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Abstract

In the framework of a 3-3-1 model with a minimal scalar sector, known as the economical 3-3-1

model, we study its capabilities of generating realistic quark masses. After a detailed study of the

symmetries of the model, before and after the spontaneous symmetry breaking, we find a remaining

axial symmetry that prevents some quarks to gain mass at all orders in perturbation theory. Since

this accidental symmetry is anomalous, we also consider briefly the possibility to generate their

masses for non-perturbative effects. However, we find that non-perturbative effects are not enough

to generate the measured masses for that three massless quarks. Hence, these results imply that

the economical 3-3-1 model is not a realistic description of the electroweak interaction.
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I. INTRODUCTION

Up to now, from the experimental point of view, neutrino masses and their mixing, and

dark matter are the only issues demanding for explanations beyond the standard model

(SM). On the other hand, from the theoretical point of view, the quest for a more deeper

understanding lead us to believe that a more fundamental model of the interactions is needed.

That model should be able to answer simple but deep questions. Some of these questions

are: why the number of families of quarks and leptons is three? Is there a more fundamental

relation (symmetry) between quarks and leptons? Why does the observed pattern for the

particle masses have this particular form? Should not the parameters involved have any

calculability? What is the origin of CP violation? Even in the SM, what is the origin of the

CP violating CKM phase? Can it be computed? Is there any more efficient mechanism able

to account for the matter-antimatter asymmetry in the Universe? What is the mechanism

that generates masses and mixing angles for neutrinos? Is there CP violation in leptons?

What would be its role in the evolution of the Universe? How dark matter and dark energy

can be incorporated? Unfortunately, up to now, the experimental efforts were not able to

indicate exactly what the physics beyond the SM should be.

In the framework of gauge theories, one way of introducing new physics is to consider a

gauge symmetry group larger than the SM one. Some years ago models with the SU(3)C ⊗
SU(3)L⊗U(1)X gauge symmetry were proposed [1–4], which are having considerable further

developments. The so-called 3-3-1 models present interesting features concerning the asked

questions above. One of them is that, depending on the representation content, the triangle

anomalies cancel out, and the number of families has to be a multiple of three. More

precisely, it must be just three due to the asymptotic freedom. A version of this kind of

models called minimal [1–4] presents a Landau-like pole when sin2 θW = 1/4 at energies

of the order of a few TeVs [5]. This particular behavior stabilizes the electroweak scale

avoiding the hierarchy problem and also explains why it is observed sin2 θW < 1/4. This

model also accounts for the electric charge quantization independently of the nature of the

massive neutrinos, i.e. whether they are Dirac or Majorana particles [6]. The model has

also interesting features concerning the strong CP problem. In the minimal 3-3-1 model

there is an almost automatic Peccei-Quinn (PQ) symmetry, and an automatic one in the so

called economical version of the model, as we will show here below. In both versions there
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are ways of solving the strong CP problem while keeping the corresponding axion invisible

and protected against gravitational effects [7, 8]. Due to a larger gauge symmetry group

and a rich scalar sector, this kind of model has called some attention in many other subjects

like new sources of CP violation, active neutrino mass generation and mixing, dark matter

candidates and Z ′-boson physics.

In this paper we are concerned with the quark mass generation, in the context of the

economical 3-3-1 model (E331, for short). In particular we investigate the capabilities of the

model in generating realistic quark masses. The quark sector of this model was already con-

sidered in literature and conflicting results were found [8, 9]. In this work, in order to clarify

this important issue, we do a detailed study of the symmetries (local and global symmetries)

of the entire E331-model Lagrangian. Once we have identified all the symmetries, and after

the spontaneous symmetry breaking (SSB) of the scalar potential, we investigate which are

the remaining symmetries (if any) of the vacuum state. In other words, we seek which are (if

any) the independent linear combinations of the group generators that annihilate the vac-

uum state, in order to know if the corresponding symmetries are realized à la Wigner-Weyl

(WW) or Nambu-Goldstone (NG). That is of fundamental importance since it will affect

the physical particle spectrum. If the total Lagrangian and vacuum state are both invariant

under a symmetry transformation, this is a WW realization of that symmetry. On the other

hand, if the vacuum is not invariant this is a NG realization and this implies a massless NG

scalar boson. We find that there is a WW realization of a subgroup of the initial symmetry

group that protects some quarks from getting mass at all orders in perturbation theory, as

expected from quantum field theory.

The paper is organized as follows. In Sec. II we briefly review the economical 3-3-1 model.

In Sec. III we make a detailed study of the symmetries of the model, in both situations

before and after the spontaneous symmetry breakdown, and its implication for the quark

masses. Non-perturbative effects contributing to quark masses are also briefly considered.

Our conclusions are presented in Sec. IV.
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II. A BRIEF REVIEW OF THE ECONOMICAL 3-3-1 MODEL

The model considered has a matter content given by [10]

ΨaL =
(

νa, ea, (νaR)
C
)T

L
∼ (1, 3,−1/3) , eaR ∼ (1, 1,−1) ,

QαL = (dα, uα, d
′
α)
T

L ∼ (3, 3∗, 0) , Q3L = (u3, d3, u
′
3)
T

L ∼ (3, 3, 1/3) ,

uaR ∼ (3, 1, 2/3) , u′3R ∼ (3, 1, 2/3) , daR ∼ (3, 1,−1/3), d′αR ∼ (3, 1,−1/3) ,

χ =
(

χ0, χ−, χ0
1

)T ∼ (1, 3,−1/3) , ρ =
(

ρ+, ρ0, ρ+1
)T ∼ (1, 3, 2/3) , (1)

where a = 1, 2, 3, α = 1, 2 and the values in parentheses denote respectively the quantum

numbers corresponding to the (SU(3)C , SU(3)L, U(1)X) groups. From now on Latin and

Greek letters always take the values 1, 2, 3 and 1, 2, respectively.

With the quark, lepton and scalar multiplets in Eq. (1) we have that the most general

Yukawa interactions allowed by the gauge symmetries and renormalizability are

LY = YabΨaLebRρ+ Y ′
abǫ

ijk
(

ΨaL

)

i
(ΨbL)

C

j (ρ∗)k

+G1Q3Lu
′
3Rχ+G2

αβQαLd
′
βRχ

∗ +G3
aQ3LdaRρ+G4

αaQαLuaRρ
∗

+G5
aQ3LuaRχ+G6

αaQαLdaRχ
∗ +G7

αQ3Ld
′
αRρ+G8

αQαLu
′
3Rρ

∗ + h.c., (2)

where Gi, Yab and Y
′
ab are arbitrary complex matrices and Y ′

ab is also antisymmetric. We use

the convention that addition over repeated indices is implied.

The χ and ρ scalar multiplets break down spontaneously the SU(3)C ⊗ SU(3)L ⊗ U(1)X

gauge symmetry. The vacuum expectation values, VEVs, in this model satisfy 〈Re ρ0〉 ≡
v, 〈Reχ0〉 ≡ u ≪ 〈Reχ0

1〉 ≡ w. The most general scalar potential, that is both invariant

under the gauge symmetry and renormalizable, is

V = µ2
χχ

†χ+ µ2
ρρ

†ρ+ λ1
(

χ†χ
)2

+ λ2
(

ρ†ρ
)2

+ λ3
(

χ†χ
) (

ρ†ρ
)

+ λ4
(

χ†ρ
) (

ρ†χ
)

. (3)

With only two scalar multiplets the scalar sector is simple and it is, in principle, an appealing

feature of this model comparing to other 3-3-1 models [1, 2, 11].

Finally, the electric charge operator is written as

Q = T3 −
1√
3
T8 +X , (4)

where T3 and T8 are the diagonal generators of the SU(3)L group andX refers to the quantum

number of the U(1)X group.
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III. SPONTANEOUS SYMMETRY BREAKING AND MASSLESS QUARKS

Before considering which symmetries are broken down, we look for all exact symmetries,

local and global, this model actually has. Doing so, we realize that apart from the local

gauge symmetry SU(3)C⊗SU(3)L⊗U(1)X , this model has two extra global U(1) symmetries

which we denoted generically by U(1)ζ . In order to see that, we write down the relations

that these symmetries have to obey in order to keep the entire Lagrangian invariant. From

Eq. (2) we obtain the following relations

−ζQ3
+ ζu′

3R
+ ζχ = 0, −ζQ + ζd′

R
− ζχ = 0, −ζQ3

+ ζuR + ζχ = 0, (5)

−ζQ + ζdR − ζχ = 0, −ζQ3
+ ζdR + ζρ = 0, −ζQ + ζuR − ζρ = 0, (6)

−ζQ3
+ ζd′

R
+ ζρ = 0, −ζQ + ζu′

3R
− ζρ = 0, −ζΨ + ζeR + ζρ = 0, (7)

2ζΨ + ζρ = 0, (8)

where the ζψi
’s above denote the U(1)ζ charges of the ψi fields. Solving Eqs. (5-8), we find

that all charges, ζψi
, can be written in terms of three independent ones. It means that the

model has only three independent U(1)ζ symmetries. In principle, we can choose whatever

three independent U(1)ζ symmetries as basis. However, some physical considerations can

be done to appropriately choose them. First, we note that one of these symmetries is the

U(1)X gauge symmetry which is anomaly free by construction and which has an associated

gauge boson. The other two are global symmetries and they can be divided into a vectorial

and a axial symmetry acting on the quarks. The vectorial one is the well known baryon

number symmetry, denoted here as U(1)B, which is an accidental symmetry in this model

as it is in the SM. The other one is a axial symmetry also acting on the quarks, which

we denote as U(1)PQ. The last symmetry is a PQ one since it is anomalous and APQ,

the coefficient of the [SU(3)C ]
2U(1)PQ anomaly, is ∝ −3. Also, notice that the U(1)PQ is

a natural symmetry in the sense that it is not imposed, it follows from the gauge local

symmetry and renormalizability, instead. In other words, the economical model naturally

has a PQ symmetry. The assignment of the three independent U(1) quantum charges is

shown in Table I (these quantum charges appeared for the first time in Ref. [8], we have

written them here for the sake of completeness and clearness). Thus, the model actually has

a larger symmetry: G ≡ SU(3)C ⊗ SU(3)L ⊗ U(1)X ⊗ U(1)B ⊗ U(1)PQ, where the last two

ones are accidental and global symmetries.
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QαL Q3L (uaR, u
′
3R) (daR, d

′
αR) ΨaL eaR ρ χ

U(1)X 0 1/3 2/3 −1/3 −1/3 −1 2/3 −1/3

U(1)B 1/3 1/3 1/3 1/3 0 0 0 0

U(1)PQ −1 1 0 0 −1/2 −3/2 1 1

Table I: Assignment of the three independent U(1) quantum charges in the economical 3-3-1 model.

Now, let us search for the remaining symmetries after the χ and ρ scalar triplets obtain

their VEVs, 〈χ〉 ≡ Vχ = 1√
2
(u, 0, w)T and 〈ρ〉 ≡ Vρ =

1√
2
(0, v, 0)T . To do that, we consider

an infinitesimal transformation of the total group G on the vacuum states to find the gener-

ators of the unbroken subgroups as a linear combination of the Ti, X , PQ, and B generators.

Here, it is important to note that the SU(3)C ⊗ U(1)B subgroups are clearly unbroken and

thus we can omit them in the following analysis without affecting our conclusions. Then,

under an infinitesimal transformation on the vacuum we have
(

8
∑

i=1

αiTi + γ Xχ13×3 + δ PQχ13×3

)

Vχ = 0, (9)

(

8
∑

i=1

αiTi + γ Xρ13×3 + δPQρ13×3

)

Vρ = 0, (10)

where αi, γ and δ are independent real constants and 13×3 denotes the 3×3 identity matrix.

Also, we have from Table I that Xχ = −1/3, Xρ = 2/3 and PQχ = PQρ = 1. Since the χ

and ρ scalar triplets are in the fundamental representation of SU(3)L, the Ti generators in

Eqs. (9) and (10) are given by λi/2, where λi are the well known Gell-Mann matrices. From

Eqs. (9-10) follows

v(α1 − iα2) = 0, (11)

v(α6 + iα7) = 0, (12)

u (α1 + iα2) + w (α6 − iα7) = 0, (13)

v
(

−3α3 +
√
3α8 + 4γ + 6δ

)

= 0, (14)

3u(α4 + iα5)− 2w
(√

3α8 + γ − 3δ
)

= 0, (15)

u
(

3α3 +
√
3α8 − 2γ + 6δ

)

+ 3w(α4 − iα5) = 0, (16)

with i =
√
−1. Solving simultaneously Eqs. (11-16) (with u 6= 0, v 6= 0 and w 6= 0) we have
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that α1 = α2 = α5 = α6 = α7 = 0 and

α4 = − 6uw

u2 + w2
δ ≡ −3 sin(2θ)δ, (17)

α8 =
6√
3

(

2w2

u2 + w2
− 1

)

δ − α3√
3
≡ 6 cos(2θ)√

3
δ − α3√

3
, (18)

γ = − 3w2

u2 + w2
δ + α3 ≡ −3

2
(1 + cos(2θ)) δ + α3, (19)

where tan θ ≡ u/w. Since the parameters α3 and δ are independent, this implies that

from the ten generators only two linearly independent combinations, say g1 and g2, remain

unbroken. At a first glance, the choice of these generators is arbitrary. However, we take

into consideration that one of them has to be the anomaly-free electric charge generator,

which is achieved by taken δ = 0 and α3 = 1. Doing so, g1 = Q. The other generator, g2,

must have δ 6= 0 in order to be linearly independent of g1 (since all generator with δ = 0

will be proportional to Q). Hence, the unbroken generators are written as:

g1 = T3 −
1√
3
T8 +X, (20)

g2 =

[

3 cos2(θ) T3 − 3 sin(2θ) T4 +
1

2

√
3(3 cos(2θ)− 1) T8 + PQ

]

δ, (21)

with δ 6= 0 in the last equation. The symmetry associated to g1, U(1)Q, is anomaly free as

it is well known. The g2 generator, which is independent from g1, is a linear combination of

T3, T4, T8, PQ generators. We refer to the symmetry associated to g2 as U(1)H . The key

point here is that a part of the initial axial symmetry, U(1)PQ, remains unbroken because

the coefficient δ, in Eq. (21), is always different from zero. In conclusion, the existence of g1

and g2 implies that the U(1)Q ⊗ U(1)H subgroup of the SU(3)L ⊗ U(1)X ⊗ U(1)PQ remains

unbroken.

Now, since G is an exact symmetry, i.e. [G, LT ] = 0 (where LT is the total Lagrangian of

the model) from the Goldstone’s theorem [12], we have exactly eight NG scalar bosons (a NG

scalar boson for each broken generator), which in this model will become the longitudinal

component of the eight massive gauge vector bosons via the Higgs mechanism. In the

physical scalar spectrum this model has only massive scalar bosons, H0
1 , H

0
2 , H

+, H−, as

it is shown in [13]. If the g2 was broken, a NG scalar boson would appear in the physical

scalar spectrum. Because g2 has a component in PQ generator, that physical NG scalar

boson would be an axion. However, it does not happen and the model has three massless

quarks (one u−type quark and two d−type quarks) instead. This can be easily seen from
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the mass matrices because a couple of rows in the u−quark mass matrix and two couples of

rows in the d−quark mass matrix are proportional to each other, see Eqs. (18) and (19) in

Ref. [13]. The exact form of those massless quarks is neither clarifying nor relevant for our

analysis, thus, we do not write them here. These massless quarks are fully expected because

an exact axial symmetry that is realized in the WW manner implies massless fermions.

The action of the remaining U(1)H symmetry preventing some quarks to gain mass be-

comes obvious when we change basis to work with the mass eigenstates instead of the

symmetry eigenstates. The symmetry eigenstates UiL,R, DjL,R (with i = 1, . . . , 4 and j =

1, . . . , 5) and the mass eigenstates (UM)iL,R , (DM)jL,R are related by UL,R = (V U
L,R)

† (UM)L,R

and DL,R = (V D
L,R)

† (DM)L,R, where V U,D
L,R are independent unitary matrices such that

V U
L M

UV U†
R = M̂U and V D

L M
DV D†

R = M̂D, where M̂U = diag(muM1
, muM2

, muM3
, muM4

)

and M̂D = diag(mdM1
, mdM2

, mdM3
, mdM4

, mdM5
). Since the mass matrix of the u− and d-

quark types are not hermitian matrices, in order to obtain the mass eigenstates we have

to solve the matrix equations: V q
LM

qM q †V q†
L = V q

RM
q †M qV q †

R = (M̂ q)2, q = U,D. More

specifically, we have to find the base-rotation matrices V U
L,R and V D

L,R to be able to write

the Yukawa interactions in terms of the quark-mass eigenstates. This task can be done

by standard procedures. Unfortunately, exact analytical expressions for these matrix are

enormous so that it is worthless to show them here. The diagonalization study shows

that we have one vanishing eigenvalue in the u−quark sector and two in the d−quark

sector, as expected. The respective zero-mass eigenstates are clearly identified. Lets

call them as uM1, dM1, and dM2. It means that there are no mass terms of the form

muM1
uM1LuM1R+ mdM1

dM1LdM1R+ mdM2
dM2LdM2R+ h.c., i.e. muM1

= mdM1
= mdM2

= 0.

We find more important results looking at the quark-scalar field interactions coming from

the Yukawa interactions in Eq. 2. Here we find that there is no interactions involving the

right component of these massless quark states. The right states uM1R, dM1R, and dM2R

disappear from the Yukawa interactions. In other words, no left quark state are coupled with

these massless states through neutral- or charged-scalar fields. Nonetheless, these zero-mass

right components should have some interaction after all. In fact, from the quark kinetic

terms we find that they interact only with the neutral vector bosons, Aµ, Zµ, and Z
′
µ. These

interactions couple only quarks with the same chirality. It means that each one of the

right components uM1R, dM1R, and dM2R can be transformed by an arbitrary U(1)H phase

without affecting any other term in the Lagrangian. Hence, looking at the Yukawa and
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the neutral vector boson interactions, written in terms of the quark-mass eigenstates, we

can identify the U(1)H symmetry responsible for preventing these quark states to get mass:

the massless right fields uM1R, dM1R, and dM2R transform as eiαuM1R, e
iαdM1R, e

iαdM2R

and all other fields transform trivially under U(1)H (note that this symmetry is anomalous

with [SU(3)C ]
2U(1)H anomaly ∝ −3). This is a clear and undoubtable manifestation of

the remaining symmetry we have found. If we consider perturbation theory, these massless

quarks can not get mass through radiative corrections to their propagators since the right

component of these fields disappeared from the Yukawa interactions and they only couple

to neutral vector bosons which conserve chirality. Therefore, there is no way to form loop

diagrams to give mass for these particular fields, at all orders in perturbation theory.

Now, let us discuss the possibility of generating masses for those massless quarks through

non-perturbative corrections and the viability of this model to explain the low-energy hadron

phenomenology. Roughly speaking, that can be seen as follows. From both chiral QCD and

lattice calculations the ratio µu/µd is 0.410± 0.036 [14–16], where µu and µd are the “low-

energy quark masses”. These should be distinguished from the quark mass parameters, mi of

the QCD Lagrangian at high scale [17]. In particular, µu = β1mu+β2
mdms

ΛχSB
where ΛχSB ∼ 1

TeV (where we have identified naturally the massless quarks as u = uM1 and d = dM1 and

s = dM2). It means, µµ receives an additive non-perturbative contribution of order mdms

in addition to the perturbative one, β1mu, which is zero because both mu is zero. The non-

perturbative contribution is also zero because md and ms are both zero and β2 is estimated

to be a number of order one. Thus, µu = 0, which is in complete disagreement with the

ratio µu/µd. A similar analysis is also valid for the µd and µs [18].

IV. CONCLUSIONS

The scalar content in the E331 model is not enough to break down the initial symme-

try, G to U(1)Q ⊗ U(1)B. Instead, an extra generator g2 remains unbroken and thus the

model has a U(1)H axial symmetry after the spontaneous symmetry breaking. As we have

explicitly shown above, g2 is a linear combination of the T3, T4, T8, PQ generators and it is

linearly independent of the generators of the electric charge and baryonic number, g1 and B,

respectively. Because of the PQ component in the g2 generator, we have that the initial axial

U(1)PQ symmetry is not completely broken. In other words the U(1)Q ⊗ U(1)H subgroup
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of the SU(3)L ⊗ U(1)X ⊗ U(1)PQ group remains unbroken. Therefore, the model has three

massless quarks. The U(1)H symmetry acts on the mass eigenstates as an axial symmetry,

uM1R → eiαuM1R, dM1R → eiαdM1R, dM2R → eiαdM2R, and this will protect these massless

quarks to acquire mass at any level of perturbation theory. Furthermore, we recall that

the unbroken U(1)H subgroup has its origin in an axial symmetry, U(1)PQ, which, although

anomalous, is an accidental symmetry in the sense that it follows from the gauge symmetries

and renormalizability. Therefore, the remaining axial symmetry acting on quarks will only

be broken down by non-perturbative QCD processes [19]. However, these effects are not

enough to provide the necessary low-energy quark masses, µi, to the three massless quarks

to make the model be in agreement with both chiral QCD and lattice calculations, which

give the ratio µu/µd is 0.410 ± 0.036 [14–16]. Hence, the economical version of the 3-3-1

model can not be considered a realistic description of the electroweak interaction. The orig-

inal 3-3-1 models, as the model I presented in Ref. [4], for instance, do not suffer from such

illness.
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