2.12), (2.13), (2.23) and (2.24), we find that (ns,∆
2
R, r, nr) =

(0.956, 1.833 × 10−9, 6.70 × 10−4,−1.47 × 10−5). The number of e-folds is determined by

Eq. (2.21), from which we obtain N = 49.44, somewhat smaller than the value N = 54.4

that followed from the approximations of Sec. II. This exercise confirms that the approxima-

tion scheme of Sec. II provides a qualitatively accurate solution for the set of cosmological

quantities of interest: the breakdown in this scheme occurs close enough to the end of the

inflationary trajectory that it does not substantially alter the qualitative results.

In the current numerical treatment, however, we can now find solutions that more exactly

match the cosmological observables. For example, with (f/s, f/c,m, λ,Λ) = (0.1043, 3.127×
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10−4, 1.367× 10−4, 1.314× 10−3, 3.654× 10−4), (r̃i, θ̃i) = (1.112× 10−4, 0.322) and (r̃f , θ̃f ) =

(4.738× 10−4, 1.039), we obtain

ns = 0.960 ,

∆2
R = 2.23× 10−9 ,

r = 7.45× 10−3 ,

nr = −1.42× 10−4 ,

N = 59.7 . (3.5)

As with our previous solution, we may solve the coupled equations of motion for r̃(t) and

θ̃(t), with r̃(0) = r̃i and θ̃(0) = θ̃i. For definiteness, we again assume that the first time

derivatives of the fields vanish at t = 0, as discussed after Eq. (2.28). The trajectory in

field space is shown in Fig. 5, while r̃(t) and θ̃(t) are shown in Fig. 6. We can see that

the system rolls along the trench until the instability is reached where inflation ends. The

system then moves quickly towards the global minimum of the potential. We have checked

that ˙̃r(t)2/
˙̃
θ(t)2 remains small along the portion of this trajectory where inflation occurs,

never exceeding 10−7, so that the classical wavefunction renormalization of the inflaton field

is negligible.

IV. CONCLUSIONS

We have studied a new realization of hybrid inflation in a variant of an axion monodromy

model known as Dante’s Inferno [12]. By altering the assumed form of the shift-symmetry-

breaking potential of one of the axion fields, the scalar potential in our model takes the form

of a Mexican hat with an indentation, or trench, spiraling down from its peak. Inflation

corresponds to slowly rolling down this trench until a point where the trench becomes shallow

and can no longer support the motion; the system then evolves rapidly in the radial direction

towards the global minimum of the potential. After formulating an appropriate single-field

approximation for the period of inflation, we studied viable points in model parameter space

where the amplitude of scalar perturbations, the spectral index, the running of the spectral

index, and the number of e-folds of inflation are consistent with observational data. In

an approximation where the single-field potential could be studied analytically, we argued

that, given the assumed form of the potential, the parameter r, which reflects that power
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FIG. 5: Contour plot of the potential in terms of r̃ (vertical axis) and θ̃ (horizontal axis). The

thick, solid red line indicates the bottom of the trench. The inflationary trajectory is shown by

the thin green line.

FIG. 6: Dynamic solutions. The left graph shows r̃(tr) and the right graph shows θ̃(tr). The time

variable tr = H0t is scaled in units of Hubble time at the beginning of inflation.

in tensor modes, could be no larger than 0.03, and we found explicit solutions where the

value was ∼ 0.01. Future measurements of the microwave background polarization, that

may probe r > 0.007 [17], have the potential of detecting a gravity-wave signal of this

size; observational results closer to those of BICEP2 [1] would exclude the model. It would

be interesting to consider in more detail the various possibilities for the post-inflationary

dynamics and reheating in this scenario.
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