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In flavored dark matter models, dark matter can scatter off of nuclei through Higgs and photon
exchange, both of which can arise from renormalizable interactions and individually lead to strong
constraints from direct detection. While these two interaction channels can destructively interfere
in the scattering amplitude, for a thermal relic with equal abundances for the dark matter particle
and its antiparticle, this produces no effect on the total event rate. Focusing on lepton-flavored dark
matter, we show that it is quite natural for dark matter to have become asymmetric during high-
scale leptogenesis, and that in this case the direct detection bounds can be significantly weakened
due to interference. We quantify this by mapping out and comparing the regions of parameter space
that are excluded by direct detection for the symmetric and asymmetric cases of lepton-flavored
dark matter. In particular, we show that the entire parameter region except for a narrow Higgs
resonance window is ruled out in the symmetric case for fermion dark matter when the coupling to
the Higgs dominates over the coupling to leptons, while large portions of parameter space are still
allowed for the asymmetric case. The same is also true for a dark matter mass above 8 GeV for

scalar dark matter when the coupling to leptons dominates over the coupling to the Higgs.

I. INTRODUCTION

The steady improvement in the sensitivity of direct
detection searches is putting severe constraints on the
parameter space of dark matter (DM) models belong-
ing to the weakly interacting massive particle (WIMP)
paradigm. These bounds can be relaxed in certain classes
of models, including Majorana fermion DM where only
spin-dependent scattering contributes, inelastic DM [1-
3] where the observed event rate is severely reduced due
to the energy cost of upscattering, or isospin violating
DM[4, 5] where destructive interference can occur be-
tween the scattering of DM off of protons and neutrons,
among others. The idea of destructive interference in the
scattering amplitude has been used in several dark matter
models in the past [6-15]. A simple class of models that
can give rise to interference is when the DM particle in-
teracts with nuclei via multiple mediators. A non-trivial
check in such models is whether the parameters of the
model need to be fine-tuned, or in other words, whether
scattering amplitudes for the exchange of the mediators
are naturally of the same size for generic values of the
couplings in the model.

In this paper we argue that flavored dark matter
(FDM) models [16-26] can give rise to interference in
the scattering amplitude quite naturally. These models
admit renormalizable couplings between the DM and SM
fields that lead to both tree-level Higgs exchange as well
as loop-level photon exchange channels for direct detec-
tion, with comparable sizes.

Unfortunately, interference between spin-0 (Higgs) and
spin-1 (photon) mediated channels will not in general
help to ease direct detection constraints for WIMPs,
which have equal relic abundances for the DM particle
x and its antiparticle ¥. The amplitude for a spin-0 ex-
change channel will have the same sign for x and ¥, while
the amplitude for a spin-1 exchange channel will change

sign'. Therefore, any destructive interference that oc-
curs for the scattering of y off of nuclei will unavoidably
lead to constructive interference in the scattering of ¥,
and the total scattering rate will be the same as in the
absence of any interference.

On the other hand, for asymmetric DM [27-33], the
destructive interference can significantly weaken direct
detection constraints. Interestingly, this too can occur
readily in FDM models. In this paper we focus on the
case of lepton-flavored DM, where we will show that it is
very natural for a DM asymmetry to be generated dur-
ing high-scale leptogenesis [34] (for additional references
see reviews on this subject, e.g. [35, 36]). Using lepton-
flavored asymmetric DM as our benchmark model, and
contrasting with the same model but with a symmetric
x-X abundance, we will quantify the impact of interfer-
ence on the region of parameter space that is compatible
with the null results of direct detection experiments. In
particular, we will show that for the case of fermion dark
matter that couples predominantly to the Higgs, the full
parameter region in the symmetric case is ruled out due
to direct detection except for a narrow Higgs resonance
window, while the asymmetric case can be consistent
with the bounds due to interference. This is also true
for the case of scalar DM that couples predominantly to
leptons when the DM mass is above 8 GeV.

The particle content of FDM models includes three
copies of the DM particle x as well as a mediator parti-
cle ¢ which makes renormalizable interactions between x
and the standard model (SM) fermions possible. Due to
Lorentz invariance, one of x and ¢ is necessarily a fermion
while the other one is a boson. We will study both possi-
bilities for completeness and highlight the similarities as
well as the differences between them.

1 In FDM models, x cannot be a self-conjugate field due flavor
constraints. See section II for details.



The outline of the paper is as follows: In section II we
will review the lepton-flavored DM model and describe
its general features, before introducing a mechanism by
which it can become asymmetric during high-scale lep-
togenesis. We will go over the direct detection prospects
of lepton-flavored DM in section IIT and we will map out
the excluded regions in the parameter space of the model
for both the symmetric and asymmetric cases in section
IV. We will conclude in section V and comment on future
directions. Detailed formulae related to the calculation
of the relic density in the symmetric case and to the scat-
tering amplitude for direct detection can be found in the
appendices.

II. THE MODEL

The FDM setup has been described in detail in ref. [19]
so we will only give a brief summary here. The DM is
taken to be a singlet under the gauge symmetries of the
standard model (SM) but it belongs to a multiplet that
transforms nontrivially under the flavor symmetries of
the SM, which we will denote by x;. There is also a
mediator particle ¢ which is a flavor singlet, but which
carries SM hypercharge. Assuming that the ¢ mass is
heavier than at least one of the y masses, the lightest of
the x; is rendered stable by a global U(1) under which
only the y; and ¢ are charged. We will refer to this U(1)
as x-number.

It was shown in ref. [19] that FDM is compatible with
constraints arising from flavor observables in a Minimal
Flavor Violation (MFV) [37] setup, such that the SM
Yukawa couplings are the only source of flavor violation.
With this assumption, the minimal choice in terms of
the number of degrees of freedom is for yx; to be a flavor
triplet.

Which SM flavor symmetry y; transforms under de-
termines the SM fermions it can couple to at the renor-
malizable level. For the rest of this paper we will focus
our attention on the specific case of lepton-flavored DM,
where X, - transform as a triplet under SU(3)e,. As
in ref. [19], we will work with a benchmark model where
X is the lightest state, but the main conclusions of this
paper are insensitive to this choice. A renormalizable
coupling to the SM fermions requires one of x and ¢ to
be a fermion, and the other to be a scalar. Note that in
order to be a triplet under SU(3),,,, x; must be complex,
so it is either a complex scalar or a Dirac fermion. If the
DM is a scalar, the interaction term is

Lscalar DO )\iniqgeR,j + h.c., (1)
while for a fermionic DM it has the form
Ltermion D AijXi¢er,j + h.c.. (2)

As discussed in ref. [19], within the MFV formalism the
flavor structure of \;; is

Nij = (@l + ByTy)i;. (3)

In order to reduce clutter, we will assume that o > S,
such that we can define \;; = A\yd;;. It should be noted
however that this is mainly a choice of convenience and
that the main conclusions of this paper are not sensitive
to this choice.

In the scalar DM case, the only other renormalizable
interaction of the dark sector with the SM allowed by
the symmetries of the model is a coupling to the Higgs
doublet. Including this interaction, the scalar potential
can be written as

1
‘/scalar = )\h(HTH - 57}2)2 + :uilerz
+ A X HTH + Ao (X xa)®- (4)

This potential is bounded from below even for A, < 0,
provided that
An >0, As >0, Andg > i/\ih' (5)

Note that negative value A, does not present a problem
as long as \g is positive and large. After electroweak
symmetry breaking, the DM inherits a x-x-h coupling.
This will contribute to direct detection through tree-level
Higgs exchange.

In order to study similar phenomenological features in
the fermion DM case, we will also include a dimension-5
term in the Lagrangian

Efermion D _%XZX1HTH (6)

To have consistency between the scalar and fermion DM
cases, we will adopt a convention such that

e 7)
v

where v is the electroweak scale, and with the under-
standing that A, is small in the fermionic DM case. In
other words, the dimension-5 term is assumed to have
arisen by integrating out additional degrees of freedom
at the scale A (close to TeV scale), such as a heavy SM
singlet scalar with couplings to x-x, and to the SM Higgs.
Note that the scalar potential in this case can also include
a renormalizable |¢|?|H|? term, but the presence of this
term will have no effect for the rest of the paper, and for
this reason we will not dwell on it any further.

Let us now turn our attention to the generation of a
x asymmetry. We will demonstrate this explicitly in the
fermion DM case; it is straightforward to implement the
same mechanism in the scalar DM case as well. We as-
sume that a primordial lepton asymmetry is generated
via the decay of right-handed neutrinos at a high scale
within a few orders of magnitude of the GUT scale. The
right handed neutrinos Ny couple to the SM leptons
through

1 —c
Licpton = §<MN)ijNR7iNR,j

+ (yiLjZ/iHeR,j + yﬁiiﬁNR,j«) +he, (8)



where L; are the SU(2) doublet SM lepton fields, H =
eH* and the first term is a Majorana mass for the
right-handed neutrinos. The mechanism by which non-
thermal decays of the right-handed neutrinos generate a
nonzero lepton asymmetry, and later a nonzero baryon
asymmetry through sphaleron processes, is well known
(see [35, 36] and references therein). This mechanism re-
lies on CP violating phases in the cross-terms between
the tree-level and one-loop contributions to the ampli-
tude for N decay.

At first, it may seem that the interaction of equation 2
is sufficient to transfer any lepton asymmetry generated
in the decays of N to the y;. However, y-number is
still an exact symmetry at this point, which makes it im-
possible to generate a x asymmetry from an asymmetry
in a different species with no y-number. Therefore, the
crucial ingredient for transferring the lepton asymmetry
into the DM sector is breaking yx-number (down to Zs
such that the stability of DM is not lost). For this pur-
pose we add one more degree of freedom to the model, a
real scalar field S, with the interaction

Since S is real, this interaction breaks y-number, but
there is still a Zy under which S, ¢ and all three x
are odd. This interaction makes it possible for out-
of-equilibrium decays of the right-handed neutrino to
generate a x asymmetry through interference between
tree-level and one-loop contributions with CP violating
phases, in the exact same way that the same decays also
generate a lepton asymmetry. The couplings in Ltermion
which are assumed to be of order one will lead to efficient
annihilation of the symmetric component of x. Note that
there is no hierarchy problem associated with the scalar
S, because it need not be light. The only requirement
for this mechanism to work is for S to not be heavier
than the near-GUT scale right-handed neutrinos. Below
the mass of S, x-number becomes an accidental sym-
metry. Both due to the presence of this symmetry, and
due to the fact that both ¢ and x are singlets under the
weak SU(2), the dark sector does not participate in the
sphaleron processes which allow the original asymmetry
in the SM lepton sector to be transferred to the baryons.

Note that while the same mechanism generates the lep-
ton and y asymmetries, the phases that determine the
size of the generated asymmetry are different. In par-
ticular, the lepton asymmetry will depend on the phys-
ical combinations of phases in the matrices yzLj and yf}f ,
whereas the xy asymmetry will depend on the phases in
the matrices \;; and yg This means that if the phases
that are relevant for the y asymmetry are smaller than
those that are relevant for the lepton asymmetry, the x
asymmetry will be smaller, and therefore m, must be
chosen so that the x energy density will be a factor of
5-6 larger than the baryon energy density. We will not
assume any particular relation between the phases in the
lepton and x sectors, treating m, as a free parameter
that is chosen such that x has an energy density com-

patible with the DM density we observe in the universe
today.

The collider phenomenology of asymmetric FDM is
identical to the symmetric case, which was studied in
ref. [19], and we will not go into this in any further de-
tail (See Section V for further comments). Any indirect
detection signals for the symmetric case are of course
non-existent for the asymmetric case, so we will not have
anything further to say about constraints from indirect
detection either. In the rest of the paper we will con-
centrate on direct detection searches, where asymmetric
FDM can have very different prospects compared to the
symmetric case, due to the presence of interference, as
we will study in detail in the next section.

III. DIRECT DETECTION

In this section we will calculate the cross section for y
to scatter off of an atomic nucleus, keeping interference
terms. As mentioned in the introduction, when the DM
is symmetric, the interference terms will cancel once the
scattering of both x and x are taken into account, but for
asymmetric DM, they will be crucial. Based on the model
of section II, it is easy to see that scattering can happen
at tree-level through Higgs exchange. At tree-level, the
FDM interaction of equations 1 and 2 (for the scalar and
fermion DM cases, respectively) does not contribute to
the scattering, however as was studied in ref. [19], it does
give rise to vector exchange at loop order. The exchanged
vector boson can be either the photon or the Z-boson,
but of course the latter is strongly suppressed compared
to the former due to the Z-mass. Therefore we will only
consider the photon exchange for the rest of the paper.

A. Scalar DM
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FIG. 1. The Feynman diagrams that contribute to direct
detection in the scalar DM case. The vector boson lines in
the loop diagrams can be attached to either the SM fermions
f or to the mediator ¢ running in the loop.

After electroweak symmetry breaking, the interaction
term in equation 4 contains the interaction

Ly, D —vAn X xh, (10)

which leads to the tree-level Higgs exchange. The loop-
induced coupling of the DM to the photon is calculated



in appendix B and in the zero external momentum limit
it has the form

by O X 0" X Fyu, (11)
where
Ae 2 m?2
by=——=9 |14+ -In—%L 12
X 16772m3, < + 3 nmi ’ (12)

and my is the mass of the tau lepton since we have as-
sumed x, to be the DM.

Combining this with the Higgs and photon propaga-
tors, we can write the effective operators that give rise to
the DM-nucleus scattering:

ou

Leg = X0 XqVuq + cj X" X4 (13)

where the coefficients are related to the couplings in the

UV theory as
by g _ AxhiMg

C,qy = BQ(I?, Ch = T% (14)

For the next step in calculating the scattering cross

section, we convert from quark-level operators to effective

nucleon-level operators and we take the non-relativistic
limit of the matrix elements, which gives (N = p, n)

e _
Lo = cfyx*(’) XNy N + N X*XNN. (15)

The coefficients ¢V at the nucleon level can be written in
terms of the coeflicients ¢? at the quark level as

eb
c{y\/ = %ZQ% (16)
q
N _ MN (N) | 2 4(N) my
¢ = Z sz T4 +2—7TG Zczm, (17)
q=u,d,s a q=c,b,t q

where we use the numerical values of fq(g) and f;]g;) given
in ref. [38]. Combining with equation 14 we arrive at

eQNb
) = “Ohy (18)
A rMyN 2 7 N
e E SoaP). a9
h q=u,d, s

The leading (spin-independent) contribution to the nu-
cleon matrix elements of the operators of equation 15 are

R
o6 N ’x*a XN’Y;LN’% N) =4m,mpy,
(X, N|X*XNN| x, N) = 2mp. (20)

Putting everything together, we define the dark matter-
nucleon effective couplings

cN = 4meNc,]yV + 2mNchN, (21)
in terms of which the total scattering cross section is

given by

1 1 2 2
= — _ P n
or 16 (mX mp> [ZCP + (A—-2)C")]".  (22)

B. Fermion DM
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FIG. 2. The Feynman diagrams that contribute to direct
detection in the fermion DM case. The vector boson lines in
the loop diagrams can be attached to either the SM fermions
f or to the mediator ¢ running in the loop.

The calculation of the scattering cross section for the
fermion DM case proceeds through the same steps as
in the scalar DM case. The tree-level Higgs exchange
arises from the interaction of equation 6 after electroweak
symmetry breaking

Ln D =AnXxxh, (23)

while the loop induced coupling of the DM to the photon
is given by

Left = by XV XOu " + py Xio X F*, (24)

where b, and the magnetic dipole moment p,, are defined

as
Ae 2 m?2
by =——2_[1+ Zlog—% 25
X 647r2mi < + 3 8 mi ’ (25)
AMem
$EMx
Hx = _647r2m§5' (26)

Note that this agrees with ref. [19]. The relativistic ef-
fective Lagrangian describing the interaction of the DM
with quarks is

_ o — anka _
Lesr = ciXXAq + XV XTVuq + ¢l gxio™ k%xq’mq,

(27)
where
A AN,
o = 7;(7:12‘1, cd =eQqby, clg=eQquy. (28)
h

We next convert the quark-level operators to nucleon-
level operators and take the non-relativistic limit. De-
tails of the matching of operator coefficients between the
quark and nucleon level operators can be found in ap-
pendix C. We thus arrive at the effective Lagrangian at
the nucleon level (N = p,n)

Legr = ey XXNN + ' xy* XNy N
— o apka =
+cg Xio “EXNK#N

ko —.
+cl) ywwﬁxj\fmﬁukﬁz\f. (29)



Here K, is the sum of the incoming and outgoing nucelon
momenta, and the coefficients ¢V are related to the c? as

A= ¥

q=u,d,s

) =eby > Q (31)
q

gMN (N) | 2 .(N) ¢ MmN
Cthqu +§fTG Z Chmiq’ (30)

qg=c,b,t

and the charge and magnetic coefficients of the magnetic
dipole moment are

¢y = eQnpiy/2mn, ¢y = —efinpn/2my, (32)

where fi is the nucleon magnetic moment, with f,, = 2.8
and fi, = —1.9.
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FIG. 3. The LUX bound on the coupling Ay for my =
500 GeV calculated using the charge term alone, the dipole
term alone, and the full combination.

So far we have kept the magnetic dipole terms. Their
momentum dependence makes it impossible to write the
differential event rate as the product of the elastic cross
section and the velocity integration. We calculate the
differential rate numerically, and work out the exclusion
limits from LUX [39] in the presence of the dipole terms
in appendix C. The result is shown in figure 3. We find
that the effect of the magnetic dipole operator is negligi-
ble compared to the charge operator in setting limits for
the coupling A4. Based on this, for the rest of the paper
we will drop the magnetic dipole contributions.

The leading (spin-independent) contribution to the nu-
cleon matrix elements are

(0 N X" XNvuN| x, N) = 4mymy,
{x, N |YxﬁN| X, N) =4m,my. (33)

As in the scalar DM case, we define the dark matter-
nucleon effective couplings

cN = 4meNclvv +dmymycy (34)

where the coefficients are

A2e? 2 m2
— ¢ {0
C’Y —QN 647‘(‘2m%¢ (1 + g log m7§) s (35)
Ayhm 2 7
N xh TV N (N)
= DN L2 L . 36
ch 'Um% 9 + 9 Z qu ( )

q=u,d, s

The total scattering cross section is then given by

1 1 2 )
= — - P _ n

IV. RESULTS

In this section, we use the cross section formulas de-
rived in the section III in order to calculate the bounds
on lepton-flavored DM and directly compare the regions
of parameter space that have been excluded for the sym-
metric and asymmetric cases. Note that the full parame-
ter space of our model is four-dimensional (with the two
masses m,, mg and the two couplings A, and \;) and
therefore it is not possible to visually represent the phe-
nomenological aspects of a full parameter scan. Instead,
we choose to present the highlights in two pairs of comple-
mentary plots (for the scalar DM and fermion DM cases
each), one pair where the masses are fixed at represen-
tative values and the couplings are varied, and one pair
where the masses are varied, and a particular value of
the couplings is chosen for each mass point. Combining
the information in these plots, the reader should be able
to develop an intuitive understanding for the prospects
of the model in the full parameter space.
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FIG. 4. The region in the (Ayn, Ag) plane for the asymmetric
scalar DM case consistent with the LUX bound. (Left) mg
fixed at 500 GeV while m,, is varied. (Right) m, is fixed at
200 GeV while my is varied. For m, = 40 GeV, the allowed
region is limited to small values of A\, because of the invisible
Higgs decay bound.

For the asymmetric scalar (fermion) DM cases, we
show in figure 4 (5) the regions in the (A, Ay) plane for
some representative choices of m, and mg that are con-
sistent with the bounds from LUX [39]. We also check the
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FIG. 5. The region in the (Ayn, Ag) plane for the asymmetric
fermion DM case consistent with the LUX bound. (Left) mgy
fixed at 500 GeV while m, is varied. (Right) m, is fixed at
200 GeV while my, is varied. For my = 40 GeV, the allowed
region is limited to small values of A\, because of the invisible
Higgs decay bound.

bounds from CREEST, CDMS-Si, and SuperCDMS [40-
42], but we find that the LUX bound dominates as long
as my 2> 5 GeV. Such low values of m, are not very inter-
esting however, as A, has to be very small in order to be
consistent with the invisible Higgs decay bounds [43, 44],
namely BRj, ¢, < 0.58. We only plot Ay > 0 since the
cross section depends only on )\i, whereas the sign of Ay,
is physical. We restrict ourselves to |Ayn| < 0.25 in the
fermion DM case, since the y-Higgs coupling in this case
arises from a higher-dimensional operator which is gener-
ated at A > TeV (see equation 7). Note that the allowed
parameter regions lie in a band around a curve of max-
imal interference. The curve of maximal interference is
a parabola since the Higgs exchange amplitude scales as
Ayxn while the photon exchange amplitude scales as )\i. In

fact, the effective DM-photon coupling scales as )\i /mi,
which explains why in the right plots the parabola moves
toward the vertical axis with increasing my. While many
features are similar for the scalar and fermion DM cases,
one difference stands out: as can be seen the left plots,
for scalar DM both the shape of the curve of maximal in-
terference as well as the size of the allowed region around
this curve depend sensitively on m,, while for fermion DM
the allowed region is much less sensitive to m,. This is
due to the difference between equations 20 and 33, where
in the scalar DM case the scaling of the Higgs-exchange
and photon-exchange nuclear matrix elements with m,
is different, while the scaling is the same in the fermion
DM case.

Next, we contrast the regions in the parameter space
that can be consistent with the LUX bound for symmet-
ric and antisymmetric lepton-flavored DM as a function
of the masses m, and my. In the left plot of figures 6 and
7 (for scalar and fermion DM, respectively), we start by
calculating for any point in the m,-mg plane the value of
Ao that gives rise to the correct relic density in the sym-
metric DM case (for details of the relic abundance calcu-
lation, see appendix A). For the symmetric DM case, we
then check whether this parameter point is excluded by
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1 Excluded Region in Scalar FDM 1 Excluded Region in Higgs Portal
B Excluded Region in this model B Excluded Region in this model
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< 3001 \®§ = 300
v N v
) )
> =
£ 200f £ 200
100f 100
0
100 200 300 400 500 0 100 200 300 400 500

my [GeV]

m, [GeV]

FIG. 6. The excluded region in the my-mg plane for scalar
DM. For the left plot, Ay is calculated point by point to give
the correct relic abundance for symmetric DM. The orange re-
gion includes points where this calculated value exceeds 1.5.
The green region then shows the points excluded by direct de-
tection for symmetric DM using this value of A4. The blue re-
gion shows points where direct detection also excludes asym-
metric DM for the same value of Ay, and for any value of Ay,
(subject to |Ayn| < 1.5; for 2m, < my, consistency with the
invisible Higgs decay bound is also required). For the right
plot, the roles of Ay and A, are reversed, and both signs of
Ayn are used in plotting the blue region. See the main text
for further details.
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B Excluded Region in thismodel m Excluded Region in this model
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FIG. 7. The excluded region in the m,-mg plane for fermion
DM. For the left plot, Ay is calculated point by point to give
the correct relic abundance for symmetric DM. The orange re-
gion includes points where this calculated value exceeds 1.5.
The green region then shows the points excluded by direct
detection for symmetric DM using this value of A\y. The
blue region shows points where direct detection also excludes
asymmetric DM for the same value of Ay, and for any value
of |Ayn| < 0.5 (for 2my < my, consistency with the invisible
Higgs decay bound is also required). For the right plot, the
roles of Ay and Ayn are reversed, and both signs of A, are
used in plotting the blue region. See the main text for further
details.

direct detection, keeping Ay, = 0, since for the symmet-
ric case the two channels add incoherently so any finite
value of )\, only strengthens the direct detection con-
straint. Next, for the same value of Ay, we check whether
there is any value of A\, (within the interval [-1.5, 1.5] for
scalar DM and [-0.5, 0.5] for fermion DM, and consistent
with the invisible Higgs decay bound if 2m, < my) for
which asymmetric DM can be consistent with the direct
detection bound. In the second plot (right), we exchange



the roles of \,j, and Ay and repeat the same procedure,
in other words A, is now fixed at the value which gives
the correct relic abundance for the symmetric DM (both
signs are considered) at any value of m, and mg (sub-
ject to the same constraints as mentioned above), and for
antisymmetric DM Ay is allowed to float in looking for
consistency with the direct detection bound. Note that
we have excluded the regions mg < 105 GeV in these
plots due to ¢-pair production bounds from LEP. This is
only meant as a conservative approximation to the LEP
bound, however the direct search bounds from the LHC
(such as stau seaches) will rule out this region in any
case and extend further, and for this reason the lowest
mg regions should not be taken too seriously. A full anal-
ysis of the LHC constraints will be studied in upcoming
work, but it is outside the scope of this paper due to the
large number of LHC searches that need to be recast.
Since pair production cross sections of non-colored parti-
cles (especially scalars) fall off very rapidly however, we
do not expect the inclusion of LHC bounds to drastically
change plots 6 and 7.

While choosing either Ay = 0 or A, = 0 for the sym-
metric case in figures 6 and 7 may appear to be somewhat
arbitrary, this in fact allows us to fully map out the exclu-
sion region from direct detection bounds, in the following
sense: If a point in the m,-mg plane is excluded by LUX
in both figures 6 and 7 in the symmetric case, it is ruled
out even when both couplings are allowed to vary, subject
to the relic abundance constraint, as we will now argue.
Interference is absent in the symmetric case in calculating
the scattering rate for direct detection, which therefore
can be written as CDD,¢>()\35)2 + CDD,h)‘ih for some con-
stants Cpp,y and Cpp . Similarly, the cross section of
DM annihilation relevant for the relic abundance calcu-
lation can also be written as C’RA,¢()\?¢)2 + CRA’h)‘im for

the same reason?. Thus, for a given mass point, obtain-
ing the correct relic abundance constrains the model to
lie on an ellipse in the )\i—)\xh plane, with the major axis

pointing along either the )\i or the A, axis. Moreover,
the contours corresponding to constant scattering rate in
a direct detection experiment are also ellipses with their
major axis pointed along either the )\i or the Ay, axis.
Thus, as one moves around the ellipse for obtaining the
correct relic abundance, one will always find the point
with the smallest direct detection scattering rate where
the family of ellipses from direct detection are tangent
to the ellipse from relic abundance. Since both ellipses
are pointed along one of the coordinate axes, this will
happen on one of the coordinate axes, thus there can be
no point with both couplings nonzero that can result in
a smaller scattering rate for direct detection than at the
points with one of the couplings equal to zero.

2 There is a caveat here that the reaction xx — 77 does in fact
have a cross term between ¢ and h exchange. However, the
Yukawa coupling of the 7 is small enough that this term can be
neglected for all practical purposes.

There are many interesting features in figures 6 and 7,
which we now go over in detail. First of all, note that for
symmetric DM, the entire parameter region is excluded
for fermion DM with negligible FDM coupling (right plot
in figure 7, apart from a very narrow band near the Higgs
resonance region, where Ay, can be very small). This ex-
clusion extends all the way down to zero mass due to the
invisible Higgs bound. Similarly, scalar DM with negli-
gible Higgs coupling (left plot in figure 6) is also ruled
out for a DM mass above 8 GeV, below which direct de-
tection experiments lose sensitivity. The nearly-complete
exclusion for these two cases is due to relic abundance re-
quiring a very large coupling due to suppressions in the
amplitude. Scalar DM with FDM interactions annihi-
lates to leptons, so the s-wave annihilation is chirally sup-
pressed (see equation A5) and therefore p-wave annihi-
lation dominates. Fermion DM that annihilates through
Higgs exchange is also velocity suppressed. In both cases,
turning on both couplings for asymmetric DM opens up
regions of parameter space that can be consistent with
all constraints. In particular, for scalar DM, the only
region that is ruled out is for 2m, < mj where the in-
visible Higgs decay bound forces A,; to be very small
such that the interference cannot be very effective. For
fermion DM where we set A, by the relic abundance in
the symmetric case (figure 7, right), the large m, region
is ruled out even for the asymmetric case, because the ef-
fective DM-photon coupling scales as )\?5 / mi, so a value
of Ay of order one is not strong enough to cancel the very
large Higgs exchange contribution in direct detection.

There are also a few interesting features in the left
plot of figure 7. For symmetric DM, the exclusion re-
gion extends both to large my for light m,, as well as to
relatively large m, when mg — m, is small. The former
region is ruled out because both direct detection and relic
abundance depend on Ay and mgy in the same way, thus
the direct detection constraint does not weaken even at
large mg. The latter region is ruled out because the loop
that gives rise to the effective DM-photon coupling is en-
hanced in this kinematic regime, and therefore the direct
detection bound is stronger than one would naively ex-
pect. In a way similar to figure 6 (left), the excluded
region for asymmetric DM is basically due to the in-
visible Higgs decay bound, which forces \,; to remain
small, and therefore makes the interference ineffective.
Also similar to figure 6 (left), the region m, < 10 GeV
is not excluded because direct detection experiments lose
sensitivity at such low recoils.

V. CONCLUSION AND OUTLOOK

We have introduced the scenario of lepton-flavored
asymmetric dark matter, where the same mechanism that
generates a lepton asymmetry at high scales also gener-
ates a DM asymmetry, and we have studied the prospects
of this scenario for direct detection experiments. In par-
ticular, we have emphasized the fact that the interactions



present in the model lead to both Higgs and photon ex-
change in direct detection, and that the corresponding
amplitudes are naturally of the right size such that inter-
ference can be important, leading to a significant weak-
ening in the bounds reported by direct detection exper-
iments. We have contrasted the regions of parameter
space excluded by the null results of direct detection ex-
periments for this scenario with the parameter space of
the same model where no DM asymmetry is generated,
and where therefore the interference effects cancel out
once the scattering of both the DM particle and its an-
tiparticle off of nuclei are taken into account. In partic-
ular, we showed that in the symmetric case with fermion
DM where the Higgs exchange dominates, the parame-
ter space is entirely ruled out except for a narrow Higgs
resonance window, while in the asymmetric case a large
fraction of the parameter space is still allowed. The same
conclusion also holds for scalar DM with a mass above
8 GeV when the FDM interaction dominates.

Turning to prospects of this model for future experi-
ments, we note that the presence of interference in di-
rect detection can be confirmed by separately determin-
ing the DM scattering rate off of protons and neutrons.
This can be achieved in the next generation of direct de-
tection experiments if more than one experiment with a
non-identical active detector material can observe a sig-
nal, since the ratios of protons to neutrons in the nuclei
of the active materials will then be different. A separate
measurement of the scattering rates from protons and
neutrons can then be used to solve for Ay and Ayp.

While indirect detection signals are absent for asym-
metric DM, the collider phenomenology of our model is
identical to the symmetric case. The discovery prospects
in the multilepton final state at the LHC were studied

J

in reference [19] at which point no collider constraints
were available. It would now be interesting to study the
constraints imposed on the lepton-flavored dark matter
model by translating the searches performed by ATLAS
and CMS in the dilepton and multilepton final states with
and without transverse missing energy. Due to the multi-
plicity of such analyses this was outside the scope of this
paper, but these constraints will be studied in upcoming
work.

In this paper we considered it sufficient to simply out-
line the details of a model which would lead to the gener-
ation of a DM asymmetry during high-scale leptogenesis,
and to remark that an order one coupling for the FDM
interaction would then efficiently annihilate the symmet-
ric part of the DM particles. In future work we plan to
take up this question in greater quantitative detail and
calculate the energy density left over in the asymmetric
DM as a function of the parameters of the UV model.
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Appendix A: Relic Density Calculations

Since we wish to compare the parameter space consistent with direct detection bounds when the DM is asymmetric
with the usual thermal relic case, we need to calculate the relic abundance in our model when no asymmetry is
generated at high scales. Here we list the results of this calculation, for the scalar and fermion DM cases.

1. Scalar dark matter

The coupling to the Higgs gives rise to the following annihilation channels, with their respective cross sections:

o xx— ff:

OUrel = iNf)\2 B3m? L (A1)
T g CTXRET (5 —m3)2 +mil3’
where 3; = /1 — 4m?/s.
o xx = VV:
1 1 S m? m?

ol = —————\2 1—-4—Y +12—Y A2
O Urel 1+ (sz 87T XhBV (8 — mh)2 + m%l—‘% < s + 82 ) ( )



where 0y 7 is 1 for the Z boson and 0 for the W boson.

o xx — hh:
NG | (st 2m2? 202, v* v (s+2mi Aav® m3 —t,
OUre] = 1 5 3 3 + 4)\Xh 5 o2 lo 5 (A3)
6ms s—mj (m2 —t_)(m2 —ty) sBxBn \ s—m;  s—2mj 2t

where tL = mi + m,%, - %8(1 + 5><5h)~

The FDM coupling of equation 1 gives rise to the annihilation channel xy*x — ¢7¢~. The cross section can be
written as

OVl = @ + b2, (A4)

where

/\4 m2 m2 %
o= ¢ f 2.)2<_f> 7 (A5)

T 167 (12 2 _
16w (mg + m3, — my

2

S R Lo S A6
48 (mg +m2)? (46)

)\f; m
Note that the s-wave contribution is chirality-suppressed.

2. Fermion dark matter

The coupling to the Higgs gives rise to the following annihilation channels, with their respective cross sections:

o xx = [
1 )\2 m2 S
foxh"f 5253
OUrel = o—N; B 6 . (A7)
8w ¢ w2 X (s — m3?)2 +mil%
o xx — VV:
1 L A% o s m3 mi
rel = T o 1—4—"L+12— ). A8
o0l = Sy 167 02 bv (s —m3?)? +mil? s T (A8)
e xx — hh:
CNBRBY | (s +2m? 2 8 wmyv (s +2m3) B 222,07 (3my, — 16mjm3 + 2m? (s + 8m2))
70 T3y s —mj Bys (s —m3) B2s (mj — 4m3Zm2 + m2s)
h X h X h R X X

B3 5% s—2m3 mi — s
2

mx—t_,_
2 _
Y —t-

20 n <v/\xh (Gmi —4m? (s + 4mi) - 32mi + 16mis + 52) B 2m,, (s + Qmi) (2m,zl - 8mf< + 5))

log

] . (A9)

The FDM coupling of equation 2 gives rise to the annihilation channel ¥y — £7¢~. Unlike the scalar DM case,
here the cross section is dominated by the s-wave:

4 2 2
ﬁ My 1_ ﬁ
32w (m3 + mi - mﬁp)2 m2

(A10)

OUre]l =
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Appendix B: The effective DM-photon coupling
1. Scalar Dark Matter

The DM-photon interaction induced at one-loop has the form

Leg = by 0 x O X F* (B1)
where
eX2 1 [y*(A0(6 —4y) +y(m2(1—y)? +m2))
X T T g2 / dy[ SAZ = (g o mi)) (B2)
0
and
Ao =miy+ (1 —y)m; —y(l —y)m3. (B3)

In the limit m, <« mg and m, < my, by, is given to leading order by
Ae 4 my
by=———=(1—21 — . B4
X7 1672m2 ( 3 %% (m¢)> (B4)

2. Fermion Dark Matter

The DM-photon interaction induced at one-loop has the form

Lot = by XWX F™ + px X X F™, (B5)
where
ie)? —Y)
Y o
ieX? [t 1 5 1 1 2 1 m
=i [ o [0 (55 ) 0o g - g o
and
Ao =ymi+ (1 —y)mj — y(1 —y)m?, (B8)
Ay =ymi+ (1 —y)mi —y(1 —y)m3. (B9)

In the limit m, < mg and m, < mg, p, and b, are given to leading order by

eX?m
i =~ Gamm? (B10)
iX%e 2 m?

Appendix C: Including the magnetic dipole interaction in direct detection

In this appendix we report the calculation details related to obtaining the direct detection bound for the fermion
DM case when the dipole interaction is taken into account. The one-loop induced effective Lagrangian at the nucleon
level is

o — ko ko . s
Lo = cyxv”xN'yuN + chwa” 2 xNK,N + c XiocH 2 —2\Nich kgN, (C1)
where

c,IyV = eQnby, cg = eQnN [y, cﬁ[ = —efin by (C2)
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Due to the nontrivial momentum dependence of these operators, we cannot directly use the elastic cross section
bounds reported by the direct detection experiments. We thus proceed to calculate the differential rate and the event
rate based on the parameters of the direct detection experiment and on the local DM velocity distribution. The
differential scattering rate is given by

dRrR P do
. N X 7d3
e = Ve [ ) g (C3)

where f(v) is the local dark matter velocity distribution, p, is the local DM density (taken to be 0.3 GeV/cm?), and

Nrp denotes the number of target nuclei per unit mass of the detector.

Let us start with the differential scattering cross section d‘}E—UR. In the non-relativistic limit, the leading contribu-

tions [45, 46] to the relativistic nucleon-level operators are

(X: N [X7"XNv.N| x, N) = dmymy, (C4)
ko — m3m k -
N |xioc" 2xNK,N|x, N) = 4m?% + 16i —L X5+ . [ — C5
<X7 Xto k2 X " ‘Xa > my + ? k‘2 v my X X ) ( )
o m% (k= Eoo
(x, N |xic® kwaﬁ“k;gN‘ x, N) = 16meN 2 (mN xSy |- (mN X N) . (C6)

At the nuclear level, taking the nuclear responses into account, and averaging over spins, we get

1 1 22 ) U 1 1 (p.p)
= b p’p - — W iep 7
22/ +1)  (4mymr)? bpz;lw‘““c‘e” ey <k2 n2y amy ) (©7)
i " 277, o on e 2
+ {W“’ P W = iy WEE + 4 (ugwgf Pt 2 iy W+ G2W ”))} . (08)
N

where W( ) are nuclear response functions with nuclear spin average factor included, defined in references [45,

2J+1
46]. We use the shell model to write the magnetic moment of a nucleus as

ﬂT = 2ﬂp<5p> + 2.&7L<Sn> + <Lp>- (09)

In the ¢> — 0 limit, the term in square brackets in equation C8 goes to %L fi%., while Wﬁ;’p ) becomes Z2. Equation C8

thus simplifies to

1 1 2 2 [0 1 2 1 2 12 2) | 2 2 J+1 jiF
- vz Z2F2(A: k LT g
2(2J + 1) (dmymy QZ‘Mlnuclear ¢ Hx [kz 4<meX+mT>} (A k) + e 57 2mZ, (C10)

spin

where F(A; k?) is the Helm form factor. With this, the differential cross section becomes (consistent with references [47,
48])

do mr | 25,9 ,,9 2 2 7?1 2 1 212 2) | 2,2 J+1 pf
— = Z°F<(A; =7 Z°F“(A; _— . 11
dEr  2mv? {e b (A H5) + i k2 4 \mpmy Tz m2, (AR5 + ey 3J 2m¥% (C11)

We next turn our attention to modeling detector effects of the direct detection experiment. In particular, we have
to take into account that the measured energy is only part of the true recoil energy Er, that the experiment has a
finite energy resolution and that the analysis involves cuts, the efficiencies of which will enter the calculation of the
differential rate.

The LUX experiment uses the direct scintillation (S1) and ionization signals (S2) to reject backgrounds. Both the
S1 and S2 signals are detected by arrays of photomultipliers (PMTs), and measured in numbers of photoelectrons
(PE). The expected number of photoelectrons [39, 49] is

V(ER) = ER X ﬁeff X LySnr/See. (Cl?)

In using this formula, we take the values for the scintillation efficiency L.¢s and energy dependent absolute light yield
LySur/See (with scintillation quenching factors for electron and nuclear recoils included) from page 25 of the slides at
http://luxdarkmatter.org/talks/20131030_LUX_First_Results.pdf.
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The smearing function has a mean n and variance y/nopyt Wwith opyr = 0.37 PE. Since the analysis uses the lower
half of the signal band, the cut efficiency is taken to be 50% [39]. The number of signal events thus becomes

dR

Slup 00 oo
N =Ex x / dS1 £(S1) > Gauss(S1|n, Vnopur) / dEg Poisson(n|v(Eg))——.
s 0 dER

Liow n=1

(C13)

where the S1 integration range is 2 PE< S; <30 PE, and Ex denotes the experimental exposure, taken to be 85.3 x 118
kg-days.

Putting everything together, we calculate the probability for the signal plus background to have given rise to no
more than one event (as was observed by LUX). This is given as

1
L= Z/d,uBGauss(,uB|NB7UB)Poisson(k|NB + Ng), (C14)
k=0

where Ng is the expected number of the signal events, N is the expected number of background events and opg is
its variance. We take the latter two parameters to be 0.64 + 0.16. We then use £ to set to bound on Ng at 90%
confidence level, which can then be translated to a bound in terms of the model parameters.
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