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1 Introduction

The compelling evidence for dark matter (DM) inconsistent with Standard Model (SM) particles
has motivated many theoretical studies and experimental searches to elucidate its particle nature.
In particular, the paradigm of Weakly Interacting Massive Particles (WIMPs) continues to play a
prominent role, and experiments in the present decade should explore a significant region of remaining
WIMP parameter space [1]. Given the multitude of WIMP candidates and search strategies, it is
imperative to develop theoretical formalism to delineate the possible interactions of DM with known
particles, making clear which uncertainties are inherently model dependent and which can, at least
in principle, be improved by further SM analysis.

Even in many seemingly simple cases, determination of WIMP-nucleon cross sections demands
an intricate analysis of competing amplitudes mediated by SM particles (see e.g., [2–7]). In this
paper we set out the formalism for electroweak-scale matching computations for application both to
theories with specified ultraviolet (UV) completion (e.g., supersymmetric models [8, 9]), and to the
heavy WIMP limit where theoretical control is maintained in the absence of a specified UV comple-
tion [6]. We review relevant aspects of techniques such as the background field method for matching
to gluon operators [3, 10], the extension of the onshell renormalization scheme for WIMP couplings
to the electroweak SM, and the treatment of effective theory subtractions. Direct detection experi-
mental constraints [11,12], together with other phenomenological bounds such as LHC searches, may
plausibly indicate that new particles must have mass somewhat above the mass of electroweak-scale
particles (M � mW ). In this regime, the prospects for direct detection become more challenging, but
in a precise sense more constrained due to heavy particle universality. Extending the particle content
of the SM by one or a few electroweak multiplets, the heavy particle limit implies highly predictive
cross sections with minimal parametric input beyond the SM. This limit is thus both physically inter-
esting, as well as a useful pedagogical illustration. Within the heavy WIMP framework, we present a
complete reduction of the required one- and two-loop amplitudes into a basis of heavy-particle loop
integrals with nonzero residual mass.

Although we aim for generality, for definiteness throughout the paper, we illustrate these methods
for the case where the lightest, electrically neutral particle of the new sector corresponds to a self-
conjugate field (e.g., a Majorana fermion or real scalar) stabilized by a Z2 symmetry, deriving from
a theory consisting of one or two SU(2)W × U(1)Y multiplets beyond the SM particle content [2,
5–7, 13–26]. An important simplification occurs when a scale separation exists between SM masses
(∼mW ) and the lightest new particle mass (∼M), allowing an expansion in mW /M . We consider
in detail the limit M � mW where universal behavior appears, and present the necessary heavy
particle effective theory tools for such an analysis. For these SM extensions, we present details of
the first complete computation of the matching at leading order in perturbation theory onto the full
basis of operators at the electroweak scale [6].

The field of DM direct detection is by now a mature subject.1 Early treatments of QCD effects in
neutralino-nucleon scattering include the works of Drees and Nojiri [27]. Basic aspects of formalism
may be found in the review of Jungman, Griest and Kamionkowski [8]. However, the last few
years have witnessed the discovery and mass measurement for a SM-like Higgs boson [28, 29], new
constraints on the mass scale of particles beyond the SM [30], and important computational advances
in lattice QCD [31, 32]. A complete description of DM-SM interactions is now possible in many SM
extensions but demands the systematic treatment of QCD effects and uncertainties, including the
consideration of loop amplitudes that are typically neglected in the mW ∼ M regime, but which

1A subset of recent work in the field may be found in the Snowmass review [1].
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contribute at leading order in the general case.
In this work we extend some aspects of heavy particle formalism familiar from heavy quark effec-

tive theory [33] for DM applications, and we hope that a detailed treatment will serve as pedagogy
for the DM practitioner unfamiliar with heavy particle tools. Both within and beyond the heavy par-
ticle limit, distinguishing between different DM candidates in direct detection experiments demands
careful treatment of QCD corrections when passing from a theory renormalized at the electroweak
scale to a low-energy theory of quarks and gluons where hadronic matrix elements are evaluated.
A companion paper treats this separate problem for applications involving a range of dark matter
candidates [34].

The remainder of the paper is structured as follows. In Sec. 2, we briefly review aspects of heavy
particle effective theory relevant for DM applications. Section 3 specifies the operator basis for DM-
SM interactions at the weak scale relevant for spin-independent, low-velocity scattering with nucleons.
In Sec. 4, we construct the effective theory for one or two heavy electroweak multiplets interacting
with SM Higgs and electroweak gauge fields, accounting for masses induced by electroweak symmetry
breaking (EWSB), and presenting the lagrangian in terms of mass eigenstate fields from which the
complete set of Feynman rules may be easily derived. In Sec. 5, we define an extension of the onshell
renormalization scheme for the electroweak SM for a consistent loop-level evaluation of amplitudes.
Section 6 presents the details of the matching calculation, including the systematic reduction of
heavy-particle integrals, and the implementation of background field techniques for gluon operators.
We present the bare matching coefficients in Sec. 7, and conclude with a summary in Sec. 8.

2 Heavy particle effective field theory for dark matter applications

Heavy particle methods may be used to efficiently describe the interactions of DM, of mass M , with
much lighter degrees of freedom such as those of nf = 5 flavor QCD (in the case mb � M , where
mb is the bottom quark mass) or those of the SM electroweak sector (in the case mW � M , where
mW is the W± boson mass). Let us briefly review a few aspects of heavy particle effective theory
relevant for the DM applications in Secs. 3 and 4.

A heavy-particle field, hv, is identified with a representation of the little group for massive parti-
cles, and carries a label v associated with the time-like unit vector vµ that defines the little group [35].
The little group for massive particles is isomorphic to SO(3), and therefore has field representations
carrying spin s = 0, 1/2, 1, . . . . We may write such fields in covariant notation using a Dirac spinor-
vector with appropriate constraints. For example, a spin-1/2 heavy-particle field has 2(1/2) + 1
degrees of freedom and can be written as a Dirac spinor, hv, obeying v/hv = hv as a projection

constraint.2 For integer spin we define h̄v ≡ h†v, while for half-integer spin hv carries spinor indices
and we define h̄v ≡ h†vγ0. Additionally, for self-conjugate fields the simultaneous operations

vµ → −vµ , hv → hcv ≡ Ch∗v , (1)

where C is the charge conjugation matrix, implement a symmetry of the heavy-particle lagrangian.3

Having specified the building blocks, interactions with heavy-particle fields can be constructed
in the usual way. We write down the most general set of gauge-invariant and Lorentz-covariant
operators in terms of the heavy field hv, the time-like unit vector vµ, and other relativistic degrees of
freedom up to a given order in the 1/M power counting. In the case of a self-conjugate heavy particle,

2The case of arbitrary spin is discussed in Appendix A.1 of Ref. [35].
3A discussion of this invariance is given in Appendix A.2 of Ref. [35]; for a heavy Majorana fermion, see also [36].
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such as that derived from a Majorana fermion or a real scalar of the underlying UV completion, the
invariance (1) is additionally imposed.

Lorentz invariance should also be implemented using the heavy-particle boost transformation rules
that follow from the little group representation. The implementation of Lorentz invariance in heavy
particle effective theories is formally interesting, and has important consequences for applications
involving higher-order 1/M expansions [35, 37, 38]. In the present paper, we focus on the leading
order in 1/M .

3 Effective theory below the weak scale

Let us construct the effective theory of DM with mass M & mW interacting with nf = 5 flavor
QCD. The hierarchy of scales between the DM mass and the relevant low-energy degrees of freedom,
ΛQCD,mc,mb � mW , allows us to use heavy particle effective theory to describe the DM field. The
most general lagrangian relevant for spin-independent, low-velocity scattering with nucleons, is then
given at energies E � mW by,4

Lχv , SM = χ̄vχv

{ ∑

q=u,d,s,c,b

[
c(0)
q O(0)

q + c(2)
q vµvνO

(2)µν
q

]
+ c(0)

g O(0)
g + c(2)

g vµvνO
(2)µν
g

}
+ . . . , (2)

where χv is the lightest, electrically neutral, self-conjugate WIMP of arbitrary spin. The ellipsis
in the above equation includes higher-dimension operators suppressed by powers of 1/mW . The
assumed self-conjugacy of χv implies that (2) is invariant under (1). The SM component of (2) is
expressed in terms of quark and gluon fields as

O(0)
q = mq q̄q ,

O(0)
g = (GAµν)2 ,

O(2)µν
q =

1

2
q̄

(
γ{µiDν}

− −
1

d
gµνiD/ −

)
q ,

O(2)µν
g = −GAµλGAνλ +

1

d
gµν(GAαβ)2 . (3)

Here D− ≡
−→
D −←−D , and A{µBν} ≡ (AµBν +AνBµ)/2 denotes symmetrization. The operators in (3)

are expressed in terms of bare lagrangian fields, where we employ dimensional regularization with
d = 4 − 2ε spacetime dimensions. We use the background field method for gluons in the effective
theory thus ignoring gauge-variant operators, and assume that appropriate field redefinitions are
employed to eliminate operators that vanish by leading order equations of motion. We ignore flavor
non-diagonal operators, whose nucleon matrix elements have an additional weak-scale suppression
relative to those considered. We will not be concerned here with leptonic interactions.

For a self-conjugate WIMP, χv, with mass M & mW and arbitrary spin, Eq. (2) represents
the most general effective lagrangian at leading order in 1/mW , relevant for spin-independent, low-
velocity scattering with nucleons. Details of the UV completion are encoded in the twelve matching

coefficients c
(0)
q , c

(2)
q , c

(0)
g and c

(2)
g . Matching onto the effective theory (2) is in general dependent on

the specific SM extension. Although much of the formalism applies more generally, for definiteness
we focus on the heavy WIMP limit, M � mW , where universal features appear [6].

4General bases including spin-dependent interactions, and non-self-conjugate WIMPs are presented in [34].
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4 Effective theory for one or two heavy electroweak multiplets

In place of a specified UV theory for DM, let us use heavy particle effective theory to describe
extensions of the SM consisting of one or two electroweak multiplets with masses large compared to
the mass of electroweak-scale particles, M,M ′ � mW . The extension to more than two multiplets is
straightforward. We will construct the effective theory describing interactions of such heavy WIMPs
with the SM in the regime |M ′ −M |, mW �M, M ′. In the case |M ′ −M | � mW the effects of the
heavier multiplet appear as power corrections in the effective theory for the lighter multiplet. For
notational clarity, below we omit the subscript v labeling a heavy-particle field.

Consider one or two multiplets of heavy-particle fields with arbitrary spin, transforming under
irreducible representations of electroweak SU(2)W × U(1)Y . Let us collect the heavy fields in a
column vector h, and their masses in a diagonal matrix M. The precise specification of M beyond
tree level is described in Sec. 5. At leading order in the 1/M expansion, the most general gauge- and
Lorentz-invariant lagrangian, bilinear in h, and written in terms of the building-blocks h, vµ, and
SM fields, takes the form

L = h̄ [iv ·D − δm− f(H)]h+O(1/M) , (4)

where iDµ = i∂µ + g1Y Bµ + g2W
a
µT

a, and f(H) is a linear matrix function of H (and H∗). For pure
states gauge invariance implies f(H) = 0, while for mixed states f(H) describes the mixing of the
pure-state constituents through the Higgs field. In terms of a reference mass Mref , the residual mass
matrix is

δm = M −Mref1. (5)

Note that if the masses composing M are degenerate, as for a single “pure” electroweak multiplet,
we may choose Mref appropriately to set δm = 0. In the case of two “mixed” electroweak multiplets
M will have non-degenerate entries in general.

Upon accounting for EWSB we may write (4) as

L = h̄

[
iv · ∂ + eQv ·A+

g2

cW
v · Z(T 3 − s2

WQ)

+
g2√

2
(v ·W+T+ + v ·W−T−)− δM(vwk)− f(φ)

]
h+O(1/M) , (6)

where T± = T 1± iT 2, the charge matrix is Q = T 3 + Y in units of the proton charge, and φ denotes
the fluctuation of the Higgs field about 〈H〉,

H =
vwk√

2

(
0

1

)
+

(
φ+
W

1√
2
(h+ iφZ)

)
. (7)

The residual mass matrix now includes EWSB contributions,

δM(vwk) = δm+ f(〈H〉), (8)

and in the mass eigenstate basis for δM(vwk), we will set the residual mass of the lightest, (assumed)
electrically neutral WIMP, χ, to zero by appropriate choice of Mref . Other states may have non-
vanishing residual masses. In the following, we will suppress the subscript in vwk; the resulting v is
not to be confused with the velocity vµ.
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The heavy-particle lagrangian (4) can also be obtained at tree level from a manifestly relativistic
lagrangian by performing field redefinitions. We illustrate this for the singlet-doublet mixture in
Appendix A.5 Let us now have a detailed look at extensions with one (pure states) or two (mixed
states) electroweak multiplets.

4.1 Pure states

The pure-state heavy-particle lagrangian is completely specified by electroweak quantum numbers
since δm = 0 and f(H) = 0. We may proceed in generality, assuming a multiplet of fields in the
isospin J representation of SU(2)W with hypercharge Y . The amplitudes for weak-scale matching
in Sec. 6 will be given in terms of Y 2 and the Casimir J(J + 1). In particular, amplitudes with two
W± bosons or two Z0 bosons carry the respective factors

CW = J(J + 1)− Y 2 , CZ = Y 2. (9)

For extensions consisting of electroweak multiplets with non-zero hypercharge, we assume that higher-
dimension operators cause the mass eigenstates after EWSB to be self-conjugate combinations. This
forbids a phenomenologically disfavored tree-level vector coupling between the lightest, electrically
neutral state, χ, and Z0. We further assume that the mass difference between the self-conjugate
eigenstates is large enough to suppress inelastic scattering, but small compared to mW so that we
may neglect its contribution to the residual mass δm.

As specific illustrations we consider the cases of an SU(2)W triplet (J = 1) with Y = 0, and a pair
of SU(2)W doublets (J = 1/2) with opposite hypercharge Y = ±1/2. In supersymmetric extensions,
these represent pure wino and pure higgsino states, respectively. Let us look at these cases in some
detail.

4.1.1 Pure triplet

Let the column vector hT = (h1, h2, h3), with subscript T for triplet, be a heavy, self-conjugate,
SU(2)W triplet with Y = 0. The heavy-particle lagrangian for hT is given by (4) with (T a)bc = iεbac,
f(H) = 0, and δm = 0. The electric charge eigenbasis is given by



h1

h2

h3


 ≡




0 1√
2

1√
2

0 i√
2
−i√

2

1 0 0






h0

h+

h−


 . (10)

In terms of the column vector h = (h0, h+, h−), where h0 ≡ χ, the lagrangian is given by (6) with

Q = T 3 = diag(0, 1,−1) , T+ =




0 0
√

2

−
√

2 0 0

0 0 0


 , T− =




0 −
√

2 0

0 0 0√
2 0 0


 . (11)

5We remark that the consistency of an effective description for the one-heavy particle sector for a self-conjugate
field follows from the identification of lowest-lying states odd under a Z2 symmetry. In contrast, the one-heavy particle
sector for a heavy field carrying U(1) global symmetry (e.g., heavy-quark number in a heavy quark effective theory) is
identified by this quantum number.
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4.1.2 Pure doublet

Let hψ and hψc be heavy-particle doublets in the (2, 1/2) and (2̄,−1/2) representations of SU(2)W ×
U(1)Y .6 Anticipating perturbations that cause the mass eigenstates to be self-conjugate fields, let us
introduce the linear combinations

hD1 =
hψ + hψc√

2
=

(
h1

h0

)
, hD2 =

i(hψ − hψc)√
2

=

(
h2

h′0

)
, (12)

with subscript D for doublet. The heavy-particle lagrangian for the column vector h = (hD1 , hD2) is
given by (1), with f(H) = 0, and gauge couplings

T a =

(
τa−τaT

4
−i(τa+τaT )

4
i(τa+τaT )

4
τa−τaT

4

)
, Y =

i

2

(
0 −1

1 0

)
, (13)

where τa are the Pauli isospin matrices. Neglecting the small mass perturbation mentioned above,
the tree-level mass eigenstates are degenerate, and we may choose δm = 0. The charge eigenstates
are given by 



h1

h0

h2

h′0



≡




0 0 1√
2

1√
2

1 0 0 0

0 0 i√
2
− i√

2

0 1 0 0







h0

h′0
h+

h−



. (14)

In terms of the column vector h = (h0, h
′
0, h+, h−), where h0 ≡ χ, the lagrangian is given by (6) with

Q = diag(02, 1,−1) and

T 3 =




0 i
2 0 0

− i
2 0 0 0

0 0 1
2 0

0 0 0 −1
2



, T+ =




0 0 0 − 1√
2

0 0 0 i√
2

1√
2
− i√

2
0 0

0 0 0 0



, T− =




0 0 1√
2

0

0 0 i√
2

0

0 0 0 0

− 1√
2
− i√

2
0 0



. (15)

4.2 Admixtures

As an example of mixed states, let us consider in detail the singlet-doublet admixture. Results for
the triplet-doublet admixture will also be given below.

4.2.1 Singlet-doublet admixture

Let hS , with subscript S for singlet, be a heavy, self-conjugate, SU(2)W singlet with Y = 0 and mass
MS . Consider an admixture of hS and the previously defined self-conjugate doublets hD1 and hD2 ,
with mass MD. At leading order in the 1/M expansion, the gauge-invariant interactions of hS , hD1

and hD2 involving the Higgs field are

LHh̄h = −h̄S
[
yH†

(hD1 − ihD2)√
2

+ y∗HT (hD1 + ihD2)√
2

]
+ h.c. = −h̄f(H)h , (16)

6This construction is analogous to that appearing in applications of heavy quark effective theory to processes where
both a heavy quark and a heavy anti-quark are active degrees of freedom.
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where we have imposed the invariance (1), and collected the heavy-particle fields in a column vector
h = (hS , hD1 , hD2) = (hS , h1, h0, h2, h

′
0). The Higgs coupling matrix is given by

f(H) =
a1√

2




0 H† +HT i(HT −H†)
H +H∗ 02 02

i(H −H∗) 02 02


+

a2√
2




0 −i(HT −H†) HT +H†

−i(H −H∗) 02 02

H +H∗ 02 02


 ,

(17)

with real parameters a1 = Re(y) and a2 = Im(y). For comparison, the derivation in Appendix A
obtains (16) at tree level starting from a manifestly relativistic lagrangian. The residual mass matrix
is δm = diag (MS , MD14)−Mref15, and we define MS and MD to be real and positive.7 The gauge
couplings are obtained by trivially extending (13) to include the singlet. This completely specifies
the heavy-particle lagrangian given in (4).

The mass induced by EWSB is accounted for at tree level by including contributions from (17),

δM(v) = δM + v




0 0 a1 0 a2

0 0 0 0 0

a1 0 0 0 0

0 0 0 0 0

a2 0 0 0 0



. (18)

In the following, we use subscripts to denote the electric charge and bracketed superscripts to label
the mass eigenstate. For neutral states we find the residual mass eigenvalues

δ
(0)
0 = MD −Mref , δ

(±)
0 =

MD +MS

2
±
√

∆2 + (av)2 −Mref , (19)

where we define

∆ ≡ MS −MD

2
, a ≡

√
a2

1 + a2
2 . (20)

By definition a > 0, and regardless of the sign of ∆, the smallest eigenvalue is δ
(−)
0 . Let us set this

eigenvalue to zero by appropriately choosing the reference mass Mref . The corresponding normalized
eigenvectors in the (hS , h0, h

′
0) basis of electrically neutral states are then

~v
(0)
0 =

1

a




0

a2

−a1


 , ~v

(±)
0 =

1
[(

∆±
√

∆2 + (av)2
)2

+ (av)2

] 1
2




∆±
√

∆2 + (av)2

a1v

a2v


 , (21)

and we may construct the unitary matrix U0 (on the three-dimensional neutral subspace) to translate
to the mass eigenbasis,

U0 =
(
~v

(0)
0 ~v

(+)
0 ~v

(−)
0

)
,



hS

h0

h′0


 = U0



h

(0)
0

h
(+)
0

h
(−)
0


 , U †0δM(v)U0 = diag

(
δ

(0)
0 , δ

(+)
0 , δ

(−)
0

)
. (22)

7An additional phase redefinition of hψ, hψc could be used to enforce the vanishing of a1 or a2.
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The tree-level masses for the electrically charged sector are unchanged by EWSB, given by δ
(0)
± = δ

(0)
0 ,

and the corresponding charge eigenstates are given by

(
h1

h2

)
=

1√
2

(
1 1

i −i

)(
h

(0)
+

h
(0)
−

)
. (23)

The basis of mass eigenstates is thus given by the column vector h =
(
h

(0)
0 , h

(+)
0 , h

(−)
0 , h

(0)
+ , h

(0)
−
)

,

where h
(−)
0 ≡ χ, and the lagrangian is given by (6) with

δM(v) = diag
(
δ

(0)
0 , δ

(+)
0 , δ

(−)
0 , δ

(0)
+ , δ

(0)
−
)

= av diag
(
t ρ
2
, 2s−1

ρ , 0, t ρ
2
, t ρ

2

)
,

Q = diag(03, 1,−1) ,

T 3 − s2
WQ =




0 i
2 |s ρ2 |

i
2 |c ρ2 | 0 0

− i
2 |s ρ2 | 0 0 0 0

− i
2 |c ρ2 | 0 0 0 0

0 0 0 1
2 − s2

W 0

0 0 0 0 −1
2 + s2

W



,

T+ =
e−iξ√

2




0 0 0 0 −i
0 0 0 0 −|s ρ

2
|

0 0 0 0 −|c ρ
2
|

i |s ρ
2
| |c ρ

2
| 0 0

0 0 0 0 0



, T− =

e+iξ

√
2




0 0 0 −i 0

0 0 0 |s ρ
2
| 0

0 0 0 |c ρ
2
| 0

0 0 0 0 0

i −|s ρ
2
| −|c ρ

2
| 0 0



,

f(φ) = a




0 |c ρ
2
|φZ −|s ρ

2
|φZ 0 0

|c ρ
2
|φZ sρ h cρ h |c ρ

2
|e+iξφ−W |c ρ

2
|e−iξφ+

W

−|s ρ
2
|φZ cρ h −sρ h −|s ρ

2
|e+iξφ−W −|s ρ2 |e

−iξφ+
W

0 |c ρ
2
|e−iξφ+

W −|s ρ2 |e
−iξφ+

W 0 0

0 |c ρ
2
|e+iξφ−W −|s ρ2 |e

+iξφ−W 0 0



, (24)

where we have introduced

sin ρ ≡ av√
(av)2 + ∆2

, cos ρ ≡ ∆√
(av)2 + ∆2

, e±iξ ≡ (a1 ± ia2)

a
. (25)

The shorthand notation cx ≡ cosx, sx ≡ sinx, and tx ≡ tanx is used throughout this paper. Note
that sρ is positive, and that cρ can have either sign depending on the hierarchy between MS and
MD. It is straightforward to extract Feynman rules from the lagrangian (6) and the matrices (24).
For example, the propagator for χ, and its coupling to the physical Higgs boson, h, are

� =
i

v · k − δ(−)
0 + i0

, �= iasρ . (26)
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4.2.2 Triplet-doublet admixture

The construction for the triplet-doublet case follows closely that for the singlet-doublet case, with
a heavy triplet hT in place of the singlet hS . Using τ = (τ1, τ2, τ3) and τ̄ = −(τ1T , τ2T , τ3T ), the
gauge-invariant interactions of hT , hD1 and hD2 involving the Higgs field can be written in the form
LHh̄h = −h̄f(H)h, where we collect fields in a seven-component column vector h = (hT , hD1, hD2),
and the matrix f(H) is given by

f(H) =
a1√

2




03 H†τ −HT τ̄ i(−HT τ̄ −H†τ )

−τ̄H∗ + τH 02 02

i(τH + τ̄H∗) 02 02




+
a2√

2




03 i(HT τ̄ +H†τ ) H†τ −HT τ̄

i(−τH − τ̄H∗) 02 02

−τ̄H∗ + τH 02 02


 , (27)

with real parameters a1 and a2. Upon accounting for mass contributions from EWSB, the basis

of mass eigenstates is given by the column vector h =
(
h

(0)
0 , h

(+)
0 , h

(−)
0 , h

(+)
+ , h

(−)
+ , h

(+)
− , h

(−)
−
)

, where

h
(−)
0 ≡ χ, and the lagrangian is given by (6) with

δM(v) = diag
(
δ

(0)
0 , δ

(+)
0 , δ

(−)
0 , δ

(+)
+ , δ

(−)
+ , δ

(+)
− , δ

(−)
−
)

= av diag
(
t ρ
2
, 2s−1

ρ , 0, 2s−1
ρ , 0, 2s−1

ρ , 0
)
,

Q = diag(0, 0, 0, 1, 1,−1,−1) ,

T 3 =




0 i
2 |s ρ2 |

i
2 |c ρ2 | 0 0 0 0

− i
2 |s ρ2 | 0 0 0 0 0 0

− i
2 |c ρ2 | 0 0 0 0 0 0

0 0 0 1− 1
2s

2
ρ
2
−1

4sρ 0 0

0 0 0 −1
4sρ 1− 1

2c
2
ρ
2

0 0

0 0 0 0 0 −1 + 1
2s

2
ρ
2

1
4sρ

0 0 0 0 0 1
4sρ −1 + 1

2c
2
ρ
2




,

T+ =
1√
2




0 0 0 0 0 i|s ρ
2
| i|c ρ

2
|

0 0 0 0 0 1 + c2
ρ
2
−1

2sρ

0 0 0 0 0 −1
2sρ 1 + s2

ρ
2

−i|s ρ
2
| −1− c2

ρ
2

1
2sρ 0 0 0 0

−i|c ρ
2
| 1

2sρ −1− s2
ρ
2

0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




,
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T− =
1√
2




0 0 0 i|s ρ
2
| i|c ρ

2
| 0 0

0 0 0 −1− c2
ρ
2

1
2sρ 0 0

0 0 0 1
2sρ −1− s2

ρ
2

0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

−i|s ρ
2
| 1 + c2

ρ
2
−1

2sρ 0 0 0 0

−i|c ρ
2
| −1

2sρ 1 + s2
ρ
2

0 0 0 0




,

f(φ) = a




0 |c ρ
2
|φZ −|s ρ

2
|φZ −i|c ρ

2
|φ−W i|s ρ

2
|φ−W i|c ρ

2
|φ+
W −i|s ρ

2
|φ+
W

|c ρ
2
|φZ sρh cρh 0 φ−W 0 φ+

W

−|s ρ
2
|φZ cρh −sρh −φ−W 0 −φ+

W 0

i|c ρ
2
|φ+
W 0 −φ+

W sρh cρh− iφZ 0 0

−i|s ρ
2
|φ+
W φ+

W 0 cρh+ iφZ −sρh 0 0

−i|c ρ
2
|φ−W 0 −φ−W 0 0 sρh cρh+ iφZ

i|s ρ
2
|φ−W φ−W 0 0 0 cρh− iφZ −sρh




, (28)

where sρ and cρ are as defined in (25), with a =
√
a2

1 + a2
2 and ∆ = (MT −MD)/2. Again, sρ is

positive and cρ can have either sign depending on the hierarchy between MT and MD.

4.3 Pure-case limits

Appropriate parametric limits can be taken to decouple the pure state constituents of an admixture.
This can be used to check the consistency of matching computations in Sec. 6. From the singlet-
doublet admixture, we may recover the pure doublet (singlet) case by taking a → 0 or |∆| → ∞,
with ∆ > 0 (∆ < 0), or by taking ρ→ 0 (ρ→ π). Similarly, to recover the pure doublet (triplet) case
from the triplet-doublet admixture, we decouple the triplet (doublet) component by taking a→ 0 or
|∆| → ∞, with ∆ > 0 (∆ < 0), or by taking ρ→ 0 (ρ→ π).

5 Onshell renormalization scheme

A consistent evaluation of amplitudes beyond tree level demands renormalization of the Higgs-WIMP
vertex, hχ̄χ, that appears for admixtures. We define an extension of the onshell renormalization
scheme for the electroweak SM (e.g., see [39]) by expressing the vertex amplitude in terms of physical
masses in the SM and DM sectors. We begin by studying the singlet-doublet mixture, and will later
quote the analogous results for the triplet-doublet mixture.

To avoid confusion with standard notation for counterterms, in this section (only) we denote a
residual mass by µ, and a residual mass counterterm by δµ. We keep the notation introduced in

Sec. 4 for the residual mass eigenvalues, δ
(0)
0 , δ

(±)
0 , etc.

5.1 Singlet-doublet counterterm lagrangian

Let us write the bare lagrangian as the sum of renormalized and counterterm contributions

L = h̄bare
[
iv ·D − µbare − fbare(Hbare)

]
hbare
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= h̄
[
iv ·D + δZhiv ·D − µ− δµ− f(Hbare)− δf(Hbare)

]
h , (29)

where the bare quantities are given by

µbare = diag(µbare
S , µbare

D , µbare
D , µbare

D , µbare
D ) ,

fbare(H) =
abare

1√
2




0 H† +HT i(HT −H†)
H +H∗ 02 02

i(H −H∗) 02 02




+
abare

2√
2




0 −i(HT −H†) HT +H†

−i(H −H∗) 02 02

H +H∗ 02 02




≡ abare
1 f1(H) + abare

2 f2(H) , (30)

and the expression for fbare(H) above is valid for arbitrary H (in particular, for Hbare). The gauge
symmetry preserving counterterms are given by

Zh = 1 + δZh = 1 + diag(δZS , δZD14) ,

µ+ δµ = Z
1
2
h µ

bareZ
1
2
h = diag(µS + δµS , (µD + δµD)14) ,

f(Hbare) + δf(Hbare) = Z
1
2
h f

bare(Hbare)Z
1
2
h = (a1 + δa1)f1(H ′) + (a2 + δa2)f2(H ′) . (31)

We have introduced H ′ to absorb the renormalization of v:

Hbare = Z
1
2
H

(
φ+
W

1√
2
(v − δv + h+ iφZ)

)
= Z

1
2
H

(
1− δv

v

)
H ′ . (32)

Note that the renormalization of v introduces a coupling ∼ δv
v hχ̄χ through the a1f1(H ′) + a2f2(H ′)

term in (31). We will fix the counterterms by enforcing renormalization conditions on the residual
mass matrix (two point functions). Three point functions involving the Higgs interaction will then
be determined.

5.2 Propagator corrections

Anticipating renormalization conditions that preserve the basis h =
(
h

(0)
0 , h

(+)
0 , h

(−)
0 , h

(0)
+ , h

(0)
−
)

of

mass eigenstates introduced in Sec. 4.2.1, let us express the counterterms in this basis,

δµ = δµD15 +




0 |c ρ
2
| va(a2δa1 − a1δa2) |s ρ

2
| va(a1δa2 − a2δa1) 0 0

· 2c2
ρ
2
(δ∆) + sρ

v
a(a1δa1 + a2δa2) −sρ(δ∆) + cρ

v
a(a1δa1 + a2δa2) 0 0

· · 2s2
ρ
2
(δ∆)− sρ va(a1δa1 + a2δa2) 0 0

· · · 0 0

· · · · 0



,
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�Zh = �ZD15 +

0
BBBBBBB@

0 0 0 0 0

· c2
⇢
2
(�ZS � �ZD) �1

2s⇢(�ZS � �ZD) 0 0

· · s2
⇢
2
(�ZS � �ZD) 0 0

· · · 0 0

· · · · 0

1
CCCCCCCA

, (33)

where the above matrices are symmetric, and (��) = (�µS � �µD)/2. Due to the masslessness of
the photon, the onshell renormalization factor for the electrically charged state, �ZD, is infrared
(IR) divergent. To avoid the associated complications, we may turn o↵ �ZD, corresponding to an
additional overall renormalization of the fields with �ZS = �ZD. This overall renormalization will
not impact the determination of physical masses or mass eigenstates. However, we will of course need
to include additional wavefunction renormalization factors when computing physical amplitudes. In
the following, we allow for arbitrary �ZD.

W±, Z0
h �±

W ,�0
Z

Figure 1: One-loop corrections to two-point functions. Double lines denote heavy WIMPs, zigzag
lines denote gauge bosons, W± or Z0, dashed lines denote the physical Higgs boson, h, and dotted
lines denote Goldstone bosons, �±

W or �0
Z .

We compute the one-loop corrections to the amputated two-point function, ⌃2, from virtual Z0,
W±, h, �0

Z and �±
W exchange, as illustrated in Fig. 1. In the following results, we set the external

momentum to zero (i.e., we compute ⌃2(0)), and the first (second) subscript denotes the final (ini-

tial) state, with values (1, 2, 3, 4, 5) corresponding to the mass eigenstates
⇣
h

(0)
0 , h

(+)
0 , h

(�)
0 , h

(0)
+ , h

(0)
�
⌘
.

Using Feynman-t’Hooft gauge, and expressing results in terms of the basic integral I3(�, m) of Ap-
pendix B, we find

�i[⌃2(0)]11 = � g2
2

4c2
W

c2
⇢
2
I3(�

(�)
0 , mZ)� g2

2

4c2
W

s2
⇢
2
I3(�

(+)
0 , mZ)� g2

2

2
I3(�

(0)
± , mW )

+ a2c2
⇢
2
I3(�

(+)
0 , mZ) + a2s2

⇢
2
I3(�

(�)
0 , mZ) ,

�i[⌃2(0)]22 = � g2
2

4c2
W

s2
⇢
2
I3(�

(0)
0 , mZ)� g2

2

2
s2
⇢
2
I3(�

(0)
± , mW ) + a2s2

⇢I3(�
(+)
0 , mh)

+ a2c2
⇢I3(�

(�)
0 , mh) + a2c2

⇢
2
I3(�

(0)
0 , mZ) + 2a2c2

⇢
2
I3(�

(0)
± , mW ) ,

�i[⌃2(0)]23 = �i[⌃2(0)]32

= � g2
2

8c2
W

s⇢I3(�
(0)
0 , mZ)� g2

2

4
s⇢I3(�

(0)
± , mW ) + a2s⇢c⇢I3(�

(+)
0 , mh)

� a2s⇢c⇢I3(�
(�)
0 , mh)� a2

2
s⇢I3(�

(0)
0 , mZ)� a2s⇢I3(�

(0)
± , mW ) ,
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Figure 1: One-loop corrections to two-point functions. Double lines denote heavy WIMPs, zigzag
lines denote gauge bosons, W± or Z0, dashed lines denote the physical Higgs boson, h, and dotted
lines denote Goldstone bosons, φ±W or φ0

Z .

δZh = δZD15 +




0 0 0 0 0

· c2
ρ
2
(δZS − δZD) −1

2sρ(δZS − δZD) 0 0

· · s2
ρ
2
(δZS − δZD) 0 0

· · · 0 0

· · · · 0



, (33)

where the above matrices are symmetric, and (δ∆) = (δµS − δµD)/2. Due to the masslessness of
the photon, the onshell renormalization factor for the electrically charged state, δZD, is infrared
(IR) divergent. To avoid the associated complications, we may turn off δZD, corresponding to an
additional overall renormalization of the fields with δZS = δZD. This overall renormalization will
not impact the determination of physical masses or mass eigenstates. However, we will of course need
to include additional wavefunction renormalization factors when computing physical amplitudes. In
the following, we allow for arbitrary δZD.

We compute the one-loop corrections to the amputated two-point function, Σ2, from virtual Z0,
W±, h, φ0

Z and φ±W exchange, as illustrated in Fig. 1. In the following results, we set the external
momentum to zero (i.e., we compute Σ2(0)), and the first (second) subscript denotes the final (ini-

tial) state, with values (1, 2, 3, 4, 5) corresponding to the mass eigenstates
(
h

(0)
0 , h

(+)
0 , h

(−)
0 , h

(0)
+ , h

(0)
−
)

.

Using Feynman-t’Hooft gauge, and expressing results in terms of the basic integral I3(δ,m) of Ap-
pendix B, we find

−i[Σ2(0)]11 = − g2
2

4c2
W

c2
ρ
2
I3(δ

(−)
0 ,mZ)− g2

2

4c2
W

s2
ρ
2
I3(δ

(+)
0 ,mZ)− g2

2

2
I3(δ

(0)
± ,mW )

+ a2c2
ρ
2
I3(δ

(+)
0 ,mZ) + a2s2

ρ
2
I3(δ

(−)
0 ,mZ) ,

−i[Σ2(0)]22 = − g2
2

4c2
W

s2
ρ
2
I3(δ

(0)
0 ,mZ)− g2

2

2
s2
ρ
2
I3(δ

(0)
± ,mW ) + a2s2

ρI3(δ
(+)
0 ,mh)

+ a2c2
ρI3(δ

(−)
0 ,mh) + a2c2

ρ
2
I3(δ

(0)
0 ,mZ) + 2a2c2

ρ
2
I3(δ

(0)
± ,mW ) ,

−i[Σ2(0)]23 = −i[Σ2(0)]32

= − g2
2

8c2
W

sρI3(δ
(0)
0 ,mZ)− g2

2

4
sρI3(δ

(0)
± ,mW ) + a2sρcρI3(δ

(+)
0 ,mh)

− a2sρcρI3(δ
(−)
0 ,mh)− a2

2
sρI3(δ

(0)
0 ,mZ)− a2sρI3(δ

(0)
± ,mW ) ,

−i[Σ2(0)]33 = − g2
2

4c2
W

c2
ρ
2
I3(δ

(0)
0 ,mZ)− g2

2

2
c2
ρ
2
I3(δ

(0)
± ,mW ) + a2s2

ρI3(δ
(−)
0 ,mh)
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+ a2c2
ρI3(δ

(+)
0 ,mh) + a2s2

ρ
2
I3(δ

(0)
0 ,mZ) + 2a2s2

ρ
2
I3(δ

(0)
± ,mW ) ,

−i[Σ2(0)]44 = −i[Σ2(0)]55

= −e2I3(δ
(0)
± , λ)− g2

2

4c2
W

(1− 2s2
W )2I3(δ

(0)
± ,mZ)− g2

2

4
I3(δ

(0)
0 ,mW )

− g2
2

4
s2
ρ
2
I3(δ

(+)
0 ,mW )− g2

2

4
c2
ρ
2
I3(δ

(−)
0 ,mW ) + a2c2

ρ
2
I3(δ

(+)
0 ,mW )

+ a2s2
ρ
2
I3(δ

(−)
0 ,mW ) , (34)

where λ is a fictitious photon mass, and the self-energy components not displayed above vanish. We
may evaluate Σ(v · k) by the substitution I3(δ,m)→ I3(δ − v · k,m).

5.3 Renormalization conditions

Let us fix the counterterms δa1, δa2, δµS , δµD and δZS by enforcing that the physical residual masses
of the neutral states are given by the renormalized parameters of the lagrangian,

[δµ]11 + Re[Σ2(δ
(0)
± )]11 − δ(0)

0 [δZh]11 = 0 ,

[δµ]22 + Re[Σ2(δ
(+)
0 )]22 − δ(+)

0 [δZh]22 = 0 ,

[δµ]33 + Re[Σ2(0)]33 = 0 , (35)

and that the lightest mass eigenstate is proportional to the vector (0, 0, 1, 0, 0),

[δµ]13 + Re[Σ2(0)]13 = 0 ,

[δµ]23 + Re[Σ2(0)]23 = 0 . (36)

This scheme defines renormalized values for a and t ρ
2

through the physical mass differences between
neutral states,

M
h
(+)
0

−M
h
(−)
0

= 2avs−1
ρ ,

M
h
(0)
0

−M
h
(−)
0

= avt ρ
2
, (37)

where the mass of the neutral mass eigenstate h
(·)
0 is denoted M

h
(·)
0

. Note also that the presence of

δZS 6= δZD is required to maintain the orientation of the lightest mass eigenstate under renormal-
ization. Solving for the counterterms, we find from [δµ]13,

δa1

a1
=
δa2

a2
=⇒ a1δa1 + a2δa2 = a2 δa1

a1
. (38)

The remaining system of equations involving [δµ]23, [δµ]11, [δµ]22 and [δµ]33 then yields

av
δa1

a1
= −[δµ]23 + t−1

ρ
2

([δµ]11 − [δµ]33)

= [Σ2(0)]23 + t−1
ρ
2

(
[Σ2(0)]33 − [Σ2(δ

(0)
0 )]11 + δ

(0)
0 [δZh]11

)
,
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δZS = δZD +
1

av

{
t ρ
2
[Σ2(δ

(+)
0 )]22 + 2[Σ2(0)]23 + t−1

ρ
2

[Σ2(0)]33 − 2s−1
ρ [Σ2(δ

(0)
0 )]11

}
. (39)

We focus here on the counterterms δa1, δa2, and δZS which enter in the calculation of amplitudes
relevant for WIMP-nucleon scattering. Explicit expressions for the remaining counterterms δµS and

δµD may be similarly obtained. We note that the degeneracy between the mass of the h
(0)
0 state and

the h
(0)
± states is lifted by a finite amount, predicted in terms of renormalized parameters as

M
h
(0)
±
−M

h
(0)
0

= [Σ2(δ
(0)
± )]44 − [Σ2(δ

(0)
0 )]11 , (40)

where we have used that [δµ]11 = [δµ]44, [δZh]11 = [δZh]44 and δ
(0)
0 = δ

(0)
± .

5.4 Extension to triplet-doublet

The extension to the triplet-doublet case is straightforward. The counterterms δa1, δa2, δµT ,
δµD, δZT and δZD are introduced in an analogous manner. In terms of the mass eigenbasis

h =
(
h

(0)
0 , h

(+)
0 , h

(−)
0 , h

(+)
+ , h

(−)
+ , h

(+)
− , h

(−)
−
)

introduced in Sec. 4.2.2, the counterterms are given by

the 7× 7 matrices,

δµ = δµD17 +



δµ0 0 0

0 δµ+ 0

0 0 δµ−


 , δZh = δZD17 +



δZ0 0 0

0 δZ+ 0

0 0 δZ−


 , (41)

where the submatrices for the neutral and charged sectors are specified by the following symmetric
matrices,

δµ0 =




0 |c ρ
2
| va(a2δa1 − a1δa2) |s ρ

2
| va(a1δa2 − a2δa1)

· 2c2
ρ
2
(δ∆) + sρ

v
a(a1δa1 + a2δa2) −sρ(δ∆) + cρ

v
a(a1δa1 + a2δa2)

· · 2s2
ρ
2
(δ∆)− sρ va(a1δa1 + a2δa2)


 ,

δµ± =


 2c2

ρ
2
(δ∆) + sρ

v
a(a1δa1 + a2δa2) −sρ(δ∆) + cρ

v
a(a1δa1 + a2δa2)± i va(a1δa2 − a2δa1)

· 2s2
ρ
2
(δ∆)− sρ va(a1δa1 + a2δa2)


 ,

δZ0 =




0 0 0

· c2
ρ
2
(δZT − δZD) −1

2sρ(δZT − δZD)

· · s2
ρ
2
(δZT − δZD)


 ,

δZ± =


 c2

ρ
2
(δZT − δZD) −1

2sρ(δZT − δZD)

· s2
ρ
2
(δZT − δZD)


 , (42)

with (δ∆) = (δµT − δµD)/2. To fix counterterms, we impose the same renormalization conditions
given in (35) and (36). We again require the one-loop corrections to the two-point function, Σ2.
In the following results, the first (second) subscript denotes the final (initial) state, with values

(1, 2, 3, 4, 5, 6, 7) corresponding to the mass eigenstates
(
h

(0)
0 , h

(+)
0 , h

(−)
0 , h

(+)
+ , h

(−)
+ , h

(+)
− , h

(−)
−
)

. Using
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Feynman-t’Hooft gauge and expressing results in terms of the basic integral I3(δ,m) of Appendix B,
we find

−i[Σ2(0)]11 = − g2
2

4c2
W

s2
ρ
2
I3(δ

(+)
0 ,mZ)− g2

2

4c2
W

c2
ρ
2
I3(δ

(−)
0 ,mZ)− g2

2

2
s2
ρ
2
I3(δ

(+)
± ,mW )

− g2
2

2
c2
ρ
2
I3(δ

(−)
± ,mW ) + a2c2

ρ
2
I3(δ

(+)
0 ,mZ) + a2s2

ρ
2
I3(δ

(−)
0 ,mZ)

+ 2a2c2
ρ
2
I3(δ

(+)
± ,mW ) + 2a2s2

ρ
2
I3(δ

(−)
± ,mW ) ,

−i[Σ2(0)]22 = − g2
2

4c2
W

s2
ρ
2
I3(δ

(0)
0 ,mZ)− g2

2

2

(
1 + c2

ρ
2

)2
I3(δ

(+)
± ,mW )− g2

2

8
s2
ρI3(δ

(−)
± ,mW )

+ a2c2
ρ
2
I3(δ

(0)
0 ,mZ) + 2a2I3(δ

(−)
± ,mW ) + a2c2

ρI3(δ
(−)
0 ,mh) + a2s2

ρI3(δ
(+)
0 ,mh) ,

−i[Σ2(0)]23 = −i[Σ2(0)]32

= − g2
2

8c2
W

sρI3(δ
(0)
0 ,mZ) +

g2
2

4
sρ

(
1 + c2

ρ
2

)
I3(δ

(+)
± ,mW ) +

g2
2

4
sρ

(
1 + s2

ρ
2

)
I3(δ

(−)
± ,mW )

− a2

2
sρI3(δ

(0)
0 ,mZ) + a2cρsρI3(δ

(+)
0 ,mh)− a2cρsρI3(δ

(−)
0 ,mh) ,

−i[Σ2(0)]33 = − g2
2

4c2
W

c2
ρ
2
I3(δ

(0)
0 ,mZ)− g2

2

2

(
1 + s2

ρ
2

)2
I3(δ

(−)
± ,mW )− g2

2

8
s2
ρI3(δ

(+)
± ,mW )

+ a2s2
ρ
2
I3(δ

(0)
0 ,mZ) + 2a2I3(δ

(+)
± ,mW ) + a2c2

ρI3(δ
(+)
0 ,mh) + a2s2

ρI3(δ
(−)
0 ,mh) ,

−i[Σ2(0)]44 = −i[Σ2(0)]66

= − g2
2

c2
W

(
c2
W −

1

2
s2
ρ
2

)2

I3(δ
(+)
± ,mZ)− g2

2

16c2
W

s2
ρI3(δ

(−)
± ,mZ)− g2

2

4
s2
ρ
2
I3(δ

(0)
0 ,mW )

− e2I3(δ
(+)
± , λ)− g2

2

4

(
1 + c2

ρ
2

)2
I3(δ

(+)
0 ,mW )− g2

2

16
s2
ρI3(δ

(−)
0 ,mW ) + a2I3(δ

(−)
± ,mZ)

+ a2I3(δ
(−)
0 ,mW ) + a2c2

ρ
2
I3(δ

(0)
0 ,mW ) + a2s2

ρI3(δ
(+)
± ,mh) + a2c2

ρI3(δ
(−)
± ,mh) ,

−i[Σ2(0)]45 = −i[Σ2(0)]54 = −i[Σ2(0)]67 = −i[Σ2(0)]76

=
g2

2

4c2
W

sρ

(
c2
W −

1

2
s2
ρ
2

)
I3(δ

(+)
± ,mZ) +

g2
2

4c2
W

sρ

(
c2
W −

1

2
c2
ρ
2

)
I3(δ

(−)
± ,mZ)

− g2
2

8
sρI3(δ

(0)
0 ,mW ) +

g2
2

8
sρ

(
1 + c2

ρ
2

)
I3(δ

(+)
0 ,mW ) +

g2
2

8
sρ

(
1 + s2

ρ
2

)
I3(δ

(−)
0 ,mW )

− a2

2
sρI3(δ

(0)
0 ,mW ) + a2cρsρI3(δ

(+)
± ,mh)− a2cρsρI3(δ

(−)
± ,mh) ,

−i[Σ2(0)]55 = −i[Σ2(0)]77
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= − g2
2

16c2
W

s2
ρI3(δ

(+)
± ,mZ)− g2

2

c2
W

(
c2
W −

1

2
c2
ρ
2

)2

I3(δ
(−)
± ,mZ)− g2

2

4
c2
ρ
2
I3(δ

(0)
0 ,mW )

− e2I3(δ
(−)
± , λ)− g2

2

16
s2
ρI3(δ

(+)
0 ,mW )− g2

2

4

(
1 + s2

ρ
2

)2
I3(δ

(−)
0 ,mW ) + a2I3(δ

(+)
± ,mZ)

+ a2I3(δ
(+)
0 ,mW ) + a2s2

ρ
2
I3(δ

(0)
0 ,mW ) + a2c2

ρI3(δ
(+)
± ,mh) + a2s2

ρI3(δ
(−)
± ,mh) , (43)

where λ is a fictitious photon mass, and the self-energy components not displayed above vanish. The
remainder of the renormalization program proceeds as for the singlet-doublet system. In particular,
the similarity of the neutral sectors implies relations similar to (39),

av
δa1

a1
= av

δa2

a2
= [Σ2(0)]23 + t−1

ρ
2

(
[Σ2(0)]33 − [Σ2(δ

(0)
0 )]11 + δ

(0)
0 [δZh]11

)
,

δZT = δZD +
1

av

{
t ρ
2
[Σ2(δ

(+)
0 )]22 + 2[Σ2(0)]23 + t−1

ρ
2

[Σ2(0)]33 − 2s−1
ρ [Σ2(δ

(0)
0 )]11

}
, (44)

where the self-energy components are those of the triplet-doublet system given in (43).

6 Matching at the weak scale

This section describes the matching of the effective theory described by (6) onto the effective theory
described by (2), through integrating out weak-scale particles, W±, Z0, h, φ0

Z , φ±W , and t. The

complete basis of twelve bare matching coefficients, c
(0)
q , c

(2)
q , c

(0)
g , and c

(2)
g , are determined at leading

order in perturbation theory.
We may write the quark and gluon matching coefficients in terms of contributions from one-boson

exchange (1BE) and two-boson exchange (2BE) diagrams,

c(0)
q = c(0)

q 1BE + c(0)
q 2BE + . . . ,

c(0)
g = c(0)

g 1BE + c(0)
g 2BE + . . . ,

c(2)
q = c(2)

q 2BE + . . . ,

c(2)
g = c(2)

g 2BE + . . . , (45)

where the ellipses denote subleading contributions with more than two bosons exchanged. Note that
spin-2 coefficients do not receive contributions from one-boson exchange amplitudes.

In the following analysis, we denote generic up- and down-type quarks by U and D, respectively,
and an arbitrary quark flavor by q. We specify the contributions to the matching coefficients in terms
of the constants

c
(U)
V = 1− 8

3
s2
W , c

(D)
V = −1 +

4

3
s2
W , c

(U)
A = −1 , c

(D)
A = 1 . (46)

We systematically neglect subleading corrections involving light quark masses, and use CKM unitarity
to simplify sums over quark flavors. Together with |Vtb| ≈ 1 (and hence |Vtd| ≈ |Vts| ≈ 0), these

assumptions lead to c
(S)
u = c

(S)
c and c

(S)
d = c

(S)
s for both S = 0, 2, reducing the number of independent

matching coefficients to eight. When the interactions are isospin-conserving, e.g., as in the pure triplet

case, we furthermore have c
(S)
u = c

(S)
d and c

(S)
c = c

(S)
s for both S = 0, 2, leaving only six independent
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coe�cients. We use Feynman-t’Hooft gauge for the electroweak sector, and neglect higher-order

corrections to the tree-level relations between residual masses, �
(0)
0 = �

(0)
± for the singlet-doublet

system, and �
(±)
0 = �

(±)
± for the triplet-doublet system. In Secs. 6.1 and 6.3, we match to quark

operators using onshell external quarks, and thus use the equivalence of mquq(p) and p/uq(p).

6.1 Quark matching: one-boson exchange

+ + + +

+ +

2
66664

+ . . .

3
77775

+ + . . . = c
(0)
q 1BE

Figure 2: Matching condition for one-boson exchange contributions to quark operators. The full
theory diagrams on the left-hand side illustrate the possible types of contributions to the h�̄� three-
point function. Time-reversed diagrams are not shown. Double lines denote heavy WIMPs, zigzag
lines denote gauge bosons, W± or Z0, dotted lines denote Goldstone bosons, �±

W or �0
Z , dashed lines

denote the physical Higgs boson, h, and single lines with arrows denote quarks. The solid circle
denotes counterterm contributions. The solid square denotes e↵ective theory vertices.

The matching condition for one-boson exchange is pictured in Fig. 2. The full-theory amplitude
is given by

iMq = i
⇣
M̂tree + M̂vertex,1 + M̂vertex,2 + M̂�a1 + M̂�Z + M̂�v

⌘ i

�m2
h

�ig2mq

2mW
ūq(p)uq(p) , (47)

where the M̂i are contributions to the h�̄� three-point function. These come from tree-level Higgs
exchange (M̂tree), one-loop diagrams with Higgs coupling to W± or Z0 (M̂vertex,1), one-loop vertex
corrections with Higgs coupling to the heavy particle (M̂vertex,2), the �a1 counterterm (M̂�a1), wave-
function renormalization (M̂�Z), and the renormalization of the Higgs vacuum expectation value
(M̂�v). Having included the counterterms, the sum of these contributions is finite. The one-boson
exchange contribution to the spin-0 quark matching coe�cient is thus

c(0)
q 1BE = � g2

2m2
hmW

⇣
M̂tree + M̂vertex,1 + M̂vertex,2 + M̂�a1 + M̂�Z + M̂�v

⌘
. (48)

We neglect one-boson exchange contributions containing O(↵1
2) corrections to the SM hq̄q coupling,

shown in Fig. 2 within square brackets. This gauge-invariant class of diagrams is loop-suppressed
relative to the tree-level diagram for any value of the h�̄� coupling. On the other hand, the remain-
ing loop diagrams (including those in Fig. 4) may compete with, or even dominate, the tree-level
contribution depending on the size of the h�̄� coupling. Let us proceed to specify the contributions,
M̂i, for each SM extension in terms of the integrals I1(�, m), I2(�, m), I3(�, m) and I4(�1, �2, m) of
Appendix B.
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coefficients. We use Feynman-t’Hooft gauge for the electroweak sector, and neglect higher-order

corrections to the tree-level relations between residual masses, δ
(0)
0 = δ

(0)
± for the singlet-doublet

system, and δ
(±)
0 = δ

(±)
± for the triplet-doublet system. In Secs. 6.1 and 6.3, we match to quark

operators using onshell external quarks, and thus use the equivalence of mquq(p) and p/uq(p).

6.1 Quark matching: one-boson exchange

The matching condition for one-boson exchange is pictured in Fig. 2. The full-theory amplitude is
given by

iMq = i
(
M̂tree + M̂vertex,1 + M̂vertex,2 + M̂δa1 + M̂δZ + M̂δv

) i

−m2
h

−ig2mq

2mW
ūq(p)uq(p) , (47)

where the M̂i are contributions to the hχ̄χ three-point function. These come from tree-level Higgs
exchange (M̂tree), one-loop diagrams with Higgs coupling to W± or Z0 (M̂vertex,1), one-loop vertex
corrections with Higgs coupling to the heavy particle (M̂vertex,2), the δa1 counterterm (M̂δa1), wave-
function renormalization (M̂δZ), and the renormalization of the Higgs vacuum expectation value
(M̂δv). Having included the counterterms, the sum of these contributions is finite. The one-boson
exchange contribution to the spin-0 quark matching coefficient is thus

c(0)
q 1BE = − g2

2m2
hmW

(
M̂tree + M̂vertex,1 + M̂vertex,2 + M̂δa1 + M̂δZ + M̂δv

)
. (48)

We neglect one-boson exchange contributions containing O(α1
2) corrections to the SM hq̄q coupling,

shown in Fig. 2 within square brackets. This gauge-invariant class of diagrams is loop-suppressed
relative to the tree-level diagram for any value of the hχ̄χ coupling. On the other hand, the remain-
ing loop diagrams (including those in Fig. 4) may compete with, or even dominate, the tree-level
contribution depending on the size of the hχ̄χ coupling. Let us proceed to specify the contributions,
M̂i, for each SM extension in terms of the integrals I1(δ,m), I2(δ,m), I3(δ,m) and I4(δ1, δ2,m) of
Appendix B.
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6.1.1 Pure states

For pure states the only diagrams are those with Higgs coupling to W± and Z0, and in terms of the
constants CW and CZ specified in (9) the amplitude is given by

iM̂vertex,1 = −CZ
g3

2

c3
W

mZI1(0,mZ)− CW g3
2mW I1(0,mW ) . (49)

Using (48), we find the contribution to the spin-0 quark matching coefficient,

c(0)
q 1BE =

πΓ(1 + ε)g4
2

(4π)2−ε

{
− m−3−2ε

W

2x2
h

(
CW +

CZ
c3
W

)
+O(ε)

}
, (50)

where xh = mh/mW . The pure triplet (doublet) result is obtained by setting CW = 2 and CZ = 0
(CW = 1/2 and CZ = 1/4) above.

6.1.2 Singlet-doublet admixture

For the singlet-doublet case, we have the following contributions to the hχ̄χ three-point function,

iM̂tree = iasρ , iM̂δa1 = iasρ
δa1

a1
, iM̂δZ = iasρδZχ , iM̂δv = iasρ

δv

v
,

iM̂vertex,1 = − g3
2

4c3
W

c2
ρ
2
mZI1(δ

(0)
0 ,mZ) +

g2
2a

4c2
W

sρI2(δ
(0)
0 ,mZ) +

g2a
2

2
s2
ρ
2

m2
h

mW
I1(δ

(0)
0 ,mZ)

+
3g2a

2

2

m2
h

mW

[
s2
ρI1(δ

(−)
0 ,mh) + c2

ρI1(δ
(+)
0 ,mh)

]
− g3

2

2
c2
ρ
2
mW I1(δ

(0)
0 ,mW )

+
g2

2a

2
sρI2(δ

(0)
0 ,mW ) + g2a

2s2
ρ
2

m2
h

mW
I1(δ

(0)
0 ,mW ) ,

iM̂vertex,2 = −a3s3
ρI4(δ

(−)
0 , δ

(−)
0 ,mh) + a3sρc

2
ρI4(δ

(+)
0 , δ

(+)
0 ,mh)− 2a3sρc

2
ρI4(δ

(−)
0 , δ

(+)
0 ,mh) , (51)

where δa1 is given in (39), the onshell Z factor is given by

Z−1
χ − 1 = −δZχ = [δZh]33 −

∂

∂v · k [Σ2(v · k)]33 = δZD − [Σ′2(0)]33

+
1

av
s2
ρ
2

{
− 2s−1

ρ [Σ2(δ
(0)
0 )]11 + t ρ

2
[Σ2(δ

(+)
0 )]22 + 2[Σ2(0)]23 + t−1

ρ
2

[Σ2(0)]33

}
, (52)

and δv is determined by the SM result [40],

δv

v
=

1

2
ΣAA′(0)− sW

cW

ΣAZ(0)

m2
Z

− c2
W

2s2
W

Re[ΣZZ(m2
Z)]

m2
Z

+
c2
W − s2

W

2s2
W

Re[ΣWW (m2
W )]

m2
W

− 1

2
Re[ΣHH′(m2

h)] .

(53)

The two-point functions required in (53) are specified in (121) of Appendix B.8 The one-boson
exchange quark matching coefficient is obtained by collecting the above amplitudes into (48). Upon
taking the pure-case limits described in Sec. 4.3, we recover the results (49) and (50) for a pure
doublet. In the pure singlet limit, the one-boson exchange amplitudes vanish.

8We are here neglecting contributions from states beyond the SM. Renormalization schemes relevant for WIMPs of
mass M ∼ mW are discussed in Refs. [41].
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6.1.3 Triplet-doublet admixture

For the triplet-doublet case we have the following contributions to the hχ̄χ three-point function,

iM̂tree = iasρ , iM̂δa1 = iasρ
δa1

a1
, iM̂δZ = iasρδZχ , iM̂δv = iasρ

δv

v
,

iM̂vertex,1 = − g3
2

4c3
W

c2
ρ
2
mZI1(δ

(0)
0 ,mZ) +

g2
2a

4c2
W

sρI2(δ
(0)
0 ,mZ) +

g2a
2

2
s2
ρ
2

m2
h

mW
I1(δ

(0)
0 ,mZ)

+
3g2a

2

2

m2
h

mW

[
s2
ρI1(δ

(−)
0 ,mh) + c2

ρI1(δ
(+)
0 ,mh)

]
− g3

2

8
s2
ρmW I1(δ

(+)
0 ,mW )

− g3
2

2
(1 + s2

ρ
2
)2mW I1(δ

(−)
0 ,mW ) +

g2
2a

2
sρI2(δ

(+)
0 ,mW ) + g2a

2 m
2
h

mW
I1(δ

(+)
0 ,mW ) ,

iM̂vertex,2 = −g
2
2a

8
s3
ρI4(δ

(+)
0 , δ

(+)
0 ,mW ) +

g2
2a

2
(1 + s2

ρ
2
)sρcρI4(δ

(−)
0 , δ

(+)
0 ,mW )

+
g2

2a

2
(1 + s2

ρ
2
)2sρI4(δ

(−)
0 , δ

(−)
0 ,mW ) + 2a3sρI4(δ

(+)
0 , δ

(+)
0 ,mW )

+ a3c2
ρsρI4(δ

(+)
0 , δ

(+)
0 ,mh)− 2a3c2

ρsρI4(δ
(−)
0 , δ

(+)
0 ,mh)− a3s3

ρI4(δ
(−)
0 , δ

(−)
0 ,mh) , (54)

where δa1 is specified in (44) and δv in (53). The onshell Z factor takes the same form as in (52),
but uses the self-energy components for the triplet-doublet system given in (43). The one-boson
exchange quark matching coefficient is obtained by collecting the above amplitudes into (48). Upon
taking the pure case limits described in Sec. 4.3, we recover the results (49) and (50) for both pure
triplet and pure doublet.

6.2 Gluon matching: one-boson exchange

One-boson exchange contributions to gluon matching are pictured in Fig. 3. The two-loop diagrams
factorize into separate one-loop diagrams: the boson loop given by the amplitudes M̂i determined
in the previous section, and the fermion loop familiar from, e.g., the top quark contribution to the
effective h(GAµν)2 vertex (e.g., see [42]). In terms of quark matching coefficients from one-boson

exchange, c
(0)
q 1BE, the leading contribution to the bare gluon matching coefficient is thus

c(0)
g 1BE = − g2

(4π)2

1

3
c(0)
q 1BE +O(ε) . (55)

For the same reason discussed after Eq. (48), we neglect the one-boson exchange contributions con-
taining O(α1

2) corrections to the effective h(GAµν)2 coupling, shown within square brackets in Fig. 3.

In the above result for c
(0)
g 1BE, the light quark contributions cancel between the full and effective

theory amplitudes, leaving only contributions from the top quark. Further discussion of effective
theory contributions can be found in Sec. 6.5.

6.3 Quark matching: two-boson exchange

Let us now consider quark matching from two-boson exchange, as displayed in Fig. 4. In covariant
gauges, in particular Feynman-t’Hooft gauge employed here, the full theory contributions include
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Figure 3: Matching condition for one-boson exchange contributions to gluon operators. The notation
for the di↵erent lines and vertices is as in Fig. 2. All active quark flavors, such as the top quark in
the full theory, are included in the loops.
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= c
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q 2BE + c

(2)
q 2BE

Figure 4: Matching condition for two-boson exchange contributions to quark operators. The notation
for the di↵erent lines and vertices is as in Fig. 2. The full theory diagrams illustrate the possible
types of two-boson exchange. Crossed diagrams and time-reversed diagrams are not shown.

diagrams with exchange of two gauge bosons (W± or Z0), two Goldstone bosons (�0
Z or �±

W ), one
gauge and one Goldstone boson (Z0 and �0

Z , or W± and �±
W ), or two Higgs bosons. In terms of these

contributions the total amplitude is

Mq = MZZ
q + MWW

q + MW�W
q + MZ�Z

q + M�W�W
q + M�Z�Z

q + Mhh
q , (56)

where the superscripts denote which bosons are exchanged, and the contributions from crossed dia-
grams and time-reversed diagrams are included in each amplitude. Upon expressing the amplitudes
in terms of the integrals J(mV , M, �), Jµ(p, mV , M, �), J�(p, mV , M, �) and Jµ

�(mV , M, �) defined in
Appendix C, we may write each amplitude in the form

MBB0
q = ūq(p)


mq c(0)BB0

q +

✓
v/v · p� p/

d

◆
c(2)BB0
q

�
uq(p) , (57)
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diagrams with exchange of two gauge bosons (W± or Z0), two Goldstone bosons (φ0
Z or φ±W ), one

gauge and one Goldstone boson (Z0 and φ0
Z , or W± and φ±W ), or two Higgs bosons. In terms of these

contributions the total amplitude is

Mq =MZZ
q +MWW

q +MWφW
q +MZφZ

q +MφWφW
q +MφZφZ

q +Mhh
q , (56)

where the superscripts denote which bosons are exchanged, and the contributions from crossed dia-
grams and time-reversed diagrams are included in each amplitude. Upon expressing the amplitudes
in terms of the integrals J(mV ,M, δ), Jµ(p,mV ,M, δ), J−(p,mV ,M, δ) and Jµ−(mV ,M, δ) defined in
Appendix C, we may write each amplitude in the form

MBB′
q = ūq(p)

[
mq c

(0)BB′
q +

(
v/v · p− p/

d

)
c(2)BB′
q

]
uq(p) , (57)

where the superscript BB′ denotes the type of two-boson exchange. The contributions to spin-0 and

spin-2 quark matching coefficients can then be read off as c
(0)BB′
q and c

(2)BB′
q , respectively.
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6.3.1 Pure states

For pure states the contributions come from diagrams with exchange of W± or Z0 bosons. In terms
of CW and CZ specified in (9), the amplitudes are

iMZZ
q =

g4
2CZ

16c4
W

ūq(p)

[[
c

(q)2
V + c

(q)2
A

]
v/
[
J/(p,mZ , 0, 0) + p/J(mZ , 0, 0)

]
v/

+mq

[
c

(q)2
V − c(q)2

A

]
J(mZ , 0, 0)

]
uq(p) ,

iMWW
U =

g4
2CW
8

ūU (p)v/
[
J/(p,mW , 0, 0) + p/J(mW , 0, 0)

]
v/uU (p) ,

iMWW
D =

∑

U

g4
2CW
8
|VUD|2 ūD(p)v/

[
J/(p,mW ,mU , 0) + p/J(mW ,mU , 0)

]
v/uD(p) . (58)

Upon writing these amplitudes in the form of (57) and evaluating integrals, we find the contributions
to the matching coefficients,

c
(0)
U 2BE =

πΓ(1 + ε)g4
2

(4π)2−ε

{
m−3−2ε
Z CZ
8c4
W

[
c

(U)2
V − c(U)2

A

]
+O(ε)

}
,

c
(0)
D 2BE =

πΓ(1 + ε)g4
2

(4π)2−ε

{
m−3−2ε
Z CZ
8c4
W

[
c

(D)2
V − c(D)2

A

]
+ δDb

m−3−2ε
W CW

2

[
− xt

4(xt + 1)3

]
+O(ε)

}
,

c
(2)
U 2BE =

πΓ(1 + ε)g4
2

(4π)2−ε

{[
m−3−2ε
W CW +

m−3−2ε
Z CZ
2c4
W

[
c

(U)2
V + c

(U)2
A

]][1

3
+

(
11

9
− 2

3
log 2

)
ε

]
+O(ε2)

}
,

c
(2)
D 2BE =

πΓ(1 + ε)g4
2

(4π)2−ε

{[
m−3−2ε
W CW +

m−3−2ε
Z CZ
2c4
W

[
c

(D)2
V + c

(D)2
A

]][1

3
+

(
11

9
− 2

3
log 2

)
ε

]

+ δDb
m−3−2ε
W CW

2

[
(3xt + 2)

3(xt + 1)3
− 2

3
+

(
2xt(7x

2
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, (59)

where xt = mt/mW , and the Kronecker delta, δDb, is equal to unity for D = b and vanishes for
D = d, s. We obtain the pure triplet (doublet) result upon setting CW = 2 and CZ = 0 (CW = 1/2
and CZ = 1/4) in (59).

6.3.2 Singlet-doublet admixture

For the singlet-doublet case the amplitudes for the different types of two-boson exchange are
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The amplitudes Mhh
q , MφZφZ

q , and MφWφW
U are suppressed by light quark masses. Comparing each

amplitude above with (57), we find the contributions to spin-0 and spin-2 quark matching coefficients,
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where we have defined

Ĵ(mx,my, δz) ≡ J1(mx,my, δz) + 2J2(mx,my, δz) + 2J(mx,my, δz). (62)

The integrals J(mV ,M, δ), J1(mV ,M, δ), J2(mV ,M, δ), J−(mV ,M, δ) and J1−(mV ,M, δ) are given

in Appendix C. The matching coefficients c
(0)
q 2BE and c

(2)
q 2BE for a given quark q are obtained by

summing the nonvanishing contributions above,
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Upon taking the pure-case limits described in Sec. 4.3, we recover the results (58) and (59) for a pure
doublet. In the pure singlet limit, the two-boson exchange amplitudes vanish.

6.3.3 Triplet-doublet admixture

We may similarly compute the two-boson exchange amplitudes for the triplet-doublet system, and
upon comparing with (57), we find the following contributions to spin-0 and spin-2 quark matching
coefficients,
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Ĵ(mW ,mU , δ

(+)
0 )

]}
,

c
(2)
D

WW =
∑

U

g4
2

16
|VUD|2

[
(1 + s2

ρ
2
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where Ĵ(mx,my, δz) is given in (62), and the relevant integrals can be found in Appendix C. The

total matching coefficients c
(0)
q 2BE and c

(2)
q 2BE are obtained by summing the contributions above as

in (63). Upon taking the pure-case limits described in Sec. 4.3, we recover the results (58) and (59)
for both pure triplet and pure doublet.

6.4 Gluon matching: two-boson exchange

The gluon matching condition for two-boson exchange is pictured in Fig. 5. If we consider the external
gluons as a background field [10], we may express the full theory diagrams in terms of electroweak
polarization tensors induced by a loop of quarks. For example, using the Feynman rules for the
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Figure 5: Matching condition for two-boson exchange contributions to gluon operators. The notation
for the di↵erent lines and vertices is as in Fig. 2. The diagrams with a quark loop are obtained
by closing the external legs of the corresponding diagrams in Fig. 4, and considering the possible
attachments of two external gluons. All active quark flavors, such as the top quark in the full theory,
are included in the loops.

polarization tensors induced by a loop of quarks. For example, using the Feynman rules for the
WIMP-Z0 coupling from (6), the contributions from exchanging two Z0 bosons may be written as

MZZ ⇠
Z

(dL)
1

�v · L� � + i0

1

(L2 �m2
Z + i0)2

vµv⌫i⇧
µ⌫
(ZZ)(L) , (65)

where (dL) = ddL/(2⇡)d (this shorthand notation is used throughout this work), � is a residual
mass depending on the intermediate WIMP state, and ⇧µ⌫

(ZZ)(L) is the two-gluon part of the Z0

boson polarization tensor in a background gluon field. The amplitudes with exchange of one gauge
and one Goldstone boson, two Goldstone bosons, or two Higgs bosons, have the same structure
but with vector and scalar electroweak polarization tensors appearing. A similar analysis of gluon
contributions to DM-nucleon scattering in Ref. [3] focused on the spin-0 operator. Here we perform
a complete matching for both spin-0 and spin-2 gluon operators, and consider new contributions
appearing in the case of mixed states.

The background field method presents the following strategy for evaluating the two-loop diagrams
of the full theory. First, we determine the two-gluon part of the relevant polarization tensors. These
amplitudes depend only on SM parameters, and can be used for gluon matching in general DM
scenarios; in particular, this part of the computation is independent of whether the heavy-particle
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Figure 5: Matching condition for two-boson exchange contributions to gluon operators. The notation
for the different lines and vertices is as in Fig. 2. The diagrams with a quark loop are obtained
by closing the external legs of the corresponding diagrams in Fig. 4, and considering the possible
attachments of two external gluons. All active quark flavors, such as the top quark in the full theory,
are included in the loops.

WIMP-Z0 coupling from (6), the contributions from exchanging two Z0 bosons may be written as

MZZ ∼
∫

(dL)
1

−v · L− δ + i0

1

(L2 −m2
Z + i0)2

vµvνiΠ
µν
(ZZ)(L) , (65)

where (dL) = ddL/(2π)d (this shorthand notation is used throughout this work), δ is a residual
mass depending on the intermediate WIMP state, and Πµν

(ZZ)(L) is the two-gluon part of the Z0

boson polarization tensor in a background gluon field. The amplitudes with exchange of one gauge
and one Goldstone boson, two Goldstone bosons, or two Higgs bosons, have the same structure
but with vector and scalar electroweak polarization tensors appearing. A similar analysis of gluon
contributions to DM-nucleon scattering in Ref. [3] focused on the spin-0 operator. Here we perform
a complete matching for both spin-0 and spin-2 gluon operators, and consider new contributions
appearing in the case of mixed states.

The background field method presents the following strategy for evaluating the two-loop diagrams
of the full theory. First, we determine the two-gluon part of the relevant polarization tensors. These
amplitudes depend only on SM parameters, and can be used for gluon matching in general DM
scenarios; in particular, this part of the computation is independent of whether the heavy-particle
expansion is employed. Second, we insert the polarization tensors into the boson loop and perform the
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remaining integrals. We illustrate this second part by identifying a basis of heavy-particle integrals
to compute the universal heavy WIMP limit.

In our evaluation we neglect subleading corrections of O(mq/mW ) for light quarks (q 6= t). The
two-loop diagrams in the full theory (cf. Fig. 5) are UV finite, and may be evaluated in d = 4.
However, we regulate the effective theory with dimensional regularization, and in performing the
effective theory subtractions to determine Wilson coefficients it is convenient to also use dimensional
regularization as IR regulator. Thus we choose to implement dimensional regularization as IR regu-
lator also in the full theory. When considering only those terms contributing to the scalar operators
appearing in (2), the relevant amplitudes do not involve γ5 or εµναβ . In particular, the specification
of γ5 for d 6= 4 is unnecessary. Further discussion of effective theory contributions can be found in
Sec. 6.5.

6.4.1 Electroweak polarization tensors in a background gluon field

Let us isolate the two-gluon amplitude of the relevant electroweak polarization tensors in a back-
ground gluon field. The generalized polarization tensors appearing in two-boson exchange contribu-
tions are
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iΠνµ
(ZZ)(L) = �

= −
∑

q

g2
2

16c2
W

∫
ddx eiL·x〈T{q̄(x)γν(c

(q)
V + c

(q)
A γ5)q(x)q̄(0)γµ(c

(q)
V + c

(q)
A γ5)q(0)}〉 ,

iΠµ

(W+φ+W )
(L) = �

=
∑

U,D

g2
2|VUD|2
8mW

∫
ddx eiL·x〈T{D̄(x)

[
− (mU −mD)− (mU +mD)γ5

]
U(x)
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where the momentum L is flowing from left to right in the above diagrams. We also require the
polarization tensors

Πµν
(W−W−)

(L) , Πµ

(W−φ−W )
(L) , Πµ

(φ±WW±)
(L) , Πµ

(φZZ)(L) , Π(φ−Wφ−W )(L) , (67)

which are related to those we have specified in (66) through the identities in (84).
Let us now focus on the object,

iΠ̃(L) ≡
∫
ddx eiL·x〈T{q̄′(x)Γq(x)q̄(0)Γ′q′(0)}〉 , (68)

where Γ and Γ′ denote the possible Dirac structures whose indices we here suppress. The sum over
quark mass eigenstates and other prefactors appearing in (66) are included in the final result for the
polarization tensors. Let us write Π̃ in terms of momentum-space propagators in a background field,

iΠ̃(L) = −
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[
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where
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We may expand the background field propagators at weak coupling,
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and upon insertion of these expressions into (69), the terms with two gluon fields are readily identified.
Furthermore, in Fock-Schwinger gauge the gluon field can be written as

A/(q) = taγα
∫
ddx eiq·xAaα(x)

= taγα
[−i

2
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]
, (73)

where the ellipsis denotes terms with derivatives acting on Gaµν . Thus the amplitudes with gluon
emission are given directly in terms of field-strengths, and intermediate steps involving gauge-variant
combinations can be avoided.

In isolating the two-gluon amplitude, we may separately consider three cases depending on where
the gluons are attached. Contributions with both gluons attached to the upper quark line in (66) are
referred to as“a-type”, those with both gluons attached to the lower quark line in (66) are referred
to as “b-type”, and those with one gluon attached to each of the upper and lower quark lines are
referred to as “c-type”. We thus have

Π̃(L) = Π̃a(L) + Π̃b(L) + Π̃c(L) , (74)

with
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where m1 and m2 are the masses of the quarks in the upper and lower lines in (66), respectively.

To project these onto the spin-0 and spin-2 QCD gluon operators, O(0)
g and O(2)

g in (3), consider
the four-index tensor Tαργδ = GAαρG

A
γδ with index symmetries Tαργδ = Tγδαρ = −Tραγδ. We can

decompose T into components T = T (0) + T (2) + ∆T , where

T
(0)
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)
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and ∆T , satisfying
gαγgρδ(∆T )αργδ = vαvγgρδ(∆T )αργδ = 0 , (77)
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is not needed for the present analysis. The proportionality constants in T (0) and T (2) were obtained
by contraction with gαγgρδ or vαvγgρδ. Upon applying the above decomposition to the expressions
in (75), we obtain

iΠ̃k(L) ≡ −g
2

8

[
1

d(d− 1)
O(0)
g I

(0)
k (L) +

1

d− 2
O(2)µν
g I

(2)
k µν(L) + . . .

]
, (78)

where k = a, b, c and the ellipsis denotes irrelevant ∆T contributions.

Let us now determine I
(0)
k (L) and I

(2)
k µν(L) for the different cases of two-boson exchange. The

trace and derivatives with respect to momenta q and q′ in (75) are straightforward to evaluate, and
the result is projected onto gluon operators of definite spin using (76). The quark-loop integral over
momentum p is computed using standard methods, leaving an integral over a Feynman parameter, x,
which will be evaluated after performing the boson-loop integral over momentum L. We may express
the results in the form

I
(S)
k (L) ≡ iΓ[1 + ε]

(4π)2−ε

∫ 1

0
dx uk(x)N

(S)
k (L) , ua(x) =

(1− x)3

3!
, ub(x) =

x3

3!
, uc(x) = x(1− x) ,

(79)

where S = 0, 2 and for S = 2 the Lorentz indices are suppressed. Let us also introduce the parameters

zn ≡
(−1)n

23−n
Γ[n+ ε]

Γ[1 + ε]
, ∆ ≡ (1− x)m2

1 + xm2
2 − x(1− x)L2 − i0 , (80)

which appear in the expressions for N
(S)
k (L) given below.

For the operators of interest in (2), the relevant projections of the a- and b-type amplitudes in

(75) and (76) are related by CP transformation. This condition can be stated in terms of N
(S)
k (L) as

N
(S)
b (L) = N (S)

a (L)

∣∣∣∣
x↔ 1−x,m1↔m2

. (81)

In the case of flavor-diagonal currents (Z0, φ0
Z , h) where we set m1 = m2 = mq in Π̃k(L), the

above relation implies I
(S)
b (L) = I

(S)
a (L). For flavor-changing currents (W±, φ±W ) we set the down-

type quark mass to zero, m2 = mD = 0, but keep the up-type quark mass finite, m1 = mU 6=
0, to accommodate the top quark. This asymmetry in treating the masses does not allow us to

systematically recover N
(S)
b (L) from N

(S)
a (L) using the relation (81). Below we provide N

(S)
b (L)

explicitly for flavor-changing currents.
To illustrate the explicit implementation of this program, we again focus on the heavy WIMP

limit, retaining the leading order (in 1/M) WIMP-SM couplings as in (65). Anticipating the insertion
of polarization tensors into the boson loop with leading order heavy-particle Feynman rules, we thus
contract the free Lorentz indices of Γ and Γ′ in (66), (68) with vµ’s from the WIMP-vector boson
vertices. It is straightforward to analyze the remaining components of Πµν(L) by the same methods.
The following results are labelled by the bosons in the corresponding electroweak polarization tensor.

For N
(0)
k (L) we find,

N (0)
a (W+W+) = 64(3− 2ε)m2

U

{
2(1− ε) z2

∆2+ε
+ x(1− x)

(
2(v · L)2 − L2

) z3

∆3+ε

}
,

N
(0)
b (W+W+) = 0 ,
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N (0)
c (W+W+) = 64(1− ε)

{
− 2(1 + ε)(3− 2ε)

z1

∆1+ε

+ x(1− x)
[
2(1− 2ε)(v · L)2 + (1 + 2ε)L2

] z2

∆2+ε

}
,

N (0)
a (ZZ) = 32(3− 2ε)m2

q

{[
c

(q)2
V + c

(q)2
A

][
2(1− ε) z2

∆2+ε
+ x(1− x)(2(v · L)2 − L2)

z3

∆3+ε

]

−
[
c

(q)2
V − c(q)2

A

][
2(2− ε) z2

∆2+ε
+ x2L2 z3

∆3+ε

]}
,

N (0)
c (ZZ) = 32

{[
c

(q)2
V + c

(q)2
A

]
(1− ε)

[
− 2(3− 2ε)(1 + ε)

z1

∆1+ε
+ x(1− x)

[
2(1− 2ε)(v · L)2

+ (1 + 2ε)L2
] z2

∆2+ε

]
+
[
c

(q)2
V − c(q)2

A

]
ε(3− 2ε)m2

q

z2

∆2+ε

}
,

N (0)
a (W+φ+W ) = −64(3− 2ε)m2

Uv · L
[
2
[
2− 3x− ε(1− x)

] z2

∆2+ε
+ x2(1− x)L2 z3

∆3+ε

]
,

N
(0)
b (W+φ+W ) = 0 ,

N (0)
c (W+φ+W ) = −64(3− 2ε)(1− ε)(1− x)m2

Uv · L
z2

∆2+ε
,

N (0)
a (ZφZ) = −32(3− 2ε)c

(q)2
A mqv · L

[
2
[
2− 3x− ε(1− x)

] z2

∆2+ε
+ x
[
m2
q + x(1− x)L2

] z3

∆3+ε

]
,

N (0)
c (ZφZ) = −32(3− 2ε)(1− ε)c(q)2

A mqv · L
z2

∆2+ε
,

N (0)
a (φ+Wφ+W ) = 64(3− 2ε)m4

U

[
− 2(2− ε) z2

∆2+ε
+ x(1− x)L2 z3

∆3+ε

]
,

N
(0)
b (φ+Wφ+W ) = 0 ,

N (0)
c (φ+Wφ+W ) = 64(1− ε)(3− 2ε)m2

U

[
− 2(2− ε) z1

∆1+ε
+ x(1− x)L2 z2

∆2+ε

]
,

N (0)
a (φZφZ) = −32(3− 2ε)xm2

qL
2 z3

∆3+ε
,

N (0)
c (φZφZ) = 32(3− 2ε)

[
2(1− ε)(2− ε) z1

∆1+ε
−
[
(2− ε)m2

q + (1− ε)x(1− x)L2
] z2

∆2+ε

]
,

N (0)
a (hh) = 32(3− 2ε)m2

q

[
− 4(2− ε) z2

∆2+ε
+ x(1− 2x)L2 z3

∆3+ε

]
,

N (0)
c (hh) = 32(3− 2ε)

[
− 2(1− ε)(2− ε) z1

∆1+ε
+
[
(1− ε)x(1− x)L2 − (2− ε)m2

q

] z2

∆2+ε

]
. (82)

For N
(2)
k µν(L) the open indices are to be contracted with O(2)µν

g , which is symmetric in µ and ν and
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satisfies gµνO(2)µν
g = 0. The results are

N (2)
aµν (W+W+) = 128(1− ε)

{
− 4(2− ε)vµvν

z1

∆1+ε

+ 2

[
(m2

U − x2L2)vµvν + 2(2− ε)x(1− x)v · LvµLν − x(2− x− ε)LµLν
]
z2

∆2+ε

+ x(1− x)

[
(m2

U − 2x2(v · L)2)LµLν − 2(m2
U − x2L2)v · LvµLν

]
z3

∆3+ε

}
,

N
(2)
b µν (W+W+) = 128(1− ε)

{
− 4(2− ε)vµvν

z1

∆1+ε

− 2(1− x)

[
(1− x)L2vµvν − 2(2− ε)xv · LvµLν + (1 + x− ε)LµLν

]
z2

∆2+ε

+ 2x(1− x)3

[
− (v · L)2LµLν + L2v · LvµLν

]
z3

∆3+ε

}
,

N (2)
c µν (W+W+) = 128

{
2(1− ε)(1− 2ε)vµvν

z1

∆1+ε

+ x(1− x)
[
εLµLν + 2(1− 2ε)v · LvµLν − (1− 2ε)L2vµvν

] z2

∆2+ε

}
,

N (2)
aµν (ZZ) = 64(1− ε)

{[
c

(q)2
V − c(q)2

A

]
x2m2

qLµLν
z3

∆3+ε
+
[
c

(q)2
V + c

(q)2
A

][
− 4(2− ε)vµvν

z1

∆1+ε

+ 2
[
(m2

q − x2L2)vµvν + 2(2− ε)x(1− x)v · LvµLν + x(2− x− ε)LµLν
] z2

∆2+ε

+ x(1− x)
[
(m2

q − 2x2(v · L)2LµLν − 2(m2
q − x2L2)v · LvµLν

] z3

∆3+ε

]}
,

N (2)
c µν (ZZ) = 64

{
−
[
c

(q)2
V − c(q)2

A

]
2(1− ε)m2

qvµvν
z2

∆2+ε
+
[
c

(q)2
V + c

(q)2
A

][
2(1− ε)(1− 2ε)vµvν

z1

∆1+ε

+ x(1− x)
[
εLµLν + 2(1− 2ε)v · LvµLν − (1− 2ε)L2vµvν

] z2

∆2+ε

]}
,

N (2)
aµν (W+φ+W ) = −128(1− ε)xm2

U

{
2vµLν

z2

∆2+ε
− x(1− x)v · LLµLν

z3

∆3+ε

}
,

N
(2)
b µν (W+φ+W ) = −128(1− ε)(1− x)m2

U

{
2(2− ε)vµLν

z2

∆2+ε
+ (1− x)2

[
L2vµLν − v · LLµLν

] z3

∆3+ε

}
,

N (2)
c µν (W+φ+W ) = −128(1− ε)(1− x)m2

UvµLν
z2

∆2+ε
,

N (2)
aµν (ZφZ) =

[
c

(q)2
A

]
64(1− ε)xmq

{
− 2(3− ε)vµLν

z2

∆2+ε

+
[
(m2

q − x2L2)vµLν + xv · LLµLν
] z3

∆3+ε

}
,
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N (2)
c µν (ZφZ) = −

[
c

(q)2
A

]
64(1− ε)mqvµLν

z2

∆2+ε
,

N (2)
aµν (φ+Wφ+W ) = 128(1− ε)xm2

ULµLν

{
2(2− ε) z2

∆2+ε
− (1− x)m2

U

z3

∆3+ε

}
,

N
(2)
b µν (φ+Wφ+W ) = 256(1− ε)(2− ε)(1− x)m2

ULµLν
z2

∆2+ε
,

N (2)
c µν (φ+Wφ+W ) = 128(1− ε)x(1− x)m2

ULµLν
z2

∆2+ε
,

N (2)
aµν (φZφZ) = 64(1− ε)xLµLν

{
− 2(2− ε) z2

∆2+ε
+m2

q

z3

∆3+ε

}
,

N (2)
c µν (φZφZ) = −64(1− ε)x(1− x)LµLν

z2

∆2+ε
,

N (2)
aµν (hh) = 64(1− ε)xLµLν

{
2(2− ε) z2

∆2+ε
− (1− 2x)m2

q

z3

∆3+ε

}
,

N (2)
c µν (hh) = 64(1− ε)x(1− x)LµLν

z2

∆2+ε
. (83)

The results for N
(S)
k (L) in (82) and (83) specify I

(S)
a (L) through (79), and hence Π̃k(L) through

(78), and Π̃(L) through (74). This completes our determination of the polarization tensors in (66).
The polarization tensors in (67) are obtained through the following relations

Πµν
(W−W−)

(L) = Πµν
(W+W+)

(−L) , Πµ
(φZZ)(L) = Πµ

(ZφZ)(−L) , Π(φ−Wφ−W )(L) = Π(φ+Wφ+W )(−L) ,

Πµ

(φ−WW−)
(L) = Πµ

(W+φ+W )
(−L) , Πµ

(φ+WW+)
(L) = Πµ

(W−φ−W )
(−L) ,

Πµ

(W−φ−W )
(L) = Πµ

(W+φ+W )
(−L) . (84)

The identities in the first two lines are consequences of reversing the direction of momentum L in
the diagrams in (66). The last relation follows from Hermitian conjugation and the identification
S(p) ≡ γ0S(p)†γ0 = S̃(p). We note that polarization tensors with one gauge and one Goldstone
boson are odd in L, while all others are even in L. This property also holds for the corresponding

N
(S)
k (L), and we use it in the next section to systematically reduce the boson loop integrals into a

convenient basis.

6.4.2 Basis reduction of the full theory boson loop

Having determined the generalized polarization tensors, we now proceed with the reduction of the
remaining boson loop integrals. Upon insertion of the polarization tensors into the boson loop, we
find the required set of basic loop integrals

∫
(dL)

[
1

v · L− δ + i0
+

1

−v · L− δ + i0

]
1

(L2 −m2
V + i0)2

N
(S)
k (L) ≡ Ieven(δ,mV )N

(S)
k (L) ,

∫
(dL)

[
1

v · L− δ + i0
− 1

−v · L− δ + i0

]
1

(L2 −m2
V + i0)2

N
(S)
k (L) ≡ Iodd(δ,mV )N

(S)
k (L) , (85)
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where δ is the residual mass of the intermediate WIMP state, and mV is the mass of the exchanged
bosons. We suppress the arguments, (δ,mV ), of these integral operators when making generic state-

ments below. The integral operator Ieven requires that N
(S)
k (L) be even in L as in those for polar-

ization tensors with a single type of boson, while the integral operator Iodd requires that N
(S)
k (L)

be odd in L as in those for polarization tensors with one gauge and one Goldstone boson. Let us

denote even N
(S)
k (L) by N

(S)
k even(L) and odd N

(S)
k (L) by N

(S)
k odd(L). The subscripts even and odd may

be dropped if we mean either type, or if the exchanged bosons are specified.
To reduce (85) to a set of basis integrals for evaluation, we begin by replacing factors of L2 in

N
(S)
k (L) with

L2 = − ∆

x(1− x)
+
m2

1

x
+

m2
2

(1− x)
, (86)

which follows from the definition of ∆ in (80). The N
(S)
k (L) of (82) and (83) may then be written

in terms of ∆ and the vectors vµ and Lµ. In N
(S)
k even(L) each term must have two or zero vµ’s, while

in N
(S)
k odd(L) each term must have one vµ. Organizing the result in powers of (v · L), we obtain the

general expressions

N
(0)
k even(L) = (v · L)0

∑

n

a(1)
n ∆−n−ε + (v · L)2

∑

n

a(2)
n ∆−n−ε ,

N
(0)
k odd(L) = (v · L)1

∑

n

a(3)
n ∆−n−ε ,

N
(2)µν
k even(L) = (v · L)0

∑

n

[
vµvνa(4)

n ∆−n−ε + LµLνa(5)
n ∆−n−ε

]
+ (v · L)1

∑

n

vµLνa(6)
n ∆−n−ε

+ (v · L)2
∑

n

LµLνa(7)
n ∆−n−ε ,

N
(2)µν
k odd (L) = (v · L)0

∑

n

vµLνa(8)
n ∆−n−ε + (v · L)1

∑

n

LµLνa(9)
n ∆−n−ε , (87)

where the sums run over n = 1, 2, . . . , and the coefficients a
(i)
n are functions of x and ε. The above

N
(S)
k (L) structures require the set of integrals

H(n) = Ieven∆−n−ε , Hµ(n) = Iodd∆−n−εLµ , Hµν(n) = Ieven∆−n−εLµLν ,

F (n) =

∫
(dL)

1

(L2 −m2
V + i0)2

∆−n−ε . (88)

The integrals Hµ and Hµν may be expressed in terms of H(n) and F (n) through standard reduction
methods and the relation[

1

v · L− δ + i0
± 1

−v · L− δ + i0

]
v · L = δ

[
1

v · L− δ + i0
∓ 1

−v · L− δ + i0

]
+ 1∓ 1 . (89)

Furthermore, recursion relations in n may be derived by taking derivatives of parameters. A de-
tailed discussion of these relations, as well as the evaluation of the above integrals, can be found in

Appendix D. Note that the (v · L)2 term in N
(2)µν
k even(L) also requires the integral

∫
(dL)

1

(L2 −m2
V + i0)2

∆−n−εLµLν ∼ gµν , (90)
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however this does not contribute since it vanishes upon contraction with the traceless spin-2 gluon

operator, O
(2)µν
g . Upon feeding the general expressions for N

(S)
k (L) in (87) into the integrals in (85),

we find the following decomposition in terms of basis integrals,

IevenN
(0)
k even(L) =

∑

n

[
a(1)
n H(n) + a(2)

n

[
δ2H(n) + 2δF (n)

]]
,

IoddN
(0)
k odd(L) =

∑

n

a(3)
n

[
δH(n) + 2F (n)

]
,

IevenN
(2)µν
k even(L) = vµvν

∑

n

[
a(4)
n H(n) + a(5)

n H1(n) + a(6)
n

[
δ2H(n) + 2δF (n)

]
+ a(7)

n δ2H1(n)

]
,

IoddN
(2)µν
k odd (L) = vµvν

∑

n

[
a(8)
n

[
δH(n) + 2F (n)

]
+ a(9)

n δH1(n)

]
, (91)

where

H1(n) =
1

3− 2ε

{
(4− 2ε)

[
δ2H(n) + 2δF (n)

]
+
H(n− 1)

x(1− x)
−
[
m2

1

x
+

m2
2

1− x

]
H(n)

}
. (92)

The above results apply generally to both pure and mixed states. Comparing with the explicit

expressions for N
(S)
k (L) in (82) and (83), we find that H(n) for n = 1, 2, 3 and F (n) for n = 2, 3 are

required.
For pure states there is no residual mass, and Iodd is irrelevant since the only contributions

are from exchanges of W± and Z0, involving N
(S)
k even(L). The vanishing of certain contributions in

IevenN
(S)
k even(L) at δ = 0 can be traced to the identity in (89).9 Setting δ = 0 in IevenN

(S)
k even(L)

above and using the explicit expressions for N
(S)
k (L) in (82) and (83), we find pure-state results that

depend on H(n) only,

I(0,mW )N (0)
a (W+W+) = 64(1 + ε)(3− 2ε)m2

U

{
(2 + ε)(1− x)m2

UH(3)− (1 + 2ε)H(2)

}
,

I(0,mW )N (0)
c (W+W+) = 32(1− ε2)

{
(1 + 2ε)(1− x)m2

UH(2) + 2(1− 2ε)H(1)

}
,

I(0,mZ)N (0)
a (ZZ) =

32(1 + ε)(3− 2ε)m2
q

1− x

{[
c

(q)2
V + c

(q)2
A

]
(1− x)

[
(2 + ε)m2

qH(3)− (1 + 2ε)H(2)
]

+
[
c

(q)2
V − c(q)2

A

][
(2 + ε)xm2

qH(3)− (2− ε+ 2εx)H(2)
]}

,

I(0,mZ)N (0)
c (ZZ) = 16(1 + ε)

{[
c

(q)2
V + c

(q)2
A

]
(1− ε)

[
(1 + 2ε)m2

qH(2) + 2(1− 2ε)H(1)
]

+
[
c

(q)2
V − c(q)2

A

]
ε(3− 2ε)m2

qH(2)

}
,

I(0,mW )N (2)
aµν (W+W+) =

128(1− ε)vµvν
(3− 2ε)(1− x)

{
(2− ε)(2− x− 3ε+ 4εx)H(1)

9In particular, this can be used to demonstrate gauge invariance for the electroweak part of the amplitudes since in
a general Rξ gauge the ξ-dependent terms carry a factor of (v · L).
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+ (1 + ε)(1− x)m2
U

[
(2 + ε)(1− x)m2

UH(3) + (3− 4x− 4ε+ 2εx)H(2)
]}

,

I(0,mW )N (2)
c µν (W+W+) =

64(1− ε)vµvν
(3− 2ε)

{
− (3− ε− 4ε2)(1− x)m2

UH(2) + ε(7− 8ε)H(1)

}
,

I(0,mZ)N (2)
aµν (ZZ) =

64(1− ε)vµvν
(3− 2ε)(1− x)

{[
c

(q)2
V + c

(q)2
A

][
(2− ε)(2− x− 3ε+ 4εx)H(1)

+m2
q(1 + ε)

[
(2 + ε)(1− x)m2

qH(3) + (3− 5x− 4ε+ 5εx)H(2)
]]

+
[
c

(q)2
V − c(q)2

A

]
(1 + ε)(2 + ε)xm2

q

[
m2
qH(3)−H(2)

]}
,

I(0,mZ)N (2)
c µν (ZZ) =

32(1− ε)vµvν
(3− 2ε)

{[
c

(q)2
V + c

(q)2
A

][
− (1 + ε)(3− 4ε)m2

qH(2) + ε(7− 8ε)H(1)
]

−
[
c

(q)2
V − c(q)2

A

]
2(1 + ε)(3− 2ε)m2

qH(2)

}
, (93)

where the subscript on Ieven has been suppressed. The reduction for admixtures, where there are
nonzero residual masses and the integral Iodd is relevant, is also straightforward to obtain.

We collect in Appendix D useful results for the remaining task of integrating over Feynman
parameters. The singularity structure and evaluation of integrals can be classified into three cases
corresponding to zero, one, or two heavy fermions contributing to the electroweak polarization tensor.
The case of zero heavy fermions is for polarization tensors with no top quark in the loop. With
subleading powers of light quark masses neglected, only polarization tensors of W± and Z0 bosons
are relevant in this case. The case of one heavy fermion is for polarization tensors of flavor-changing
currents with one top quark and one down-type quark. The case of two heavy fermions is for
polarization tensors of flavor-diagonal currents with a top quark loop.

6.4.3 Full theory contributions and matching coefficients for pure states

Let us now determine the full theory contributions to the matching using the generalized electroweak
polarization tensors and the reduction method for the boson loop integral. For pure states, the total
amplitude receives two-boson exchange contributions from W± and Z0 bosons,

M =MWW +MZZ , (94)

which may be written in terms of electroweak polarization tensors in a background field as

iMWW =
ig2
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,
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with CW and CZ given in (9). The parity of the polarization tensors under L→ −L and the identities
in (84) allow us to write the above amplitudes in terms of the integrals defined in (85),

iMWW =
ig2

2CW
2
Ieven(0,mW )vµvνiΠ

µν
(W+W+)

(L) ,

35



iMZZ =
ig2

2CZ
2c2
W

Ieven(0,mZ)vµvνiΠ
µν
(ZZ)(L) . (96)

Upon inserting the explicit polarization tensors from (66) into the expressions above, we may employ
the reduction of integrals given in (93) and write each contribution in terms of the gluon operators
of definite spin,

MBB′ =MBB′(0)O(0)
g +MBB′(2) vµvνO(2)µν

g , (97)

where the superscript BB′ denotes the different types of two-boson exchange. From the expression

in (97), we may readily identify the contribution of each amplitude to c
(0)
g 2BE and c

(2)
g 2BE asMBB′(0)

and MBB′(2), respectively. Let us decompose MWW (S), for S = 0, 2, into contributions from each
up-type quark flavor, and the a-, b-, and c-type gluon attachments,

MWW (S) = − [Γ(1 + ε)]2

(4π)d
πg2g4

2

m3+4ε
W

CW
16

∑

U=u,c,t

∑

k=a,b,c

MWW (S)
U,k . (98)

Similarly, we decomposeMZZ(S) into contributions from each quark flavor, and the a-, b-, and c-type
gluon attachments,

MZZ(S) = − [Γ(1 + ε)]2

(4π)d
πg2g4

2
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64c4

W
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q,k . (99)

The results for W± exchange are as follows. The amplitudes with one top quark are
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where xt = mt/mW . The amplitudes with only light quarks are
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for U = u, c. The results for Z0 exchange with a top quark loop are
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where yt = mt/mZ . The amplitudes for Z0 exchange with a light quark loop are

MZZ(0)
q,a =MZZ(0)
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where q = u, d, s, c, b. The 1
ε pieces in the above amplitudes are IR divergences that cancel upon

subtraction of the effective theory contributions, M(S)
EFT, discussed in Sec. 6.5. The bare coefficients

are then given by

c(S)
g 2BE =MWW (S) +MZZ(S) −M(S)

EFT , (104)

where the remaining 1
ε pieces are UV divergences.
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6.4.4 Full theory contributions and matching coefficients for admixtures

For admixtures, the total amplitude receives contributions from other types of two-boson exchange
beyond WW and ZZ,

M =MWW +MZZ +MφWφW +MφZφZ +Mhh +MZφZ +MWφW . (105)

Let us first consider the singlet-doublet case. In terms of the electroweak polarization tensors, we
find integrals involving nonzero residual masses,
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Using the behavior of the polarization tensors under L → −L and the identities in (84), we may
write these amplitudes in terms of the integrals defined in (85),
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iMWφW =
ig2a
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sρ Iodd(δ
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0 ,mW )vµiΠ

µ

(W+φ+W )
(L) . (107)

The required polarization tensors are specified in (66), and, in particular, the complete set of functions

N
(S)
k (L) are explicitly given in (82) and (83). Thus, the general result in (91) for reducing these

integrals may be applied. Each amplitude may be written in the form of (97), i.e., in terms of its
contributions to the gluon operators of definite spin. The bare coefficients are then given by

c(S)
g 2BE =M(S)WW +M(S)ZZ +M(S)hh +M(S)φZφZ

+M(S)φWφW +M(S)ZφZ +M(S)WφW −M(S)
EFT , (108)

where the remaining 1
ε pieces are UV divergences. We may again organize each contribution in

the previous equation in terms of the quark flavors in the loop, and the a-, b-, and c-type gluon
attachments, as we have done in (98) and (99).

For the triplet-doublet case we find,
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The rest of the analysis proceeds as above, using the same polarization tensors and integral reduction
method. We check for both types of admixtures that the expected results are recovered upon taking
the pure-case limits described in Sec. 4.3.

6.5 Effective theory amplitudes and infrared regulator

In the computation of both pure- and mixed-case amplitudes above, we have neglected subleading
corrections of O(mq/mW ) by Taylor expanding integrands about vanishing light quark masses.10

This requires a regulator to control IR divergences (the full theory diagrams in Figs. 3 and 5 are UV

finite but the projection onto the spin-2 operator O(2)
g is IR divergent).

10For matching onto quark operators, we of course include the leading mq factor appearing in O(0)
q and O(2)

q . For
matching onto gluon operators we may neglect light quark masses.
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It is technically simplest to compute the full and effective theory amplitudes using dimensional
regularization as IR regulator. Effective theory loop diagrams on the right hand sides of Figs. 3 and 5
then result in dimensionful but scaleless integrals that are required to vanish. Upon subtracting
the effective theory amplitude, remaining 1/ε pieces in matching coefficients are identified as UV
divergences.

We have obtained identical renormalized matching coefficients by retaining light quark masses,
mq 6= 0, as an alternative IR regulator. In this scheme, the effective theory loop diagrams on the
right-hand side of Figs. 3 and 5 yield nonvanishing contributions. The full theory diagrams on the
left-hand side are correspondingly modified so that, upon subtracting the effective theory amplitude,
consistent results are obtained.

7 Results for matching coefficients

We may now collect the results of the preceding analysis of quark and gluon matching to present the
bare coefficients of the effective theory at the weak scale. We have analyzed the Wilson coefficients
of the effective theory described by (2) in terms of contributions from exchanges of one or two
electroweak bosons, as expressed in (45). The results for one-boson exchange matching to quark
and gluon operators are given by (48) and (55), respectively. The results for two-boson exchange
matching to quark and gluon operators are given by summing contributions of the form (57) and
(97), respectively.

For pure cases, the results for the bare matching coefficients are as follows,
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where, as before, xt = mt/mW and yt = mt/mZ . Above, the Kronecker delta, δDb, is equal to unity
for D = b, and vanishes for D = d, s. Note that beyond the specification of the WIMP quantum
numbers J and Y (in CW and CZ), the pure-state matching coefficients are completely given by SM
parameters in the heavy WIMP limit. The pure triplet (doublet) results are given by setting CW = 2
and CZ = 0 (CW = 1/2 and CZ = 1/4). The renormalization of the theory involving these bare
coefficients will be detailed in a forthcoming paper [34]. In particular, the relation between the bare

coefficient c
(2)
g given above and the renormalized coefficient c

(2)
g (µ) involves a nontrivial subtraction

requiring the O(ε) part of c
(2)
q which we have retained.

The results for admixtures are similarly obtained by collecting contributions to the coefficients
specified in (45). For example, the amplitudes in (51) for a singlet-doublet admixture, combined with

the integrals defined in Appendix B, specify c
(0)
q 1BE through (48), and c

(0)
g 1BE through (55). The

coefficients c
(S)
q 2BE are specified in (63) in terms of the results in (61), which require the integrals in

Appendix C. Finally, c
(S)
g 2BE is specified in (108) in terms of the amplitudes in (107) which require

the polarization tensors in (66), the basis reduction in (91), and the integrals in Appendix D.
The matching coefficients for admixtures are functions of the mass splitting between pure-state
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Figure 6: Renormalized coefficients (with πα2
2/m

3
W extracted) for the singlet-doublet (upper panels)

and triplet-doublet (lower panels) mixtures as a function of the respective mass splittings ∆ =
(MS −MD)/2 and ∆ = (MT −MD)/2, in units of mW . The panels on the left (right) use a = g2/10

(a = g2/100). The negative coefficients c
(0)
q and c

(2)
g are presented with opposite sign, as indicated

by (−1). The solid red, green, and blue lines are respectively for −c(0)
U=u,c, −c

(0)
D=d,s, and −c(0)

b . The

dashed red, green, and blue lines are respectively for c
(2)
U=u,c, c

(2)
D=d,s, and c

(2)
b . Some quark matching

coefficients appear degenerate. The orange band with solid borders is c
(0)
g , and the orange band

with dashed borders is −c(2)
g . The band thickness represents renormalization scale variation, taking

m2
W /2 < µ2

t < 2m2
t [6]. We indicate the pure-case limits at large |∆|.

components, ∆, and their coupling strength mediated by the Higgs field, a, as defined in (20) for the
singlet-doublet mixture. We illustrate numerical values in Fig. 6 for both the singlet-doublet and
triplet-doublet mixtures. Numerical inputs are collected in Table 1 of Appendix E. Depending on the
value of a, the O(α1

2) tree-level Higgs exchange contribution to the spin-0 coefficients may dominate
near ∆ = 0. However the hχ̄χ coupling may be suppressed by mW /∆, and thus for ∆ � mW , or
more precisely ∆� mW (4πa/g2)2, the O(α2

2) loop contributions dominate. The curves approach the
correct pure-case values upon taking the limits described in Sec. 4.3. In particular, the coefficients
vanish in the pure singlet limit.

The contributions of these coefficients to scattering cross sections depend on the detailed mapping
onto the low-energy nf = 3 flavor theory through renormalization group running and heavy quark
threshold matching, and on the evaluation of nucleon matrix elements at a low scale, µ ∼ 1 GeV.
These effects enhance the contribution from certain coefficients, upsetting the αs counting reflected in
the relative magnitudes of the high-scale coefficients. One example is the enhancement of the spin-0
gluon contribution due both to a large anomalous dimension in the RG running, and to the large
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nucleon matrix element of the scalar gluon operator [43]. Another example is the enhanced impact
of numerically subleading contributions due to a partial cancellation at leading order. The relative
signs between high-scale coefficients in Fig. 6, combined with details of the mapping onto low-energy
coefficients and evaluation of matrix elements, lead to a cancellation between the spin-0 and spin-2
amplitude contributions [5, 6]. Therefore, a robust determination of DM-nucleon scattering cross
sections demands a careful analysis of the complete set of leading operators in (3).

The coefficient c
(2)
g has been omitted in previous works [3, 5]. Due to a cancellation between

spin-0 and spin-2 amplitude contributions to cross sections, the effect of neglecting c
(2)
g ranges from

a factor of a few to an order of magnitude difference in cross sections. For the pure-doublet and

pure-triplet states, neglecting c
(2)
g leads to an O(10− 20%) shift in the spin-2 amplitude, depending

on the choice of renormalization scale, and an underestimation of its perturbative uncertainty by

O(70%). For comparison, neglecting c
(2)
q for q = b, c, s, d, u shifts the spin-2 amplitude by O(1%),

O(10%), O(10%), O(30%), and O(50%), respectively.

8 Summary

The present analysis focused on weak-scale matching conditions necessary for robustly computing
WIMP-nucleon interactions, both in specified UV completions involving electroweak-charged DM,
and in the model-independent heavy WIMP limit. Careful computation of competing Standard Model
contributions is necessary to estimate the correct order of magnitude of scattering cross sections in
many simple and motivated models of DM. For example, a simple dimensional estimate of the cross
section for spin-independent, low-velocity scattering of a pure-state WIMP on a nucleon yields11

σSI ∼
α4

2m
4
N

m2
W

(
1

m2
W

,
1

m2
h

)2

∼ 10−45 cm2 . (111)

Cross sections of this order of magnitude are currently being probed by direct detection searches
(e.g., see Refs. [22] for detection prospects computed using tree-level cross sections). However, a
cancellation between spin-0 and spin-2 amplitude contributions leads to much smaller cross section
values for motivated candidates such as the pure wino (σSI ∼ 10−47 cm2) and the pure higgsino
(σSI . 10−48 cm2) of supersymmetric SM extensions. This cancellation demands a careful analysis of
perturbative contributions from weak-scale matching amplitudes presented here, e.g., the inclusion
of the spin-2 gluon contribution, and of remaining theoretical and input uncertainties, which will be
discussed in a companion paper [34]. Robust predictions for the cross sections of the pure triplet,
pure doublet, singlet-doublet admixture, and triplet-doublet admixture can be found in Refs. [6].
Given the matching coefficients in (110), the cross sections for pure states with arbitrary electroweak
quantum numbers can also be computed.

Although we find that cancellations are generic, their severity depends on SM parameters and
on properties of DM such as its electroweak quantum numbers. The presence of additional low-lying
states could also have impact, and the formalism for weak-scale matching presented here can be
readily extended to investigate such scenarios. For example, including a second Higgs doublet in
the pure-state analysis simply requires modification of the vertices in the amplitudes computed in
Figs. 2 and 3. An extra Higgs boson modifies the spin-0 amplitude, and could potentially weaken
the cancellation between spin-0 and spin-2 amplitudes. The case where the second Higgs-like doublet

11Cross sections of this magnitude were obtained in previous estimates that missed the cancellation between spin-0
and spin-2 amplitude contributions (and ignored gluon contributions) [2].
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itself plays the role of DM (e.g., “inert Higgs DM” [7]) is related to the pure-doublet case in the
heavy WIMP limit by heavy particle universality.

While we have focused here on the case of a heavy, self-conjugate WIMP, deriving from one or two
electroweak multiplets, much of the formalism applies more generally. The construction of the heavy
particle effective theories in Sec. 4 could be straightforwardly extended to include power corrections,
and other light states within the context of specific UV completions. The generalized electroweak
polarization tensors obtained through background field techniques depend only on SM parameters,
and hence can be applied for gluon operator matching in general DM scenarios. Within the context
of heavy particle effective theories, the new integral basis evaluated here may be applied to other
processes such as low-energy lepton-nucleon scattering [38].

Separating improvable SM uncertainties from DM model dependence demands precise theoretical
formalism. The focus of the present paper is on the systematic treatment of weak-scale matching
calculations, with particular attention paid to the heavy WIMP limit. The remaining analysis below
the weak scale may be applied to a broader class of theories, and is the subject of a forthcoming
paper [34]. There, we present the necessary ingredients to systematically map high-scale matching
coefficients onto the low-energy theory (nf = 3 or nf = 4 flavor QCD plus interactions with DM)
where hadronic matrix elements are evaluated.
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A The singlet-doublet mixture

The heavy-particle lagrangians in Sec. 4 may be obtained from a manifestly relativistic lagrangian
by performing field redefinitions at tree level. Consider the case of a singlet-doublet mixture (see
also [19]),

L = LSM +
1

2
b̄(i∂/ −M1)b+ ψ̄(iD/ −M2)ψ − (y b̄PLH

†ψ + y′ b̄PLHTψc + h.c.) , (112)

where b is a gauge singlet (Majorana) fermion represented as a Dirac spinor with bc = b, and
ψ is a Dirac fermion in the (2, 1/2) representation of SU(2)W × U(1)Y . In the above equation,
PR,L = (1±γ5)/2, and we have included all renormalizable gauge-invariant interactions involving the
SM Higgs field. Expressing the result in terms of Majorana combinations,

λ1 =
1√
2

(ψ + ψc) , λ2 =
i√
2

(ψ − ψc) , (113)

and collecting the fermions in the column vector λ = (b, λ1, λ2), we may write the interactions with
the Higgs field as

LHλ̄λ = − 1√
2
b̄
1− γ5

2

[
(yH† + y′HT )λ1 − i(yH† − y′HT )λ2

]
+ h.c.

≡ −1

2
λ̄

[
f(H) + iγ5g(H)

]
λ , (114)
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with

f(H) =
a1√

2




0 H† +HT i(HT −H†)
H +H∗ 02 02

i(H −H∗) 02 02


+

a2√
2




0 −i(HT −H†) HT +H†

−i(H −H∗) 02 02

H +H∗ 02 02


 ,

g(H) =
b1√

2




0 −i(HT −H†) HT +H†

−i(H −H∗) 02 02

H +H∗ 02 02


+

b2√
2




0 H† +HT i(HT −H†)
H +H∗ 02 02

i(H −H∗) 02 02


 .

(115)

The real parameters ai and bi are given by

a1 =
1

2
Re(y + y′) , a2 =

1

2
Im(y − y′) , b1 =

1

2
Re(y − y′) , b2 = −1

2
Im(y + y′) . (116)

We employ phase redefinitions of b, ψL and ψR to ensure that M1 and M2 are real and positive.12

The gauge generators will be those given in (13), extended trivially to include the singlet. Upon
performing the tree-level field redefinition

λ =
√

2e−i(M−δM)v·x(hv +Hv) , (117)

where the fields hv and Hv obey v/ hv = hv and v/Hv = −Hv, we obtain the heavy-particle lagrangian
in (4). It follows from λc = λ that the resulting lagrangian is invariant under the simultaneous
transformations in (1). Note that f(H) is the only term surviving the projection from the condition
v/ hv = hv. The remaining analysis follows that of Sec. 4.2.1.

B Self energy integrals and Standard Model two-point functions

Here and in the following sections we use the notation

[cε] =
iΓ(1 + ε)

(4π)2−ε , (dL) =
ddL

(2π)d
. (118)

The self-energies in Sec. 5 and the hχ̄χ three-point functions in Sec. 6.1 require the following integrals,

I1(δ,m) =

∫
(dL)

1

v · L− δ + i0

1

(L2 −m2 + i0)2

=
∂

∂m2
I3(δ,m)

= [cε]m
−2ε

{
2√

m2 − δ2 − i0

[
arctan

(
δ√

m2 − δ2 − i0

)
− π

2

]
+O(ε)

}
,

I2(δ,m) =

∫
(dL)v · L 1

v · L− δ + i0

1

(L2 −m2 + i0)2

= δI1(δ,m) +
i

(4π)2
B0(0,m,m)

12An additional phase redefinition could be used to eliminate a1, a2, b1 or b2.
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= [cε]m
−2ε

{
1

ε
+

2δ√
m2 − δ2 − i0

[
arctan

(
δ√

m2 − δ2 − i0

)
− π

2

]
+O(ε)

}
,

I3(δ,m) =

∫
(dL)

1

v · L− δ + i0

1

L2 −m2 + i0

= [cε]m
−2ε

{
− 2δ

ε
+ 4
√
m2 − δ2 − i0

[
arctan

(
δ√

m2 − δ2 − i0

)
− π

2

]
− 4δ +O(ε)

}
,

I4(δ1, δ2,m) =

∫
(dL)

1

v · L− δ1 + i0

1

v · L− δ2 + i0

1

L2 −m2 + i0
. (119)

For I4(δ1, δ2,m), let us specialize to δ2 = 0 or δ1 = δ2,

I4(δ, 0,m) =
1

δ

[
I3(δ,m)− I3(0,m)

]

= [cε]m
−2ε

{
− 2

ε
+

4
√
m2 − δ2 − i0

δ

[
arctan

(
δ√

m2 − δ2 − i0

)
− π

2

]

− 4 +
2πm

δ
+O(ε)

}
,

I4(δ, δ,m) =
∂

∂δ
I3(δ,m)

= [cε]m
−2ε

{
− 2

ε
− 4δ√

m2 − δ2 − i0

[
arctan

(
δ√

m2 − δ2 − i0

)
− π

2

]
+O(ε)

}
. (120)

The two-point functions for the electroweak SM bosons appearing in (53) are obtained by summing
the fermionic and bosonic contributions given below. Following Denner [40], we have

ΣAA′(0) = − α

4π

{
3B0(0,mW ,mW ) + 4m2

WB
′
0(0,mW ,mW )

− 4

3

∑

f,i

[
Nf
c Q

2
fB0(0,mf,i,mf,i)

]}
,

ΣAZ(0)

m2
Z

= − α

4π

{
− 2cW

sW
B0(0,mW ,mW )

}
,

ΣZZ(m2
Z)fermion

m2
Z

= − α

4π

{
2

3

[
−B0(mZ , 0, 0) +

1

3

]∑

f,i

Nf
c [(g+

f )2 + (g−f )2]

+
2

3
N t
c

[
[(g+

t )2 + (g−t )2]

[
−
(

1 +
2m2

t

m2
Z

)
B0(mZ ,mt,mt) +B0(mZ , 0, 0)

+
2m2

t

m2
Z

B0(0,mt,mt)

]
+

3

4s2
W c

2
W

m2
t

m2
Z

B0(mZ ,mt,mt)

]}
,

ΣZZ(m2
Z)boson

m2
Z

= − α

4π

1

s2
W c

2
W

{
1

12
(4c2

W − 1)(12c4
W + 20c2

W + 1)B0(mZ ,mW ,mW )

− 1

3
c2
W (12c4

W − 4c2
W + 1)B0(0,mW ,mW )− 1

6
B0(0,mZ ,mZ)
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− 1

12

(
m4
h

m4
Z

− 4
m2
h

m2
Z

+ 12

)
B0(mZ ,mZ ,mh)− 1

6

m2
h

m2
Z

B0(0,mh,mh)

+
1

12

(
1− m2

h

m2
Z

)2

B0(0,mZ ,mh)− 1

9
(1− 2c2

W )

}
,

ΣWW (m2
W )fermion

m2
W

= − α

4π

1

2s2
W

{
2

3

[
1

3
−B0(mW , 0, 0)

]∑

f,i

Nf
c

2

+
2

3
N t
c

[
1

2

(
m4
t

m4
W

+
m2
t

m2
W

− 2

)
B0(mW ,mt, 0) +B0(mW , 0, 0)

+
m2
t

m2
W

B0(0,mt,mt)−
m4
t

2m4
W

B0(0,mt, 0)

]}
,

ΣWW (m2
W )boson

m2
W

= − α

4π

{
4B0(mW ,mW , λ)− 4

3
B0(0,mW ,mW ) +

2

3
B0(0,mW , λ) +

2

9

+
1

12s2
W

[
1

c4
W

(4c2
W − 1)(12c4

W + 20c2
W + 1)B0(mW ,mW ,mZ)

− 2(8c2
W + 1)B0(0,mW ,mW )− 2

c2
W

(8c2
W + 1)B0(0,mZ ,mZ)

+
s4
W

c4
W

(8c2
W + 1)B0(0,mW ,mZ)− 2

3
(1− 4c2

W )

]

+
1

12s2
W

[
−
(
m4
h

m4
W

− 4
m2
h

m2
W

+ 12

)
B0(mW ,mW ,mh)− 2B0(0,mW ,mW )

− 2
m2
h

m2
W

B0(0,mh,mh) +

(
1− m2

h

m2
W

)2

B0(0,mW ,mh)− 2

3

]}
,

ΣHH′(m2
h)fermion = − α

4π

3m2
t

2s2
Wm

2
W

[
(4m2

t −m2
h)B′0(mh,mt,mt)−B0(mh,mt,mt)

]
,

ΣHH′(m2
h)boson = − α

4π

{
− 1

2s2
W

[(
6m2

W − 2m2
h +

m4
h

2m2
W

)
B′0(mh,mW ,mW )

− 2B0(mh,mW ,mW )

]
− 1

4s2
W c

2
W

[(
6m2

Z − 2m2
h +

m4
h

2m2
Z

)
B′0(mh,mZ ,mZ)

− 2B0(mh,mZ ,mZ)

]
− 9m4

h

8s2
Wm

2
W

B′0(mh,mh,mh)

}
, (121)

where the sums over indices f and i are for SM fermion flavors and generations, respectively. Above,
Nf
c and Qf respectively denote the number of colors and the electric charge of fermion f . We have

also used

α =
g2

2s
2
W

4π
, g+

f =
1

8s2
W c

2
W

[
c

(f)2
V + c

(f)2
A

]
, g−f =

1

8s2
W c

2
W

[
c

(f)2
V − c(f)2

A

]
, (122)
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where
c

(`)
V = −1 + 4s2

W , c
(`)
A = 1 , c

(ν)
V = 1 , c

(ν)
A = −1 , (123)

with ` and ν denoting charged lepton and neutrino, respectively. The coefficients c
(f)
V and c

(f)
A for

quarks can be found in (46). The basic integral appearing above is

i

(4π)2
B0(M,m0,m1) =

∫
(dL)

1

L2 −m2
0 + i0

1

(L+ p)2 −m2
1 + i0

= [cε]

[
1

ε
+ 2− log(m0m1) +

m2
0 −m2

1

M2
log

m1

m0
− m0m1

M2

(
1

r
− r
)

log r +O(ε)

]
,

(124)

where p2 = M2 and

r = X +
√
X2 − 1 ,

1

r
= X −

√
X2 − 1 , X =

m2
0 +m2

1 −M2 − i0
2m0m1

. (125)

We find the following limits,

B0(0,m,m) = (4π)εΓ(1 + ε)

[
1

ε
− 2 logm+O(ε)

]
,

B0(0,m, 0) = (4π)εΓ(1 + ε)

[
1

ε
− 2 logm+ 1 +O(ε)

]
,

B0(0,m0,m1) = (4π)εΓ(1 + ε)

[
1

ε
− m2

0

m2
0 −m2

1

logm2
0 +

m2
1

m2
0 −m2

1

logm2
1 + 1 +O(ε)

]
,

B0(M,m, 0) = (4π)εΓ(1 + ε)

[
1

ε
+ 2− m2

M2
logm2 +

m2 −M2

M2
log(m2 −M2 − i0) +O(ε)

]
,

B0(M, 0, 0) = (4π)εΓ(1 + ε)

[
1

ε
+ 2− log(−M2 − i0) +O(ε)

]
,

lim
λ→0

B0(m,m, λ) = (4π)εΓ(1 + ε)

[
1

ε
+ 2− logm2 +O(ε)

]
. (126)

In the present application, only the real parts of the integrals are relevant. For the derivative of the
integral we have,

B′0(M,m,m) ≡ ∂

∂p2
B0(M,m,m)

= (4π)εΓ(1 + ε)

[
m2

M4

(
1

r
− r
)

log r − 1

M2

(
1 +

r2 + 1

r2 − 1
log r

)
+O(ε)

]
, (127)

which has the following limits,

B′0(0,m,m) = (4π)εΓ(1 + ε)

[
1

6m2
+O(ε)

]
,

B′0(M, 0, 0) = (4π)εΓ(1 + ε)

[
− 1

M2
+O(ε)

]
. (128)
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C Box integrals

The integrals required for the two-boson exchange amplitudes in Sec. 6.3 may be written in terms of
the integral operators Ieven and Iodd defined in (85) as

J(mV ,M, δ) = Ieven(δ,mV )
1

L2 −M2 + i0
,

Jµ(p,mV ,M, δ) = Ieven(δ,mV )
1

L2 + 2L · p−M2 + i0
Lµ

= v · pvµJ1(mV ,M, δ) + pµJ2(mV ,M, δ) +O(p3) ,

J−(p,mV ,M, δ) = −Iodd(δ,mV )
1

L2 + 2L · p−M2 + i0
= v · pJ−(mV ,M, δ) +O(p3) ,

Jµ−(mV ,M, δ) = −Iodd(δ,mV )
1

L2 −M2 + i0
Lµ = vµJ1−(mV ,M, δ) . (129)

Note that Jµ(p,mV ,M, δ) and J−(p,mV ,M, δ) vanish when pµ vanishes since the integrands are then
odd in Lµ. By standard manipulations, we may express the integrals J1, J2, J , and J−, as

J1(mV ,M, δ) = −8[cε](1 + ε)
∂

∂m2
V

∫ ∞

0
dρ

∫ 1

0
dxρ2(1− x)

[
xm2

V + (1− x)M2 + ρ2 + 2ρδ − i0
]−2−ε

,

J2(mV ,M, δ) = 4[cε]
∂

∂m2
V

∫ ∞

0
dρ

∫ 1

0
dx(1− x)

[
xm2

V + (1− x)M2 + ρ2 + 2ρδ − i0
]−1−ε

,

J(mV ,M, δ) = −4[cε]
∂

∂m2
V

∫ ∞

0
dρ

∫ 1

0
dx
[
xm2

V + (1− x)M2 + ρ2 + 2ρδ − i0
]−1−ε

,

J−(mV ,M, δ) = 4[cε]
∂

∂δ

∂

∂m2
V

∫ ∞

0
dρ

∫ 1

0
dx(1− x)

[
xm2

V + (1− x)M2 + ρ2 + 2ρδ − i0
]−1−ε

. (130)

Let us introduce the integral

Ĵ(mV ,M, δ) = [cε]

∫ ∞

0
dρ

∫ 1

0
dx(1− x)

[
xm2

V + (1− x)M2 + ρ2 + 2ρδ − i0
]−1−ε

, (131)

and write the above integrals in terms of Ĵ(mV ,M, δ) as

J2(mV ,M, δ) = 4
∂

∂m2
V

Ĵ(mV ,M, δ) ,

J−(mV ,M, δ) = 4
∂

∂δ

∂

∂m2
V

Ĵ(mV ,M, δ) ,

J(mV ,M, δ) = −4
∂

∂m2
V

[
Ĵ(mV ,M, δ) + Ĵ(M,mV , δ)

]
,

J1(mV ,M, δ) = 4
∂

∂m2
V

[
− Ĵ(mV ,M, δ) +

∂

∂A
Ĵ(mV ,M, δ/A)

∣∣
A=1

]
. (132)
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For J1−, we may use the identity (89) to write

J1−(mV ,M, δ) = −2

∫
(dL)

1

(L2 −m2
V + i0)2

1

L2 −M2 + i0
− δJ(mV ,M, δ)

=
2[cε]m

−2−2ε
V

ε(1− ε)

(
1− M2

m2
V

)−2 [
ε+

M2

m2
V

(
1− ε− m2ε

V

M2ε

)]
− δ J(mV ,M, δ) . (133)

Having determined the above integrals in terms of Ĵ(mV ,M, δ), it remains to compute this function.
Let us write

Ĵ(mV ,M, δ) = − [cε]

ε

∂

∂M2

∫ ∞

0
dρ

∫ 1

0
dx
[
xm2

V + (1− x)M2 + ρ2 + 2ρδ − i0
]−ε

= − [cε]

ε

∂

∂M2

∫ ∞

0
dρ

1

m2
V −M2

1

1− ε
{

[m2
V + ρ2 + 2ρδ − i0]1−ε − [M2 + ρ2 + 2ρδ − i0]1−ε

}

= − [cε]

ε

∂

∂M2

1

m2
V −M2

1

1− ε

{
m3−2ε
V f1(δ/mV , 1− ε)−M3−2εf1(δ/M, 1− ε)

}
, (134)

where

f1(δ, a) =

∫ ∞

0
dρ(1 + ρ2 + 2ρδ − i0)a

= (1− δ2 − i0)a+ 1
2

√
π

2

Γ(−a− 1
2)

Γ(−a)
− δ2a+1

∫ 1

0
dx
[
δ−2 − 1 + x2 − i0

]a
. (135)

Although for the present application we require only δ > 0, the expression is for general sign of δ.
We presently need f1(δ, a) for a = 1− ε, and hence consider

√
π

2

Γ(−3
2 + ε)

Γ(−1 + ε)
= −2π

3
ε+

2π

9
(6 log 2− 5)ε2 +O(ε3) ,

∫ 1

0
dx
[
δ−2 − 1 + x2 − i0

]1−ε
= B2 +

1

3
+ ε

{
2

9
+

4

3
B2 − 4

3
B3 arccotB −

(
B2 +

1

3

)
log(B2 + 1)

}

+ ε2
{

4

27
+

20

9
B2 +

4

9
B3(6 log 2B − 5) arccotB +

4

3
B3i

[
Li2

(
1 + iB

1− iB

)
− arccot2B +

π2

12

]

+
1

2

(
B2 +

1

3

)
log2(B2 + 1)−

(
4

3
B2 +

2

9

)
log(B2 + 1)

}
+O(ε3) , (136)

where B2 = 1/δ2 − 1− i0. For B2 > 0, the bracket involving dilogarithm may be written

i

[
Li2

(
1 + iB

1− iB

)
− arccot2B +

π2

12

]
= −Im Li2

(
1 + iB

1− iB

)
= −Cl2

[
arccos

(
1−B2

1 +B2

)]
, (137)

where Cl2 is the Clausen function of order two. The general expression is required for continuing to
arbitrary mass parameters. Having determined f1(δ, 1− ε), we may proceed to compute Ĵ(mV ,M, δ)
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using (134), and then J2(mV ,M, δ), J(mV ,M, δ), J−(mV ,M, δ) and J1(mV ,M, δ) using (132), and
J1−(mV ,M, δ) using (133).

For M = 0, the expressions in (130), the expressions for J2(mV ,M, δ), J1(mV ,M, δ), and
J−(mV ,M, δ) in (132), and the expression for J1−(mV ,M, δ) in (133), remain valid. The integral
J(mV , 0, δ) is now given by

J(mV , 0, δ) = −4[cε]
∂

∂m2
V

{
− 1

ε
m−1−2ε
V

[
f1(δ/mV ,−ε)− f0(δ/mV ,−ε)

]}
, (138)

and the integral Ĵ(mV , 0, δ) by

Ĵ(mV , 0, δ) =
[cε]m

−2
V

ε

∫ ∞

0
dρ

{
(ρ2 + 2ρδ − i0)−ε

− m−2
V

1− ε

[
(m2

V + ρ2 + 2ρδ − i0)1−ε − (ρ2 + 2ρδ − i0)1−ε
]}

=
[cε]m

−1−2ε
V

ε

{
f0(δ/mV ,−ε)−

1

(1− ε)
[
f1(δ/mV , 1− ε)− f0(δ/mV , 1− ε)

]}
, (139)

where f1(δ, a) is given by (135) and

f0(δ, a) =

∫ ∞

0
dρ(ρ2 + 2ρδ − i0)a =

δ1+2aΓ(1 + a)Γ
(
−a− 1

2

)

2
√
π

. (140)

We also need f1(δ/mV , a) for a = −ε, which we may write as

f1(δ/mV ,−ε) =
1

1− εm
−1+2ε
V

∂

∂m2
V

[
m3−2ε
V f1(δ/mV , 1− ε)

]
. (141)

At vanishing residual mass, δ = 0, only the integrals J(mV ,M, 0), J1(mV ,M, 0) and J2(mV ,M, 0)
are required, and from (130) they can be easily represented in closed form,

J(mV ,M, 0) = [cε]
2
√
π

(1− 2ε)

Γ(1
2 + ε)

Γ(1 + ε)

m1−2ε
V

(M2 −m2
V )2

[
1 + 2ε− 2

(
M

mV

)1−2ε

+ (1− 2ε)

(
M

mV

)2 ]
,

J2(mV ,M, 0) = −J1(mV ,M, 0) = [cε]
4
√
π

(3− 2ε)(1− 2ε)

Γ(1
2 + ε)

Γ(1 + ε)

m3−2ε
V

(M2 −m2
V )3

[
1 + 2ε− (3− 2ε)

(
M

mV

)1−2ε

+ (3− 2ε)

(
M

mV

)2

− (1 + 2ε)

(
M

mV

)3−2ε ]
. (142)

The result J2(mV ,M, 0) = −J1(mV ,M, 0) follows from the observation that when δ = 0 the identity
in (89) implies vµJ

µ(p,mV ,M, 0) = 0. The case δ = M = 0 is simply obtained by substitution in
(142).

D Heavy particle integrals with electroweak polarization tensor in-
sertion

The two-boson exchange amplitudes for gluon matching require the integrals H(n), F (n), Hµν(n),
and Hµ(n) defined in (88). Let us parameterize the last two as

Hµν(n) = H1(n)vµvν +H2(n)gµν , Hµ(n) = H3(n)vµ . (143)
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Upon contracting the above expressions with vµ and gµν , we may solve for the relations

H1(n) =
1

3− 2ε

[
(4− 2ε)vµvνH

µν(n)−Hµ
µ(n)

]
,

H2(n) =
1

3− 2ε

[
Hµ

µ(n)− vµvνHµν(n)
]
,

H3(n) = vµH
µ(n) . (144)

Using the identities in (86) and (89), we further obtain

vµH
µ(n) = δH(n) + 2F (n) ,

vµvνH
µν(n) = δ2H(n) + 2δF (n) ,

Hµ
µ(n) =

[
m2

1

x
+

m2
2

(1− x)

]
H(n)− H(n− 1)

x(1− x)
, (145)

and hence the boson loops are completely specified by H(n) and F (n). In evaluating these functions
it may be advantageous to relate to more basic integrals by means of derivatives. Let us write,

H(n) = 2
∂

∂m2
V

∫
(dL)

1

v · L− δ + i0

1

L2 −m2
V + i0

∆−n−ε ,

F (n) =
∂

∂m2
V

∫
(dL)

1

L2 −m2
V + i0

∆−n−ε , (146)

with ∆ as defined in (80). The singularity structure and evaluation of the above integrals can be
classified into three cases, corresponding to zero, one, or two heavy fermions contributing to the
electroweak polarization tensor. For pure states we obtain analytic expressions for all integrals, while
for mixed states we encounter several integrals that require numerical evaluation of one Feynman
parameter integral.

D.1 Case of zero heavy fermions

Upon setting m1 = m2 = 0 in ∆ and performing the integration in d = 4− 2ε dimensions, we obtain

F (n) = [cε]
Γ(2− n− 2ε)Γ(n+ 2ε)

Γ(2− ε)Γ(1 + ε)
[x(1− x)]−n−εm−2n−4ε

V ,

H(n) = [cε]
4Γ(n+ 2ε)

Γ(n+ ε)Γ(1 + ε)
[x(1− x)]−n−ε

∂

∂m2
V

I(n) , (147)

where

I(n) =

∫ 1

0
dy (1− y)n−1+ε

∫ ∞

0
dρ(ρ2 + 2ρδ + ym2

V − i0)−n−2ε . (148)

We may reduce to the case of I(1) by noticing that

I(n+ 1) = − m−2
V

n+ 2ε

∫ 1

0
dy(1− y)n+ε d

dy

∫ ∞

0
dρ(ρ2 + 2ρδ + ym2

V − i0)−n−2ε
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=
m−2
V

n+ 2ε

[ ∫ ∞

0
dρ(ρ2 + 2ρδ − i0)−n−2ε + (n+ ε)I(n)

]

=
m−2
V

n+ 2ε

[
δ1−2n−4εΓ(1− n− 2ε)Γ

(
n− 1

2 + 2ε
)

2
√
π

+ (n+ ε)I(n)

]
. (149)

Finally, for I(1) we require

I(1) = δ−1−4ε

∫ 1

0
dy(1 + ε log(1− y) + . . . )

∫ ∞

1
dρ(ρ2 + α2)−1

(
1− 2ε log(ρ2 + α2) + . . .

)
, (150)

where α =
(
ym2

V /δ
2 − 1− i0

) 1
2 . The relevant integrals are

∫ ∞

1
dρ

1

ρ2 + α2
=

1

α
arctanα ,

∫ ∞

1
dρ

log(ρ2 + α2)

ρ2 + α2
=

1

α

[
2 log(2α) arctanα− 1

2i

(
Li2

(
1− iα
1 + iα

)
− Li2

(
1 + iα

1− iα

))]
. (151)

We perform the remaining integral over Feynman parameter y numerically.

D.2 Case of one heavy fermion

Let us set m1 = M (not to be confused with heavy WIMP mass M used elsewhere in the paper) and
m2 = 0 in ∆, and consider separately the finite integrals for a- and c-type contributions, and the IR
divergent integrals for b-type contributions.

D.2.1 Finite integrals for a- and c-type contributions

For the finite a- and c-type contributions we may take d = 4. Let us evaluate the required integrals
F (2) and H(1), and obtain the remaining integrals by differentiating with respect to M . We find

F (2) =
i

(4π)2

∂

∂m2
V

{[
x(1− x)mV
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xm2
V
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V
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x
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)
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2
log

xm2
V

M2

]}
. (152)

The integrals have been obtained by breaking an integration region into pieces, e.g.,

∫ ∞

δ
dρ

[
log(ρ2 +m2

V − δ2)− log

(
ρ2 +

M2

x
− δ2

)]

= lim
ε→0

∫ ∞

δ
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[
log(ρ2 +m2

V − δ2 − iε)− log

(
ρ2 +

M2

x
− δ2 − iε

)]

= δ lim
ε→0
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1
dρ

[
log

(
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δ2
− 1− iε

)
− log

(
ρ2 +

M2

xδ2
− 1− iε
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= δ lim
ε→0

{∫ ∞

0
dρ

[
log

(
ρ2 +

m2
V

δ2
− 1− iε

)
− log

(
ρ2 +

M2

xδ2
− 1− iε
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−
∫ 1

0
dρ

[
log

(
ρ2 +

m2
V

δ2
− 1− iε

)
− log

(
ρ2 +

M2

xδ2
− 1− iε

)]}
. (153)

Since the original integral is independent of ε, either choice of sgn(ε) is correct provided it is used
consistently in both terms. The continuation away from δ → 0 is thus obtained above by taking,
e.g., δ → δ + iε everywhere. For the evaluation of integrals over x involving H(1), let us write

H(1) ≡ 2
∂

∂m2
V

K(1) ≡ 2
∂

∂m2
V

{
M2

xm2
V −M2

k(1)

}
. (154)

We then have

xnK(1) =

(
M2

m2
V

)n
K(1) +

(
M2

m2
V

)n
− xn

M2

m2
V
− x

M2

m2
V

k(1) , (155)

so that all powers xnK(1) can be reduced to the case n = 0, in addition to the remaining straight-
forward integral involving a polynomial in x times k(1), which in practice is evaluated numerically.
The remaining integrals involving F (2) are similarly straightforward to evaluate.

D.2.2 Infrared divergent integrals for b-type contributions

Let us now turn to the integrals for b-type contributions, where we work in d = 4 − 2ε spacetime
dimensions to account for singular behavior at the endpoints of the x integration. We find,

F (1) = [cε][x(1− x)]−1−ε Γ(1 + 2ε)

[Γ(1 + ε)]2

{
m−2−4ε
V

[ (
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)

+ ε
(
r2 − 1

)−2
(

2r2 log r2 − r2 log2 r2 − r2 + 1 + r2Li2
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− 1
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x
log

r2

x
− r2

x
+ 1
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−
(
r2 − 1

)−2
(
r2 log r2 − r2 + 1

)]}
, (156)

where r ≡M/mV . The first term in curly braces is obtained by taking x = 1 inside the
∫
dy integral,

and the second term is the remainder having no singularity in the final
∫
dx integral at x = 1.

Similarly we find,

H(1) = [cε][x(1− x)]−1−ε 4Γ(1 + 2ε)

[Γ(1 + ε)]2
∂

∂m2
V

{
δ−1−4ε

[
Y0(1) + ε

(
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+ δ−1

[
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]}
,

(157)

where

Y0(x) =
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r2M
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}
,

(158)
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with rV ≡ mV /δ and rM ≡ M/δ. As in the discussion after (153), continuation away from δ = 0 is
given by taking δ → δ+ iε with arbitrary choice of sgn(ε). The remaining terms Y1 and Y2 are given
by

Y1 =

∫ 1

0
dy

∫ ∞

0
dβ
(
r2
M − r2

V

)−1 d

dy
log2

[
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√
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√
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√
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,

Y2 =
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yr2
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M − 1
)−1
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(√
yr2
V + (1− y)r2
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)
, (159)

where

y1(A) ≡
∫ 1

0
dx log2(x2 +A2) . (160)

For Y2, we evaluate the remaining integral over Feynman parameter y numerically.

D.3 Case of two heavy fermions

Let us set m1 = m2 = M (not to be confused with heavy WIMP mass M used elsewhere in the
paper) in ∆, and work in d = 4 dimensions. Naming x(1− x) ≡ z, we find,

F (1) =
i

(4π)2
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V
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zm2
V
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]−1[
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. (161)

The remaining integrals can be obtained by differentiating the above results with respect to M . In
practice, we evaluate the remaining integral over Feynman parameter x (or z) numerically.

E Numerical inputs

We use the inputs of Table 1 in the numerical analysis of coefficients appearing in Fig. 6. Light
fermion masses enter the analysis indirectly via the onshell renormalization scheme. The matching
in (53) requires a limit of the photon two-point function which receives contributions from momentum
regions of light (u, d and s) quark loops that are outside the domain of validity of QCD perturbation
theory. A complete nonperturbative treatment of this function is not numerically relevant to the
present analysis; for definiteness, we model these contributions using MS light quark masses (cf.
Table 1) in the one-loop evaluation of the two-point function. Varying these mass inputs by an order
of magnitude in either direction does not appreciably change the numerical matching coefficients of
Fig. 6.
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Parameter Value Reference

|Vtd|, |Vts| ∼ 0 -

|Vtb| ∼ 1 -

me 0.511 MeV [44]

mµ 106 MeV [44]

mτ 1.78 GeV [44]

mh 126 GeV [28,29]

mW 80.4 GeV [44]

mZ 91.188 GeV [44]

Parameter Value Reference

mt 172 GeV [45]

mb 4.75 GeV [45]

mc 1.4 GeV [45]

ms 93.5 MeV [44]

md 4.70 MeV [44]

mu 2.15 MeV [44]

cW mW /mZ -

αs(mZ) 0.118 [44]

Table 1: Inputs to the numerical analysis.

References

[1] For a review and references see: P. Cushman, C. Galbiati, D. N. McKinsey, H. Robertson,
T. M. P. Tait, D. Bauer, A. Borgland and B. Cabrera et al., arXiv:1310.8327 [hep-ex].

[2] M. Cirelli, N. Fornengo and A. Strumia, Nucl. Phys. B 753, 178 (2006). R. Essig, Phys. Rev. D
78, 015004 (2008).

[3] J. Hisano, K. Ishiwata and N. Nagata, Phys. Rev. D 82, 115007 (2010).

[4] M. Freytsis and Z. Ligeti, Phys. Rev. D 83, 115009 (2011).

[5] J. Hisano, K. Ishiwata, N. Nagata, T. Takesako, JHEP 1107, 005 (2011). J. Hisano, K. Ishiwata
and N. Nagata, Phys. Rev. D 87, 035020 (2013).

[6] R. J. Hill and M. P. Solon, Phys. Lett. B 707, 539 (2012). R. J. Hill and M. P. Solon,
arXiv:1309.4092 [hep-ph].

[7] M. Klasen, C. E. Yaguna and J. D. Ruiz-Alvarez, Phys. Rev. D 87, 075025 (2013).

[8] G. Jungman, M. Kamionkowski and K. Griest, Phys. Rept. 267, 195 (1996).

[9] J. L. Feng, Ann. Rev. Nucl. Part. Sci. 63, 351 (2013).

[10] V. A. Novikov, M. A. Shifman, A. I. Vainshtein, V. I. Zakharov, Fortsch. Phys. 32, 585 (1984).

[11] E. Aprile et al. [XENON100 Collaboration], Phys. Rev. Lett. 109, 181301 (2012).

[12] D. S. Akerib et al. [LUX Collaboration], arXiv:1310.8214 [astro-ph.CO].

[13] J. Bagnasco, M. Dine, S. D. Thomas, Phys. Lett. B320, 99-104 (1994).

[14] T. Hambye, F. -S. Ling, L. Lopez Honorez and J. Rocher, JHEP 0907, 090 (2009) [Erratum-ibid.
1005, 066 (2010)].

[15] C. Kilic, T. Okui and R. Sundrum, JHEP 1002, 018 (2010).

[16] M. T. Frandsen, F. Sannino, Phys. Rev. D81, 097704 (2010).

56



[17] Y. Bai and R. J. Hill, Phys. Rev. D 82, 111701 (2010).

[18] T. Hur, D. W. Jung, P. Ko and J. Y. Lee, Phys. Lett. B 696, 262 (2011).

[19] T. Cohen, J. Kearney, A. Pierce and D. Tucker-Smith, Phys. Rev. D 85, 075003 (2012).

[20] B. A. Campbell, J. Ellis and K. A. Olive, JHEP 1203, 026 (2012).

[21] F. -X. Josse-Michaux and E. Molinaro, Phys. Rev. D 87, no. 3, 036007 (2013).

[22] C. Cheung, L. J. Hall, D. Pinner and J. T. Ruderman, JHEP 1305, 100 (2013). C. Cheung and
D. Sanford, arXiv:1311.5896 [hep-ph].

[23] S. Chang, R. Edezhath, J. Hutchinson and M. Luty, arXiv:1307.8120 [hep-ph].

[24] Y. Bai and J. Berger, JHEP 1311, 171 (2013).

[25] A. DiFranzo, K. I. Nagao, A. Rajaraman and T. M. P. Tait, JHEP 1311, 014 (2013).

[26] K. Earl, K. Hartling, H. E. Logan and T. Pilkington, arXiv:1311.3656 [hep-ph].

[27] M. Drees, M. M. Nojiri, Phys. Rev. D47, 4226-4232 (1993). M. Drees, M. Nojiri, Phys. Rev.
D48, 3483-3501 (1993).

[28] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012).

[29] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716, 30 (2012).

[30] For a review and references see: Y. Gershtein, M. Luty, M. Narain, L. -T. Wang, D. Whiteson,
K. Agashe, L. Apanasevich and G. Artoni et al., arXiv:1311.0299 [hep-ex].

[31] J. R. Ellis, K. A. Olive and C. Savage, Phys. Rev. D 77, 065026 (2008).

[32] J. Giedt, A. W. Thomas and R. D. Young, Phys. Rev. Lett. 103, 201802 (2009). R. Horsley et
al. [QCDSF-UKQCD Collaboration], Phys. Rev. D 85, 034506 (2012). X. -L. Ren, L. S. Geng,
J. Martin Camalich, J. Meng and H. Toki, J. High Energy Phys. 12, 073 (2012). M. Engelhardt,
Phys. Rev. D 86, 114510 (2012). P. E. Shanahan, A. W. Thomas and R. D. Young, Phys. Rev.
D 87, 074503 (2013). H. Ohki et al. [JLQCD Collaboration], Phys. Rev. D 87, no. 3, 034509
(2013). P. Junnarkar and A. Walker-Loud, Phys. Rev. D 87, 114510 (2013).

[33] For reviews see: M. Neubert, Phys. Rept. 245, 259 (1994). A. V. Manohar and M. B. Wise,
Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 10, 1 (2000).

[34] R. J. Hill and M. P. Solon, “Standard Model anatomy of dark matter direct detection II: QCD
analysis and hadronic matrix elements,” to appear.

[35] J. Heinonen, R. J. Hill and M. P. Solon, Phys. Rev. D 86, 094020 (2012).

[36] K. Kopp and T. Okui, Phys. Rev. D 84, 093007 (2011).

[37] M. E. Luke and A. V. Manohar, Phys. Lett. B 286, 348 (1992). A. V. Manohar, Phys. Rev.
D 56, 230 (1997). N. Brambilla, D. Gromes and A. Vairo, Phys. Lett. B 576, 314 (2003).
N. Brambilla, E. Mereghetti and A. Vairo, Phys. Rev. D 79, 074002 (2009) [Erratum-ibid. D
83, 079904 (2011)].

57



[38] R. J. Hill, G. Lee, G. Paz and M. P. Solon, Phys. Rev. D 87, 053017 (2013).

[39] W. F. L. Hollik, Fortsch. Phys. 38, 165 (1990).

[40] A. Denner, Fortsch. Phys. 41, 307 (1993).

[41] H. Eberl, M. Kincel, W. Majerotto and Y. Yamada, Phys. Rev. D 64, 115013 (2001). T. Fritzsche
and W. Hollik, Eur. Phys. J. C 24, 619 (2002). W. Oller, H. Eberl, W. Majerotto and C. Weber,
Eur. Phys. J. C 29, 563 (2003). A. Chatterjee, M. Drees, S. Kulkarni and Q. Xu, Phys. Rev. D
85, 075013 (2012).

[42] K. G. Chetyrkin, B. A. Kniehl and M. Steinhauser, Nucl. Phys. B 510, 61 (1998).

[43] M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Phys. Lett. B 78, 443 (1978).

[44] J. Beringer et al. [Particle Data Group Collaboration], Phys. Rev. D 86, 010001 (2012).

[45] A. D. Martin, W. J. Stirling, R. S. Thorne and G. Watt, Eur. Phys. J. C 63, 189 (2009).

58


