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Postulating the existence of a finite-mass mediator of T,P-odd coupling between atomic electrons
and nucleons we consider its effect on permanent electric dipole moment (EDM) of diamagnetic
atoms. We present both numerical and analytical analysis for such mediator-induced EDMs and
compare it with EDM results for the conventional contact interaction. Based on this analysis we
derive limits on coupling strengths and carrier masses from experimental limits on EDM of 199Hg
atom.

PACS numbers: 12.60.-i,14.70.Pw, 31.15.A

I. INTRODUCTION

The observational evidence for dark matter indicates
the intriguing possibility of a “dark sector” extension to
the Standard Model (SM). Dark matter in fact may be
a small part of the dark sector or indeed many dark sec-
tors could exist, each with their own “dark forces” and
constituent particles. Dark matter may be accompanied
by hereto unknown gauge bosons (“dark force” carriers,)
which can couple dark matter particles and ordinary par-
ticles with exceptionally weak couplings. Modern collid-
ers can be blind to such new forces, even though the mass
of the “dark force” carriers can be quite small. This is
because the cross-sections of relevant processes for ordi-
nary matter are so small that the “dark force” events
are simply statistically insignificant and are discarded in
high-energy experiments.

Dark sector light weakly-coupled particles that interact
with ordinary matter have been proposed as explanations
of astronomical anomalies [1, 2] as well as discrepancies
between calculated and measured muon magnetic mo-
ment [3, 4]. Such interactions would be inevitably below
the weak force scale, ergo, the dark sector has so far es-
caped detection. There are several proposed inroads into
the detection of weakly-coupled particles and their asso-
ciated dark forces [5]. One such example is the dark
photon [6] that is hypothesized to be a massive parti-
cle which couples to electromagnetic currents just like
the photon does. In addition, dark Z bosons have been
proposed [7] that couple to the weak neutral currents,
(i.e., their interactions are parity violating.) In a sense
dark photons are massive photons while dark Z bosons
are light-versions of Z bosons. From here on we will refer
to this type of dark force mediator particle as the light
gauge-boson.

Motivated by such “dark force” ideas here we place
constraints both on couplings and masses of dark force
carriers (light gauge bosons) by reinterpreting results of
experiments on searches for permanent electric dipole
moments (EDMs) of diamagnetic atoms. Specifically we
focus on dark forces generated by the P,T-odd interac-
tion of electrons and nucleons through the exchange of a
massive light gauge boson. We will refer to the carrier as
χ. Effectively, the usually-employed contact interactions

are replaced with Yukawa-like interactions.

Standard Model (SM) predicts the existence of intrin-
sic permanent electric dipole moments (EDM) in parti-
cles as varied as quarks, leptons, and baryons. These
SM predictions, however, are below the current lev-
els of experimental accuracy. As an example, in the
SM framework, the electron EDM is estimated to be
of the order of 10−41 e cm (see e.g., Ref [8]) while
the most stringent experimental limit stands at de <
8.7 × 10−29 e cm (90% C.L.) from the ThO molecular
search [9]. Remarkably, however, there are many the-
oretical extensions to the SM that predict EDM values
comparable to the present experimental constraints.

Overall, the searches for atomic EDM can be classi-
fied into two major categories: EDM of paramagnetic
atoms and molecules and diamagnetic atoms. Paramag-
netic atoms, such as Tl and Cs, have an unpaired va-
lence electron and the atomic EDM in this category is
attributed to the EDM of the unpaired electron. Diamag-
netic atoms, on the other hand, are closed-shell atoms.
In discussions of diamagnetic atomic EDMs, the EDM is
usually associated with the intrinsic EDM of an unpaired
nucleon (Schiff moment or P,T-odd electron-nucleon in-
teractions). The best limit on a diamagnetic atom so far
is [10]

d(199Hg) < 3.1× 10−29 e cm (95% C.L.) (1)

While we will use the Hg EDM result for putting con-
straints on the light mediators, the formalism and derived
analytical expressions are applicable to other diamag-
netic systems, such as the atoms of current experimental
interest: xenon [11], ytterbium [12, 13], radon [14], and
radium [15, 16].

II. BASIC SETUP

We start by reviewing the structure of contact inter-
actions formed out of products of bi-linear forms. The
entire set of ten unique semi-leptonic Lorentz-invariant
products is tabulated in Ref. [17]. In this paper we focus
on the most commonly used parity, time-violating tensor
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current term (see, e.g., [18, 19])

WTeTn =

∫
drεχλµν [ψ̄eig

′T
e σχλψe](r)[ψ̄nig

′T
n σ

µνψn](r) .

(2)

Here ψe,n are the electron/nucleon Dirac bi-spinors and
ψ̄e,n = ψ†e,nγ0 are their adjoints, while g′Te,n are coupling

constants. Further, σµν = 1
2 (γµγν − γνγµ), where γ’s

are Dirac matrices and εijkl is the four-dimensional Levi-
Civita tensor. From Eq.(2) one could easily read off the
interaction Hamiltonians acting in the electron space by
removing averaging over r and “rubbing off” ψe,n and
ψ†e,n,

hTeTn(re) = εχλµν [γ0ig
′T
e σχλ]e[ψ̄n(re)ig

′T
n σ

µνψn(re)] ,

where the subscript e emphasizes that the operators in-
side [. . .]e act on the electron degrees of freedom.

The interaction (2) is of the contact nature, i.e., it is
constructed in the limit of the infinite mass of the carrier.
For the finite mass mχ of the mediator χ the interaction
need to be modified by sandwiching the currents with the
Yukawa-type interaction (see e.g., Ref. [20])

Vχ(r, r′) =
e−mχc|r−r

′|

4π|r − r′|
. (3)

The “upgraded” Eq. (2) reads

Wχ
TeTn

=(mχc)
2

∫ ∫
drdr′εχλµν [ψ̄eig

′T
e σχλψe](r)×

Vχ(r, r′)[ψ̄nig
′T
n σ

µνψn](r′) (4)

or

hχTeTn(re) =(mχc)
2εχλµν [γ0ig

′T
e σχλ]e× (5)∫

drnVχ(re, rn)[ψ̄n(rn)ig′Tn σ
µνψn(rn)] .

It is easily verified that in the limit of large propagator
mass, mχ, the Yukawa potential in the above equation
becomes δ3(re − rn)/(mχc)

2 recovering Eq.(2). We add
a superscript χ to the interaction, (WTeTn → Wχ

TeTn
) to

distinguish between the contact and finite-range interac-
tions.

The structure of the expression (5) suggests that the
nuclear property [ψ̄n(rn)ig′Tn σ

µνψn(rn)] is “carried out”
beyond the nucleus by the Yukawa potential. Thus one
anticipates the P,T-odd forces would “leak out” of the
nucleus on characteristic distances

λχ = 1/(mχc)

equal to the Compton wavelength of the mediator.
We are interested in the atomic permanent electric

dipole moments of diamagnetic systems induced by the
P,T-odd semi-leptonic interaction. The induced EDM d
of the atomic state Ψ0 of energy E0 can be expressed as

d =
∑
i

〈Ψ0|De|Ψi〉〈Ψi|Hχ
TeTn
|Ψ0〉

E0 − Ei
+ c.c. , (6)

where c.c. stands for the complex conjugate of the preced-
ing term and Ei and Ψi are the atomic energies and wave
functions. Hχ

TeTn
=
∑
i h

χ
TeTn

(ri) and De = −|e|
∑
i ri is

the operator of electric dipole moment for atomic elec-
trons and the sum is over all atomic electrons.

Tensor interaction (5) can be simplified further [17] as
the nucleon motion can be well approximated as being
non-relativistic. The result is

hχTeTn(re) =− (mχc)
24i[ig′Te γ0γ5σ]e· (7)∑

nucleons

∫
drnVχ(re, rn)ig′Tn σnψ

†
n(rn)ψn(rn) ,

i.e., it is proportional to the linear combination of
weighted scalar products between nucleon and electron
spins. Here we explicitly introduced the summation over
the nucleons. We further define∑

nucleons

∫
drnVχ(re, rn)ig′Tn σnψ

†
n(rn)ψn(rn) ≡

ig̃′Tn σN

∫
drnVχ(re, rn)ρ(rn) , (8)

since ψ†n(rn)ψn(rn) is the contribution of an individual
nucleon to the nuclear density ρ(rn). The two sides of
this equation can be related from nuclear structure cal-
culations (see, e.g., Ref. [21]) which would define the con-
stant g̃′Tn . Thereby, the effective form of the interaction
can be represented as a scalar product of the nuclear
spin and a rank-1 irreducible tensor acting in the elec-
tron space

hχTeTn(re) = σN · tχe (9)

with

tχe =4π
√

2GF (mχc)
2 CTN (mχ)×

(iγ0γ5σ)e

∫
drnVχ(re, rn)ρ(rn) , (10)

where we introduced the parameterization g̃′Tn g
′T
e =

π
√

2GFC
χ
TN in terms of the Fermi constant, GF , and

the mass-dependent coupling constant CχTN . In the con-
tact approximation this parameterization recovers the
conventional form of the semi-leptonic operator (CcTN ≡
limmχ→∞ CχTN )

tce ≡ lim
mχ→∞

tχe =
√

2GFC
c
TN × (iγ0γ5σ)eρ(re) . (11)

The finite-mass operator (10) can be recast in the form
analogous to the above equation,

tχe =
√

2GFC
χ
TN × (iγ0γ5σ)eρχ(re) , (12)

by introducing the effective “Yukawa-weighted” nuclear
density

ρχ(r) ≡ 4π(mχc)
2

∫
drnVχ(r, rn)ρ(rn) . (13)



3

The essential difference between the infinite-mass (11)
and the finite-mass (12) cases is the replacement of the
nuclear density ρ(r) with the effective nuclear density
ρχ(r). This effective nuclear density has been introduced
earlier in Ref. [22] in the context of atomic parity viola-
tion mediated by a light gauge boson. It also plays an
important role in our analysis. For a uniform nuclear
distribution contained inside a sphere of radius R (i.e.,
ρ(r < R) ≡ ρ0 = 3/(4πR3)) the effective nuclear density
can be evaluated analytically (see Appendix),

ρχ(r) = ρ0
λχ
r
× (14)

r
λχ
− e−

R
λχ (1 + R

λχ
) sinh( r

λχ
), r ≤ R,

e
− r
λχ

(
R
λχ

cosh( Rλχ )− sinh( Rλχ )
)
, r > R.

Notice that outside the nucleus, ρχ(r) ∝ 1/r e−r/λχ ,
i.e., as expected, the interaction (10) would sample elec-
tronic cloud at distances λχ = ~/(mχc) beyond the nu-
clear edge. The values of λχ are (4,2,0.2) fm for mχ =
(50,100,1000) MeV/c2. In Fig. (1) we plot ρχ(r) for these
mediator masses for the 199Hg nucleus. The tendency of
the effective density ρχ(r) to further “leak out” of the
nucleus as the mχ values are decreased is apparent.

When the range of the force, λχ, is comparable to an
atomic size (aB), the interaction would extend over the
entire atom and would sample atomic shell structure.
This happens at the characteristic value of mχ = αme =
3.7 keV/c2.
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FIG. 1. ρχ(r), the effective “Yukawa-weighted” nuclear den-
sity for the 199Hg nucleus is shown as a function of the radial
distance r for specified values of mχ, the mass of the carrier.
The nuclear cut-off radius is R = 7.0369 fm.

III. ATOMIC STRUCTURE

Now we focus on the atomic-structure aspect of the
problem. 199Hg is an 80-electron closed-shell system,
with the electron configuration [Xe] 4f145d106s2. One
needs to evaluate the induced atomic EDM (6) with the
finite-mass mediator interaction (we refer to its value as
dχ) and compare it with the contact-interaction result
dc. In particular we focus on the ratio

R(mχ) ≡
dχ/C

χ
TN

dc/CcTN
. (15)

We employ two atomic-structure methods to evaluate
this ratio: Dirac-Hartree-Fock (DHF) and Relativis-
tic Random-Phase Approximation (RRPA). RRPA im-
proves upon DHF’s independent-particle approximation
by including major correlation effects. Both methods are
ab initio relativistic, as they are based on solutions of the
Dirac equation. The relativistic approach is important
especially for large carrier masses for which the interac-
tion is lumped in the nuclear region where the atomic
electrons move at relativistic velocities. While there are
more advanced techniques available [23], the DHF and
RRPA methods should provide an adequate qualitative
understanding of how the atomic EDM responds to the
finite-range forces.

In the independent-particle approximation (DHF), the
induced atomic EDM (6) becomes

dχ = σN
2

3

∑
as

(−1)ja−js
〈a||r||s〉〈s||tχe ||a〉

εs − εa
, (16)

where the summation is carried over atomic orbitals a
and s. a are core orbitals occupied in the ground state
Ψ0 and s are un-occupied (excited or virtual) orbitals.
εi are the DHF energies of these orbitals. Each orbital
φnκm is characterized by the principle quantum number
n, relativistic angular momentum number κ and mag-
netic quantum number m. κ encodes the total angular
momentum j and the orbital angular momentum `.

The reduced matrix elements of tχe are

〈na, κa||tχe ||nb, κb〉 = −
√

2GFC
χ
TN

∫ ∞
0

drρχ(r)× (17)

(〈κa||σe|| − κb〉Pa(r)Qb(r) + 〈−κa||σe||κb〉Qa(r)Pb(r)) .

Here Pnκ(r) and Qnκ(r) are the radial large and small
components from the parameterization

φnκm(r) =
1

r

(
i Pnκ(r) Ωκm(r̂)
Qnκ(r) Ω−κm(r̂)

)
, (18)

with Ωκm being the spinor spherical harmonics.
Numerical procedure can be described as follows. First

we solve the DHF equations for the ground state of Hg
atom using the finite-differencing techniques [24]. Next,
we use the obtained DHF self-consistent potential to con-
struct a finite basis set of atomic orbitals using the dual-
kinetic-ballance B-spline technique [25]. This set of basis



4

functions is finite and numerically complete (i.e., excited
and continuum states are included in the set.) With such
a set, the summation over atomic orbitals in Eq.(16) be-
comes a straightforward exercise. In a typical calculation
we use a set of basis functions expanded over 80 B-splines
of order 9, in a cavity of spherical radius of 30 bohr and a
1000-point grid, out of which 68 points reside inside the
nucleus, providing adequate numerical accuracy for both
large and small carrier masses.

Compared to the DHF method, the more sophisti-
cated RRPA approach accounts for a linear response of
an atom to a perturbing interaction (hχTeTn(re)). As a
result of solving the RRPA equations [26] using the de-
scribed DHF basis set we determined a quasi-complete
set of particle-hole excited states and their energies, re-
quired for evaluating the sum over intermediate states in
the EDM expression (6). The developed codes are an
extension of the DHF and RRPA codes of Ref. [27].

IV. RESULTS

We start by describing numerical results for the ratio,
R(mχ) (15), and then present analytical formulae. Our
calculated ratiosR(mχ) are plotted in Fig. 2 as a function
of the carrier mass mχ.
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FIG. 2. The dependence of the EDM ratio R for 199Hg atom
on the carrier mass mχ.

A. Numerical approach

To test the quality of the developed code, we first per-
form EDM calculations with the usual contact interac-
tion of Eq.(11), along with the nuclear Fermi distribu-
tion, in the DHF approximation. The resulting EDM,
d(199Hg) = 4.5× 10−12 CcTNσN a.u., recovers the earlier

result [19] obtained in the same approximation. Next, to
simplify the integration in Eq. (17), we replace the Fermi-
type distribution with the uniform nuclear distribution,
shown with the solid line in Fig. 1. Such calculation
yields d(199Hg) = 4.8× 10−12 CcTNσN a.u. slightly devi-
ating from the quoted Fermi-distribution value. Since all
our calculations of the ratio (15) are carried out with the
uniform nuclear density distribution, we fix this value as
the infinite-carrier-mass value dc. This result is consis-
tent with the earlier value [19]

Next we perform the EDM calculations in the
RRPA approximation. Our calculation with the uni-
form nuclear density distribution yields dc = 11.2 ×
10−12CcTNσN a.u. = 5.9× 10−20CcTNσN e · cm, agreeing
with Ref. [19] value.

The results of our numerical calculation of the ratio
R(mχ) are plotted in Fig. 2 as a function of the carrier
mass mχ. The ratio tends to zero for small masses. It
monotonically increases to unity as the mass increases,
as in this limit the effective “Yukawa-weighted” nuclear
density ρχ(r) approaches the true nuclear density ρ(r)
(see Fig. 1), thereby dχ → dc and R → 1. For small
masses we clearly observe a constant slope on the log-log
plot. We will comment on this scaling law below.

In general, the RRPA and DHF results are in a good
agreement for large carrier masses (about 4% agreement
for mχ > 1 MeV/c2). The difference between two ap-
proaches starts to grow larger as with decreasing mχ the
force starts to probe the atomic shell structure bring-
ing sensitivity to the details of treating electron-electron
correlations. The most drastic difference arises at mχ =
1 keV/c2 when the DHF ratio becomes negative while the
RRPA ratio remains positive.

B. Analytical approach

1. Region λχ � aB/Z (mχ & MeV)

We find that for sufficiently large masses, the entire
dependence of the ratio R on the carrier mass can be
well approximated by taking only a single channel con-
tribution in the EDM sum over states (16). This is
the contribution from the excitation of the outer-most
occupied orbital |a〉 = 6s1/2 to the excited orbitals
|s〉 = np1/2, (n = 6, 7, . . .). The 6s1/2 orbital is the
least bound leading to the smallest energy denominators.
Moreover, as j increases the electrons tend to reside less
in the nuclear region due to increased centrifugal bar-
rier thereby suppressing T,P-odd matrix elements. This
single-channel approximation is fully supported by our
numerical experimentation [28].

The above observation motivates an analytical ap-
proach which consists in evaluating matrix elements of
the P,T-odd interactions analytically. We use the fact
that the matrix elements are mostly accumulated in the
region close to the nucleus. In this region, the large and
small radial components of atomic orbitals (18) can be
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approximated as

Pnκ(r) =
κ ζ

|κ|
(γ − κ)

Γ(2γ + 1)

√
1

Zν3
(2Zr)γ , (19)

Qnκ(r) =
κ ζ

|κ|

√
1

Zν3
Z

cΓ(2γ + 1)
(2Zr)γ ,

where ν is the effective principal quantum number, ν =
n − σ`, with σ` being the quantum defect. ζ is the
effective screened charge felt by the electron, e.g., for
the valence orbital ζ = 1. Z is the nuclear charge and
γ =

√
κ2 − (αZ)2. These formulae were adopted from

Ref. [17] for our parameterization (18) of atomic orbital
bi-spinors. Notice that these expressions were obtained
for a point-like nucleus and they are valid for radial dis-
tances r � aB/Z where the nuclear charge can be con-
sidered unscreened.

Now the reduced matrix element (17) can be evaluated
with the effective nuclear density (A7). While forming
the ratio (15) and limiting the summation to the single
channel, we factor out the integrals

I(ρχ) =

∫ ∞
0

rβρχ(r)dr , (20)

which depend on the nuclear density. Such integrals do
not depend on principal quantum numbers, energies, nor
dipole matrix elements and the ratio can be simplified to

R =
I(ρχ)

I(ρ)
(21)

with β = 2
√

1− (αZ)2, because |κ| = 1 for both the
s1/2 and p1/2 orbitals. Notice that this ratio does not
depend on specific quantum numbers and it is valid as
long as one of the excitation channels from an occupied
orbital a (nas1/2 → p1/2 or nap1/2 → s1/2) is dominant.
This argument is applicable to all diamagnetic atoms of
current experimental interest: Xe, Yb, Hg, Rn, and Ra.

For the uniform nuclear density distribution we find
the following formula (u ≡ R/λχ)

R = 1 + (1 + β)E1−β(u)

(
cosh(u)− 1

u
sinh(u)

)
+

− (1 + u)e−u 1F2

(
1

2
+
β

2
;

3

2
,

3

2
+
β

2
,
u2

4

)
. (22)

It is expressed in terms of the generalized hypergeomet-
ric function 1F2 and the exponential integral function
En(z) =

∫∞
1
e−zt/tndt.

For small values of the argument, i.e., in the limit λχ �
R (yet λχ � aB/Z)

R ≈ 1

3
(1 + β)Γ(β)

(
R

λχ

)2−β

−−−−→
αZ�1

(
R

λχ

)(αZ)2

,

where we also show the non-relativistic limit. In the op-
posite case, λχ � R,

R ≈ 1−(1+β)(2−β)

(
λχ
R

)2

−−−−→
αZ�1

1−3(αZ)2
(
λχ
R

)2

,

i.e., as expected, for large carrier masses the interaction
becomes increasingly contact. In this case the mass scal-
ing of the ratio from the above equation is

R− 1 ∝ m−2χ .

We present the comparison between fully-numerical
and analytical results in Fig. 3 for mercury atom. Now
we would like to specify the region of validity of the for-
mula (22). First of all, the atomic wave functions (18)
were obtained using point-like nuclear charge distribu-
tion. In reality, the atomic orbitals are affected by the
extended nuclear charge and inside the nucleus the rele-
vant product Pns1/2Qn′p1/2 ∝ r2 instead of the “softer”

dependence Pns1/2Qn′p1/2 ∝ rβ (0 < β < 2) used in the

integral (20). Thus (22) would tend to de-emphasize the
nuclear region. Another limitation comes from the fact
that the approximate wave functions are valid only in
the region r � aB/Z. This places constraints on the
Compton wavelength of the force mediator λχ � aB/Z,
translating into mχ � αme/Z or mχ � 0.3 MeV/c2 for
199Hg, consistent with Fig. 2.
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FIG. 3. Comparison of numerical (DHF and RRPA) and
analytical (22) results for the Yukawa-to-contact-interaction
EDM ratio R for 199Hg atom. The ratio is plotted as a func-
tion of the carrier mass.

Fig. 4 compares ratios R computed with Eq. (22) for
xenon (Z = 54), mercury (Z = 80), and radon (Z =
86). For smaller Z the ratio tends to start off steeper at
smaller masses mχ and saturates earlier for larger values
of mχ. It is worth emphasizing that Eq. (22) and the
curves on Fig. 4 hold only for R/λχ � ZR/aB ∼ 4 ×
10−3.
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Hg

m c
R

FIG. 4. (Color online) Yukawa-to-contact-interaction EDM
ratios R, Eq. (22) for xenon (Z = 54, black solid line),
mercury (Z = 80, green dashed line), and radon (Z = 86,
dotted red line) as a function of the ratio of the nuclear
radius R to the Compton wavelength of the force carrier.
Notice that Eq. (22) and the plotted curves hold only for
R/λχ � ZR/aB ∼ 4× 10−3.

2. Region λχ � aB (sub-keV carrier mass)

To extend the analytical treatment into the region of
sub-keV masses, we notice that when the force range is
much larger than the atomic size (λχ � aB), the Yukawa

potential (3) becomes Coulomb-like since e−|re−rn|/λχ ≈
1. In this case the interaction is no longer resides near
the nucleus, and the single-channel approximation intro-
duced in Sec. IV B 1 may break down. However, we may
still find the mass dependence of the ratio analytically.
Indeed, for λχ � aB , the effective nuclear distribution is
simply (see Appendix)

ρχ(r) = ρ0

(
R

λχ

)2

×


1
2 −

1
6

(
r
R

)2
, r ≤ R,

1
3
R
r , r > R .

(23)

Thereby we may simply factor out the entire mass de-
pendence from the ratio and for very low masses, mχ �
αme ≈ 3.7 keV/c2,

R = A×
(
R

λχ

)2

∝ m2
χ , (24)

where the mass-independent proportionality constant A
has to be evaluated with atomic-structure techniques,
A ≡ (λχ/R)2R, with the effective density (23). For 199Hg
we find A = −49 in the DHF approximation and A = 215
in the more accurate RRPA method.

To summarize this section, the entire dependence of R
on R/λχ can be described analytically with Eq. (22) for
masses above ∼ MeV and with Eq. (24) for mχ below
∼ keV. The values of R in the transition region between
these two limits depend on the atomic-shell structure of
specific atom.

V. CONCLUSIONS

Now with the computed Yukawa-to-contact-interaction
EDM ratioR, Eq. (15), we proceed to placing constraints
on the coupling strengths and masses of the light gauge
bosons. Essentially, we require

dχ = CχTN
dc
CcTN

R < Experimental limit on atomic EDM.

To place the limits on the coupling constant CχTN we
use the ratio R computed in the more sophisticated
RRPA approach together with the the atomic EDM for
contact interaction taken from Ref.[19]. The experi-
mental limit [10] on Hg atom EDM reads |d(199Hg)| <
3.1× 10−29 e cm (95% C.L.). Thereby,

|CχTN | < |d(199Hg)|
∣∣∣∣CcTNdc 1

R

∣∣∣∣ .
The resulting exclusion region for 1 eV < mχ < 1 GeV
is shown in Fig. 5. The exclusion region can be trivially
extended to the lower masses using Eq. (24) (basically
continuing the straight line on the log-log plot, Fig. 5).
For higher masses |CχTN | saturates to |CcTN | ≤ 1.9×10−9.
The bounds on |CχTN | become less stringent for lighter
carriers due to the fact that as the range of the interaction
becomes larger than the atomic size, the effective nuclear
density scales down as m2

χ, Eq. (23), reducing the atomic
EDM enhancement factor. For a fixed experimental limit
on EDM, this translates into larger values of the coupling
constant |CχTN |.

10-6 10-4 10-2 100 102
10-9

10-7

10-5

10-3

10-1

101

103

 

 

mχ(MeV/c2)

Excluded region

FIG. 5. Exclusion region parameterized in terms of coupling
strengths |CχTN | and carrier masses mχ. This exclusion re-
gion is derived from computed Yukawa-to-contact-interaction
EDM ratio R in the RRPA method and the experimental
limit [10] on EDM of 199Hg atom.
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Appendix A: The effective “Yukawa-weighted”
nuclear density

The effective “Yukawa-weighted” nuclear density is de-
fined as

ρχ(r) ≡ 4π

λ2χ

∫
drnVχ(r, rn)ρ(rn), (A1)

where the Yukawa potential Vχ(r, rn) can be expanded
as

Vχ(r, rn) =
e−|r−rn|/λχ

4π|r − rn|
=

− λ−1χ
∞∑
l=0

jl(ir</λχ)h
(1)
l (ir>/λχ)

×
l∑

m=−l

Y ∗lm(r̂)Ylm(r̂n), (A2)

where r> = max(r, rn), r< = min(r, rn). For a
spherically-symmetric nuclear distribution the angular
part of the integral in Eq.(A1) is reduced to∫

Y ∗lm(r̂)Ylm(r̂n)dΩn =
1

4π
δl0δm0 , (A3)

i.e., only the monopole contribution remains in Eq.(A2).
The Bessel and Hankel functions of imaginary arguments
are the modified Bessel functions:

j0(iz) = i0(z) =
sinh z

z
, (A4)

h
(1)
0 (iz) = −k0(z) = −e

−z

z
. (A5)

Therefore, we can rewrite Eq.(A1) as

ρχ(r) =
ρ0
λ3χ

∫ ∞
0

i0(r</λχ)k0(r>/λχ)r2ndrn . (A6)

For a uniform nuclear distribution contained inside a
sphere of radius R, (i.e., ρ(r < R) ≡ ρ0 = 3/(4πR3))
the integral yields

ρχ(r) = ρ0
λχ
r
× (A7)

r
λχ
− e−

R
λχ (1 + R

λχ
) sinh( r

λχ
), r ≤ R,

e
− r
λχ

(
R
λχ

cosh( Rλχ )− sinh( Rλχ )
)
, r > R.

Notice that in the limit λχ � R (i.e., for mχ �
10 keV/c2),

ρχ(r) = ρ0×


1
2

(
R
λχ

)2
− 1

6

(
r
λχ

)2
, r ≤ R,

1
3

(
R
λχ

)3
λχ
r e
− r
λχ , r > R .

(A8)

Finally, in the limit λχ � aB (i.e., the range of the po-
tential being much larger than the atomic size), we could
drop the exponent in the second line of Eq. (A8)

ρχ(r) = ρ0

(
R

λχ

)2

×


1
2 −

1
6

(
r
R

)2
, r ≤ R,

1
3
R
r , r > R .

(A9)
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