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The Advanced LIGO and Advanced Virgo gravitational wave (GW) detectors will begin operation
in the coming years, with compact binary coalescence events a likely source for the first detections.
The gravitational waveforms emitted directly encode information about the sources, including the
masses and spins of the compact objects. Recovering the physical parameters of the sources from the
GW observations is a key analysis task. This work describes the LALInference software library for
Bayesian parameter estimation of compact binary signals, which builds on several previous methods
to provide a well-tested toolkit which has already been used for several studies.

We show that our implementation is able to correctly recover the parameters of compact binary
signals from simulated data from the advanced GW detectors. We demonstrate this with a detailed
comparison on three compact binary systems: a binary neutron star (BNS), a neutron star — black
hole binary (NSBH) and a binary black hole (BBH), where we show a cross-comparison of results
obtained using three independent sampling algorithms. These systems were analysed with non-
spinning, aligned spin and generic spin configurations respectively, showing that consistent results
can be obtained even with the full 15-dimensional parameter space of the generic spin configurations.

We also demonstrate statistically that the Bayesian credible intervals we recover correspond to
frequentist confidence intervals under correct prior assumptions by analysing a set of 100 signals
drawn from the prior.

We discuss the computational cost of these algorithms, and describe the general and problem-
specific sampling techniques we have used to improve the efficiency of sampling the compact binary
coalescence (CBC) parameter space.

PACS numbers: 02.50.Tt, 04.30.—w, 95.85.Sz

I. INTRODUCTION

The direct observation of GWs and the study of relativistic sources in this new observational window is the focus of
a growing effort with broad impact on astronomy and fundamental physics. The network of GW laser interferometers
- LIGO [1], Virgo [2] and GEO 600 [3] — completed science observations in initial configuration in 2010, setting new
upper-limits on a broad spectrum of GW sources. At present, LIGO and Virgo are being upgraded to their advanced
configurations [4, 5], a new Japanese interferometer, KAGRA (formerly known as the Large-Scale Gravitational-wave
Telescope, LCGT) [6] is being built, and plans are underway to relocate one of the LIGO instruments upgraded to
Advanced LIGO sensitivity to a site in India (LIGO-India) [7]. Advanced LIGO is currently on track to resume



science observations in 2015 with Advanced Virgo following soon after [8]; around the turn of the decade LIGO-India
and KAGRA should also join the network of ground-based instruments.

Along with other possible sources, advanced ground-based interferometers are expected to detect GWs generated
during the last seconds to minutes of life of extra-galactic compact binary systems, with neutron star and/or black
hole component masses in the range ~ 1 Mg —100Mg. The current uncertainties on some of the key physical processes
that affect binary formation and evolution are reflected in the expected detection rate, which spans three orders of
magnitude. However, by the time interferometers operate at design sensitivity, between one observation per few years
and hundreds of observations per year are anticipated [8, 9], opening new avenues for studies of compact objects in
highly relativistic conditions.

During the approximately ten years of operation of the ground-based GW interferometer network, analysis develop-
ment efforts for binary coalescences have been focused on the detection problem, and rightly so: how to unambiguously
identify a binary coalescence in the otherwise overwhelming instrumental noise. The most sensitive compact binary
searches are based on matched-filtering techniques, and are designed to keep up with the data rate and promptly
identify detection candidates [10, 11]. A confirmation of the performance of detection pipelines has been provided by
the “blind injection challenge” in which a synthetic compact binary coalescence signal was added (unknown to the
analysis teams) to the data stream and successfully detected [12].

Once a detection candidate has been isolated, the next step of the analysis sequence is to extract full information
regarding the source parameters and the underlying physics. With the expected detection of GWs in the coming
years, this part of the analysis has become the focus of a growing number of studies.

The conceptual approach to inference on the GW signal is deeply rooted in the Bayesian framework. This frame-
work makes it possible to evaluate the marginalized posterior probability density functions (PDFSs) of the unknown
parameters that describe a given model of the data and to compute the so-called evidence of the model itself. It is
well known that Bayesian inference is computationally costly, making the efficiency of the PDF and evidence calcula-
tions an important issue. For the case of coalescing binary systems the challenge comes from many fronts: the large
number of unknown parameters that describe a model (15 parameters to describe a gravitational waveform emitted
by a binary consisting of two point masses in a circular orbit assuming that general relativity is accurate, plus other
model parameters to account for matter effects in the case of neutron stars, the noise, instrument calibration, etc.),
complex multi-modal likelihood functions, and the computationally intensive process of generating waveforms.

Well known stochastic sampling techniques — Markov chain Monte Carlo [13-21], Nested Sampling [22, 23] and
MULTINEST/BAMBI [24-27] — have been used in recent years to develop algorithms for Bayesian inference on GW
data aimed at studies of coalescing binaries. An underlying theme of this work has been the comparison of these
sampling techniques and the cross-validation of results with independent algorithms. In parallel, the inference effort
has benefited from a number of advances in other areas that are essential to maximise the science exploitation of
detected GW signals, such as waveform generation and standardised algorithms and libraries for the access and
manipulation of GW data. The initially independent developments have therefore progressively converged towards
dedicated algorithms and a common infrastructure for Bayesian inference applied to GW observations, specifically
for coalescing binaries but applicable to other sources. These algorithms and infrastructure are now contained in a
dedicated software package: LALInference.

The goal of this paper is to describe LALInference. We will cover the details of our implementation, designed to
overcome the problems faced in performing Bayesian inference for GW observations of CBC signals. This includes
three independent sampling techniques which were cross-compared to provide confidence in the results that we obtain
for CBC signals, and compared with known analytical probability distributions. We describe the post-processing steps
involved in converting the output of these algorithms to meaningful physical statements about the source parameters
in terms of credible intervals. We demonstrate that these intervals are well-calibrated measures of probability through
a Monte Carlo simulation, wherein we confirm the quoted probability corresponds to frequency under correct prior
assumptions. We compare the computational efficiency of the different methods and mention further enhancements
that will be required to take full advantage of the advanced GW detectors.

The LALInference software consists of a C library and several post-processing tools written in python. It leverages
the existing LSC Algorithm Library (LAL) to provide

e Standard methods of accessing GW detector data, using LAL methods for estimating the power spectral density
(PSD), and able to simulate stationary Gaussian noise with a given noise curve.

e the ability to use all the waveform approximants included in LAL that describe the evolution of point-mass
binary systems, and waveforms under development to account for matter effects in the evolution of binary
neutron stars and generalisations of waveforms beyond general relativity;

e Likelihood functions for the data observed by a network of ground-based laser interferometers given a waveform
model and a set of model parameters;



e Three independent stochastic sampling techniques of the parameter space to compute PDF's and evidence;

e Dedicated “jump proposals” to efficiently select samples in parameter space that take into account the specific
structure of the likelihood function;

e Standard post-processing tools to generate probability credible regions for any set of parameters.

During the several years of development, initial implementations of these Bayesian inference algorithms and
LALInference have been successfully applied to a variety of problems, such as the impact of different network
configurations on parameter estimation [28], the ability to measure masses and spins of compact objects [17, 29, 30],
to reconstruct the sky location of a detected GW binary [19, 31, 32] and the equation of state of neutron stars [33],
the effects of calibration errors on information extraction [34] and tests of general relativity [35-37]. Most notably
LALInference has been at the heart of the study of detection candidates, including the blind injection, during the last
LIGO/Virgo science run [38], and has been used for the Numerical INJection Analysis project NINJA2 [39]. It has
been designed to be flexible in the choice of signal model, allowing it to be adapted for analysis of signals other than
compact binaries, including searches for continuous waves [40], and comparison of core-collapse supernova models
based on [41].

The paper is organised as follows: Section II provides a summary of the key concepts of Bayesian inference,
and specific discussion about the many waveform models that can be used in the analysis and the relevant prior
assumptions. In Section IIT we describe the conceptual elements concerning the general features of the sampling
techniques that are part of LALInference: Markov chain Monte Carlo, Nested Sampling and MULTINEST/BAMBI.
Section IV deals with the problem of providing marginalized probability functions and (minimum) credible regions at
a given confidence level from a finite number of samples, as is the case of the outputs of these algorithms. In Section V
we summarise the results from extensive tests and validations that we have carried out by presenting representative
results on a set of injections in typical regions of the parameter space, as well as results obtained by running the
algorithms on known distributions. This section is complemented by Section VI in which we consider efficiency issues,
and we report the run-time necessary for the analysis of coalescing binaries in different cases; this provides a direct
measure of the latency timescale over which fully coherent Bayesian inference results for all the source parameters
will be available after a detection candidate is identified. Section VII contains our conclusions and pointers to future
work.

II. BAYESIAN ANALYSIS

We can divide the task of performing inference about the GW source into two problems: using the observed data
to constrain or estimate the unknown parameters of the source ! under a fixed model of the waveform (parameter
estimation), and deciding which of several models is more probable in light of the observed data, and by how much
(model selection). We tackle both these problems within the formalism of Bayesian inference, which describes the
state of knowledge about an uncertain hypothesis H as a probability, denoted P(H) € [0, 1], or about an unknown
parameter as a probability density, denoted p(#|H), where [p(f|H)df = 1. Parameter estimation can then be
performed using Bayes’ theorem, where a prior probability distribution p(f|H) is updated upon receiving the new
data d from the experiment to give a posterior distribution p(6|d, H),

p(O|H)p(d0, 1) "
p(d[H)
Models typically have many parameters, which we collectively indicate with @ = {61,605, ...,0x}. The joint probability

distribution on the multi-dimensional space p(8|d, H) describes the collective knowledge about all parameters as well
as their relationships. Results for a specific parameter are found by marginalising over the unwanted parameters,

p(01]d, H) = /d02 ...dOnp(6]d, H) . (2)

p(0ld, H) =

The probability distribution can be used to find the expectation of various functions given the distribution, e.g. the
mean

w»:/&mm¢Hma, 3)

1 The whole set of unknown parameters of the model can also contain parameters not related to the source, such as noise and calibration
parameters [42—45].



and credible regions, an interval in parameter space that containing a given probability (see Section IV).

Model selection is performed by comparing the fully marginalized likelihood, or ‘evidence’, for different models.
The evidence, usually denoted Z, is simply the integral of the likelihood, L(d|@) = p(d|0, H), multiplied by the prior
over all parameters of the model H,

2= pld ) = [ dty..d0 p(dl6. H)p(O]). (4)

This is the normalisation constant that appears in the denominator of Eq. (1) for a particular model. Because we
cannot exhaustively enumerate the set of exclusive models describing the data, we typically compare two competing
models. To do this, one computes the ratio of posterior probabilities

_ P(Hi|d) _ P(H;)

Z;
Ou = B,la) ~ UL, 7, ©)

where B;; = Z;/Z; is the ‘Bayes Factor’ between the two competing models ¢ and j, which shows how much more
likely the observed data d is under model ¢ rather than model j.

While the Bayesian methods described above are conceptually simple, the practical details of performing an analysis
depend greatly on the complexity and dimensionality of the model, and the amount of data that is analysed. The
size of the parameter space and the amount of data to be considered mean that the resulting probability distribution
cannot tractably be analysed through a fixed sampling of the parameter space. Instead, we have developed methods
for stochastically sampling the parameter space to solve the problems of parameter estimation and model selection,
based on the Markov chain Monte Carlo (MCMC) and Nested Sampling techniques, the details of which are described
in section ITI. Next we will describe the models used for the noise and the signal.

A. Data model

The data obtained from the detector is modelled as the sum of the compact binary coalescence signal h (described
in section II B) and a noise component n,

d=h+n. (6)

Data from multiple detectors in the network are analysed coherently, by calculating the strain that would be observed
in each detector:

h:F+(Ot,§, ¢)h+ + Fx (O[,(S,Q/))hx (7)

where h  are the two independent GW polarisation amplitudes and F. « («, 6, 1) are the antenna response functions
([e.g. 46]) that depend on the source location and the polarisation of the waves. Presently we ignore the time
dependence of the antenna response function due to the rotation of the Earth, instead assuming that it is constant
throughout the observation period. This is justifiable for the short signals considered here. Work is ongoing to include
this time dependence when analysing very long signals with a low frequency cutoff below 40 Hz, to fully exploit the
advanced detector design sensitivity curves. The waveforms h yx are described in Section II B.

As well as the signal model, which is discussed in the next section, we must include a description of the observed
data, including the noise, which is used to create the likelihood function. This is where knowledge of the detectors’
sensitivity and the data processing procedures are folded into the analysis.

We perform all of our analyses using the calibrated strain output of the GW detectors, or a simulation thereof.
This is a set of time-domain samples d; sampled uniformly at times ¢;, which we sometimes write as a vector d for
convenience below. To reduce the volume of data, we down-sample the data from its original sampling frequency
(16384 Hz) to a lower rate fs > 2fiax, which is high enough to contain the maximum frequency fiax of the lowest
mass signal allowed by the prior, typically fs = 4096 Hz when analysing the inspiral part of a BNS signal. To prevent
aliasing the data is first low-pass filtered with a 20th order Butterworth filter with attenuation of 0.1 at the new
Nyquist frequency, using the implementation in LAL [47], which preserves the phase of the input. We wish to create
a model of the data that can be used to perform the analysis. In the absence of a signal, the simplest model which
we consider is that of Gaussian, stationary noise with a certain power spectral density S, (f) and zero mean. S, (f)
can be estimated using the data adjacent to the segment of interest, which is normally selected based on the time
of coalescence t. of a candidate signal identified by a search pipeline. The analysis segment d spans the period
[te = T + 2,t. + 2], i.e. a time T which ends two seconds after the trigger (the 2s safety margin after ¢. allows for
inaccuracies in the trigger time reported by the search, and should encompass any merger and ringdown component of



the signal). To obtain this estimate, by default we select a period of time (1024 s normally, but shorter if less science
data is available) from before the time of the trigger to be analysed, but ending not later than ¢, — T, so it should
not contain the signal of interest. This period is divided into non-overlapping segments of the same duration 7" as the
analysis segment, which are then used to estimate the PSD. Each segment is windowed using a Tukey window with a
0.4 s roll-off, and its one-sided noise power spectrum is computed. For each frequency bin the median power over all
segments is used as an estimate of the PSD in that bin. We follow the technique of [48] by using the median instead
of the mean to provide some level of robustness against large outliers occurring during the estimation time.

The same procedure for the PSD estimation segments is applied to the analysed data segment before it is used for
inference, to ensure consistency.

For each detector we assume the noise is stationary, and characterised only by having zero mean and a known
variance (estimated from the power spectrum). Then the likelihood function for the noise model is simply the product
of Gaussian distributions in each frequency bin

2 d 2 1
Pl Su() = 03 |~ s — 5 AT (472 0
where d is the discrete Fourier transform of d
T ..
= dek exp(—2mijk/N). (9)
k

The presence of an additive signal h in the data simply adjusts the mean value of the distribution, so that the
likelihood including the signal is

2|h — ;|2
fz)

- 21og<wTsn<fi>/2>] . (10

p(d|Hs, S, = eXPZ

To analyse a network of detectors coherently, we make the further assumption that the noise is uncorrelated in each.
This allows us to write the coherent network likelihood for data obtained from each detector as the product of the
likelihoods in each detector [49].

P vyl Hs Sngyvy()) = [ p(dilHs, Sni(£)) (11)
i€{H,L,V}

This gives us the default likelihood function which is used for our analyses, and has been used extensively in previous
work.

1. Marginalising over uncertainty in the PSD estimation

Using a fixed estimate of the PSD, taken from times outside the segment being analysed, cannot account for slow
variations in the shape of the spectrum over timescales of minutes. We can model our uncertainty in the PSD estimate
by introducing extra parameters into the noise model which can be estimated along with the signal parameters; we
follow the procedure described in [43]. We divide the Fourier domain data into ~ 8 logarithmically spaced segments,
and in each segment j, spanning N; frequency bins, introduce a scale parameter 7;(f;) which modifies the PSD such
that S, (fi) = Sn(fi)n; for i; < i < i;41, where the scale parameter is constant within a frequency segment. With
these additional degrees of freedom included in our model, the likelihood becomes

712
s, 5.(1).6.m) = e 3 T
—zlog(meSn(fi)/%] : 12)

The prior on 7; is a normal distribution with mean 1 and variance 1/N;. In the limit N; — 1 (i.e., there is one scale
parameter for each Fourier bin), replacing the Gaussian prior with an inverse chi-squared distribution and integrating



p(d|Hg, Sn(f),0,m) x p(0,n|Hg, S,(f)) over m, we would recover the Student’s t-distribution likelihood considered
for GW data analysis in [42, 50]. For a thorough discussion of the relative merits of Student’s t-distribution likelihood
and the approach used here, as well as examples which show how including 1 in the model improves the robustness
of parameter estimation and model selection results, see [43]. In summary, the likelihood adopted here offers more
flexibility given how much the noise can drift between the data used for estimating the PSD and the data being
analysed. Further improvements on this scheme using more sophisticated noise models are under active development.

B. Waveform models

There are a number of different models for the GW signal that is expected to be emitted during a compact-
binary merger. These models, known as waveform families, differ in their computational complexity, the physics
they simulate, and their regime of applicability. LALInference has been designed to easily interface with arbitrary
waveform families.

Each waveform family can be thought of as a function that takes as input a parameter vector 8 and produces as
output hy «(0), either a time domain h(0;t) or frequency-domain h(0; f) signal. The parameter vector 6 generally
includes at least nine parameters:

e Component masses m, and mo. We use a reparametrisation of the mass plane into the chirp mass,
M = (mym2)*®(mq +mg) =/ (13)
and the asymmetric mass ratio
q=ma/m, (14)

as these variables tend to be less correlated and easier to sample. We use the convention m; > mo when labelling
the components. The prior is transformed accordingly (see figure 1). Another possible parametrisation is the
symmetric mass ratio

_ (mimy)
77 - (ml + m2>2 (15)

although we do not use this when sampling the distribution since the Jacobian of the transformation to mq, mo
coordinates becomes singular at m; = mao.

e The luminosity distance to the source dy;
e The right ascension a and declination § of the source;

e The inclination angle ¢, between the system’s orbital angular momentum and the line of sight. For aligned- and
non-spinning systems this coincides with the angle 6 ;5 between the total angular momentum and the line of
sight (see below). We will use the more general ;5 throughout the text.

e The polarisation angle ¢ which describes the orientation of the projection of the binary’s orbital momentum
vector onto the plane on the sky, as defined in [46];

e An arbitrary reference time ¢., e.g. the time of coalescence of the binary;
e The orbital phase ¢. of the binary at the reference time t..

Nine parameters are necessary to describe a circular binary consisting of point-mass objects with no spins. If spins of
the binary’s components are included in the model, they are described by six additional parameters, for a total of 15:

e dimensionless spin magnitudes a;, defined as a; = |s;|/m? and in the range [0, 1], where s; is the spin vector of
the object 4, and

e two angles for each s; specifying its orientation with respect to the plane defined by the line of sight and the
initial orbital angular momentum.



In the special case when spin vectors are assumed to be aligned or anti-aligned with the orbital angular momentum,
the four spin-orientation angles are fixed, and the spin magnitudes alone are used, with positive (negative) signs
corresponding to aligned (anti-aligned) configurations, for a total of 11 parameters. In the case of precessing waveforms,
the system-frame parametrisation has been found to be more efficient than the radiation frame typically employed
for parameter estimation of precessing binaries. The orientation of the system and its spinning components are
parameterised in a more physically intuitive way that concisely describes the relevant physics, and defines evolving
quantities at a reference frequency of 100 Hz, near the peak sensitivity of the detectors [51]:

e O;n: The inclination of the system’s total angular momentum with respect to the line of sight;
e t1,t: Tilt angles between the compact objects’ spins and the orbital angular momentum;
e $15: The complimentary azimuthal angle separating the spin vectors;

e ¢j1: The azimuthal position of the orbital angular momentum on its cone of precession about the total angular
momentum.

Additional parameters are necessary to fully describe matter effects in systems involving a neutron star, namely the
equation of state [52], or to model deviations from the post-Newtonian expansion of the waveforms [e.g. 36, 53], but
we do not consider these here. Finally, additional parameters could be used to describe waveforms from eccentric
binaries [54] but these have not yet been included in our models.

GWs emitted over the whole coalescence of two compact objects produce a characteristic “chirp” of increasing
amplitude and frequency during the adiabatic inspiral phase, followed by a broad-band merger phase and then
damped quasi-sinusoidal signals during the ringdown phase. The characteristic time and frequency scales of the
whole inspiral-merger-ringdown are important in choosing the appropriate length of the data segment to analyse and
the bandwidth necessary to capture the whole radiation. At the leading Newtonian quadrupole order, the time to
coalescence of a binary emitting GWs at frequency f is [48]:

- Fo\T M —5/3
T=093.9 (30 o 087 M2 sec. (16)

Here we have normalised the quantities to an m; = my = 1 Mg equal mass binary. The frequency of dominant mode
gravitational wave emission at the innermost stable circular orbit for a binary with non-spinning components is [48]:

fisco = ; =44 <J\4®> kHZa (17)

63/27(my + mo) mq + mo

The low-frequency cut-off of the instrument, which sets the duration of the signal, was 40 Hz for LIGO in ini-
tial/enhanced configuration and 30 Hz for Virgo. When the instruments operate in advanced configuration, new
suspension systems are expected to provide increased low-frequency sensitivity and the low-frequency bound will pro-
gressively move towards ~ 20 Hz. The quantities above define therefore the longest signals that one needs to consider
and the highest frequency cut-off. The data analysed (the ‘analysed segment’) must include the entire length of the
waveform from the desired starting frequency.

Although any waveform model that is included in the LAL libraries can be readily used in LALInference, the most
common waveform models used in our previous studies [e.g., 55] are:

e Frequency-domain stationary phase inspiral-only post-Newtonian waveforms for binaries with non-spinning com-
ponents, particularly the TaylorF2 approximant [56];

e Time-domain inspiral-only post-Newtonian waveforms that allow for components with arbitrary, precessing
spins, particularly the SpinTaylorT4 approximant [57];

e Frequency-domain inspiral-merger-ringdown phenomenological waveform model calibrated to numerical relativ-
ity, IMRPhenomB, which describes systems with (anti)aligned spins [58];

e Time-domain inspiral-merger-ringdown effective-one-body model calibrated to numerical relativity, EOBNRv2
[59].

Many of these waveform models have additional options, such as varying the post-Newtonian order of amplitude or
phase terms. Furthermore, when exploring the parameter space with waveforms that allow for spins, we sometimes
find it useful to set one or both component spins to zero, or limit the degrees of freedom by only considering spins
aligned with the orbital angular momentum.



We generally carry out likelihood computations in the frequency domain, so time-domain waveforms must be
converted into the frequency domain by the discrete Fourier transform defined as in eq. (9). To avoid edge effects and
ensure that the templates and data are treated identically (see Section ITA), we align the end of the time-domain
waveform to the discrete time sample which is closest to ¢. and then taper it in the same way as the data (if the
waveform is non-zero in the first or last 0.4s of the buffer), before Fourier-transforming to the frequency domain and
applying any finer time-shifting in the frequency domain, as described below.

Some of the parameters, which we call intrinsic parameters (masses and spins), influence the evolution of the
binary. Evaluating a waveform at new values of these parameters generally requires recomputing the waveform,
which, depending on the model, may involve purely analytical calculations or a solution to a system of differential
equations. On the other hand, extrinsic parameters (sky location, distance, time and phase) leave the basic waveform
unchanged, while only changing the detector response functions F, and Fy and shifting the relative phase of the
signal as observed in the detectors. This allows us to save computational costs in a situation where we have already
computed the waveform and are now interested in its re-projection and/or phase or time shift; in particular, this
allows us to compute the waveform only once for an entire detector network, and merely change the projection of the
waveform onto detectors. We typically do this in the frequency domain.

The dependence of the waveform on distance (scaling as 1/dr), sky location and polarisation (detector response
described by antenna pattern functions F, x (e, d,1) for the + and x polarisations, see eq. (7)) and phase (h(¢.) =

h(¢ = 0)e'®e) is straightforward. A time shift by At corresponds to a multiplication h(At) = h(0)e2™/At in the
frequency domain; this time shift will be different for each detector, since the arrival time of a GW at the detector
depends on the location of the source on the sky and the location of the detector on Earth.

The choice of parameterization greatly influences the efficiency of posterior sampling. The most efficient parame-
terizations minimize the correlations between parameters and the number of isolated modes of the posterior. For the
mass parameterization, the chirp mass M and asymmetric mass ratio ¢ achieve this, while avoiding the divergence
of the Jacobian of the symmetric mass ratio n at equal masses when using a prior flat in component masses. With
generically oriented spins comes precession, and the evolution of angular momentum orientations. In this case the
structure of the posterior is simplified by specifying these parameters, chosen so that they evolve as little as possible,
at a reference frequency of 100 Hz near the peak sensitivity of the detector [51].

1. Analytic marginalisation over phase

The overall phase ¢, of the GW is typically of no astrophysical interest, but is necessary to fully describe the
signal. When the signal model includes only the fundamental mode (I = m = 2) of the GW it is possible to
analytically marginalize over ¢., simplifying the task of the inference algorithms in two ways. Firstly, the elimination
of one dimension makes the parameter space easier to explore; secondly the marginalized likelihood function over the
remaining parameters has a lower dynamic range than the original likelihood. The desired likelihood function over
the remaining parameters Q is calculated by marginalising Eq. (10),

p(d|Hs, S,(f). ) = / p(6e| Hs)p(d|6, Hs, S,(f))do. (18)

where p(¢.|Hg) = 1/27 is the uniform prior on phase.
Starting from Eq. 11 we can write the likelihood for multiple detectors indexed j as

|h1|+|dz 2]
pld;|Hs, Sn;(f),6) o< exp |- Z .
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where hyg is the signal defined at a reference phase of 0. Using this definition, the integral of Eq. (18) can be cast into
a standard form to yield

p(dj|HSa Sn](f)’ Q) =

Iholl +|d 15 4 hoijd
Sl S L (v &
2,7 %,




in terms of the modified Bessel function of the first kind Iy. Note that the marginalised likelihood is no longer
expressible as the product of likelihoods in each detector. We found that using the marginalized phase likelihood could
reduce the computation time of a nested sampling analysis by a factor of up to 4, as the shape of the distribution was
easier to sample, reducing the autocorrelation time of the chains.

C. Priors

As shown in Eq. (1), the posterior distribution of @ (or 8) depends both on the likelihood and prior distributions
of §. LALInference allows for flexibility in the choice of priors. For all analyses described here, we used the same
prior density functions (and range). For component masses, we used uniform priors in the component masses with
the range 1 Mg < mq 2 < 30 Mg, and with the total mass constrained by m; +ma < 35 Mg, as shown in Fig. 1. This
range encompasses the low-mass search range used in [12] and our previous parameter estimation report [55], where
1Mg <mip <24Mg and my +mg < 25 M. When expressed in the sampling variable M, ¢ the prior is determined
by the Jacobian of the transformation,

p(M,q|I) o< Mmi? (21)

which is shown in the right panel of figure 1.

The prior density function on the location of the source was taken to be isotropically distributed on the sphere of the
sky, with p(dp|Hgs) o« d 2, from 1 Mpc out to a maximum distance chosen according to the detector configuration and
the source type of interest. We used an isotropic prior on the orientation of the binary to give p(¢, 1, ¢c|Hg) o sint.
For analyses using waveform models that account for possible spins, the prior on the spin magnitudes, a;,as, was
taken to be uniform in the range [0,1] (range [—1,1] in the spin-aligned cases), and the spin angular momentum
vectors were taken to be isotropic.

The computational cost of the parameter estimation pipeline precludes us from running it on all data; therefore,
the parameter estimation analysis relies on an estimate of the coalescence time as provided by the detection pipeline
[12]. In practice, a 200 ms window centered on the trigger time is sufficient to guard against the uncertainty and bias
in the coalescence time estimates from the detection pipeline, see for instance [10, 60]. For the signal-to-noise ratios
(SNRs) used in this paper, our posteriors are much narrower than our priors for most parameters.

III. ALGORITHMS

A. MCMC

Markov chain Monte Carlo methods are designed to estimate a posterior by stochastically wandering through the
parameter space, distributing samples proportionally to the density of the target posterior distribution. Our MCMC
implementation uses the Metropolis—Hastings algorithm [61, 62], which requires a proposal density function Q(6’|0)
to generate a new sample €', which can only depend on the current sample 6. Such a proposal is accepted with a
probability rs = min(1, a), where

Q(016")p(0'|d, H)

= Q@) ) @2)

If accepted, 0’ is added to the chain, otherwise 6 is repeated.

Chains are typically started at a random location in parameter space, requiring some number of iterations before
dependence on this location is lost. Samples from this burn-in period are not guaranteed to be draws from the
posterior, and are discarded when estimating the posterior. Furthermore, adjacent samples in the chain are typically
correlated, which is undesirable as we perform Kolmogorov-Smirnov tests of the sampled distributions, which requires
independent samples. To remove this correlation we thin each chain by its integrated autocorrelation time (ACT) 7,
defined defined as

T=1+2) &), (23)

where t labels iterations of the chain and é(t) is the Pearson correlation coefficient between the chain of samples and
itself shifted by ¢ samples [63] The chain is thinned by using only every 7-th sample, and the samples remaining after
burn-in and ACT thinning are referred to as the effective samples. This is necessary for some post-processing checks
which assume that the samples are statistically independent.
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The efficiency of the Metropolis—Hastings algorithm is largely dependent on the choice of proposal density, since
that is what governs the acceptance rates and ACTs. The standard, generically applicable distribution is a Gaussian
centered on @, the width of which will affect the acceptance rate of the proposal. Large widths relative to the scale of
the target posterior distribution will lead to low acceptance rates with many repeated samples, whereas small widths
will have high acceptance rates with highly correlated samples, both resulting in large ACTs. For a simplified setting
of a unimodal Gaussian posterior, the optimal acceptance rate can be shown to be 0.234 [64]. Though our posterior
can be more complicated, we find that targeting this acceptance rate gives good performance and consistent ACT's for
all posteriors that we have considered. Therefore, during the first 100,000 samples of a run, we adjust the 1D Gaussian
proposal widths to achieve this acceptance rate. This period of adjustment is re-entered whenever the sampler finds
a log likelihood (log L) that is N/2 larger than has been seen before in a run, under the assumption that this increase
in likelihood may indicate that a new area of parameter space is being explored.

When the posterior deviates from a unimodal Gaussian-like distribution, using only the local Gaussian proposal
becomes very inefficient. The posteriors encountered in GW data analysis typically consists of multiple isolated modes,
separated by regions of lower probability. To properly weigh these modes, a Markov chain must jump between them
frequently, which is a very unlikely process when using only a local Gaussian proposal. In section III C we describe the
range of jump proposals more adept at sampling the parameter space of a compact binary inspiral. We also describe
the technique of parallel tempering, which we employ to ensure proper mixing of samples between the modes.

1. Parallel Tempering

Tempering [65, 66] introduces an inverse “temperature” 1/T to the standard likelihood function, resulting in a
modified posterior

pr(0|d) o p(6|H)L(6)T . (24)

Increasing temperatures above T' = 1 reduces the contrast of the likelihood surface, broadening peaks, with the
posterior approaching the prior in the high temperature limit. Parallel tempering exploits this “flattening” of the
posterior with increasing temperature by constructing an ensemble of tempered chains with temperatures spanning
T =1 to some finite maximum temperature Ty,,x. Chains at higher temperatures sample a distribution closer to the
prior, and are more likely to explore parameter space and move between isolated modes. Regions of high posterior
support found by the high-temperature chains are then passed down through the temperature ensemble by periodically
proposing swaps in the locations of adjacent chains. Such swaps are accepted at a rate rs = min(1,w;;), where

L(6,)\ "%
= 2
Y (L(HQ) ’ 25)
with T; < Tj.

For non-trivial posteriors this technique greatly increases the sampling efficiency of the T' = 1 chain, but does so
at a cost. In our implementation, samples with 7" > 1 are not used in construction of the final posterior distribution,
but they are kept for calculation of evidence integrals via thermodynamic integration in post-processing IV C.

All samples from chains with 7' > 1 are ultimately discarded, as they are not drawn from the target posterior. From
a computational perspective however, each chain can run in parallel and not affect the total run time of the analysis.
The MCMC implementation of LALInference, LALInferenceMCMC, uses the Message Passing Interface (MPI) [67] to
achieve this parallelization. In our calculations, the temperatures T; are distributed logarithmically. Chains are not
forced to be in sync, and each chain proposes a swap in location with the chain above it (if one exists) every 100
samples.

B. Nested Sampling

Nested sampling is a Monte Carlo technique introduced by Skilling [22] for the computation of the Bayesian evidence
that will also provide samples from the posterior distribution. This is done by transforming the multi-dimensional
integral of Equation (4) into a one-dimensional integral over the prior volume. The prior volume is defined as X such
that dX = dOp(@|H). Therefore,

X(\) = / d6p(0|H). (26)
p(d|6,H)>\
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This integral computes the total probability volume contained within a likelihood contour defined by p(d|@, H) = .
With this in hand, Equation (4) can now be written as

7z = /O L(X)dX, (27)

where L(X) is the inverse of Equation (26) and is a monotonically decreasing function of X (larger prior volume
enclosed implies lower likelihood value). By evaluating the likelihoods L; = L(X;) associated with a monotonically
decreasing sequence of prior volumes X,

0<Xpy<...<Xo< X1 <Xp=1, (28)

the evidence can be easily approximated with the trapezium rule,

M
1
zZ=Y" 5 (Xio1 = Xip1)Li. (29)

i=1

Examples of the function L(X) for CBC sources are shown in figure 2.

Applying this technique follows a fundamental set of steps. First, a set of initial ‘live’ points are sampled from the
entire prior distribution. The point with the lowest likelihood value is then removed and replaced by a new sample
with higher likelihood. This removal and replacement is repeated until a stopping condition has been reached. By
default, the loop continues while L,,q.X;/Z; > €%, where L,,q, is the maximum likelihood so far discovered by
the sampler, Z; is the current estimate of the total evidence, and X; is the fraction of the prior volume inside the
current contour line. In short, this is checking whether the evidence estimate would change by more than a factor of
~ 0.1 if all the remaining prior support were at the maximum likelihood. Posterior samples can then be produced by
re-sampling the chain of removed points and current live points according to their posterior probabilities:

3(Xio1 — X)L

(30)

The estimation of the prior volume and method for efficiently generating new samples varies between implementations.
In LALInference we have included two such implementations, one based on an MCMC sampling of the constrained
prior distribution, and the other on the MULTINEST method, with extensions. These are described in the following
two sections IIIB 1 and III B 2.

1. LALInferenceNest

The primary challenge in implementing the nested sampling algorithm is finding an efficient means of drawing
samples from the limited prior distribution

(6|Hs) L(d|0) > Luin

31
otherwise (31)

P/(0]Hs) o {g

In LALInference we build on the previous inspnest implementation described in [23], with several enhancements
described here. This uses a short MCMC chain (see section IIT A) to generate each new live point, which is started
from a randomly-selected existing live point.

We use proposals of the same form as described in IIT C with slight differences: the differential evolution proposal
is able to use the current set of live points as a basis for drawing a random difference vector, and for empirically
estimating the correlation matrix used in the eigenvector proposal. This ensures that the scale of these jumps adapts
automatically to the current concentration of the remaining live points. In contrast to Eq. (22), the target distribution
that we are sampling is the limited prior distribution p’ of Eq. (31), so the acceptance ratio is

o = @Bl (6'1H)
Q(610)p'(01H) -

Furthermore, we have introduced additional features which help to reduce the amount of manual tuning required to
produce a reliable result.

(32)
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a. Autocorrelation adaptation In [23] it was shown that the numerical error on the evidence integral was depen-
dent not only on the number of live points Ny and the information content of the data (as suggested by Skilling), but
also on the length of the MCMC sub-chains Nyieome used to produce new samples (this is not included in the idealised
description of nested sampling, since other methods of drawing independent new samples are also possible, see section
IIIB2). In inspnest, the user would specify this number at the start of the run, depending on their desire for speed
or accuracy. The value then remained constant throughout the run. This is inefficient, as the difficulty of generating
a new sample varies with the structure of the p’(0|Hg) distribution at different values of Lyi,. For example, there
may be many secondary peaks which are present up to a certain value of L,i,, but disappear above that, making
the distribution easier to sample. To avoid this inefficiency (and to reduce the number of tuning parameters of the
code), we now internally estimate the required length of the sub-chains as the run progresses. To achieve this, we
use the estimate of the autocorrelation timescale 7; (defined as in Eq. 23) for parameter i of a sub-chain generated
from a randomly selected live point. The sum is computed up to the lag M; which is the first time the correlation
drops below 0.01, i.e &(M;) < 0.01. The timescale is computed for each parameter being varied in the model, and
the longest autocorrelation time is used as the number of MCMC iterations (M = max(Mj, ..., M;) for subsequent
sub-chains until it is further updated after Nj;ye/4 iterations of the nested sampler. As the chain needed to compute
the autocorrelation timescale is longer than the timescale itself, the independent samples produced are cached for
later use. We note that as the nested sampling algorithm uses many live points, the correlation between subsequent
points used for evaluating the evidence integral will be further diluted, so this procedure is a conservative estimate
of the necessary chain thinning. The adaptation of the sub-chain length is shown in figure 3, where the algorithm
adapts to use < 1000 MCMC steps during the majority of the analysis, but can adjust its chain length to a limit of
5000 samples for the most difficult parts of the problem.

b. Sloppy sampling For the analysis of CBC data, the computational cost of a likelihood evaluation completely
dominates that of a prior calculation, since it requires the generation of a trial waveform and the calculation of an inner
product (with possible FFT into the frequency domain). The task of sampling the likelihood-limited prior p/(6|H)
is performed by sampling from the prior distribution, rejecting any points that fall beneath the minimum threshold
Lyin. During the early stages of the run, the Ly, likelihood bound encloses a large volume of the parameter space,
which may take many iterations of the sub-chain to cross, and a proposed step originating inside the bound is unlikely
to be rejected by this cut. We are free to make a shortcut by not checking the likelihood bound at each step of the
sub-chain, allowing it to continue for M F iterations, where E is the fraction of iterations where the likelihood check
is skipped. Since the calculation of the prior is essentially free compared to that of the likelihood, the computational
efficiency is improved by a factor of (1 — E)~!. The likelihood bound is always checked before the sample is finally
accepted as a new live point.

Since the optimal value of E is unknown, and will vary throughout the run as the L.;, contour shrinks the support
for the p/(0|H) distribution, we adaptively adjust it based on a target for the acceptance of proposals at the likelihood-
cut stage. Setting a target acceptance rate of 0.3 at the likelihood cut stage, and having measured acceptance rate
a, we adjust F in increments of 5% upward when a > 0.3 or downward when o < 0.3, with a maximum of 1. This
procedure allows the code to calculate fewer likelihoods when the proposal distribution predominantly falls inside the
bounds, which dramatically improves the efficiency at the start of the run.

c. Parallelisation Although the nested sampling algorithm itself is a sequential method, we are able to exploit
a crude parallelisation method to increase the number of posterior samples produced. This involves performing
separate independent runs of the algorithm on different CPU cores, and then combining the results weighted by their
respective evidence. Consider a set of nested sampling runs indexed by i, with each iteration indexed by j =1...&;,
where &; is the number of iterations in run 7 before it terminates, and Z; denotes the evidence estimate from that
run. Our implementation also outputs the Njye live points at the time of algorithm termination, which are indexed
&it1 .- &t Ny - These last samples are treated separately since they are all drawn from the same prior volume. The
runs must all be performed with identical data and models, but with different random seeds for the sampler.

For each sample 6;; we calculate the posterior weight w;; = L;;V;;/Z;, where logVj; = —j/Ni. for the points
up to j < §; and Vij = —&;/Nyye for the final points j > ;. By resampling any individual chain according to the
weights w;; we can produce a set of samples from the posterior. The resulting sets of posteriors for each i are then
resampled according to the evidence Z; calculated for each chain. This ensures that chains which fail to converge on
the global maximum will contribute proportionally fewer samples to the final posterior than those which do converge
and produce a higher Z; estimate. The resampling processes can be performed either with or without replacement,
where the latter is useful in ensuring that no samples are repeated. In this paper independent samples are used
throughout, as repeated samples will distort the tests of convergence by artificially lowering the KS test statistic.

In practice, this procedure reduces the wall time necessary to produce a given number of posterior samples, as the
chains can be spread over many CPU cores.
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2. MuULTINEST & BAMBI

MULTINEST [24-26] is a generic algorithm that implements the nested sampling technique. It uses a model-based
approach to generate samples within the volume X enclosed by the likelihood contour L(X) > Lyi,. The set of live
points is enclosed within a set of (possibly overlapping) ellipsoids and a new point is then drawn uniformly from the
region enclosed by these ellipsoids. The volume of ellipsoids is used in choosing which to sample from and points
are tested to ensure that if they lie in multiple (N) ellipsoids they are accepted as a sample only the corresponding
fraction of the time (1/N). The ellipsoidal decomposition of the live point set is chosen to minimize the sum of volumes
of the ellipsoids. This method is well suited to dealing with posteriors that have curving degeneracies, and allows
mode identification in multi-modal posteriors. If there are various subsets of the ellipsoid set that do not overlap in
parameter space, these are identified as distinct modes and subsequently evolved independently.

MULTINEST is able to take advantage of parallel computing architectures by allowing each CPU to compute a new
proposal point. As the run progresses, the actual sampling efficiency (fraction of accepted samples from total samples
proposed) will drop as the ellipsoidal approximation is less exact and the likelihood constraint on the prior is harder
to meet. By computing N samples concurrently, we can obtain speed increases of up to a factor of N with the largest
increase coming when the efficiency drops below 1/N.

The user only needs to tune a few parameters for any specific implementation in addition to providing the log-
likelihood and prior functions. These are the number of live points, the target efficiency, and the tolerance. The
number of live points needs to be enough that all posterior modes are sampled (ideally with at least one live point
in the initial set) and we use from 1000 to 5000 for our analyses. The target efficiency affects how conservatively the
ellipsoidal decomposition is made and a value of 0.1 (10%) was found to be sufficient; smaller values will produce
more precise posteriors but require more samples. Lastly, a tolerance of 0.5 in the evidence calculation is sufficiently
small for the run to converge to the correct result.

MULTINEST is implemented for LALInference within the Blind Accelerated Multimodal Bayesian Inference
(BAMBI) algorithm [27]. BAMBI incorporates the nested sampling performed by MULTINEST along with the machine
learning of SKYNET [68] to learn the likelihood function on-the-fly. Use of the machine learning capability requires
further customisation of input settings and so is not used for the purposes of this study.

C. Jump Proposals

For both the MCMC sampler and the MCMC-subchains of the Nested Sampler, efficiently exploring the parameter
space is essential to optimising performance of the algorithms. Gaussian jump proposals are typically sufficient
for unimodal posteriors and spaces without strong correlations between parameters, but there are many situations
where strong parameter correlations exist and/or multiple isolated modes appear spread across the multi-dimensional
parameter space. When parameters are strongly correlated, the ideal jumps would be along these correlations, which
makes 1D jumps in the model parameters very ineflicient. Furthermore to sample between isolated modes, a chain
must make a large number of improbable jumps through regions of low probability. To solve this problem we have
used a range of jump proposals, some of which are specific to the CBC parameter estimation problem and some of
which are more generally applicable to multimodal or correlated problems.

To ensure that an MCMC equilibrates to the target distribution, the jump proposal densities in Eq. (22) must
be computed correctly. Our codes achieve this using a “proposal cycle.” At the beginning of a sampling run, the
proposals below are placed into an array (each proposal may be put multiple times in the array, according to a
pre-specified weight factor). The order of the array is then permuted randomly before sampling begins. Throughout
the run, we cycle through the array of proposals (maintaining the order), computing and applying the jump proposal
density for the chosen proposal at each step as in Eq. (22). This procedure ensures that there is only a single proposal
“operating” for each MCMC step, simplifying the computation of the jump proposal density, which otherwise would
have to take into account the forward and reverse jump probabilities for all the proposals simultaneously.

Differential Evolution

Differential evolution is a generic technique that attempts to solve the multimodal sampling problem by leveraging
information gained previously in the run [69, 70]. It does so by drawing two previous samples 6; and 63 from the
chain (for MCMC) or from the current set of live points (nested sampling), and proposing a new sample 8’ according
to:

0'=6+~(0:—01), (33)



14

where v is a free coefficient. 50% of the time we use this as a mode-hopping proposal, with v = 1. In the case where
61 and 0 are in the same mode, this proposes a sample from the mode containing 8. The other 50% of the time we
choose vy according to

N~ N (0, 2.38/\/2Ndim> : (34)

where Ngiy is the number of parameter space dimensions. The scaling of the distribution for v is suggested in ter
Braak and Vrugt [70] following Roberts and Rosenthal [71] for a good acceptance rate with general distributions.
The differential evolution proposal in this latter mode proves useful when linear correlations are encountered in the
distribution, since the jump directions tend to lie along the principal axes of the posterior distribution. However, this
proposal can perform poorly when the posterior is more complicated.

Drawing from the past history of the chain for the MCMC differential evolution proposal makes the chain evolution
formally non-Markovian. However, as more and more points are accumulated in the past history, each additional
point accumulated makes a smaller change to the overall proposal distribution. This property is sufficient to make
the MCMC chain asymptotically Markovian, so the distribution of samples converges to the target distribution; in
the language of Roberts and Rosenthal [72], Theorem 1, D,, — 0 in probability as n — oo for this adaptive proposal,
and therefore the posterior is the equilibrium distribution of this sampling.

FEigenvector jump

The variance-covariance matrix of a collection of representative points drawn from the target distribution (the
current set of nested sampling live points) can be used as an automatically self-adjusting proposal distribution. In
our implementation, we calculate the eigenvalues and eigenvectors of the estimated covariance matrix, and use these
to set a scale and direction for a jump proposal. This type of jump results in a very good acceptance rate when the
underlying distribution is approximately Gaussian, or is very diffuse (as in the early stages of the nested sampling
run). In the nested sampling algorithm, the covariance matrix is updated every Nj;,./4 iterations to ensure the jump
scales track the shrinking scale of the target distribution. Within each sub-chain the matrix is held constant to ensure
detailed balance.

Adaptive Gaussian

We also use a 1 dimensional Gaussian jump proposal, where the jump for a single parameter 6y, is 6}, = 0, +N (0, o).
The width of the proposal is scaled to achieve a target acceptance rate of £ ~ 0.234 by adjusting

¢

100 A (35)

O < Ok + Sy

when a step is accepted, where s, is a scaling factor and A is the prior width in the kth parameter, and adjusting

§

O — 8y A 36
Tk TR T 500 (36)
when a step is rejected. For the MCMC, the adaptation phase lasts for 100,000 samples, and s, = 10 (t — to)fl/5 -1
during this phase; otherwise s, = 0. The nested sampling algorithm has s, = 1.

Gravitational-wave specific proposals

We also use a set of jump proposals specific to the CBC parameter estimation problem addressed in this work.
These proposals are designed to further improve the sampling efficiency by exploring known structures in the CBC
posterior distribution, primarily in the sky location and extrinsic parameter sub-spaces.

Sky location Determining the sky position of the CBC source is an important issue for followup observations of
any detected sources. The position, parameterised by («, d, dy,), is determined along with the other parameters by the
LALInference code, but it can present difficulties due to the highly structured nature of the posterior distribution.
Although the non-uniform amplitude response of a single detector allows some constraint of the sky position of a
source, the use of a network of detectors gives far better resolution of the posterior distribution. This improvement is
heuristically due to the ability to resolve the difference in time of arrival of the signal at each detector, which allows
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triangulation of the source direction. The measured amplitude of the signal and the non-uniform prior distribution
further constrain the posterior, but the major structure in the likelihood can be derived by considering the times of
arrival in multiple detectors. This leads us to include two specific jump proposals similar to those outlined in [23],
which preserve the times of arrival in two and three detector networks respectively.

Sky Reflection In the case of a three-detector network, the degeneracy of the ring based on timing is broken by the
presence of a third detector. In this case, there are two solutions to the triangulation problem which correspond
to the true source location, and its reflection in the plane containing the three detector sites. If the normal
vector to this plane is 72, the transition (in Cartesian coordinates with origin at the geocentre) between the true
point Z and its reflection 2’ is written

& =& — 20| (& — &) (37)

where Z; is the unit vector pointing in the direction of one of the detector sites. The resulting point is then
projected back onto the unit sphere parameterised by «,d. To ensure detailed balance, the resulting point is
perturbed by a small random vector drawn from a 3D Gaussian in (¢, «,d) The time parameter is updated in
the same way as for the sky rotation proposal above. As in the two-detector case, the degeneracy between these
points can be broken by consideration of the signal amplitudes observed in the detector, however this is not
always the case as the secondary mode can have a similar likelihood.

Extrinsic parameter proposals

Extrinsic Parameter proposal There exist a correlation between the inclination, distance, polarization and the
sky location dues to the sensitivity of the antenna beam patterns of the detectors. This correlation makes the two
solutions for the sky location from the thee-detector network (described above) correspond to different values
of inclination, distance and polarization. We solve analytically the values of those parameters when trying to
jump between the two sky reflections. The equations are detailed in [73].

Polarization and Phase correlation There exists a degeneracy between the ¢ and 1 parameters when the orbital
plane is oriented perpendicular to the line of signal, i.e. ¢+ = {0,7}. In general these parameters tend to be
correlated along the axes « =¥ + ¢ and 8 = 1) — ¢. We propose jumps which choose a random value of either
the « or B parameter (keeping the other constant) to improve the sampling of this correlation.

Miscellaneous proposals

Draw from Prior A proposal that generates samples from the prior distribution (see section IIC) by rejection
sampling. This is mostly useful for improving the mixing of high-temperature MCMC chains, as it does not
depend on the previous iteration.

Phase reversal Proposes a change in the orbital phase parameter ¢,+1 = (¢; + 7) (mod 27), which will keep the
even harmonics of the signal unchanged, but will flip the sign of the odd harmonics. Since the even harmonic
I = m = 2 dominates the signal, this is useful for proposing jumps between multiple modes which differ only by
the relatively small differences in the waveform generated by the odd harmonics.

Phase and polarization reversal Proposes a simultaneous change of the orbital phase and polarisation parameters
¢j+1 = (¢; +m) (mod 2m) and ;41 = (¢; +7/2) (mod 7).

Gibbs Sampling of Distance The conditional likelihood of the distance parameter dj, follows a known form, which
allows us to generate proposals from this distribution independently of the previous iteration, reducing the
correlation in the chains. As the signal amplitude scales proportionally to d; ™' = wu, the logarithm of the
likelihood function (Equation (10)), constrained to only distance variations, is quadratic in u,

log L(u) = A+ Bu + Cu?, (38)

which in our case yields a Gaussian distribution with mean y = —B/2C and variance 02 = 1/2C. By calculating
the value of log L at three different distances, the quadratic coefficients are found and a new proposed distance
can be generated from the resulting Gaussian distribution.
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IV. POST-PROCESSING

The main data products of all the above algorithms are a set of ‘samples’ assumed to be drawn independently from
the posterior probability distribution p(8|d, I) (as defined in Equation (1)) and, for the nested sampling algorithms,
an approximation to the evidence Z = P(d|I) (for MCMC, evidence computation is performed in post-processing, see
section IV C). Each algorithm initially produces outputs which are different in both their form and relation to these
quantities. A suite of Python scripts has been specifically developed for the purpose of converting these outputs to
a common results format in order to facilitate comparisons between the algorithms and promote consistency in the
interpretation of results. At the time of writing these scripts (and associated libraries) can be found in the open-
source LALsuite package [47]. The end result of this process is a set of web-ready HTML pages containing the key
meta-data and statistics from the analyses and from which it should be possible to reproduce any results produced
by the codes. In this section we outline in more detail the steps needed to convert or post-process the output of
the different algorithms to this common results format and important issues related to interpreting these results and
drawing scientific conclusions.

A. MCMC

The MCMC algorithm in LALInference produces a sequence of O(10°) - O(10%) samples, depending on the number
of source parameters in the model, the number of interferometers used, and the bandwidth of the signal. Each sample
consists of a set of source parameters {6} and associated values of the likelihood function L(d|@) and prior p(@). We
cannot immediately take this output sequence to be our posterior samples as we cannot assume that all the samples
were drawn independently from the actual posterior distribution.

In order to generate a set of independent posterior samples the post-processing for the MCMC algorithm first
removes a number of samples at the beginning of the chain — the so-called ‘burn-in’ — where the MCMC will not yet
be sampling from the posterior probability density function. For a d-dimensional parameter space, the distribution of
the log-likelihood is expected to be close to Liax — X, where L.« is the maximum achievable log-likelihood, and X
is a random variable following a Gamma(d/2, 1) distribution [74]. Thus, we consider the burn-in to end when a chain
samples log-likelihood values that are within d/2 of the highest log-likelihood value found by the chain. Once we have
discarded these samples, the set of remaining samples is then ‘down-sampled’; the chain is re-sampled randomly at
intervals inversely proportional to the the autocorrelation length to produce a sub-set of samples which are assumed
to be drawn independently from the posterior distribution. See section IIT A above for more details.

B. Nested sampling

The output of both of the nested sampling algorithms in LALInference are a list (or lists in the case of parallel
runs) of the live points sampled from the prior distribution for a particular model and data set and consisting of a
set of parameters and their associated log(L;;) and Z;;. These live points approximately lie on the contours enclosing
the nested prior volumes and each has associated with it some fraction of the evidence assumed to be enclosed within
said contour. The post-processing step takes this information and uses it to generate posterior samples from the list
of retained live points using Eq. 30 for single runs, along with the procedure described in section III B 1 ¢ for parallel
runs.

C. Evidence calculation using MCMC outputs

Whilst the nested sampling algorithms in LALInference directly produce an approximation to the value of the
evidence Z (and produce posterior samples as a by-product), we can also use the output from the MCMC algorithms
to calculate independent estimates of Z in post-processing. We have tested several methods of computing the evidence
from posterior samples, including the harmonic mean [75-77], direct integration of an estimate of the posterior density
[78], and thermodynamic integration (see e.g. [79, 80]). We have found that only thermodynamic integration permits
reliable estimation of the evidence for the typical number and distribution of posterior samples we obtain in our
analyses.



17
Thermodynamic integration considers the evidence as a function of the temperature, Z(3|H), defined as

2(6/8) = [ aop(alt,0. 5)p(6|H)

— [ asp(atz, o) s(o]m) (39)
where 8 = 1/T is the inverse temperature of the chain. Differentiating with respect to g, we find
d
@1HZ(5|H) = (Inp(d|H,0))s (40)

where (lnp(d|H, 0))s is the expectation value of the log likelihood for the chain with temperature 1/8. We can now
integrate (40) to find the logarithm of the evidence

1
an:/O ds (Inp(d|H,0))s. (41)

It is straightforward to compute (Inp(d|H, 0))g for each chain in a parallel-tempered analysis; the integral in Eq. (41)
can then be estimated using a quadrature rule. Because our typical temperature spacings are coarse, the uncertainty
in this estimate of the evidence is typically dominated by discretisation error in the quadrature. We estimate that
error by performing the quadrature twice, once using all the temperatures in the chain and once using half the
temperatures. To achieve very accurate estimates of the evidence, sometimes ~ 20 to ~ 30 temperatures are needed,
out to a maximum of 37! ~ 10° which adds a significant cost over the computations necessary for parameter
estimation; however, reasonably accurate estimates of the evidence can nearly always be obtained from a standard
run setup with ~ 10 chains. Figure 5 plots the integrand of Eq. (41) for the synthetic GW signals analysed in § V B,
illustrating both the coarse temperature spacing of the runs and the convergence of the evidence integral at high
temperature.

D. Generation of statistics and marginal posterior distributions

Whilst the list of posterior samples contains all the information about the distribution of the source parameters
obtained from the analysis, we need to make this more intelligible by summarising it in an approximate way. We
have developed a number of different summary statistics which provide digested information about the posterior
distributions, which are applied in post-processing to the output samples.

The simplest of these are simply the mean and standard deviation of the one-dimensional marginal distributions
for each of the parameters. These are estimated as the sample mean, standard deviation, etc., over the samples,
which converge on their continuous distribution equivalents (3) in the limit of large numbers of samples. These are
particularly useful for giving simple measures of the compatibility of the results with the true values, if analysing a
known injection.

However, estimators are not always representative of the much larger amount of information contained in the
marginal posterior distributions on each of the parameters (or combinations of them). For summarising one- or two-
dimensional results we create plots of the marginal posterior probability density function by binning the samples in
the space of the parameters and normalising the resulting histogram by the number of samples.

We are also interested in obtaining estimates of the precision of the resulting inferences, especially when comparing
results from a large number of simulations to obtain an expectation of parameter estimation performance under various
circumstances. We quantify the precision in terms of ‘credible intervals’, defined for a desired level of credibility (e.g.
Perea = 95% probability that the parameter lies within the interval), with the relation

credible level:/ p(0]d)de. (42)

credible interval

The support of the integral above is the credible interval, however this is not defined uniquely by this expression.
In one dimension, we can easily find a region enclosing a fraction x of the probability by sorting the samples by
their parameter values and choosing the range from [N(1 — z)/2, N(1 + x)/2] where N is the number of independent
samples in the posterior distribution. The statistical error on the fraction = of the true distribution enclosed, caused
by the approximation with discrete samples is ~ y/x(1 — 2)/N. To achieve a 1% error in the 90% region we therefore
require 900 independent samples. Typically we collect a few thousand samples, giving an error < 1% on the credible
interval.
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We are also interested in the minimum credible interval, which is the smallest such region that encloses the desired
fraction of the posterior. In the case of a unimodal one-dimensional posterior this leads to the highest posterior
density interval.

To find estimates of the minimum credible intervals we use a number of techniques that have different regimes of
usefulness, depending primarily on the number of samples output from the code and the number of parameters we
are interested in analysing conjointly.

When we are considering the one-dimensional marginal posterior distributions, we simply compute a histogram for
the parameter of interest using equally-sized bins. This directly tells us the probability associated with that region of
the parameter space: the probability density is approximately equal to the fraction of samples in the bin divided by
the bin width. This simple histogram method involves an appropriate choice of the bin size. We must be careful to
choose a bin size small enough that we have good resolution and can approximate the density as piecewise constant
within each bin, but large enough so that the sampling error within each bin does not overwhelm the actual variations
in probability between bins.

To recover the minimum credible interval we apply a greedy algorithm to the histogram bins. This orders the bins
by probability, and starting from the highest probability bin, works its way down the list of bins until the required
total probability has been reached. Although this procedure generally yields satisfactory results, it is subject to bias
due to the discrete number of samples per bin. To see this, consider a uniform probability distribution that has been
discretely sampled. The statistical variation of the number of samples within bins will cause those where the number
fluctuates upward to be chosen before those where it fluctuates downward. The credible interval estimated by this
method will therefore be smaller than the true interval containing the desired proportion of the probability. In [81]
we investigate several methods of overcoming this problem.

V. VALIDATION OF RESULTS

To confirm the correctness of the sampling algorithms, we performed cross-comparisons of recovered posterior
distributions for a variety of known distributions and example signals. The simplest check we performed was recovery of
the prior distribution, described in section II C. The one-dimensional distributions output by the codes were compared
using a Kolmogorov-Smirnov test, where the comparisons between the three codes on the 15 marginal distributions
were all in agreement with p-values above 0.02. We next analysed several known likelihood functions, where we could
perform cross-checks between the samplers. These were a unimodal 15-dimensional correlated Gaussian, a bimodal
correlated Gaussian distribution, and the Rosenbrock banana function. For the unimodal and bimodal distributions
we can also compare the results of the samplers to the analytical marginal distributions to confirm they are being
sampled correctly.

A. Analytic likelihoods

The multivariate Gaussian distribution was specified by the function

log Lary = f%(oi —0,)C;; (65 — 0)). (43)
where Cj; is a covariance matrix of dimension 15, and the mean values 6; are chosen to lie within the usual ranges,
and have the usual scales, as in the GW case. Cj; was chosen so that its eigenvectors do not lie parallel to the axes
defined by the parameters 6;, and the ratio of the longest to shortest axis was ~ 200. The evidence integral of this
distribution can be computed to good approximation over a prior domain bounded at 50 using the determinant of
the covariance matrix and the prior volume V, Zyry = V=1(2/7)15/2 det C;; 712 ~ e~ 21-99,

The bimodal distribution was composed of two copies of the unimodal multivariate Gaussian used above, with two
mean vectors 6; and \; separated by 8o, as defined by C;;. Using a bounding box at =90 about the mid-point of the
two modes, the evidence is calculated as Zp,, ~ e 3902,

The Rosenbrock “banana” function is a commonly used test function for optimisation algorithms [82]. For this
distribution, we do not have analytic one-dimensional marginal distributions to compare to, or known evidence
values, so we were only able to do cross-comparisons between the samplers.

Each sampler was run targeting these known distributions, and the recovered posterior distributions and evidences
were compared. The posterior distributions agreed for all parameter as expected, and an example of one parameter
is shown in figure 6.

The recovered evidence values are shown in table I. For the MCMC sampler the quoted errors come from the
thermodynamic integration quadrature error estimates described in §IV C; for the nested samplers the quoted errors
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are estimated by running the algorithm multiple times and computing the standard deviation of the results. For
the simplest unimodal and bimodal distributions we see excellent agreement between the sampling methods, which
agree within the 1o statistical error estimates. The more difficult Rosenbrock likelihood results in a statistically
significant disagreement between the nested sampling and BAMBI algorithms, with BAMBI returning the higher
evidence estimate. To highlight the difficulty, for this problem the thermodynamic integration methods used with
MCMC required 64 temperature ladder steps to reach convergence to 5(log L) = 0 at high temperatures, as opposed
to the 16 used in the other problems. This pattern is repeated in the evidence for the signals, where there is a
difference of several standard deviations between the methods.

B. Simulated GW signals

As an end-to-end test, we ran all three sampling flavours of LALInference (MCMC, section IITA; Nest, sec-
tion IIIB 1 and BAMBI, section IIIB 2) on three test signals, described in table II. These signals were injected into
coloured Gaussian noise of known power spectrum and recovered with the same approximant used in generating the
injection, listed in table II. Since we used inspiral-only waveforms models for both injection and recovery, there is a
sharp cutoff in the signal above the waveform’s termination frequency. It has been shown that in some circumstances
the presence of this cutoff provides an artificially sharp feature which can improve parameter estimation beyond that
of a realistic signal [83]. Nonetheless, since the focus of this study is the consistency of the algorithms, we can proceed
to use the sharply terminating waveforms for comparison purposes.

Figures 7, 8 and 9 show two-dimensional 90% credible intervals obtained by all three samplers on various com-
binations of parameters. Figure 7 (see table II) shows the typical posterior structure for a BNS system. We show
only three two-dimensional slices through the nine-dimensional (non-spinning) parameter space, highlighting the most
relevant parameters for an astrophysical analysis. Selected one-dimensional 90% credible intervals are shown in table
IITI. This is the least challenging of the three example signals, since we restrict the model to non-spinning signals
only. The posterior PDFs show excellent agreement between the sampling methods. In the leftmost panel we show
the recovered distribution of the masses, parametrised by the chirp mass and symmetric mass ratio. This shows the
high accuracy to which the chirp mass can be recovered compared to the mass ratio, which leads to a high degree of
correlation between the estimated component masses. The domain of the prior ends at a maximum of = 0.25, which
corresponds to the equal mass configuration. In the central panel we show the estimated sky location, which is well
determined here thanks to the use of a three-detector network. In the rightmost panel, the correlation between the
distance and inclination angle is visible, as both of these parameter scale the effective amplitude of the waveform. The
reflection about the 67y = 7/2 line shows the degeneracy which is sampled efficiently using the extrinsic parameter
jump proposals ITT C.

Similarly to Figure 7, Figure 8 (see table II) shows the posterior for a NSBH system. This signal was recovered
using a spin-aligned waveform model, and we show six two-dimensional slices of this eleven-dimensional parameter
space. Selected one-dimensional 90% credible intervals are shown in table IV. The top-left panel shows the M — 7
distribution; in comparison to Figure 7 the mass ratio is poorly determined. This is caused by the correlation between
the n parameter and the aligned spin magnitudes, which gives the model greater freedom in fitting 7, varying a; and
as to compensate. This correlation is visible in the bottom-right panel. The other panels on the bottom row illustrate
other correlations between the intrinsic parameters. The top-right panel shows the correlation between distance and
inclination, where in this case the spins help break the degeneracy about the 6;x = 7/2 line.

Lastly, figure 9 (see table II) shows the posterior for a BBH system, recovered taking into account precession effect
from two independent spins. We show nine two-dimensional slices of this fifteen-dimensional parameter space. One-
dimensional 90% credible intervals are shown in table V. In addition to the features similar to figure 7 in the top row,
correlations with spin magnitudes (middle row) and tilt angles (bottom row) are shown. Note that the injected spin
on the first component is almost anti-aligned with the orbital angular momentum, such that the tilt angle t; = 3.1,
an unlikely random choice. This angle has a low prior probability, and as a result the injected value lies in the tails
of the posterior distribution. This has repercussions in the recovered distributions for the spin magnitude and mass
ratio, since they are partially degenerate in their effect on the phase evolution of the waveform, which results in the
true value also being located in the tails of these distributions.

In all three cases, the three independent sampling algorithms converge on the same posterior distributions, indicating
that the algorithms can reliably determine the source parameters, even for the full 15-dimensional spinning case.

We also computed the evidence for each signal, relative to the Gaussian noise hypothesis, using each sampler,
with errors computed as in §V A. The results in table I show that the two flavours of nested sampling produce
more precise estimates, according to their own statistical error estimates, but they disagree in the mean value. The
thermodynamic integration method used with the MCMC algorithm (with 16 steps on the temperature ladder),
produces a larger statistical error estimate, which generally encloses both the nested sampling and BAMBI estimates.
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These results indicate that there remains some systematic disagreement between the different methods of estimating
evidence values, despite the good agreement between the posteriors. The BAMBI method generally produces a higher
evidence estimate compared to the nested sampling approach, by around a factor of e. This indicates that further
improvement is necessary before we can rely on these methods to distinguish models which are separated by evidence
values lower than this factor.

C. Confidence intervals

Having checked the agreement of the posterior distributions on three selected injections, we performed a further
check to ensure that the probability distributions we recover are truly representative of the confidence we should hold
in the parameters of the signal. In the ideal case that our noise and waveform model matches the signal and noise in
the data, and our prior distribution matches the set of signals in the simulations, then the recovered credible regions
should match the probability of finding the true signal parameters within that region. By setting up a large set of
test signals in simulated noise we can see if this is statistically true by determining the frequency with which the true
parameters lie within a certain confidence level. This allows us to check that our credible intervals are well calibrated,
in the sense of [84].

For each run we calculate credible intervals from the posterior samples, for each parameter. We can then examine
the number of times the injected value falls within a given credible interval. If the posterior samples are an unbiased
estimate of the true probability, then 10% of the runs should find the injected values within a 10% credible interval,
50% of runs within the 50% interval, and so on.

We perform a KS-test on whether the results match the expected 1 to 1 relation between the fraction of signals in
each credible region, and the level associated with that region.

For 1 dimensional tests our credible regions are defined as the connected region from the lowest parameter value to
the value where the integrated probability reaches the required value. In practice we order the samples by parameter
value and query what fraction of this list we count before passing the signal value.

To perform this test, we drew 100 samples from the prior distribution of section II C, providing a set of injections
to use for the test. This was performed using the TaylorF2 waveform approximant for both injection and recovery,
with simulated Gaussian data using the initial LIGO and Virgo noise curves and 3 detector sites.

We calculated the cumulative distribution of the number of times the true value for each parameter was found
within a given credible interval p, as a function of p, and compared the result to a perfect 1 — 1 distribution using
a KS test. All three codes passed this test for all parameters, indicating that our sampling and post-processing
does indeed produce well-calibrated credible intervals. Figure 10 shows an example of the cumulative distribution of
p-values produced by this test for the distance parameter. Similar plots were obtained for the other parameters.

VI. COMPUTATIONAL PERFORMANCE

We have benchmarked the three samplers using the three GW events described in section V B. Although the specific
performances listed are representative only of these signals, they do provide a rough idea of the relative computational
performance of the sampling methods and the relative difficulty in the BNS, NSBH and BBH analyses, when running
in a typical configuration. The computational cost of a parameter estimation run is strongly dependent on two main
factors: the waveform family used (see sec. II B) and the structure of the parameter space. Profiling of the codes show
that computation of waveforms is the dominating factor, as the calculation of the phase evolution at each frequency
bin is relatively expensive compared to the computation of the likelihood once the template is known.

The computationally easiest waveform to generate is TaylorF2, where an analytic expression for the waveform in the
frequency domain is available. For the BNS signal simulated here, around 50 waveforms can be generated per second
at our chosen configuration (32s of data sampled at 4096 Hz). On the other hand, more sophisticated waveforms, like
SpinTaylorT4 with precessing spins, require solving differential equations in the time domain, and a subsequent FFT
(the likelihood is always calculated in the frequency domain), which raises the CPU time required to generate a single
waveform by an order of magnitude.

The structure of the parameter space affects the length of a run in several ways. The first, and most obvious, is
through the number of dimensions: when waveforms with precessing spins are considered a 15-dimension parameter
space must be explored, while in the simpler case of non-spinning signals the number of dimensions is 9. The duration
of a run will also depend on the correlations present in the parameter space, e.g. between the distance and inclination
parameters [38]. Generally speaking runs where correlations are stronger will take longer to complete as the codes will
need more template calculations to effectively sample the parameter space and find the region of maximum likelihood.
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Table VI shows a comparison of the efficiency of each code running on each of the simulated signals in terms of the
cost in CPU time, wall time, and the CPU/wall time taken to generate each sample which ended up in the posterior
distribution. These numbers were computed using the same hardware, Intel Xeon E5-2670 2.6 GHz processors.

We note that at the time of writing the three samplers have different level of parallelization, which explains the
differences between codes of the ratio CPU time to wall time.

VII. CONCLUSIONS AND FUTURE GOALS

In this paper we have described the application of three stochastic sampling algorithms to the problem of compact
binary parameter estimation and model selection. Their implementation in the LALInference package provides a
flexible and open-source toolkit which builds upon much previous work to give reliable results [13-17, 17-21, 23, 25—
27, 29, 30]. The independent sampling methods have allowed us to perform detailed cross-validation of the results of
inference on a range of GW signals from compact binary coalescences, such as will be observed by future gravitational-
wave detectors. We have also performed internal consistency checks of the recovered posterior distributions to ensure
that the quoted credible intervals truly represent unbiased estimates of the parameters under valid prior assumptions.

The release of the LALInference toolkit as part of the open-source LAL package, available from [47], has already
provided a base for developing methods for testing general relativity [35-37] and performing parameter estimation on
a variety of other GW sources[40, 41]. In the future we intend to further develop the implementation to accommodate
more sophisticated noise models for data analysis in the advanced detector era. This will enable us to provide
parameter estimation results which are robust against the presence of glitches in the data, against time-dependent
fluctuations in the noise spectrum[42, 43, 45], and will allow us to incorporate uncertainty in the calibration of the
instruments.

Work is also ongoing in improving inference to incorporate systematic uncertainties in the waveform models which
affect estimates of intrinsic parameters [55].

Meanwhile, recent advances in reduced order modelling of the waveforms and developments of surrogate models for
the most expensive waveforms should result in a dramatic improvement in the speed of parameter estimation [85-88].
More intelligent proposal distributions also have the potential to reduce the autocorrelation timescales in the MCMC
and Nested Sampling algorithms, further improving the efficiency of these methods.

The work described here should serve as a foundation for these further developments, which will be necessary to fully
exploit the science capabilities of the advanced generation of gravitational-wave detectors, and produce parameter
estimates in a timely manner.
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FIG. 1: Prior probability p(m1, mz2|Hg), uniform in component masses within the bounds shown (left), and the same distribution
transformed into the M,q parametrization used for sampling.
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FIG. 2: The profile of the likelihood function for each of the injections in Table II, mapped onto the fractional prior support
parameter X (see Eq. (28)). The algorithm proceeds from left (sampling entire prior) to right (sampling a tiny restricted part
of the prior). The values of log(L) are normalised to the likelihood of the noise model.
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FIG. 3: Length of MCMC sub-chain for nested sampling analysis of the BNS system (as in Table II) as a function of prior
scale. As the run progresses, the length of the MCMC sub-chain used to generate the next live point automatically adapts to
the current conditions, allowing it to use fewer iterations where possible. The chain is limited to a maximum of 5000 iterations.
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FIG. 4: Acceptance ratio and fraction of sloppy jumps for nested sampling analysis of a BNS system. The dashed blue line
shows the automatically determined fraction of proposals for which the likelihood calculation is skipped. The solid green line
shows the overall acceptance rate for new live points, which thanks to the adaptive jumps remains at a healthy level despite

the volume of the

sampled distribution changing by 17 orders of magnitude throughout the run.
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FIG. 5: The integrand of the evidence integral (Eq. (41)) versus 8 for the analyses of synthetic GW signals in § VB. The
evidence is given by the area under each curve. Table I gives the results of the integration together with the estimated error in the
quadrature, following the procedure described in § IV C. The jaggedness of the curves illustrates that the temperature spacing
required for convergent MCMC simulations is larger than that required for accurate quadrature to compute the evidence; the
flatness at small S illustrates that, for these simulations, the high-temperature limit is sufficient for convergence of the evidence
integral.
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FIG. 6: Example comparing cumulative distributions for the analytic likelihood functions for each sampler for the (arbitrary)
m1 parameter for the three test likelihood functions. The samplers are shown as Nest:purple left hatches, MCMC: green
horizontal hatches BAMBI: blue right hatches, with the true cumulative distributions shown in red where available. (left) uni-
modal multivariate Gaussian distribution (middle) bimodal distribution (right) Rosenbrock distribution. The different methods
show good agreement with each other, and with the known analytic distributions. Vertical dashed lines indicate the 5%-95%
credibility interval for each method.
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FIG. 7: Comparison of probability density functions for the BNS signal (table II) as determined by each sampler. Shown are
selected 2D posterior density functions in greyscale, with red cross-hairs indicating the true parameter values, and contours
indicating the 90% credible region as estimated by each sampler. On the axes are superimposed the one-dimensional marginal
distributions for each parameter, as estimated by each sampler, and the true value indicated by a vertical red line. The colours
correspond to blue: Bambi, magenta: Nest, green: MCMC. (left) The mass posterior distribution parametrized by chirp mass
and symmetric mass ratio. (centre) The location of the source on the sky. (right) The distance dr and inclination 6,y of the
source showing the characteristic V-shaped degeneracy.
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FIG. 8: Comparison of probability density functions for the NSBH signal (table II), with same color scheme as fig 7. (first row
left) The mass posterior distribution parametrized by chirp mass and symmetric mass ratio. (first row centre) The location of
the source on the sky. (first row right) The distance dz, and inclination 6 of the source. In this case the V-shaped degeneracy
is broken, but the large correlation between dr and 67y remains. (second row left) The spin magnitudes posterior distribution.
(second row centre) The spin and mass of the most massive member of the binary illustrating the degeneracy between mass
and spin. (second row right) The spin and symmetric mass ratio.
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FIG. 9: Comparison of probability density functions for the BBH signal (table II), with same color scheme as fig 7. (first row
left) The mass posterior distribution parametrized by chirp mass and symmetric mass ratio. (first row centre) The location of
the source on the sky. (first row right) The distance dr and inclination 655 of the source showing the degeneracy is broken,
as in the NSBH case. (second row left) The spins magnitude posterior distribution. (second row centre) The spin and mass of
the most massive member of the binary illustrating the degeneracy between mass and spin. (second row right) The spin and
symmetric mass ratio. (third row left) The spins tilt posterior distribution. (third row centre) The spin tilt of the more massive
member of the binary and the symmetric mass ratio. (third row right) The spin tilt and mass of the most massive member of

the binary.
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FIG. 10: P vs P plot for the distance parameter. On the x axis is the probability p contained in a credible interval, and on the
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intervals perfectly reflect the frequency of recovered injections. For all three sampling algorithms the results are statistically
consistent with the diagonal line, with the lowest KS statistic being 0.25.

Tables

Distribution | Analytic

Nested
Sampling

MCMC

BAMBI thermo.
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Unimodal -21.9 —-21.8+0.1 —-21.8+0.12 —20.3+1.9
Bimodal -30.0 —-30.0£0.1 —29.9£0.14 —26.7£3.0

Rosenbrock - —709+£0.2 —69.1+£0.2 —63.0£7.6
BNS - 68.7+£0.34 69.98£0.17 682+1.1
NSBH - 62.2 £0.27 63.67£0.16 63.40+=0.72
BBH - 71.44+0.18 72.87+£0.15 72.44£0.11

TABLE I: The log evidence estimates for the analytic likelihood distributions (§V A) and the simulated signals (§V B) calcu-
lated with the three methods, with estimated uncertainty. For the thermodynamic integration method we used 16 steps on
the temperature ladder, except for the Rosenbrock likelihood which required 64. For distributions that permit an analytic
computation of evidence, the samplers produce evidence estimates consistent with the true value. For the others, the estimates
produced by the samplers are not consistent, indicating that there remains some systematic error in the evidence calculation
methods for the more difficult problems.

Fig.| Name Approximant mi mo | a1 |az| t1 to ¢ |distance|Network SNR
(Mo) | (Mo) (Rad)| (Rad) | (Rad)| (Mpc)
7 | BNS TaylorF2 3.5PN [1.3382(1.249| 0 | O - - 2.03 135 13
8 |NSBH|SpinTaylorT4 3.5PN| 15 1.35 10.63| O 0 - 1.02 397 14
9 | BBH |SpinTaylorT4 3.5PN| 15 8 10.79/0.8| 3.1 1.44 | 2.307 500 15

TABLE II: Details of the injected signals used in section V B, showing the waveform approximant used with the masses (my1,2}),
spin magnitudes and tilt angles (a{1,2},%{1,2}), and the distance and inclination (¢).

| [ MMe) [ 0 [mi (Mo)[ma (Mo)|d (Mpe)|a (rad)| 8 (rad) |
Nest 1.12531128%10.24873:25,, | 1.433 1.21% | 19733} 3.193:31 —0.99779:956
MCMC |1.12531:123510.24879:3%,, | 1.415 | 1.213 | 195239 |3.19324—0.998-9:938

BAMBI [|1.1253}:1233|0.24870:3%, | 1.43:3 | 1283 | 19623} [3.193:24|—0.9982:958
Injected || 1.1253 0.2497 | 1/3382 | 1.249 | 134.8 | 3.17 -0.97

TABLE III: BNS recovered parameters. Median values and 5% — 95% credible interval for a selection of parameters for each
of the sampling algorithms.

] MM 7 s Mo)[me Mo)]d (Mpe)]| ar | as [ a (rad) [ 6 (rad) |
Nest | 3.423:35 |0.118:3% | 115% | 1735 | 612535 |0.360:43: |0.498:036 [0.8430:811 |0.4590:353
MCMC | 3.423:38 |0.123:23,| 1125 1.72:9 | 601383 10.358:73510.483:94510.8433-87410.4595-495
BAMBI || 3.423:38 10.110:32;| 113% 1.62:7 | 609387 10.369:32,10.499:95,10.8430-87410.4595-493
Injected || 3.477 | 0.076 15 1.35 397 0.63 0.0 0.82 0.44
TABLE IV: NSBH recovered parameters, defined as above.

’ HM (M@)‘ i ‘ml (M@)‘mg (M@)‘d (Mpc)‘ ax ‘ a2 ‘a (rad)‘ 0 (rad) ‘
Nest 9.555 | 0.159%7 | 24.3393 | 5517 | 647555 0.345:8%,(0.480:8%5]0.219:29]| —0.612-0-5%4

MCMC || 9.59% | 0.150:33 | 23.8335 | 5.552 | 63036 |0.369:052] 0.510:98 10.218:3,|—0.61270:252
BAMBI|| 9.59% [0.14983:235| 245232 | 5.455 | 638332 |0.359:52,(0.498-349(0.218:39 | —0.612-0-355
Injected|| 9.44 0.227 15 8 500 0.79 0.77 | 0.230 -0.617

TABLE V: BBH recovered parameters, defined as above.

BNS | Bambi  Nest MCMC
posterior samples 6890 19879 8363

CPU time (s.) 3317486 1532692 725367
wall time (s.) 219549 338175 23927
CPU seconds/sample| 481.5 77.1 86.7
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wall seconds/sample | 31.9 17.0 2.9
NSBH Bambi Nest MCMC
posterior samples 7847 20344 10049
CPU time (s.) 2823097 9463805 4854653
wall time (s.) 178432 2018936 171992
CPU seconds/sample| 359.8  465.2  483.1
wall seconds/sample | 22.7 99.2 17.1
BBH Bambi Nest MCMC
posterior samples 10920 34397 10115
CPU time (s.) 2518763 7216335 5436715
wall time (s.) 158681 1740435 200452
CPU seconds/sample| 230.7  209.8 537.5
wall seconds/sample | 14.5 50.6 19.8

TABLE VI: Preformance of all three sampling methods on the three signals from table II. The time quoted in the “CPU time”
line is the cumulative CPU-time across multiple cores, while the time quoted in the “wall time” line is the actual time taken
to complete the sampling. The difference is an indication of the varying degrees of parallelism in the methods.



