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Abstract

The variational method is used widely for determining the hadronic spectrum for Wilson and

improved Wilson fermions. The method has not been applied to staggered fermions because the

hadronic correlation functions in that formalism include terms that oscillate with Euclidean time,

and they often include states of both parities. We show that with a simple modification, the

variational method can also be applied to staggered fermions. In some cases the method also

provides a mechanism for separating the commonly paired parity-partner states. We discuss the

extension to staggered fermions and illustrate it by applying it to the calculation of the spectrum of

charmed-antistrange mesons consisting of a clover charm quark and a staggered strange antiquark.
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I. CONVENTIONAL WILSON VARIATIONAL METHOD

We consider the hadronic correlator for propagation from Euclidean time 0 to time t (an

integer in lattice units):

Cij(t) = 〈0|Oi(t)O†j(0)|0〉 , (1.1)

generated by a set of hermitian interpolating operators Oi(t) and propagating according

to the QCD hamiltonian H derived from an action with a single time-step transfer matrix

T = exp(−H). We assume the time extent of the lattice is sufficiently large that we may

consider propagation only forward in time. Then, eigenstates of the hamiltonian with energy

En correspond to eigenstates of the transfer matrix T with eigenvalue exp(−En). (We

enumerate energies in ascending order.) In terms of these eigenstates, the correlator has a

multiexponential eigenenergy representation

Cij(t) =
∑
n

〈0|Oi(t)|n〉e−Ent〈n|O†j(0)|0〉 , (1.2)

or in matrix form

C(t) = ZT tZ† , (1.3)

where the overlap matrix is

Zi,n = 〈0|Oi(t)|n〉 . (1.4)

In a typical application C(t) is known and we want to determine the energies En. We start

by truncating the infinite sum in Eq. (1.2) to a finite sum for n ∈ [1, N ] and introduce at

least N linearly independent interpolating operators Oi(t). Then we can find the energies

by solving the generalized eigenvalue problem

C(t)un = λn(t, t0)C(t0)un , (1.5)

where un is the kth column of the matrix Z, and λn(t, t0) is an approximation to the eigen-

value exp[−En(t−t0)] of the infinite transfer matrix T t−t0 . They are approximations, because

truncating the multiexponential sum introduces errors [1, 2]. We discuss the approximation

at greater length below.

2



II. STAGGERED VARIATIONAL METHOD

When the hadronic correlator involves staggered fermions, the multiexponential expansion

includes terms that oscillate in time:

Cij(t) =
∑
n

〈0|Oi(t)|n〉sn(t)e−Ent〈n|O†j(0)|0〉 . (2.1)

where the t-dependent sign sn(t) = 1 for a nonoscillating state n and sn(t) = (−1)t for an

oscillating state.

This oscillation is well known for mesons and baryons constructed from single-time-slice

interpolating operators consisting of only staggered fermions [3, 4]. The oscillating compo-

nent corresponds to a state with parity opposite to that of the nonoscillating component.

Since the states often come in pairs, they are sometimes called “parity partners”. In the

case of a meson with definite charge conjugation, the partner also has the opposite charge

conjugation quantum number.

We are interested here in the correlator for a meson arising from a source interpolating

operator consisting of a Dirac (Wilson or clover) quark and a staggered antiquark. To

construct the hadronic correlator, we first convert the staggered propagator S(x′, x) to a

“naive” propagator [5], using

N(x′, x) = Γ†(x′)Γ(x)S(x′, x) , (2.2)

where, in one convention,

Γ(x) = γx1γx2γx3γx0 . (2.3)

It is now standard practice to work with improved staggered fermion propagators S so the

resulting “naive” propagator N inherits the improvement.

The resulting propagator N(x′, x) carries both color and spin indices and so can be treated

on the same footing as the propagator for the Dirac quark W (y′, y). So, for example, if

the source interpolating operator is a local zero-momentum quark-antiquark bilinear with

gamma matrix ΓA, and, similarly, the sink interpolating operator is a local bilinear with

gamma matrix ΓB, then the resulting hadronic correlator with x′ = (t,x′) and x = (0,x) is

C(t) =
∑
x

Tr[ΓBN(x′, x)Γ†AW (x, x′)] , (2.4)

where the trace is over both spins and colors.
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Now consider a corresponding correlator C ′(t) with the source and sink gamma matrices

replaced with ΓAγ0γ5 and ΓBγ0γ5, respectively. This replacement preserves the angular

momentum, but reverses the parity of the state and its charge conjugation quantum number,

if relevant. It is easy to show that

C ′(t) = C(t)(−)t . (2.5)

because

γ0γ5N(x′, x) = (−)x
′
0−x0N(x′, x)γ0γ5 . (2.6)

Thus with meson correlators involving staggered fermions, there is a symmetry relating

correlators for channels of opposite C and P quantum numbers. A given state appears in

both correlators, in one of them with no oscillation and in the other, with oscillation.

With the single-time-slice Dirac-plus-staggered interpolating operators we have studied,

hadronic correlators typically contain both oscillating and nonoscillating contributions as

contemplated in Eq. (2.1). From the discussion of the meson case above, we see that oscil-

lating contribution is associated with a partner state of the opposite P and C. Moreover, if

an interpolating operator Oi is constructed from a hermitian bilinear with gamma matrix

ΓA, the operator constructed from ΓAγ0γ5 is antihermitian. Thus

〈n|Oi(0)|0〉 = −〈n|O†i (0)|0〉 . (2.7)

A consequence is that the parity partner contributions, in addition to oscillating with a

factor (−)t include an overall minus sign from the antihermiticity noted above. Thus, the

correlator has the matrix form

C(t) = ZT tgZ† , (2.8)

where T = g diag e−En and g = diag sn(1), that is, a diagonal matrix with a plus (minus)

sign for nonoscillating (oscillating) states.

The generalized eigenvalue problem is the same as before:

C(t)un = λn(t, t0)C(t0)un , (2.9)

but with oscillating as well as nonoscillating eigenvalues λn(t, t0). We modify the order-

ing convention so the eigenvalues are in decreasing order according to their magnitudes

|λn(t, t0)| > |λn+1(t, t0)| for large t and t0. If there are N linearly independent interpolating
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operators and the multiexponential expansion terminates at the the Nth energy, the gener-

alized eigenvalue problem yields λn = sn(t− t0)e−En(t−t0) exactly. Of course, in practice, the

multiexponential expansion does not terminate, so the generalized eigenvalues only approx-

imate sn(t− t0)e−En(t−t0). The ALPHA Collaboration used perturbation theory to treat the

effect of restoring energy levels with En > EN [2]. Their analysis is easily generalized to the

present case with oscillating and nonoscillating states. To second order we have

λn(t, t0) ≈ sn(t− t0)(1− an(t0))e−En(t−t0)

+
N∑

m>n

bm,n(t0)sm(t− t0)e−Em(t−t0) (2.10)

−
∑
m<n

bm,n(t0)sm(t− t0)e−(2En−Em)(t−t0) +O(e−EN+1(t−t0)) .

The coefficients an and bm,n depend only upon t0 and overlap factors:

an(t0) ≈ An,n,N+1sn(t0)sN+1(t0)e−(EN+1−En)t0

−

[
e−2(EN+1−En)t0|An,n,N+1|2 +

N∑
m>n

bn,m,N+1(t0)

]
(2.11)

bm,n(t0) ≈ |Am,n,N+1|2sn(t0)sm(t0)e−(2EN+1−En−Em)t0 , (2.12)

where Am,n,N+1 is given by the product of overlaps

Am,n,N+1 =

(
N∑
i=1

u∗m,iZi,N+1

)(
N∑
i=1

Z∗i,N+1un,i

)
. (2.13)

As the number N of linearly independent interpolating operators is increased at fixed t,

t0, m, and n, the factors e−(EN+1−En)t0 decrease exponentially, so the coefficients an and bm,n

vanish exponentially. So, as expected,

λn(t, t0)→ sn(t− t0)e−En(t−t0) . (2.14)

Alternatively, if t0 is large for fixed N , m, and n, the exponential factors also suppress the

coefficients an and bm,n with the same result. In Ref. [2] the ALPHA collaboration argued

that to assure a plateau in the “effective energy”, i.e., to obtain a good approximation to

the above asymptotic form, one should require t0 > t − t0 � 0. However, making N large

increases the cost of the calculation, and it is not always possible to make t0 large and

still have a good signal for the hadron correlator. For this reason the Hadron Spectrum
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Collaboration, in a more conventional application without staggered fermions, proposed

fitting eigenvalues to the form

λn(t, t0) ≈ (1− an)e−En(t−t0) + ane
−Ēn(t−t0) , (2.15)

where the second term approximates higher corrections [6]. With staggered fermions, we

simply include terms that oscillate in t, as, for example with the model

λn(t, t0) ≈ [1− an(t0)]sn(t− t0)e−En(t−t0) + bn(t0)sn(t− t0)e−Ēn(t−t0) +

+ cn(t0)s′n(t− t0)e−E
′
n(t−t0) + dn(t0)s′n(t− t0)e−Ē

′
n(t−t0) , (2.16)

where s′n(t) oscillates if sn(t) does not, and vice versa. We arrange so that the principal

term, i.e., the term with the largest amplitude, is the one with coefficient 1−an(t0). Having

both oscillating and nonoscillating components is almost never an obstacle to extracting

energies. Because the two contributions are functionally very different, there is little chance

for confusion. Because λn(t0, t0) = 1, it is useful to consider imposing the sum rule

Σn ≡ 1− an(t0) + bn(t0) + cn(t0) + dn(t0) ≈ 1 . (2.17)

From Eq. (2.11) we see that the parity partner energies E ′n might not always be equal to

the energy of a state, since we may have either E ′n = Em or E ′n = 2En − Em, where Em is

the energy of a nearby state. In principle the same choices apply to the excited state values

Ēn and Ē ′n, but in practice these energies could represent a weighted average of an array of

possible states including the lowest excluded state EN+1.

If the set of interpolating operators Oi is sufficiently complete, we expect to be able

to separate the oscillating and nonoscillating eigenvalues, meaning that the coefficients of

the parity-partner terms should be negligible. This implies that the linear combination of

operators

Ōn =
∑
i

OiZ
−1
i,k , (2.18)

to a good approximation, generates a hadron correlator without an oscillating component.

However, it often happens that the set of operators are nearly linearly dependent. For

example, if the interpolating operators differ only in a smearing width, we have found that

the coefficients 1− an and cn can be comparable in magnitude. In that case the eigenvalues

contain a significant pair of parity partners, and adding a new interpolating operator to the

set might serve, instead, to isolate an excited state, rather than a low-lying parity partner.
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III. Ds MESON SPECTRUM

We illustrate the method by considering mesons generated by interpolating operators

consisting of a clover (Fermilab) charm quark [7] and a staggered strange antiquark. The

lightest of these is the Ds meson. Previous studies of this system with variational methods

treated both quarks in the clover formalism [8–12].

A. Ensemble parameters

We work with the MILC ensemble with lattice spacing a = 0.15089(17) [13] fm, generated

in the presence of 2 + 1 + 1 flavors of highly improved staggered sea quarks (HISQ), i.e.,

equal up and down sea quark masses, plus strange and charm sea quarks with all masses

approximately equal to their physical values [14]. The lattice dimension is 323 × 48. We

measured the charm-strange meson correlator on 988 gauge configurations separated by six

molecular dynamics time units with eight uniformly spaced source times per configuration.

The charm-strange mesons were constructed with a clover (Fermilab) charm quark and a

strange HISQ with mass equal to the strange sea quark in the ensemble. We also measured

the charmonium correlator to set the charm quark mass. It is tuned so that the splitting be-

tween the Ds and ηc rest masses 2M(Ds)−M(ηc) is approximately equal to its experimental

value, as shown in Fig. 1. The resulting hopping parameter is κc = 0.1256+0.0021
−0.0014.

To construct the charm-strange meson we consider a variety of single-time-slice, zero-

momentum interpolating operators Oi of the form

Oi(t) =
∑
x

Q̄(x, t)Jiq(x, t) , (3.1)

where Q is the clover charm quark field and q is the HISQ field, converted by standard

methods to a “naive” Dirac field according to Eq. (2.2). Both fields carry suppressed Dirac

spin and color indices. The current operators Ji in this study are listed in Table I. We

introduce three types of covariant Gaussian smearing, defined, as usual, in terms of the

gauge-covariant Dirac operator D/ and a smearing width rx:

Sx = exp(r2
xD/

2/4) (3.2)

for x = a, b, c with widths ra = 0 (local operator), rb = 1.6 (only clover quark smeared) and

rc =
√

2r2
b = 2.2 (both clover and staggered quarks smeared).
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FIG. 1. The rest mass splitting 2M(Ds)−M(ηc) as a function of 1/κc, used for tuning the charm

quark mass.

As we have noted, the states belonging to the channels characterized by the opposite-

parity irreducible representations (irreps) A+
1 , T+

1 and T−2 can be extracted as the parity

partners of states in the irreps A−1 , T−1 and T+
2 .

B. Effective energies from generalized eigenvalues

Following the procedure described in Sec. II we extract the leading eigenvalues λn(t, t0)

for each channel. Then, first, we consider the corresponding effective energies. Since each

eigenvalue could contain both oscillating (O) and nonoscillating (NO) components, for each

eigenvalue we attempt to extract effective energies for both cases:

E
(k)
eff (t) = log

[
λ(k) (t+ 1) /λ(k) (t)

]
NO (3.3)

E
(k)
eff (t) = log

[
−λ(k) (t+ 1) /λ(k) (t)

]
O . (3.4)

In either case, we find it helpful to smooth the result:

E (k)
eff =

1

4

[
E

(k)
eff (t+ 1)− 2E

(k)
eff (t) + E

(k)
eff (t− 1)

]
. (3.5)
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TABLE I. Current operators Ji for constructing interpolating operators Q̄(x, t)Jiq(x, t) for the

charm-strange mesons in this study for each of the indicated irreps of the octahedral group (with

spatial inversions): Oh. The notation Sx represents a covariant Gaussian smearing operator with

one of three smearing widths a, b, c as discussed in the text. The single-time-slice operators typically

generate states with both parities. The indicated parity is for the nonoscillating state.

A−1 T−1 T+
2

γ5 · Sa,c γi · Sa,b,c |εijk| γj∇k

γtγ5 · Sa,c γtγi · Sa,b,c |εijk| γtγj∇k

γ5γi · ∇i I · ∇i

γtγ5γi · ∇i γt · ∇i

εijkγ5γj∇k

εijkγtγ5γj∇k

We set the reference time t0 = 3 (4 in the case of T+
2 ). In the variational calculation we

include all operators in the respective columns of Table I, and we examine results for all six

channels A±1 , T±1 , and T±2 . These single-time-slice operators generate states of both parities.

The parity indicated in the table is for the nonoscillating state. The resulting effective

energies (masses in our zero-momentum case) for both parities are plotted in Fig. 2 as a

function of t and tabulated in Table II.

Including all interpolating operators in many cases permits a clean isolation of the parity

partners. That is, for a given eigenvalue, often only the oscillating or nonoscillating compo-

nent is robust, and the partner component is too weak to obtain a statistically significant

effective mass. So only the robust states are plotted in Fig. 2 and listed in Table II.

C. Multiexponential fit to generalized eigenvalues

From the foregoing effective mass analysis, we find that when all the interpolating opera-

tors in Table I are in use, we effectively isolate the low-lying parity partners. It is interesting

to examine the progressive isolation as the dimension N of the interpolating operator basis

is increased or as the reference time t0 is increased. To do this we fit the eigenvalues to
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FIG. 2. Smoothed effective masses Eeff from the the eigenvalues in the A±1 , T±1 and T±2 charm-

strange channels as a function of t. All interpolating operators listed in Table I are used. The

reference times are t0 = 3 for A±1 , T±1 and t0 = 4 for T±2 , which are about 0.45 fm and 0.6 fm,

respectively. The plot symbols and level assignments are listed in Table II and discussed in the

text.

our preferred model Eq. (2.16), and, for each eigenvalue, we study the effect on the princi-

pal amplitude 1 − an and mass Mn. We discuss results for the A±1 , T±1 , and T±2 channels

separately.

For the fit range we choose tmin = t0 + 1 or t0 + 2, and we choose tmax to achieve a

resonably low χ2. For most cases, within this fit range, two to four exponentials from our

model Eq. (2.16) are enough to get a robust fit result for the chosen low t0. To impose the

constraint Eq. (2.17), we replace one of the amplitude parameters by Σn in Eq. (2.17) and

constrain Σn using a gaussian Bayesian prior with central value and width (1, σ). Often the

Bayesian constraint is unnecessary.
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TABLE II. Classification of states identified from their effective masses shown in Fig. 2. Listed

are the eigenvalue indices, whether the principal state is obtained from the oscillating (O) or

nonoscillating (NO) effective mass, the plot symbol, the inferred Oh irreducible representation and

continuum spin/parity, and the assigned hadronic state [15], if obvious.

n NO/O plot symbol JP assignment

A±1

0 NO red squares A−1 , 0− Ds

1 O blue circles A+
1 , 0+ D∗s0(2317)

2 NO black squares A−1 , 0− ?

T±1

0 NO red squares T−1 , 1− D∗s

1 O blue circles T+
1 , 1+ Ds1(2460)

2 O purple triangles T+
1 , 1+ Ds1(2536)

3 NO black squares T−1 , 1− D∗s1(2700)

4 NO green triangles T−1 , 1− ?

T±2

0 NO red squares T+
2 , 2+ D∗s2(2573)

1 O blue circles T−2 , 2− ?

1. A±1 channel

To show how results at fixed t0 change as the dimension N of the interpolating operator

basis is increased, we must choose a sequence of additions to the basis. Obviously, the result

depends on how we do that. For the A±1 channel, we start at N = 2 with the set {γ5 · Sa,c}

(set A). For N = 3 and 4, we include {γtγ5 ·Sa,c} (set B). Finally for N = 5 and 6 we include

two operators involving derivatives (set C). Results for the A±1 channel are shown in Fig. 3

and listed in Table III. Note that in Fig. 3, we do not display the result for n = 2.

We find, as expected, that as N increases in this way with fixed t0 = 3, the amplitude

1 − an approaches 1 and the mass Mn stabilizes. At the same time, as shown in the table,

the amplitude c0 of the λ0 parity partner state decreases from 37% for N = 2 to 0.1% for

N = 6, and the amplitude c1 of the λ1 parity partner state decreases from 5% to 0.4%.
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For the case N = 2, the two γ5 · Sa,c interpolating operators couple in almost identical

proportions to the lowest nonoscillating and oscillating states. So they are linearly dependent

with respect to these two states. The result, as shown in Table III set A, is that both parity

partners appear with sizeable amplitudes in the leading eigenvalue λ0. We also see that

adding {γtγ5 · Sa,c} (set B) is enough to separate the parity partners with the even parity

state now appearing in λ1. Finally, with the full set of operators, the amplitudes 1− an for

the partners are greater than 0.8 in their respective eigenvalues. In both cases the state with

the next largest amplitude is the “excited” state of the same parity as the leading state.

We note that the higher state n = 2 has a substantial “excited” state contribution b2,

possibly because the interpolating operators do not have good overlap with the 2S state,

and therefore they couple strongly to other states as well.

Instead of varying N at fixed t0 we can vary t0 at fixed N . We find that as t0 increases

with fixed N = 6, the amplitude 1− an also approaches 1, and the mass Mn stabilizes. We

can be slightly more quantitative here. From Eqs. (2.11),(2.11) and (2.12), we see that the

coefficient an in Eq. (2.16) all tend to decrease exponentially with t0 at fixed N as

e−(EN+1−En)t0An,n,N+1 , (3.6)

whereas the coefficients bn, cn, and dn decrease exponentially according to

e−2(EN+1−En)t0A2
n,m,N+1 . (3.7)

We note that at fixed N , the coefficient A2
n,m,N+1 is constant. Indeed, as shown in Fig. 3

panel C, the coefficient 1 − an can be fit with the exponential form 1 − rn exp(−∆Mnt0),

where rn and ∆Mn are adjusted to their best fit values.

We also note that the mass values M0 and M1 for t0 ≥ 2 are statistically consistent,

which justifies using low reference times t0 in conjunction with a multiexponential fit, such

as Eq. (2.16), to compensate for unsuppressed contributions from other states. The t0 = 6

value (about 0.9 fm) was obtained from a single exponential fit, because the data were then

insufficient to determine excited state contributions.

2. T±1 channel

In Fig. 4 and Table V, we show the progressive isolation of low-lying parity partners in

the T±1 channel. For N = 2 we use only {γi · Sa,c} (set A). For N = 3, 4, 5, and 6, we
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FIG. 3. Progressive improvement in the isolation of parity partner eigenstates with the increasing

dimension N of the interpolating operator basis. Improvement is demonstrated for the two leading

eigenvalues λ0 and λ1 in the A±1 channel by examining the principal coefficients and masses from

a fit to Eq. (2.16). Panels A and C show the principal fit coefficients 1− a0 and 1− a1 and panels

B and D, the masses M0 = E0 and M1 = E1 as a function of (A,C) the number of interpoling

operators N and (B,D) the reference time t0. In panels A and B the interpolating operators are

added in the order discussed in the text while fixing t0 = 3. In panels C and D t0 is varied while

fixing N = 6. We see that in both cases the principal coefficient approaches one, indicating effective

isolation of the state. The solid lines represent a fit to the function 1− rne−∆Mnt0 , adjusting both

rn and Mn.
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TABLE III. Fit results for the eigenvalues of the A±1 channels for three different interpolating

operator sets with reference time t0 = 3. The fit parameters an, bn, cn, dn, En, Ēn, E′n and Ē′n

are defined in Eq. (2.16). In Set (A), the parity partner state is so strongly mixed that E′0 and

E1 are almost degenerate. In set (B) and (C), to get the reasonable fit for the ground states,

4-exponential fit is required, which is 3-nonoscillating and 1-oscillating, instead of 2-nonoscillating

and 2-oscillating. The third nonoscillating state amplitudes and masses are represented by b̃n and

Ẽn. The fit information is displayed in Table IV.

set (A): {γ5 · Sa,c}

n 1− an En bn Ēn b̃n Ẽn cn E′n dn Ē′n

0 0.655(1) 1.1274(2) 0.074(6) 1.74(9) 0.5(3) 4.3(7) −0.165(5) 1.4333(49) −0.15(14) 2.56(53)

1 0.13(2) 1.436(12) 1.1(2) 3.42(9) 0.33(7) 1.95(11) −0.017(8) 1.601(79) −0.5(6) 3.0(7)

set (B): {γ5 · Sa,c} and {γtγ5 · Sa,c}

n 1− an En bn Ēn b̃n Ẽn cn E′n

0 0.886(4) 1.1274(3) 0.0142(5) 1.41(28) 0.091(9) 2.04(16) −0.0047(38) 2.06(32)

1 0.781(25) 1.4369(43) 0.151(2) 1.94(12) − − −0.049(3) 1.781(26)

set (C): all A−1 operators in Table I

n 1− an En bn Ēn b̃n Ẽn cn E′n

0 0.889(4) 1.1274(3) 0.0144(4) 1.40(26) 0.089(11) 1.99(11) −0.0010(9) 1.67(30)

1 0.810(31) 1.4361(46) 0.173(3) 1.855(87) − − −0.0039(18) 1.67(17)

2 0.558(51) 1.723(18) 0.441(6) 2.66(28) − − −0.081(19) 2.005(86)

include {γtγi · Sa,b,c} (set B), respectively. Finally, we include the remaining operators in

Table I involving derivatives to reach N = 10 (set C). Note that in Fig. 4, we do not show

the results for n = 3 and 4.

As with the A±1 case we find that a set of operators that differ only by their degree of

smearing (set A) is ineffective in separating the parity partners, so eigenvalue λ0 contains

both of them. However, unlike the A±1 channel, the T±1 channel has two fairly closely spaced

T+
1 states. So the oscillating term in λ0 in set A could represent a mixture of both. Adding
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TABLE IV. Fit information for the eigenvalues of the A±1 channels. Σn represents 1 − an + bn +

cn + dn. The next column shows its prior central value and width. We found that it is close to 1,

as expected from the sum rule of Eq. (2.17), as long as N is large enough.

n NO/O Σn prior ± width fit type fit range χ2/d.o.f

set (A)
0 NO 1.00(2) 1± 0.02 5-exp 4-16 2.0/3

1 O 1.00(2) 1± 0.02 5-exp 4-16 2.4/3

set (B)
0 NO 0.986(4) 1± 0.2 4-exp 4-20 5.6/9

1 O 0.883(6) 1± 0.2 3-exp 4-18 6.8/9

set (C)

0 NO 0.992(3) 1± 0.1 4-exp 4-20 5.5/9

1 O 0.978(5) 1± 0.1 3-exp 4-18 7.3/9

2 NO 0.944(87) 1± 0.1 3-exp 4-11 3.3/2

the {γtγi · Sa,b,c} operators helps partly in separating the states, but λ0 for that set still has

a strong oscillating component. A nearly complete separation occurs only after nine or more

operators are included (set C). Then λ0 contains only the nonoscillating state and the two

oscillating states appear separately in λ1 and λ2.

We also see that for higher excitations, the separation of states is less clean. Level

n = 3 requires a substantial amplitue b3, and level 4 requires a substantial opposite-parity

amplitude c4.

Panels C and D in Fig. 4 show the principal-state amplitudes and masses from fits as

a function of the reference time, t0. Since N = 10 is fixed, An,n,N+1 is constant, and

the amplitude a0 should decrease exponentially according to Eq. (3.6). When t0 = 5, the

opposite parity contributions become negligible, and the mass can be extracted to good

approximation with a single-exponential fit. Even so, as shown in panel D, all masses are

statistically equivalent over the whole range of t0 displayed. This equivalence suggests that

one can extract the desired mass for low t0 using a multi-exponential fit with three or four

exponentials, as in Eq. (2.1).
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FIG. 4. As in Fig. 3, but for the lowest two states in the T±1 channels. The operator sets are

defined in the text.

3. T±2 channel

Finally, Table VII lists fit results for the T±2 channel. Because there are only a few

interpolating operators, the parity partners are not well separated at t0 = 4. Thus even

at reasonably low t0, the multiexponential fit again helps to compensate for contamination

from other unsuppressed exponential contributions.
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TABLE V. Fit results for the eigenvalues of the T±1 channels for three different interpolating

operator sets with reference time t0 = 3. The notation is the same as in Table III.

set (A): {γ5 · Sa,c}

n 1− an En bn Ēn b̃n Ẽn cn E′n dn Ē′n

0 0.671(3) 1.2302(5) 0.071(1) 1.76(13) 0.6(3) 3.83(29) −0.142(6) 1.523(7) −0.2(3) 2.85(77)

1 0.051(9) 1.567(23) 0.41(4) 2.31(13) 1.0(3) 4.9(1.7) −0.06(2) 1.69(5) −0.4(1) 2.4(2)

set (B): {γi · Sa,b,c} and {γtγi · Sa,b,c}

n 1− an En bn Ēn cn E′n dn Ē′n

0 0.784(2) 1.2306(4) 0.164(3) 2.179(99) −0.073(2) 1.5382(76) − −

1 0.798(33) 1.5647(92) 0.286(2) 2.94(87) −0.081(20) 1.667(71) − −

2 0.276(49) 1.669(49) 0.819(1) 2.44(14) −0.097(10) 1.648(30) − −

set (C): all T−1 operators listed in Table I

n 1− an En bn Ēn cn E′n dn Ē′n

0 0.872(2) 1.2305(3) 0.0856(3) 1.879(35) −0.0108(8) 1.586(28) − −

1 0.774(80) 1.538(12) 0.187(6) 1.94(19) −0.012(3) 1.59(10) − −

2 0.761(47) 1.569(10) 0.256(17) 2.44(66) −0.0020(29) 1.27(25) −0.06(19) 2.6(1.8)

3 0.529(90) 1.739(31) 0.482(4) 2.34(12) −0.017(3) 1.556(68) − −

4 0.720(23) 1.8248(89) 0.504(3) 4.11(55) −0.22(5) 2.323(91) − −

D. Comparison with observed states

Even though we are working at only one lattice spacing with quark masses close, but

not finely tuned, to their physical values, and we have not considered effects of two-meson

channels, it is tempting to compare our results with the experimentally known masses[15].

This is done in Fig. 5 and Table IX, including tentative assignments.
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TABLE VI. Fit information for the eigenvalues of the T±1 channels. The notation is the same as

in Table IV.

n NO/O Σn prior ± width fit type fit range χ2/d.o.f

set (A)
0 NO 1.00(5) 1± 0.05 5-exp 4-17 5.9/4

1 O 1.00(5) 1± 0.05 5-exp 4-17 3.5/4

set (B)
0 NO 0.87(3) 1± 0.3 3-exp 5-19 6.5/9

1 O 1.00(30) 1± 0.3 3-exp 5-17 5.9/7

2 NO 0.97(9) 1± 0.1 3-exp 5-11 0.4/1

set (C)

0 NO 0.962(2) 1± 0.1 3-exp 4-20 11.2/11

1 O 0.952(11) 1± 0.1 3-exp 4-17 5.2/8

2 O 0.948(58) 1± 0.1 4-exp 4-13 0.9/2

3 NO 0.994(19) 1± 0.02 3-exp 4-10 2.2/1

4 NO 0.991(99) 1± 0.1 3-exp 4-11 1.3/2

TABLE VII. Fit results for the eigenvalues of the T±2 channels with reference time t0 = 4. The

notation is the same as in Table III.

set (C): all T+
2 operators listed in Table I

n 1− an En bn Ēn cn E′n dn Ē
′
n

0 1.01(11) 1.594(16) 0.338(6) 2.17(27) −0.34(15) 1.890(18) − −

1 1.34(3) 1.903(12) − − −0.35(4) 2.11(7) − −

TABLE VIII. Fit information for the eigenvalues of the T±2 channels. The notation is the same as

in Table IV.

n NO/O Σn prior ± width fit type fit range χ2/d.o.f

set (A)
0 NO 1.009(60) 1± 0.08 3-exp 5-15 4.1/5

1 O 0.99(1) − 2-exp 5-13 4.5/5
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FIG. 5. Comparison of our crude theoretical charm-antistrange meson spectrum (symbols with

errors) with experimental values (short horizontal lines) with tentative assignments of the levels.

Mass splittings are shown relative to the spin-averaged Ds 1S state, namely 1S = 1
4(Ds + 3D∗s).

TABLE IX. Mass splittings in the Ds spectrum. The experimental splittings are calculated relative

to the spin-averaged Ds 1S state, based on values in Ref. [15].

Experiment [MeV] Lattice [MeV]

D∗s −Ds 143.8± 0.4 134.77± 0.51

Ds − 1S −107.9± 0.5 −101.08± 0.38

D∗s − 1S 35.9± 0.6 33.69± 0.13

D∗s1(2700)− 1S 632.7± 4 698.9± 38.4

Ds0(2317)− 1S 241.5± 0.7 302.6± 6.3

Ds1(2460)− 1S 383.3± 0.7 436.2± 15.0

Ds1(2536)− 1S 458.8± 0.4 478.5± 13.1

Ds2(2573)− 1S 496.3± 1.0 508.9± 18.3
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IV. CONCLUSION

The variational method is widely used to determine the hadronic spectrum in lattice

QCD. With this method the variational basis is constructed by acting on the vacuum with a

linear combination of a variety of interpolating operators of appropriate conserved quantum

numbers. The eigenvalues of a resulting generalized eigenvalue problem then determine

the spectrum. We described an extension of the method to single-time-slice interpolating

operators involving staggered fermions where the effective transfer matrix has both negative

and positive eigenvalues.

We presented a straightforward generalization of the perturbative treatment of the AL-

PHA Collaboration [2] that provides an estimate of the error in the variational eigenvalue

estimates resulting from the truncation to a finite interpolating operator basis. Motivated

by the perturbative treatment, we presented a simple multiexponential expansion of the

eigenvalues for a more accurate determination of the energy levels. The multiexponential

approach allows one to relax, to some extent, impractical constraints that require large

reference times in the generalized eigenvalue problem.

We illustrated the method with a lattice QCD study of the orbital and radial excitations

of the Ds meson. In this calculation, the charm quark was modeled in the clover fermion for-

mulation (Fermilab interpretation) and the strange quark, in the highly improved staggered

quark (HISQ) formulation. All quarks, including sea quarks, had approximately physical

masses. We found that with a sufficiently large and diverse basis, the variational method is

capable of separating low-lying parity-partner states, placing them in separate eigenvalues

of the transfer matrix. We showed that large reference times lead to the suppression of ex-

traneous multiexponential contributions, as expected. Finally, we compared our results for

the excitations with the experimental values and found satisfactory agreement, considering

the coarseness of the lattice and the omission of multihadron interpolating operators.
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