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Abstract

The excited baryon masses are analyzed in the framework of the 1/N, expansion using the avail-
able physical masses and also the masses obtained in lattice QCD for different quark masses. The
baryon states are organized into irreducible representations of SU(6)x O(3), where the [56, 7 = 0F]
ground state and excited baryons, and the [56,2"]| and [70,17] excited states are analyzed. The
analyses are carried out to O (1/N.) and first order in the quark masses. The issue of state iden-
tifications is discussed. Numerous parameter independent mass relations result at those orders,
among them the well known Gell-Mann-Okubo and Equal Spacing relations, as well as additional
relations involving baryons with different spins. It is observed that such relations are satisfied at the
expected level of precision. From the quark mass dependence of the coefficients in the baryon mass
formulas an increasingly simpler picture of the spin-flavor composition of the baryons is observed
with increasing pion mass (equivalently, increasing m,, 4 masses), as measured by the number of

significant mass operators.
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I. INTRODUCTION

One of the most important present objectives in lattice QCD (LQCD) is the calculation of
the light baryon spectrum, where in recent years substantive progress has been made. The
implementation of optimized baryon source operators [1-4]| has enabled improved signals
for excited baryons, leading to remarkable progress in identifying states by their quantum
numbers and in the determination of their masses. In calculations performed with quark
masses corresponding to 390 MeV < M, < 702 MeV, the spectrum of non-strange baryons
[3] and also of strange baryons [4] were obtained. The case of M, = 702 MeV corresponds to
the limit of exact SU(3) flavor symmetry. These calculations were performed on anisothropic
lattices 16% x 128 with a gluon Symanzik-improved action with tree-level tadpole-improved
coefficients and an anisotropic clover fermion action as explained in Ref. [5]. Although the
effects of finite widths of the baryons are not yet implemented in these calculations, the
results are very significant. The extraction of the baryonic resonance parameters (mass and
width) by means of finite volume effects on the two body spectrum (e.g., 7N) as it has
been carried out for the p meson [6], in baryons is still to be fully implemented in a LQCD
calculation. A nice example of the latter was shown in a continuum Chiral Perturbation
Theory study of those effects for extracting the A resonance [7]. The results used in this
work pertain to the use of quasi-local baryon source/sink operators, which are not entirely
sufficient for extracting the resonance parameters, and therefore the quoted masses will
probably be (slightly) shifted in the more complete framework employing the finite volume
effects. In fact, for the LQCD states to be analyzed here, the available phase space for
the two body decay of the excited baryons is increasingly suppressed with increasing M,
which for the considered range of quark masses result in state widths which are significantly
smaller than in the physical case. An estimate using the available phase space and the
phenomenological widths gives widths ~ 50 MeV or smaller for the S-wave decays and even
smaller for P- and D- waves. Thus, the present results of the LQCD baryon masses are
expected to be very close to those one would obtain with the more complete method.

Although other recent works on baryon LQCD spectroscopy have been carried out in
Refs. [1, 2, 8, 9, 9-11], the present work will use the results obtained by the Jefferson Lab
Lattice QCD Collaboration in Refs. [3, 4]. The study can similarly be applied to other

results, in particular those of the BGR Collaboration [8] where the masses of the states



analyzed here have been calculated.

A key observation from the analysis carried out in [3, 4] is that source/sink operators
which, in the continuum limit, are in irreducible representations of the spin-flavor and quark
orbital angular momentum groups SU(2Ny) x O(3) are very close to be at the optimum
for the selective overlap with the baryon states. This is a strong indication that the baryon
mass eigenstates themselves must be approximately organized into multiplets of that group,
a fact that is well known to hold phenomenologically. This has been tested explicitly in the
LQCD calculations by measuring the coupling strengths of sources in different representa-
tions to each of the baryon levels studied. The state admixture of different SU(2Ny) x O(3)
irreducible representations, known as configuration mixing, cannot however be directly in-
ferred from those strengths, as they depend on details of the operators. Since in the exact
symmetry limit the couplings would be ”diagonal”, it is expected that the existence of small
off diagonal couplings necessarily translates into small state configuration mixings. In the
present work, configuration mixings will be altogether neglected, and thus all claims are
restricted to the approximate validity of that assumption. The states studied in this work
are the ones corresponding to the SU(6) x O(3) [56, 07] or Roper multiplet, the [56,27]
and the [70,17]. These are of particular interest because they have been previously analyzed
phenomenologically in the framework of the 1/N, expansion employed here [12], where the
assumption of no configuration mixing works very well up to the degree of accuracy of the
input masses and other observables permit.

The existence of a spin-flavor symmetry in baryons can be rigorously justified in the
large N, limit of QCD. The symmetry is the result of a consistency requirement imposed by
unitarity on pion-baryon scattering in that limit [13-15], and spin-flavor symmetry is thus
broken by corrections which can be organized in powers of 1/N.. Under the assumption
that the real world with N, = 3 baryons can be analyzed using a 1/N, expansion, starting
at the lowest order with an exact spin-flavor symmetry, many analyses of baryon masses
and other properties have been carried out. In particular, excited baryon masses have been
analyzed in numerous works for the cases considered in this work [16-24] as well as for other
multiplets [25-28]. Although spin-flavor symmetry is justified in the large N, limit, the larger
SU(2Ny) x O(3) is not. The latter can be broken due to spin-orbit effects at O (N?), as it
is the case in the [70,17] baryons, and is in principle not such a good symmetry. However,

phenomenologically it has been known since old times that spin-orbit effects in baryons are



small, and actually smaller than the hyperfine (HF) effects which are sub-leading in 1/N..
In addition, configuration mixings which are not suppressed in the large N, limit turn out
to be driven by operators of the spin-orbit type [29, 30|, and seem to be small as well. As
mentioned earlier, these observations also apply to the LQCD baryons.

Particular predictions result when configuration mixings are disregarded. They have the
form of parameter independent mass relations which hold up to higher order corrections in
the 1/N. or SU(3) breaking expansions. Among those relations are the well known Gell-
Mann-Okubo (GMO) and equal spacing (EQS) relations, which are valid in general, and
additional ones involving different spin-flavor states such as relations in the 56-plets that
follow from the Giirsey-Radicati mass formula, and other relations in the 70-plet [21]. As it
will be shown in the present analysis, LQCD baryon masses fulfill to the expected accuracy
those relations.

The objective of this work is to analyze the LQCD results for baryon masses using the
1/N,. expansion to O (1/N,) and to first order in SU(3) symmetry breaking. Although the
LQCD results, as mentioned above, are at larger than physical quark masses and do not
have a complete implementation of the effects due to the finite baryon decay widths, they
provide complete sets of states, i.e., states that complete the experimentally partially filled
multiplets, which is a very useful addition for more accurate analyses as the ones carried
out here. In addition, since the 1/N, expansion of QCD applies even in cases where such
approximations are made (e.g., quenched QCD, larger quark masses, etc.), the present study
also serves as a test of the 1/N, expansion itself.

In the phenomenological analyses, the excited baryon masses used as inputs are those
provided by the Particle Data Group (PDG) [31]. For two flavors and the multiplets con-
sidered here all states are established, but for three flavors there is a significant number of
missing strange baryon states. For example, in the [70, 17| multiplet there are 30 theoreti-
cal masses and only 17 are currently experimentally known. Although those 17 masses are
sufficient for the purpose of the 1/N, analysis, they are not sufficient for a thorough test
of the mass relations. On the other hand, the LQCD results provide complete multiplets,
enabling a complete test of mass relations. In the particular case of the [70,17], the issue
of state mixing can be sorted out in the phenomenological case thanks to the simultaneous
analysis of partial decay widths and photo-couplings, as shown most recently in Ref. [24]

for the non-strange baryons. These inputs are however not possible for the LQCD baryons,



and therefore the state mixing relies very strongly on the criterion for identifying states. In
this regard, level crossing effects are possible as the quark masses are varied in the LQCD
calculations [8, 10]. This is a present topic of interest in LQCD, which is still in its early
stages in the study of the baryon spectrum.

This work is organized as follows: In Section II a brief description of the 1/N, expansion
framework is given; Section III contains the results and their analysis; Section IV gives the
summary and conclusions. Appendix A displays the bases of operators and the respective
matrix elements needed in this work, and Appendix B gives the baryon masses, both from

the PDG [31] and LQCD [3, 4], which are the inputs for the fits.

II. THE 1/N. EXPANSION AND SPIN FLAVOR SYMMETRY IN BARYONS

Consistency of baryons in the ordinary large N, limit as defined by 't Hooft [32] requires
that baryons form multiplets of a contracted spin-flavor group SU(2Ny) [13-15]. The gener-
ators of that symmetry are denoted by S* (spin), T (flavor) and X** = G /N, (spin-flavor).
In the case of excited baryons the observation that quark spin and orbital angular momen-
tum are weakly coupled in baryons has lead to a phenomenologically successful scheme of
organizing the states in multiplets of SU(2Ny)) x O(3). For finite N, it is possible to work
with the ordinary rather than the contracted spin-flavor group for the purposes of building
the operator bases [33]. Any static baryonic observable can be expressed by an effective
operator which is decomposed in a basis of operators ordered in powers of 1/N, and which
can be expressed as appropriate tensor products of the symmetry generators. In the present
case of baryon masses, the bases of operators are well known. The details for obtaining
those bases can be found in Refs. [16, 18-21, 34, 35].

The excited states considered here will be either in the totally symmetric (Sym) or in
the mixed symmetric (MSym) irreducible representations of SU(6). Following the large N,
Hartree picture of a baryon, without a loss of generality and for the purpose of dealing with
the group theory of the spin-flavor and orbital degrees of freedom, one can describe a low
excitation baryon as a spin-flavor symmetric core with N.— 1 quarks and one excited quark.
In this way it becomes straightforward to obtain the matrix elements of bases operators.
Appendix I gives the mass operator bases to the needed order and the corresponding matrix

elements.



The mass operator bases are organized in powers of 1/N, and involve SU(3) singlet and
octet operators, the latter for symmetry breaking by the parameter ¢ = m, — m, where
m = (m, + mgq)/2. One may consider the expansion to O (¢°/N,) and O (€). It turns out
that contributions O (¢/N.) are almost insignificant in most cases as shown later.

The multiplets to be analyzed have the following state contents: i) [56,07]: one SU(3)
8 with S = 1/2 and one 10 with S = 3/2; ii) [56,2%]: one 8 for each S = 3/2 and 5/2, and
one 10 for each S = 1/2 through 7/2; iii) [70,17]: one 1 A baryon for each S = 1/2 and
3/2, two 8s for each S = 1/2 and 3/2, one 8 for S = 5/2 and one 10 for each S = 1/2 and
3/2.

For each case, the mass operators to the order needed here are as follows:

[56,07]: in this case the mass operator is the famous Giirsey-Radicati (GR) mass formula,

which, explicitly displaying the 1/N,. power counting, reads as follows:

c
Mis6,0+) = 1N + ﬁz S(S+1)+ b N,

[

bg 3 2
+ NI <3](I +1) = S(S+1) = TN(Na + 2)) +O(1/N;), (1)

where S is the baryon spin operator, I the isospin, and N, the number of strange quarks,
and the ¢; and b; are coefficients determined by the QCD dynamics, which are obtained by
fitting to the masses. The mass operators as defined such that all coefficients are O (N?).
The SU(3) breaking parameter € is here included in the coefficients b; and by. For all mass
formulas, the quark mass dependence is implicitly absorbed into the coefficients.

[56,27]: in this case the basis has three SU(3) symmetric and three breaking operators:

3

3
Mise0+) = Z c; O; + Z b; B; (2)
i=1

i=1
The basis of operators along with the matrix elements are given in Appendix A1, Table XVI.
[70,17]: In the case of non-strange baryons, where the states belong to a 20 plet of SU(4)

the mass formula reads [19]:
8
M[zo,r] = Z ¢; Oy, (3)
i=1

where the eight basis operators up to and including O (1/N.) are given in Table XVII of
Appendix A2. For three flavors the mass formula reads [20, 21]:
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4
Mpzo,1-) = Z ¢; O; + Z b B , (4)
i=1

=1
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where the basis operators up to and including O (1/N,) or O (¢) are given in Table XVIII and
Table XIX of Appendix A2. In order that the SU(3) breaking operators do not contribute to

the non-strange baryon masses, they have been redefined according to: By = tg — 2\[ﬁOl,

By = T§ — 55=+01, By = 3 dsab 9G¥, + %01 + WOG + 5501, By =
34 gis — \/7§O2'

Since in general the number of states is larger than the number of coefficients of the fit,
and the masses are linear in the coefficients, there must be linear mass relations which are
independent of the coefficients. Such mass relations have been derived in previous works,
and will be tested here with the LQCD results. Many of the mass relations involve SU(3)
breaking mass differences, and are thus identically satisfied in the limit of SU(3) symmetry.
There are however some mass relations which test exclusively the breaking of the spin-
symmetry at O (1/N,); these occur in the [56,27] multiplet. The mass relations will be
presented in the analysis of each case below, and they are depicted in Tables III, IV, VII,

XIII, XIV.

III. FITS TO THE LQCD RESULTS

In this section the fits to the LQCD masses are performed. The LQCD results used here
are as follows: for two flavors the results are those of Ref. [3], of which only the results
for the negative parity baryon masses will be analyzed, and for three flavors the results of
Ref. [4] are used. For two flavors the quark masses used correspond to M, = 396 and
524 MeV, and for three flavors m, has been kept fixed, and M, = 391, 524 and 702 MeV.
For each of the multiplets it is necessary to identify the states with the LQCD mass levels.
This procedure is not unique and thus it requires some analysis, as shown below. In the
following the notation used to designate the states will be as follows: Bg or By for states
with baryon spin S which belong predominantly to octets, and Bg for baryons which belong
predominantly in singlet or decuplet. For the case of the A and €2 baryons which can only
belong in a decuplet when isospin is exact, no primes are used, and the same for the [56,07"]

baryons where S = 1/2 (3/2) states necessarily belong to 8 (10).



A. [56,07] Baryons

Here, the ground state and excited [56,0"] (Roper multiplet) baryon masses are fitted
using the GR mass formula Eq. (1). In all 56-plet masses the flavor singlet breaking of
SU(6) x O(3) is O(1/N,), i.e., suppressed by a factor 1/N? with respect to the leading
symmetric mass. Thus, under the assumption of no configuration mixing, SU(6) x O(3)
must be particularly good. The possible significance of the SU(3) breaking effects on the
HF terms, controlled by the coefficient by, is considered. Table I gives the results of the fits
for the ground state baryons, and Table II for the Roper baryons.

The analysis of LQCD ground state baryon masses including higher order terms in the
SU(3) breaking has been carried out in Ref. [36], for LQCD calculations other than the
present ones. It is noted that the HF mass splittings have the behavior observed also in
other LQCD calculations, where it increases with M, up to M, ~ 400 MeV, to decrease for
higher M, (for a current summary see Ref. [37]). On the other hand for the excited baryons
the HF splittings are almost always monotonously decreasing with increasing M., both in
the 56- and 70-plets.

In the Roper baryons, the identification of the 8,5 is obvious, being the lightest positive
parity excited states above the ground state, but for the 103/ one needs to distinguish
between two possible excited multiplets, one which will be a Roper and one which be in the
[56,27]. One of the choices, namely that in which the Roper 103/ is the lightest one, does
not seem to be consistent with the magnitude of the HF splittings observed throughout the
spectrum. One is therefore lead to conclude that the 103/, belonging to the [56,2"] are the
lowest lying excitations, followed by the Roper ones.

In Fig. 1 the dependence on M, of the coefficients are displayed. The well known
dramatic downturn with decreasing M, of the Roper baryon masses is clearly driven by
the spin-flavor singlet component of the masses, given by the coefficient ¢;. The HF effects
determined by ¢, have a smooth behavior in M, but significantly different strength in the GS
and in the Roper states, being reduced in the latter. Unlike the GS baryons, no significant
SU(3) breaking in the HF interaction is observed in the Roper baryons, so the coefficient by
is consistent with zero for the LQCD masses.

The mass relations are given in Tables III and IV, which show that they are satisfied

within errors for the LQCD results. In the physical case, the knowledge of the Roper states



Coeflicients Mr[MeV|

[MeV] PDG 391 524 702
1 29346 377+£3 42042 474 +1
ca 247412 29645 25143 20042
by 189+12 7546 45+3 0

by 94426  43+11 1447 0
ot 0.19 0.15 1.43 0

TABLE I: Coeflicients of the GR mass formula for the ground state baryons. The case M, = 702

MeV corresponds to exact SU(3) symmetry. Xgof is the x2 per degree of freedom.

Coefficients Mr[MeV]

[MeV] PDG 391 524 702
a1 46948 71446 760+£5 77043
co 175444 16512 12449 115420
b 204418 48412 15412 0
ot 0.16 0.53 0.76 0

TABLE II: Fit to the [56, 07] Roper baryons. It is found that the SU(3) breaking effects on the

HF interactions can be neglected, thus by = 0 throughout.

500 F 7 800 F

PDG 201 524 702 PDG 201 524 702
FIG. 1: Evolution of the coefficients with M, for the ground state baryons (left panel) and the
Roper baryons (right panel).

is rather incomplete. Based on the mass relations the predictions shown in Table V are

made. As shown below, the listed PDG candidate states may also match predictions from



Relation M-[MeV]

PDG 391 524
2N +E) - (3A+%) =0 30.2+0.4  38+75  32+32
S A=F Y = = 15542 64425 40411

149.04£0.5 55419 33413
140.740.5 54417 40+14
(428" —A-(3(A=N))=0 9+1 1428 14412
YWY —(E"-2)=0 23.540.5 12425 12415
BA+Y —2(N+E)+(Q-E"-X"+A)=0 1642 29481 32436

YW-A+Q-Z"-2(Z"-3¥")=0 2.5+2.4 8+51  14+£37

TABLE III: Mass relations for the ground state octet and decuplet. The relations are valid up to
corrections O (e% /Nc> in the case of the GMO and EQS relations which stem from the one-loop

chiral corrections [36], and up to O (1 /ch) for the rest of the relations.

Relation M [MeV]

391 524
2IN+Z2) - (BA+X)=0 1794180 106+155
YWoA=E -3 =Q" =" 13445 -27+26

84+40 41+49

48+42 41457
$(EZ+28") —A—(3(A-N))=0 51465 29+41
YWoy=82"-%2 58463 77480
BA+Y —2(N+E)+ (V' -Z"-X"+A)=0 1444189 1744170
Yo A+ QN —E—2E %) =0 1074110 674147

TABLE IV: Mass relations for the Roper multiplet. The relations hold at the same orders as in

the case of the ground state baryons.

the [56,27] multiplet, as discussed later.
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Baryon Predicted mass [MeV] Fitted Mass [MeV] PDG candidate and mass [MeV]

32 1790 + 131 1800426 (1840)(3/2+)* with mass ~ 1840
12 1825 + 108 1815431

/o 1955 + 171 197535 2(1950)(?7)™* with mass ~ 1950 + 15
Qg5 2120 + 219 2150446

TABLE V: Predictions of physically unknown states in the Roper multiplet. These predictions

agree with the ones in Ref. [38].

B. [56,2"7] Baryons

Here the lowest excited baryons that can fit into the [56,2%] are considered. The first
step is the identification of the states in the LQCD results. With the exception of the
1032, all the states are in spin-flavor states which appear for the first time, and thus the
lightest states with given spin and flavor are the ones of interest. In the case of the 103/, as
discussed earlier, there are two possible excited levels to consider, one of which will belong
to the excited [56,07], where the arguments for the identification were already given. For X2
and = baryons, the LQCD analysis [4] has assigned the dominant SU(3) multiplet to which
they belong, 8 or 10. Therefore, there is no ambiguity about the identification of states in
the present multiplet.

There is mixing between states in the octet and decuplet, namely the ¥ and the = pairs
of states with S = 3/2 and with S = 5/2, namely (Egs), ESO)) and (Eg), Ego)). These

mixings obviously result from SU(3) breaking, and the physical states are defined as follows:

2s cosfOyy sinfsg 2y Es cosfz, sinf=, =% )
2y —sinfyg cos by ng) 7 E —sinfz, cos bz, Ego)

Two different fits are carried out, one includes all the SU(3) breaking operators, and a second
one only including the one-body operator giving the spin independent breaking effects. Since
the symmetry breaking by the operator B; does not produce mixing between 8 and 10, the

mixing angles are actually o €¢/N., and thus naturally very small. The results are shown in

11



Table VI. It is checked that the present fit fully agrees with a previous one for the physical
case [22]. One important observation is that based on the quality of the fits the mixings

cannot be definitely established for the LQCD results.

Coefficients Mr[MeV]

MeV] PDG 301 524 702 301 524 702
c1 540+11 704+£2 718+1 754+1  710£2 72441  753%1
c2 1845 48+6 2843 -61+5 59+6 21+3 0

c3 244+4 16945 166+3 104+4 15145 148+3 106+4
b1 217+4 7513 04+1 0 5613 36£1 0
ba 95+14 -23£11 13+5 0 0 0 0
b3 268+16 59149 55+4 0 0 0 0

Mixing angles [Rad]

Os, -0.16+0.02  0.06+0.03  -0.03+0.01 0 0 0 0
Oz, 5 -0.26+0.04  0.07+0.03  -0.03+0.01 0 0 0 0
O, , -0.2240.03  0.05+0.03  -0.03+0.01 0 0 0 0
Oz, , -0.2040.02  0.084+0.04  -0.03+0.01 0 0 0 0
ot 0.84 0.60 0.47 0.92 0.63 053  0.80

TABLE VI: Two fits to [56,2"] masses, with and without the operators By and Bs. The second

fit does not describe well the physical baryons.

800

8()0 |-
=
600 - - q
Co 600 -
C3 C1
- —b, —_ - G
3 ——by ] B 400f c3
= ——b3 = — b
20 N | " =
0 ><>\ ol
PDG 391 524 702 391 524 702
Mz[MeV] M.[MeV]

FIG. 2: Evolution of the operator coefficients with M, for the two fits in Table VI .
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The evolution with M, of the coefficients is shown in Fig. 2. It is interesting to notice
that the coefficient ¢; has qualitatively similar but less dramatic behavior than in the case
of the Roper baryons, which must be an indication of a similar mechanism as the one which
drives down the Roper masses with decreasing M. The HF interaction given by c3 behaves
smoothly with M, decreasing slowly as M, increases, and it has similar strength as in the
Roper baryons. Although the operators By, and Bj are significant in the physical case, their
contributions are negligible in the LCQD cases, as shown by the second fit in Table VI. The
latter observation tells that the mixing between octet and decuplet states, which are driven
by those operators, are very small as confirmed by the small mixing angles in the first fit in
Table VI.

The mass relations for the [56, 27| are depicted in Table VII [35]. In addition to GMO and
EQS relations, there are several relations which relate SU(3) mass splittings in multiplets
with different baryon spin, as well as relations among the masses of baryons with the same
strangeness but different baryon spin. Almost all relations are satisfied by the LQCD results,
with the exception of the results at M, = 702 MeV, where the deviations are however within
the expected magnitude of higher order corrections.

The fit and the mass relations predictions for the experimentally unknown or poorly
known states are shown in Table VIII. The PDG candidate state %(1840)(3/2%)* could be
identified with the X3/5(1889) state in Table VIII, but as discussed earlier it can also be
identified with the Roper ¥3/,. The PDG candidate state =(2120)*(?7) is consistent with

both Z3/ and =7 /o I Table VIII, so its parity could be predicted as positive.
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Relation M[MeV]

391 524 702
2(N3jo 4 Z3/2) — (3A3/0 + X3/9) = 0 98+126  49+173 0
2(Nsjz + Z5/9) — (3A52 + S5/2) = 0 40+98 55+65 0
S = Drja =)y =By = Qyja — =y -13£110 3633 0
23+44 43422 0
85+54 35+19 0
Sy — Daja =Yy =B = Qg0 — =y 48446 3623 0
56429 30+16 0
45+31 41415 0
St~ Dsjp =24 — B8y = Q50 — Ef 3540 3426 0
62+31 26+23 0
57+34 52+18 0
Sy = Dajg =5y =By = gy — 27 38+38 35£25 0
67+31 36420 0
59+31 22+18 0
Asjp — Azjp — (N5j2 — N3jp) =0 7068 4468 44433
(A7jg — Agja) — L(N5jo — N3jp) =0 68478 25492 75441
A7y — Ayjg — 3(Nsjg — Nyjp) =0 1294175 134192 133+74
£ (Ag/2 — N3jo) + 22(A52 — Ny o)
—(Z572 = Asj2) — 2(57 )5 — Aqje) =0 91+100 29475 0
Agjy — ANgjo +3(S50 — 3j9) — 4(Nsjg — Nyj) =0 10£207  10£272 0
Asjz = Agjp + Tsjo — s — 2(5 ;= X 5) = 0 111481 12472 87+59
T(25), — 275 —12(2f , = %7 ,) =0 444319 394268 674266
A(Z )y = 27 )5) = 5(85 5 =2 )5) =0 834170 874104 584161

TABLE VII: Mass relations for the [56, 2] multiplet. The relations hold at the same orders as in

the case of the ground state baryons.
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Missing states Fitted mass [MeV] Mass listed in PDG [MeV] Mass from mass relations [MeV]

S/ 1889430 (1840)(3/2+)* with mass ~ 1840 1920470
Es/2 2074+24 2(2120)%(?7): 213047 2080475
Es/2 2000+31 2(2030)**(S > 5/2+) with 202545 2006+14
= 20606 . 2127+120
= 2221+6 2(2250)(?7): 221445

o 238247

24 2059+29 (2080)*(3/27): 2120440 2109+96
= 2212+24

Q9 235046

=4 2053+23 $(2070)%(5/2): 207010 2077456
= 2178+31

Qs 2297+6

2 2129+6 2(2120)%(?7): 213047

Q) 2222+6

TABLE VIII: Predictions of physically unknown states in the [56,2"] multiplet, and suggested
identifications with PDG listed states. The first two GMO relations and the 12" equation in Table
VII, which is a large N, parameter independent mass relation, were used to predict the above

masses.
C. [70,17] Baryons

In the case of two flavors, there are two mixing angles for the pairs of nucleon states with
S =1/2 and S = 3/2. Denoting by 3**Y Ng the nucleon state with spin S and quark spin

s, the physical states are given by:

Ng _ [ cos Osg  sinbyg 2Ng ©)
N —sinfyg cosfas ) \*Ng
Understanding these mixings is very important, as the decays and photo-couplings are
sensitive to them. These mixings are predicted at the leading level of breaking of spin-

flavor symmetry [23]. Indeed, if the O (N?) spin-orbit operators O34 would have con-
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tributions of natural size, the mixing angles would be §; = cos™(—+/2/3) = 2.526 and
3 = cos™'(—4/5/6) = 2.721 up to 1/N, corrections. However, it is known phenomeno-
logically that the contributions of those operators are weak, and thus the mixing angles
are significantly affected by the subleading in 1/N, operators, in particular the hyperfine
operator Og. The determination of the mixing angles requires in principle more information
than just the masses, as there are seven masses, and nine mass operators up to the order
1/N., which means that the angles cannot be predicted. A biased prediction is obtained
by neglecting the 3-body operators, which gives one angle as a function of the other one

according the the relation [24]:

’ (MNl My =AMy =AMy + Mg +8Ma, = 8MA3) - (7)
2 2 2 5 2 2 2

(13 cos 261 + V/32sin 281> (]\/[]\//1 — MNl) —4 <cos 205 — v/20 sin 293) (]\4]\;/3 — MN3> .
3 2 2 2

However a determination of the angles in a more rigorous way requires the input of additional
observables, namely the partial decay widths and/or photo-couplings. The details of that
analysis are provided in Ref. [24].

In the case of three flavors there are two-state and also three-state mixings. For the
nucleons one has the same case as for two flavors, while for ¥, A and = baryons there is
three-state mixing. The physical states are given in terms of the quark spin and SU(3)

eigenstates by:

10s or ]-S 2105 or 215
8s =0 284 : (8)
8's 8¢

where the physical states are indicated by the dominant SU(3) content, and the Euler mixing

matrix is given by:

coch) —clsps  chpsp+clepsy s sy
O=| —checpsp —cpsy clchpep —spsp cpsh |, cd =cost), sf =sinb, etc. (9)
s6 s¢ —co s6 ct

The angles 6 can always be taken in the interval [0, 7). The mixing angles ¢ and v vanish in
the limit of exact SU(3) symmetry, and are thus proportional to the parameter e. The SU(3)

symmetric limit becomes similar to the non-strange case except that there are two additional
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masses, namely the ones of the singlet A baryons. The determination of the mixing angles
would be similar to the non-strange case. In the absence of additional information to that
of the masses, the angles can be determined only through exclusion of some operators. For
instance, one strategy would be to exclude the 3-body operators, which seem in general to
have particularly weak contributions to masses.

For the states which are subjected to mixing it is necessary to make the identification of
the physical states. As mentioned in the introduction, for the physical case the identification
has been clear for a long time, thanks to the simultaneous use of strong decay partial widths
and helicity amplitudes [21, 24, 39, 40], but that information is not available for the LQCD
baryons. The identifications of the LQCD states were analyzed separately (a total of 256
possibilities). It turns out that most assignments pass the tests of y?, mass relations and
naturalness of the coefficients. Thus on a general rigorous ground the problem of state
assignment is not completely resolved. However, if one requires that the coefficients flow
reasonably smoothly towards the physical ones which are known, then only one assignment
becomes possible, namely the one discussed here.

Since the mixing angles would be an indicator of level-crossing effects as M, is varied,
their definite understanding is an important task. In fact, recent studies of lower lying

negative parity states in Ref. [8, 10] identified the two lowest lying N,

1/o Masses and may

give the first evidence of such a level crossing as M, varies.

For two flavors, and following the global analysis of Ref [24], the two mixing angles are
given as input, and in this way it is possible to fit with the complete basis of operators up to 2-
body. If the additional information provided by partial decay widths and/or photocouplings
is not available, as it is the case for the LQCD results, one possibility is to neglect some of
the basis operators, which allows one to predict the mixing angles solely using the masses.
A guidance on what operator(s) to exclude is given by the rather clear hierarchy in the
importance the different operators have, as measured by the magnitude of their coefficients.
In fact, it becomes clear that the mixing angles are mostly controlled by the operators O,
O and to a lesser extend O4 and Os. In the case of three flavors the number of masses
is much larger than the number of basis operators, and thus in principle the mixing angles
can be determined with the information on the masses, of course after the above mentioned
identification of states has been performed.

For two flavors, the LQCD results are those in Ref. [3], and the corresponding fits are
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Coeflicients Mr[MeV]

[MeV] PDG 396 524 PDG 396 524
¢ 46342 54345 59843 45942 53345 57943
¢y -36£12 39435 13+14 0 0 0

c3 313469  -834215  -96+74 0 0 0

c4 65-+31 “70+71 -95-30 0 0 0

cs T1+18 99448 107424 1618 122446  106+23
c6 443410 446425 307413 443+10 502425  414+13
cr 20431 -0.37462.89  -66+34 0 0 0

On, s [Rad] 0.524+0.13  2.9440.21 2.76+0.06 3.13+0.01 3.044+0.05 3.03+0.03
0N, [Rad] 3.02+0.09  2.884+0.42  2.38+0.11 3.124+0.02 2.984+0.08 2.97+0.05

ot 0.05 0 0 0.68 0.52 1.0

TABLE IX: Fits to the non-strange [20,17] baryon masses. Unless the mixing angles are inputs
to the fit, the operator Og is not necessary due to linear dependence as there are only seven mass
inputs to fit. For the physical case with seven parameter fit, the mixing angles from the global
analysis (c9Nl/2:O.49j:0.297 9N3/2 =3.01£0.17) were used as inputs. For the minimal fit with ¢1,c5,c6,

the mixing angles in the physical case are not inputs.

shown in Table IX The physical case is in good agreement with previous works [18, 19].
If one considers only the seven known masses as inputs to the fit, one operator must be
eliminated: the operator Og is thus dismissed as it always results virtually irrelevant. A
second fit where only the three dominant operators are kept turns out to be consistent for
the lattice QCD results, but gives a poor fit to the physical case. In that case, the M,
evolution of the coefficients is shown in Fig. 3.

A comparison of the physical case shows that it is consistent with earlier work [18, 19],
but differs significantly for the coefficients c3 and cg with respect to the recent global analysis
carried out in Ref. [24]. Since all those fits are consistent in terms of the x?, it is indication
of the ambiguity that results when only the masses are fitted. This means that also for the
LQCD results one should expect several consistent fits in terms of the value of the x?, which
will have some of the parameters significantly different.

Now the fits to the three flavor case are presented. The identification of the states has been
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FIG. 3: Evolution with M, of the coefficients for the fit with a minimum set of operators to the

[20,17] baryon masses in SU(4) x O(3).

made as described earlier. Such identification is clearly displayed in Table XXII of Appendix
B. For the sake of brevity, only those operators which have effects of any significance have
been included here: after an initial analysis, several operators whose coefficients resulted
consistent with zero have been eliminated. The fits for three flavors are given in Tables
X and XII for the corresponding subsets of operators. Because of the different definitions
of the basis operators for the different multiplets, in order to compare contributions which
are of common nature across mutliplets such as the spin-flavor singlet contributions, the
HF and the SU(3) breaking, the following identification of coefficients should be done:
C1ge <+ (€14 (b1 +02)/V/3)70, €2, © §C6r0s Digg > — (01 +02)V/3/2) 1.

The fits in the physical case are checked to be consistent with previous analysis [20, 21].

]<—>03[

56,01 56,21

It is interesting to observe the evolution of the mixing angles 6 with M, as they can give a
clue on the possible level crossing as M, evolves. As it is the case in the non-strange case
discussed above, in the S = 3/2 baryons these angles remain continuous from the physical
case to M, = 702 MeV, while in the case of the S = 1/2 baryons there is a change by
more than 7/2, indicating a level crossing along the way. This qualitatively agrees with
the LQCD results in Refs. [8, 10]. It is interesting to observe that for M, = 702 MeV all
baryons are stable, and almost all are still stable for M, = 524 MeV, while below M, = 391
MeV they are unstable. Since the S = 1/2 baryons have S-wave decays, they are the ones
to be sensitive to the opening of the decay. These observations suggest a synchronization
between the mixing angle and the stability of the baryon. In fact, the change in #; shown

in Table XI in going from M, = 391 to 524 MeV is approximately 7/2, as expect for a level
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Coeflicients M-[MeV]

[MeV] PDG 391 524 702
¢l 4443403 57242 585+1  636+1
¢ 84:£2 68£12 746 1644
cs 117413 59422 -40+18 248
¢4 11545 12412 -28+9  -13+4
cs 8410 134417 132414 8447
co 538+5 327410 35046  262+4
cr 159413 49427 -59+17 13411
by 21445 -100413  -4349 0
by -188+2 6246  -46+4 0
b 9242 41410 647 0
Xor 0.74 0.65 0.14 0.09

TABLE X: Fit to the [70,17] masses using a subset of operators chosen as a minimal subset such
the X(210f is acceptable for all input sets. For the physical case the mixing angles from the global

analysis [24] (0w, ,=0.49£0.29, O, ,=3.01£0.17) were used as inputs.

crossing. Is this an explanation for the observed level crossings?. Perhaps, but it is not clear
at this point, and it deserves further study.

Consistent fits to only LQCD results can be achieved by a minimal set of significant
operators. It is found that the relevant SU(3) singlet operators are the spin-flavor singlet
O1, the HF Og and the two spin-orbit ones Oy and Os and the first two SU(3) breaking
operators. These results are illustrated in Fig. 5. Note that all the SU(3) breaking operators
are relevant for fitting the physical case. The operator O3 is found to be important for the
physical masses, but irrelevant for the LQCD masses, where the operator Os is instead
significant. It is interesting to observe that in models with pion exchange between quarks,
such as certain versions of the chiral quark model, O3 is naturally important, and should
fade as M, increases.

The mass relations are depicted in Tables XIII and XIV. All are well satisfied, except
for the EQS relation for M, = 391 MeV involving Zg /2- A shift of its mass by ~ 430 MeV

leads to consistency. The mass predictions are given in Table XV. Since, the PDG candidate
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Mixing angles M [MeV]

[Rad] PDG 391 524 702
On, /s 0.76+0.03 0.61+0.12 2.77£0.06 2.98%+0.05
0N3/2 3.09+0.40 0.10+0.81 2.70+0.10 2.841+0.03
¢A1/2 -0.15+0.01 -0.15+£0.01  -0.1440.01 0

0r, 0.83+0.01  0.70+0.01 2.76£0.01  2.9840.05
¢A1/2 0.05+0.01 0.11+0.01 -0.18+0.02 0
¢A3/2 -0.21£0.03  -0.16+0.04 -0.124+0.02 0
91\3/2 3.08+0.01 0.13+0.01 2.69+0.02 2.84£0.03
VAg)s -0.18+0.01 0.07+0.03 -0.03£0.01 0
b5, -0.25+0.02 0.03+0.01 -0.05+0.04 0

Os, 1.01+0.01 0.75£0.01 2.75£0.01 2.98£0.05
(C I -0.10£0.01 0.01£0.07 0.03+0.04 0
ISR -0.08+0.06 0.06+0.04 -0.02+0.04 0
923/2 3.05+0.01 0.16+0.02 2.66+0.01 2.84£0.03
Vs, 0.04£0.02 0.03+0.02 0.005£0.001 0

D=, -0.30+0.03 0.03+0.01 -0.05+0.06 0

b=, , 0.94+0.01  0.78+0.01 2.77£0.04  2.9840.05
V=, ), -0.1440.02 0.01£0.07 0.03+0.06 0
b=, -0.09£0.07  0.05+0.03 -0.02+0.04 0
953/2 3.07£0.01 0.19+0.03 2.69+0.02 2.84£0.03
Vs 0.05+£0.03 0.02+0.01 0.006£0.001 0

TABLE XI: Mixing angles in the [70, 17| predicted from the fit in Table X.
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FIG. 4: Evolution with respect to M, of the coefficients of the basis operators used to fit both the

physical and the LQCD [70,1~] masses.
Coefficients M [MeV]
MeV] PDG 301 524 702
c1 462+0.3 08212 o87+1 6371
c2 83£2 92410 13+8 -11+4
Cs -67£11 136+£17 127+£13 967
C6 420+4 270+9 344+6 257+4
cr -78+14 4+31 -47+16 21£11
b1 -92+4 -53+13 -3449 0
ba -17942 -58 £6 -48+4 0
9N1/2 0.33£0.02 0.79£0.21 2.954+0.05 2.9440.02
(9N3/2 0.45+0.02 0.79£0.13 2.86£0.07 2.844+0.03
Xiof 6.7 0.86 0.46 0.13

TABLE XII: Fit results with minimal set of mass operators for the [70,17]. Only masses are used

as inputs.

state =(1950)**(?") is consistent with 259,552 and Y » in Table XV, its parity could be

predicted as negative.
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FIG. 5: Evolution with respect to M, of the coeflicients in Table XII. .

Relation M,[MeV]
PDG 391 524

2(N1j2 +E1/2) — (BA1 2 + X1 p2) = 594156 174125

0
2(N3jo 4 E3/2) — (3A3/2 4+ X3/2) = 0 - 314121 13474

2(N5/2 4+ Z5/2) — (BA5/2 + Xs5/2) =0 46491 664
g = A =E) =X = — 5 67+47 35456
34436 40441
24449 22426

Shp = —Sh,y oo 2549 39423

Eg/Q —Agpp = Eg/z =3/2

82447 37421
61443 31+£21

TABLE XIII: GM-O and ES relations for the [70,1~] multiplet. Due to the insufficient number of

known states with three or more stars, the mass relations cannot be checked for the physical case.
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Relation M [MeV]

391 524
14(Sa;,, + SAQ/Q) + 6354, +36(Ss, ,, + SZi/z)
—68(S4, ), + Say ) = 279%;,, =0 9.4:40 0.96+34
14(S5,,, + Sx, ) + 2158, — 955, ,
—18(Sh, 5 +Say,,) = 2(S%, ), + 55, ) =0 37445 5.4+38
14 Sy 44954, ), +23(Ss, ), + 551 ,)
—45(S4, ), + Say ) = 199%;, =0 9.4440 0.7+34
14 Sy +288n,,, +11(Sx, ), + Sy )
—27(Sh, ), + Sy ) — 108%,, =0 0.8+40 0.1£33

TABLE XIV: Octet-Decuplet mass relations for the [70,17] multiplet. Sp is the mass splitting
between the state B and the non-strange states in the SU(3) multiplet to which it belongs. The
results shown correspond to the relation divided by the sum of the positive coefficients in the

relation (e.g., 163 for the first relation).
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Missing State Fitted mass with union set of operators PDG

[MeV] MeV]
51/ 1645411 $(1620)1/27**=1620+10
E1/2 1801411
12 1930+8
AL 1825+6
=49 17807
%o 194447 2(1950)(?7)***=1950+15
Zs5/2 193946 2(1950)(?7)***=1950+15
=1 1828+7
2 1969+8 2(1950)(?7)***=1950+15
Q9 2107410
=42 191646 ¥(1940)3 /2~ **=1950-+30
24/ 205747
Q39 219849

TABLE XV: Predictions of physically unknown states in the [70, 17| multiplet from the fit in Table
X.

IV. COMMENTS AND CONCLUSIONS

From the study presented here of recent LQCD results for the low lying baryon excitations,
it can be concluded that a picture of the spin-flavor composition of excited baryons is derived
from their masses calculated in LQCD and the 1/N, expansion. The results obtained entirely
supports the picture seen from the lattice QCD analysis of the mass eigenstate couplings to
source/sink operators. A similar, and even simpler picture than the physical case emerges
at increasing quark masses, where with very few dominant operators the LQCD masses can
be described. The expected narrowness of the states analyzed for the quark masses in the
LQCD results suggests that those results are very realistic. For higher excited baryons, which
will be broader, the present LQCD results may be a poorer approximation. Nonetheless,
they should be interesting to study.

A strong conclusion is that the LQCD masses are even closer to an approximate SU(6) x
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O(3) symmetry limit than the physical ones. This is most likely due to the fact that the
composition of baryons becomes increasingly closer to a constituent quark model picture
as the quark masses increase, emphasizing the mass operators which are naturally large in
those models and suppressing the rest. The study presented here shows that the LQCD
masses can in all cases be described quite well with only a few operators, namely the leading
spin-flavor singlet one, the hyperfine one and with a lesser relevance the spin-orbit one.

For the quark masses employed in the LQCD calculations used here, the dramatic down-
turn in ¢; for the Roper baryons is not manifest. This is an effect where probably chiral
symmetry plays an important role an important role as it becomes restored towards lighter
M. In recent LQCD work on nucleon resonances [8, 10] a first evidence of that downturn is
observed. It remains to be determined what precise mechanism drives that effect, perhaps
using some clever strategy in the LQCD calculation. While in the Roper multiplet the ¢;
coefficient should have that large negative curvature as a function of M, to match the phys-
ical masses, it lies along an almost prefect straight line for the ground state baryons, and it
has a moderate negative curvature in the other cases.

Identifying the HF coefficients as mentioned earlier, one finds that for the LQCD results
the strength of the HF in the ground state baryons is almost twice as large as in the excited
baryons, which is significantly different from the physical case, where it is only about 25%
larger. One should point out that in a picture of large N, baryons with heavy quark masses
the hyperfine interaction will scale as mg/N,, implying that in LQCD calculations at even
larger quark masses than the ones used so far the hyperfine interaction coefficient should
eventually scale approximately as my.

The spin-orbit contributions are all smaller than the natural size. In the [56,27%] it is
an effect O (1/N,), and the coefficient slowly decreases with increasing M. In the [70,17]
the O (N?) contribution is determined by c; which decreases with increasing M, and the
O (1/N.) contribution determined by c¢5 remains roughly independent of M.

An interesting open problem is how to relate the SU(6) x O(3) decomposition of the
physical baryons determined via the 1/N, expansion as presented here, with the information
on the coupling strengths of the mass eigenstates to the different source/sink operators

obtained in the LQCD calculations.
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Appendix A: Bases of mass operators

This appendix gives the bases of mass operators with the respective normalization factors

used in this work.

1. Operator basis and matrix elements for the [56,2%] multiplet.

O 02 O3
N.1 Nic& s N%Sz'sz‘
83/2 Ne B 21%{0 41%&
85/2 N Ni %Nc
1012 Ne 2N, 41]\5fc
1032 N, -~ r
1055 N, — 5N T
107/2 N, > T
B 35 Bs
Ny N%EiGifs - ﬁOQ N%SiGis - ﬁozs
Ng 0 0 0
As ! e -3
X 1 - \g\is S\J/vgc
=g P V3as -2
Ag 0 0 0
x4 ! B &
Qs 3 0v3ts ~ 1543
R o
S5 =34, 0 2 0
Zy2— O v 0
Zs2— By 0 v 0

TABLE XVI: Matrix elements of SU(3) singlet operators (top) and SU(3) breaking operators
(bottom). Here, ag = 1, —2/3 for S = 3/2, 5/2, respectively and bg = 1, 2/3, 1/9, —2/3 for
S =1/2,3/2, 5/2, 7/2, respectively
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2.

Operator basis and matrix elements for the [20, 17| multiplet.

01 0o O3 Oy
N.1 l; s; N%fl(-?)giana l; s; + ﬁ Ui toGS,
Ny Ne - (2]:;[&:3) 0 N
N {/2 Ne - % _%1\21) 0
N{/z - N1/2 0 _% ]\QICNJZS o 485])Vc (NC+3)2(J%5.VC_1)2 Y %
N3 /o N (ZJGV;V:?’) 0 —ﬁ
Ny Ne 5 N (Ve +1) 0
N:/%/2 - N3/2 0 _% 5(1\]7\6/:r3 96N, 5(NC+33\(ZNC_1)2 o %
N N, +1 — v (Ve + 1) 0
Ay N, +1 0 0
Az N, -1 0 0
Os Og Or Os
s LSSt iS¢ 202556
Ny CEDUES) B 0
N {/2 ﬁ N% %Nc 6]?&
Nijp =N /562 0 0 oy B
Nyjo Nets) (et _ et 0
N. 5/2 ﬁ N% %Nc o 312Vc
N§/2 — Ny 5(;2,];\%3) 0 0 ﬁ 5(%;3)
N N N IN: 6N
Ay TN x ~ 0
Asy 5N N% - 0

TABLE XVII: Mass operator basis and matrix elements for the [20,17] multiplet [19].
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3. Operator basis and matrix elements for the [70, 17| multiplet.

O, Oy O3 o Os Os
3 g2 4 1 1
N1 l; si 209 g1 G5, T litaGS, 0S¢ = SeS¢
3 3_9N. 2(N.+3)(3N.—2) _ N.+3 Ne+3
81/2 Ne 3N, 0 ON.(No+1) 3NZ 2N2
48 N _5 _5BNA41) S(3N.+1) _ 5 2
1/2 c 6 48N, 18(Ne+1) 3N, N.
28 _ 48 0 _ [ (Nc+3) _ 5 [(Net+3)(3N.—2)? _(6—3N¢) [N.+3 N.+3 0
1/2 1/2 18N, 24 2N3 9(N.+1)\/ 2N, 18N3
211/2 N, -1 0 0 0 0
2 1 _ (BN+T7) _ 4 2
101 /2 Ne 3 0 9(N.+1) 3N, N.
28 N 2N.—3 0 _ (Ne+3)(BNe.—2) N.+3 N.+3
3/2 c 6N, ON.(N.+1) 6N?2 2N2
4 1 3N.+1 3N +1 2 2
83/2 N, 3 12N, 9(N.+1) 3N, N.
28, . _ 4g 0 _ [5(Ne4+3) 1 [5(N.+3)(2—3N.)? 5(N.+3)(5—3N.)? 5(N.+3) 0
3/2 3/2 36N, 48 N3 324N (N.+1)2 36N3
*13)9 N, i 0 0 0 0
2 1 3N +7 2 2
1032 N, -5 0 BNAT) 3N, N,
4 1 3N 41 _ 3N.+1 1 2
85,2 N, 5 I8N, 6(N.+1) N, N.
Oz Os O9 O10 O11
1 2 p(2) : 3 : 2 - e 3 . e
w55 by siS) ez ligia{ S, Gha} nrtad S5 Gt Rz li9ial S5 G}
28 _Nc+3 0 (NC+3)(7_15NC) _(Nc+3)(3Nc+1) _(Nc+3)(3Nc+1)
1/2 4N? 24N3 12N3 24N3
49 1 5 5(3N.+1) _ (BNc+1) 5(3Nc+1)
1/2 2N, 3N, 24N?Z 3NZ2 12N2
2 4 25(N.+3) (N.+3)(3N.—2)? (N.+3)(3N.+1)?
81/2 81/2 0 T2N3 288N3 0 72N
211/2 0 0 0 0 0
210 1 0 (BNe+T7) (BNe+7) (BNe+7)
1/2 N. 6N2 6N2 12N2
28 _ N.+3 0 (Ne43)(15N.—7) _ (Ne+3)(BNc+1) (N.+3)(3N.+1)
3/2 4ANZ 48N3 12N3 48N3
18 1 4 (3N.+1) _ (3Ne+1) (3N.+1)
3/2 2N, 3N, 12N2 3N2 6N?2
2g. . _ 4g 0 _ [5(No13) 5(N.+3)(3N.—2)? 0 5(N.+3)(3N.+1)2
3/2 3/2 144N3 576 N3 144N?
213/2 0 0 0 0 0
210 1 0 _ (3N+7) (3N+7) _ (3N+7)
3/2 N. 12N2 6N2 24N2
18 1 1 ~ (8N.+1) _ (8N.+1) _ (3N+1)
5/2 2N, 3N, SN2 3N2 4ANZ

TABLE XVIII: SU(3) singlet basis of operators for the [70,17] masses [21].
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By
ts

By
T

%81/2,%85/2

N3 —(TNs—8I?)N243(4N;—8I°+1)N.—9Ns N2 —(3N;—1)N24 (N, —8I*—3)N2—3(N,—8I*+1)N.4+9N,

2\/§NC(NC_1)(NC+3)

2\/§NC(NC_1)(NC+3)

4 4 4 N.—N,—41? NZ2—(3N;+2)N.+4(I*+Ny)
8172, 8372, 852 A1) 2v3(No—1)
281/2—*81/2,%83/2—"*85)> 0 0
214 19,21 _B=Ne) (Net5)(Ne—3)
1/2, +3/2 V3(Ne+3) 2v/3(N.+3)
28,21 28, .21 __3(Ne—1) _ 3(N.—1)
1/2 1/27 3/2 3/2 2\/N7p(Np+3) 2N(Nr+3)
481 /2—211/2,*83/2—215)» 0 0
10 10 N.—8N,+5 N2—(3Ns—4)N.~7Ns—5
1/2, tY3/2 2V3(N.+5) 2V/3(Nc+5)
2 N.+3 2 N.+3
“81/="101/2,"83/5="103/2  — §NC(N671J)F(NC+5) §NC(N671J)r(NC+5)
481/2—2101/,%85/o—2103/2 0 0
Bs

10
N, dSab Gia Gfb

%81/2,%85/2

81/2,%85/2,%85)2

3N3 (13N, —8I?4+3)N?4(31N,—441>—12)N.—6(N,—14I?)

— 3 VBNZ(N.~1)
3N2—(TN,4+41?—3)N.+(N,—20I%)
—24/3N.(N.—1)

281 /2—*81/2,%83/2—852 0
211 /9,%15)9 0
%81 /5211 /2,%83/2—>13/2 S(L\Fl)
) 16N.v/N.
181/9—211/2,"83/2—213)2 0 ,
3N2—14(N.—1)N,—22N,—5
101/2,103/2 T BBN.(Net5)
) 9 9 5 5(No+2) N.+3
81/2—=101/2,°83/2—=103/2 6v6N. \ No(No—1)(N.15)
81/2—21012,"83/2—21035 0
By
34; gis
29 _ N2—(10N,—14I*+3)N2+3(7N;—8I°)N.—9(N,—21?)
1/2 \/ENC(NC_l)(NcJ"B)
1g _ 5(Ne—N.—4I%)
1/2 4V3(N.—1)
2 4 N.—N,—41I? 3
81/2="81/2 *mﬂ
21 \/g(Nc_g)
1/2 T (Ne+3)
28 _21 M
) 1/2 , 1/2 2(Nc+3)v/Ne
8172 =" 112 0
210, 5 N.—8N.+5
2v/3(Nc+5)
2 N.+3

281 /2—2101 /2
481 /2—2101 2

3\ N.(N.—1)(N.+5)
1

(Ne—1)(Ne+5)

N3 —(10N,—14I*+3)N2+3(7Ns—8I*)N.—9(N, —2I?)

2
83/2 2V3N.(No—1)(No+3)
4 _ N.—N,—4I?
3/2 2vV3(No—1)
5 No—N;—41? 3
283/2_483/2 37 4(N.—1) L+ N
\/E(Nc_3)
9(N.—1

?83/2—213/2
483/2—2132
2103/2

?83/2—21032
83/2—21032

1852

T 4N A3)VNe
0

_ N.—8N.+45
4v/3(N.+5)
N.+3
6N.(N.—1)(N.+5)
210
\/3(N.—1)(N.+5)
V3(N.—N;—41%)
4(N.—1)

TABLE XIX: SU(3) basis of SU(3) breaking octet operators for the [70,17] masses [21].
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Appendix B: Input Masses

M-[MeV] M-[MeV]

Baryon PDG 391 524 702 Baryon PDG 391 524 702

Nyjp o 938430 1202+15 130949 147344 Nyjp 1450420 2221452 2300430 2339+21
Ayjp 1116430 1279420 13717 147344 Ayjp 1630£70 2189444 2330426 2339421
21/2 1189430 1309+13 1375+6 147344 21/2 1660+30 2252446 2357452 2339421
51/2 1315430 13514+15 142049 1473+4 51/2 2278422 2321+£54 2339421
Azjp 1228430 1518+20 158249 1673+6 Agjp 1625175 2356+33 245017 2454455
Ygp 1383430 1582415 162246 1673+6 ¥3/2 2369+31 2423+19 2454455
53/2 1532430 1636+11 1655+11 167346 53/2 2453426 2463445 2454455
Q3o 1672+30 1691£13 169449 1673+6 Q39 2501£33 2504435 2454+55

TABLE XX: Ground state (left), and [56,07] Roper (right) baryon masses in MeV. The inversion

in the ordering of the masses of the =/, and the A masses at and above My = 391 MeV is similar

to that observed in other LQCD calculations [1].
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M [MeV] M [MeV]

Baryon PDG 391 524 702 Baryon PDG 391 524 702

N3jp 1700450 2148433 2178461 2314417  Agjp 1935435 227037 2344+17 2387+19
Az 1800+30 2225428 2227439 2314+17 Zg/2 2318426 2379+15 2387+19
Y372 2243424 2238426 2314417 Eg/2 2374+13 2409+6 2387+19
E3/2 2263+31 2305+15 2314+17 Qg 2420+£28 2450413 2387+19
Ns /o 1683+8 2140431 2198+17 2271+13 A 1895425 2333435 2359417 2388+17
As /o 182045 2228420 2249+15 2271+13 Eg/2 2368+20 2392419 2388+17
Yo 1918418 2229+22 2253+17 2271413 Eg/2 2430+24 2418413 2388+17
Es5/2 2296+22 2275+13 2271+13  Qj)9 2487+24 2470413 2388+17
Ayjp 1895125 2284+107 2312428 2398432 Agpy  1950+10 2390+31 2384+19 2403+21
2/1,/2 2270+26 2348417 2398432 2’7’/2 203348 2428422 2418+15 2403+21
5’1’/2 2293435 2391413 2398+32 E’7’/2 2494422 2455413 2403421
Q12 2378+42 2426+13 2398+32 Q)9 2553422 2477413 2403421

TABLE XXI: [56,2"] masses. The experimental values are those for baryons with a three star or

higher rating by the PDG.
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M [MeV] Mz [MeV]

Baryon PDG 391 524 702 Baryon PDG 391 524 702
Nyjp  1538+18 1681+51 1797432 1968+8 Ns )9 1678+£8 2012+26 2033£20 2109411
Ayjp 167010 1777+32 1852427 1968+8 Asjp  1820+10 2057419 2068+12 2109+11
Y12 1783125 1852427 1968+8 Y52 177545 2059+21 206615 2109411
E1/2 1846£32 1899432 196848 Es5/2 2127421 2105415 2109411
N3/9 1523£8 1820+40 1896£17 2000+£8 Ay 1645130 1885440 1964+42 2023+60
Asz)o 1690£5 190425 1939£17 2000+£8 2/1//2 1952425 1998437 2023+60
Y32 1675£10 1905423 1940+£20 2000+8 5/1//2 1987427 2038417 2023+60
E3/2 1823£5 1974+25 1976£17 2000+£8 Q12 20114+41 2060+£20 2023£60
N{/2 1660420 1892435 1928+37 2045£11 Agjp 1720450 1955432 2033+17 2098+11
1\’1/2 1785465 1849436 1944437 2045£11 2’3’/2 1958+36 2071415 2098+11
2’1/2 1765435 1840+36 1941+£37 2045+11 Eg/2 2040431 2108+£15 2098+11
3’1/2 1876427 2001+£22 2045411 Q32 2101430 2139+15 2098411
N?’)/2 1700450 1895429 1935+£37 2077410 A'l’/2 140744 1710432 1796420 1922+11
Ag/2 1936£30 1981427 207710 A’3’/2 1520+1 1817421 1816440 1903+11
Eg/2 1951£27 19774+25 2077+10

5’3/2 1998+31 2030427 2077+10

TABLE XXII: [70,17] masses. The experimental values are those for baryons with a three star or
higher rating by the PDG.
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