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We compute, via numerical simulations, the non-perturbative Coulomb potential of pure SU(3) gauge theory

in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom,

that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger

than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower

than the Coulomb string tension by a factor of four.
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I. INTRODUCTION

In this article we will report on a lattice Monte Carlo com-

putation of the long-range instantaneous Coulomb potential

between static color sources in SU(3) pure gauge theory. Note

that by “Coulomb potential” we are not referring to the per-

turbative 1/r expression, but rather to the expectation value

of the full non-local term in the Coulomb-gauge Hamiltonian

associated with Coulomb energy. We will find that this po-

tential is linear at large separations, that the potential scales

as expected with lattice coupling, and that the Coulomb string

tension σc is about four times larger than the accepted value

σ = (440 MeV)2 for the asymptotic string tension. Since glu-

ons cannot possibly screen a color source in the fundamental

representation, the obvious question is: what mechanism can

reduce the Coulomb string tension by a factor of four, while

retaining the linearity of the potential? We will try to answer

this question in the context of a model in which the QCD flux

tube is pictured as a superposition of states containing differ-

ent numbers of constituent gluons, held together by Coulom-

bic interactions, and arranged roughly in a chain between the

static sources.

Let us first be a little more explicit about what is meant by

the term “Coulomb potential.” It is really the interaction en-

ergy of a particular physical state, which is simply expressed

in Coulomb gauge as a pair of static quark-antiquark opera-

tors, separated by a spatial distance R, operating on the (non-

perturbative) vacuum state

|0〉qq = q
†
i (0)q

†
i (R)|0〉vac , (1)

where

Ψ0[A] = 〈A|0〉vac (2)

is the true vacuum wavefunctional.1 The energy expectation

1 Ideas about the form of this wavefunctional go back a long way, cf. [1] and

references therein. Those ideas will not be needed, however, in the present

investigation.

value of such a state is given by the logarithmic time derivative

V (R) =− lim
t→0

d

dt
log
{

qq〈0|e−Ht |0〉qq

}
, (3)

where H = Hglue +Hcoul is the Coulomb gauge Hamiltonian

for a pair of static quark-antiquark sources,

Hglue =
1

2

∫
d3x (J − 1

2 EEE tr,aJ ·EEE tr,aJ − 1
2 +BBBa ·BBBa),

Hcoul =
1

2

∫
d3xd3y J − 1

2 ρa(x)J Kab(x,y;A)ρb(y)J − 1
2 ,

(4)

with

Kab(x,y;A) =
[
M−1(−∇2)M−1

]ab

xy
,

ρa = ρa
q +ρa

q̄ +ρa
g ,

M =−∇ ·D(A) , J = det[M ]. (5)

Here ρa
q (x) = gq

†
i (x)T

a
i jq j(x), ρa

q̄ (x) = gq̄i(x)T
a

i j q̄
†
j(x) and

ρa
g (x) = −g f abcAb

k(x)E
c
k (x) are the charge density of quarks,

antiquarks and gluons, respectively, and Dk(A) is the covari-

ant derivative. Since we are taking the t → 0 limit, the con-

tribution from connected diagrams to the energy expectation

value comes from the non-local Coulomb term proportional to

K(xxx− yyy;A), which contributes to both the quark self-energies

and to an R-dependent Coulomb interaction. As Dirac indices

and quark kinetic energies are not relevant to our study, it is

sufficient to compute, in a Euclidean action formulation, the

logarithmic time derivative of a correlator of short timelike

Wilson lines

V (R) =− lim
t→0

d

dt
log
〈
Tr[Lt(0)L

†
t (R)]

〉
, (6)

where

Lt(xxx)≡ T exp

[
ig

∫ t

0
dtA0(xxx, t)

]
. (7)

Again it should be stressed that V (R) contains both an R-

dependent interaction, and an R-independent Coulomb self
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energy. On the lattice, for SU(3) gauge theory, this becomes a

correlator of timelike link operators on timeslice t = 0:

V (R) = lim
β→∞

(
VL(RL,β )

a(β )

)
,

VL(R,β ) =− log
〈1

3
TrU0(0,0)U

†
0 (R,0)

〉
, (8)

where RL is the quark-antiquark separation in lattice units, R=
RLa(β ), and a(β ) is the lattice spacing (same in all directions)

at Wilson lattice coupling β . On a periodic lattice one can

average over different timeslices.

This method for computing the instantaneous Coulomb po-

tential was first suggested in ref. [2], and the calculation was

carried out for the SU(2) gauge group. There is another pos-

sible approach, adopted in ref. [3] for SU(2) and in ref. [4] for

SU(3) gauge groups, which is to directly compute the expec-

tation value of the operator K(xxx− yyy,A), Fourier transformed

to momentum space. This involves inverting the Faddeev-

Popov operator M = −∇ ·D(A), and looking for a plateau

in k4V (k).2 We prefer to use the original approach of [2]

which, we believe, provides better evidence of the linearity

of the Coulomb potential.

II. THE INSTANTANEOUS COULOMB POTENTIAL

We have calculated the instantaneous Coulomb potential by

the method just described on a 244 hypercubic lattice in SU(3)

pure gauge theory with a standard Wilson action and lattice

coupling β in the range β ∈ [5.9,6.4]. The method of Fourier

acceleration is used for Coulomb gauge fixing [5]. An exam-

ple of the data for VL(R,β ), at β = 6.3, is shown in Fig. 1,

together with a best fit to the functional form

VL(RL,β ) = σL(β )RL −
γ(β )

RL

+ c(β ) . (9)

Note that the data includes off-axis separations. Only the data

point at RL = 0 is excluded in fitting the data. The constant c

is the self-energy and σL is the Coulomb string tension, both

in lattice units. The interaction energy is obtained by sub-

tracting the self energy c(β ) from the data, i.e. V int
L (RL,β ) =

VL(RL,β )− c(β ). To convert everything to physical units we

divide both sides by the lattice spacing a(β ) and multiply by

a conversion factor (0.197 Gev-fm = 1) taking inverse fm to

GeV,

V int(R,β ) = σc(β )R− (0.197 GeV-fm)
γ(β )

R
, (10)

where V int is in GeV, R = RLa(β ) is in fm, and σc is the

Coulomb string tension in units of Gev/fm. As β → ∞, the

interaction energy in physical units (and consequently σc and

2 These authors find a Coulomb string tension which is 2.2 [3] or 1.6 [4]

times the asymptotic string tension. Our result, reported in the next section,

is substantially higher than those values.
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FIG. 1. The instantaneous Coulomb potential in lattice units at β =
6.3. This data includes a Coulomb self-energy term for the static

sources. The solid line is a fit to eq. (9). Error bars are comparable

to but smaller than the symbol size.
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FIG. 2. The instantaneous Coulomb potential in physical units, for

a range of lattice couplings β , with self-energies subtracted as ex-

plained in the text.

γ) should tend to a finite limit. For a(β ) we use the Necco-

Sommer formula [6]

a = r0 exp
(
−1.6804− 1.7331(β− 6)

+0.7849(β − 6)2 − 0.4428(β − 6)3
)
, (11)

with r0 = 0.5 fm, for every lattice spacing in the range

β ∈ [5.9,6.4].
The result for the Coulomb potential in physical units is

shown in Fig. 2. With the self-energy term c(β )/a(β ) re-

moved, the data for V int(R,β ) seems to converge nicely to a

limiting curve as β increases.

In Fig. 3 we show our data for the dimensionless parameters

γ(β ) and c(β ), plotted vs. lattice spacing a(β ). Both of them

appear to be converging to a finite limit as β → ∞,a → 0.

What is curious, however, is that the limit for γ(β ) might very

well be consistent with the coefficient of the Lüscher term, i.e.

γ =
π

12
= 0.262 . (12)
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It is hard to know whether or not this is a coincidence. The

Coulombic field of a qq pair, while confining, is nonetheless

extended. There is no particular reason to believe that it is

collimated into a flux tube, or has string-like properties. At

present we cannot explain why γ would have this particular

limit.

The Coulomb string tension determined at each β , vs. lat-

tice spacing a(β ), is shown in Fig. 4. The value of the string

tension at the smallest lattice spacing is almost within error-

bars of the next two data points, which suggests that the data

may have converged to the asymptotic value. From the last

data point at β = 6.4, a= 0.051 fm, we estimate the Coulomb

string tension to be σc ≈ 4.03(8) GeV/fm, or in other units

σc = (891± 9 MeV)2, to be compared to the accepted value

of σ = (440 MeV)2 for the asymptotic string tension. These

values differ by more than a factor of four, and a discrepancy

of this size cries out for an explanation. How can the asymp-

totic string tension be so much smaller than the “natural” value

obtained from the instantaneous Coulomb potential?

III. GLUON CHAINS

The starting point is that since the instantaneous Coulomb

potential is the interaction potential of a certain physical state,

namely (1), and the energy of that state (≈ σcR) is far larger

than σR for large qq separations, it must be that (1) is not the

minimal energy qq state. So, what is the minimal energy state,

and how can the string tension in that state be so much lower

than σc?

The original idea of the gluon chain model [7] was as fol-

lows: Suppose that as a quark antiquark pair separate, the in-

teraction energy eventually starts to rise at a rate faster than

linear in the separation. At some point, call it R = Rc, it be-

comes energetically favorable to insert a gluon between the

quark antiquark pair to reduce the separation of color charges

to roughly Rc/2. As the quark and antiquark continue to sepa-

rate, eventually it becomes favorable to insert a second gluon,

and so on, so that no matter what the separation of the quark

and antiquark, the average separation of color charges is no

more than Rc. Let us suppose that for very large quark sepa-

ration R, the average distance between gluons is Rav, so there

will be approximately N = R/Rav gluons ordered in a chain

between the quark and antiquark. Let E(Rav) denote the ki-

netic energy plus the share of Coulomb interaction energy

carried by each gluon. Then the total energy of the chain is

V (R) = NE(Rav) = σR, where σ = E(Rav)/Rav.

Our numerical investigations, and prior studies [2], [3],

[4], show that this simple picture is untenable, because the

increase in Coulombic interaction energy with separation is

asymptotically linear. Inserting more gluons between the

quarks not only increases the energy of the state by the kinetic

energy of each gluon, but also increases the Coulombic en-

ergy. If the gluons were arranged exactly along a line between

the quarks, and the interaction energy between neighboring

gluons is σc times gluon separation, then the total Coulomb

interaction energy of the chain is σcR, no matter how many

gluons are in the chain. The inevitable fluctuations in gluon

position in directions transverse to the line defined by the qq

pair will only increase this interaction energy. It would then

appear that the lowest energy state is the zero gluon state |0〉qq,

and we have already seen that the string tension of this state is

four times larger than the asymptotic string tension.

However, this conclusion ignores the fact that a state with n-

constituent gluons is not an eigenstate of the Coulomb gauge

Hamiltonian. There will obviously be matrix elements of the

Hamiltonian connecting states with different numbers of con-

stituent gluons, and it is interesting to consider, even at a

very crude and qualitative level, what the effect of those off-

diagonal elements might be.3

Let us define the operator

Ãi(xxx) =
∫

d3k

(2π)3

√
2ω(k)Ai(k)e

ikkk·xxx , (13)

3 For some earlier discussions of how constituent gluons might lower the

Coulomb string tension, see [8] and [9].
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where Ai(k) is the Fourier transform of the position-space op-

erator Ai(x) = Aa
i (x)T

a, and ω(k) depends on the transverse

gluon propagator. For a free massless field, ω(k) = |kkk|. Then

we define an n constituent-gluon state to be a state of the form

|n〉qq = q
†
i (0)ψ

i j
n [A; f ]q†

j(R)|0〉vac , (14)

where

ψ i j
n [A; f ] =

∫
d3x1d3x2...d

3xn f
(n)
k1k2...kn

(xxx1,xxx2, ...,xxxn)

×[Ãk1
(xxx1)Ãk2

(xxx2)...Ãkn
(xxxn)]i j . (15)

Color matrix indices are contracted such that the n-gluon state

is invariant with respect to global color rotations, which are

consistent with the Coulomb gauge condition. We can sup-

pose that the quark and the antiquark lie a distance R apart

along the z-axis. If the function f is such that it is large when

the ordering of gluon fields along the z axis corresponds to

their color ordering; i.e. when 0 < z1 < z2 < ... < R, and is

strongly suppressed when this ordering is violated, then we

will refer to |n〉qq as a “gluon chain” state. Moreover, for the

reason mentioned above, in order to bound the Coulomb en-

ergy the fluctuations in gluon position transverse to the z-axis

should not be too large, so that the n gluon operators are con-

tained in a roughly cylindrical region of some kind. A simple

example of a function with these properties is

f
(n)
k1k2...kn

(xxx1,xxx2, ...,xxxn)

= δk13δk23...δkn3

×θ (z1)θ (z2 − z1)θ (z3 − z2) · · ·θ (R− zn)

×exp

[
−1

8
a2

n

∑
i=1

(x2
i + y2

i )

]
. (16)

The constant a can be regarded as a variational parameter.

This is not necessarily the optimal choice for f (n), and of

course one can consider other more complicated functions

containing many parameters. But it will serve to illustrate

what we have in mind.

Having settled on some choice for the f (n), we can in

principle orthogonalize and normalize a finite set of N states

{|n〉qq, n = 0,1...,N} by, e.g., the Gram-Schmidt procedure.

Let us denote the resulting set of states {|ñ〉, n = 0,1...,N},

with Hamiltonian matrix elements

Hnm = 〈ñ|H|m̃〉 . (17)

The prescription is then to diagonalize this finite matrix. The

lowest eigenvalue provides us with an estimate of the energy

of the qq state. The Hamiltonian matrix elements can be de-

termined from the finite-time amplitude

Tnm(t) = qq〈n|e−Ht ||m〉qq , (18)

or, stripping away irrelevant Dirac indices, the correlator

Tnm(t) =
〈
Tr[Lt(0)ψn[A(xxx,0); f ]L†

t (R)ψ†
m[A(xxx, t); f ]]

〉
. (19)

Tnm(0) gives us the information required to construct a set of

normalized, orthogonal states

|ñ〉=
N

∑
m=0

Cnm|m〉qq , (20)

while the time derivative

− lim
t→0

d

dt
Tnm(t) = qq〈n|H|m〉qq (21)

contains the rest of the information required to construct Hnm,

i.e.

Hnm = ∑
j
∑
k

C∗
n j

{
− lim

t→0

d

dt
Tjk(t)

}
Cmk . (22)

For the sake of simplicity, let us imagine that the n-gluon

constituent states are already a set of orthonormal states, i.e.

|ñ〉= |n〉qq. The diagrams contributing to Tnn(t) which are re-

sponsible for the kinetic and Coulombic contributions to Hnn

are sketched in Figs. 5(a) and 5(b). Here the wavy lines are

transverse gluon propagators. The blob is the Coulomb prop-

agator, i.e. the VEV of the K operator. At each end of this

propagator one can attach either the fermion charge operator

ρa
q/q̄

(xxx) (which in turn attaches to an external heavy quark or

Wilson line), or the gluonic charge operator ρa
g (xxx) whose field

operators connect to constituent gluons in the initial and final

states, as indicated in the figure.

The kinetic energy of the n-gluon state derives from the

time derivative of the diagram in Fig. 5(a). A rough estimate

of this energy, for a wavefunction of the type shown in (16),

goes as follows: The uncertainty in position of the gluon along

the z-axis is approximately R/n, while the uncertainty in the

transverse directions is
√

2/a. For a massless gluon, ignoring

modifications that might arise from the Gribov form of the

propagator, the total kinetic energy is

Ekin = n

√
n2

R2
+ a2 . (23)

In the Appendix we will explain the relationship between this

estimate and n particle state defined in (14-16).

The Coulomb energy due to interactions between n nearest-

neighbor gluons is proportional to their average separation,

and originates from diagrams of the type shown in Fig. 5(b).

For n constituent gluons the average separation (ignoring

transverse fluctuations) is roughly R/(n+ 1), so the Coulomb

energy for a nearest-neighbor pair is about σcR/(n+1). There

are n+ 1 diagrams of the type in Fig. 5(b) (counting inter-

actions with the external lines), so summing all inter-gluon

separations we have ECoul ≈ σcR. Then we can estimate the

diagonal matrix element as

Hnn = n

√
n2

R2
+ a2 +σcR . (24)

We do not know much about the off-diagonal elements, except

that, counting interactions with the external sources, there are
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(a) (b) (c)

FIG. 5. Diagrams which, after a time derivative, contribute to Hamiltonian matrix elements. (a) The graph which determines the kinetic energy

of constituent gluons, contributing to Hnn. (b) One of the graphs determining the Coulomb energy of the n-gluon state, also contributing to

Hnn. The blob labeled “K” is the instantaneous gluon propagator 〈K〉. (c) Schematic of a graph contributing to an off-diagonal element Hn,n+1.

Here one of the A-field operators in the Coulomb operator K(A) contracts with a gluon in the final state.
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n + 1 diagrams of the form shown in Fig. 5(c) which con-

tribute to Hn,n+1. However, each these diagrams is a function

of the the average gluon separation, and assuming some sim-

ple power dependence on average separation we would have,

adding up all n+ 1 diagrams,

Hn,n+1 = Hn+1,n = (n+ 1)α

(
R

n+ 1

)p

, (25)

where α is some dimensionful constant, and p is an unknown

(positive or negative) power. We will neglect for now all other

off-diagonal elements. It will be convenient, for display pur-

poses, to adopt units such that σc = 1 in addition to the usual

choice of h̄ = c = 1. We can now truncate the basis and, for

some choice of α,a, p, extract the lowest eigenvalue of Hmn.

This is the potential V (R) of the lowest energy state available

in the truncated basis.

In Fig. 6 we show the potential V (R) which is obtained for a

choice of parameters a = 0.3,α = 0.7, and a variety of powers

−0.5 ≤ p ≤ 0.7. In this figure the top line, which has a slope

= 1, is the non-perturbative Coulomb potential V (R) = σcR
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FIG. 7. Dependence of the static potential on number of n-gluon ba-

sis states in the model calculation. Here Ncut is the maximum number

of constituent gluons, R = 30, p= 0.5 and parameters α,a as before.

in units σc = 1. What is striking in this plot is that the po-

tential for the lowest energy state is linear in R, regardless of

the power p, and even regardless of the overall sign of the

off-diagonal element. In addition, the string tension in each

case is lower than σc by factors ranging from 1.6 to 6.7. The

string tension for any p can be adjusted by adjusting the pa-

rameters, but the point here is that the gluon chain result is

robust: the linearity of the static quark potential, and the fact

that the string tension can be much lower than the Coulomb

string tension, seems to be generic in this setup, for a large

range of power behavior in the off-diagonal term Hn,n+1. For

the data in the figure we have chosen to cut off the basis at

n= Ncut = 100, but in fact this is not necessary. At the smaller

values of R a cutoff at much smaller n will not change the

results, and in general one can choose a cutoff which grows

linearly with R. This is illustrated in Fig. 7, where we plot,

at R = 30 and p = 0.5, the lowest energy eigenvalue of the

truncated Hamiltonian matrix, V (R), as a function of the trun-

cation at n = Ncut in the number of basis vectors |n〉qq

Of course there is no guarantee that further off-diagonal

terms, i.e.. Hn,n+m for m ≥ 2, are negligible, and it is not clear

how such terms would change the picture. Ultimately it will
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be necessary to estimate such terms, and we hope to return

to this issue in a later publication. But, at a minimum, we

have seen that it is not difficult to understand how the asymp-

totic string tension could be several times smaller than the

Coulomb string tension. In fact, in the context of the simple

model presented above, this effect seems to be natural.

IV. CONCLUSIONS

We have shown that for SU(3) lattice pure-gauge theory the

Coulomb potential in Coulomb gauge has the long-distance

behavior (R in fm)

Vc(R) = σcR− (0.197 GeV-fm)
γ

R
, (26)

where

σc = 4.03(8) Gev/fm = (891(9) MeV)2 , (27)

which is a little more than four times the accepted value of

(440 MeV)2 for the asymptotic string tension. Our value for

σc is taken from the data point at β = 6.4,a= 0.051 fm, where

the data appears, from Fig. 4, to have converged to the a →
0 limit. The dimensionless constant γ seems consistent, for

unknown reasons, with the coefficient π
12

of the Lüscher term.

We have also shown, in the context of a very simple model

based on the gluon chain picture, how the string tension of the

lowest energy state with static qq sources, which we take to

be the asymptotic string tension, can be so much smaller than

the Coulomb string tension.

It would be interesting to attempt a more quantitative treat-

ment of flux tube formation and, perhaps, heavy meson

physics, using Coulomb, ghost, and gluon propagators taken

from Monte Carlo simulations to estimate Hamiltonian matrix

elements in a finite basis. We hope to report on work along

these lines at a later time.
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Appendix

In this appendix we will explain the relationship between

a gluon chain state (14-16) and the rough estimate for gluon

kinetic energy (23). It will simplify the discussion to ignore

vector and color indices as well as interactions, so let us con-

sider a free massive scalar field with many flavors, with flavor

1 associated with position x1, flavor 2 associated with position

x2, and so on, and define the N-particle state

|N〉= ψN [φ ; f ]|0〉vac , (A.1)

where

ψN [φ ; f ] =

∫
d3x1d3x2...d

3xn f (xxx1,xxx2, ...,xxxN)

×φ̃1(xxx1)φ̃2(xxx2)...φ̃N(xxxn) . (A.2)

and where the subscripts denote flavors. We assume the func-

tion f is normalized, i.e.

∫ ( N

∏
n=1

d3xn

)
f ∗(x1,x2, ...,xN) f (x1,x2, ...,xN) = 1 (A.3)

The scalar field operators are φn(x), or φn(k) in momentum

space, and

φ̃n(x)≡
∫

d3k

(2π)3

√
2ωkφn(k) (A.4)

with ωk =
√

k2 +m2. Propagators are

Di j(xxx− yyy, t) = 〈φi(x, t)φ j(y,0)〉= δi jD(xxx− yyy)

= δi j

∫
d3k

(2π)3

eikkk·(xxx−yyy)e−ωkt

2ωk

(A.5)

and

D̃i j(xxx− yyy, t) = 〈φ̃i(x, t)φ̃ j(y,0)〉

= δi j

∫
d3k

(2π)3
eikkk·(xxx−yyy)e−ωkt (A.6)

If f (N) is normalized, then so is |N〉:
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〈N|N〉 =
∫ { N

∏
n=1

d3x′nd3xn

}
f ∗(x′1, ...,x

′
N) f (x1, ...,xN)

×〈φ̃1(xxx
′
1,0)φ̃2(xxx

′
2,0)...φ̃N(xxx

′
N ,0)φ̃1(xxx1,0)φ̃2(xxx2,0)...φ̃N(xxxN ,0)〉

=

∫ { N

∏
n=1

d3x′nd3xn

}
f ∗(x′1, ...,x

′
N) f (x1, ...,xN)D̃(xxx′1 − xxx1,0)D̃(xxx′2 − xxx2,0)...D̃(xxx′N − xxxN ,0)

=
∫ { N

∏
n=1

d3xn

}
f ∗(x1, ...,xN) f (x1, ...,xN)

= 1 (A.7)

Then, to compute the energy expectation value

〈N|H|N〉=− lim
t→0

d

dt
〈N|e−Ht |N〉

=− lim
t→0

d

dt

∫ { N

∏
n=1

d3x′nd3xn

}
f ∗(x′1, ...,x

′
N) f (x1, ...,xN)〈φ̃1(x

′
1, t)φ̃2(xxx

′
2, t)...φ̃N(xxx

′
N , t)φ̃1(xxx1,0)φ̃2(xxx2,0)...φ̃N(xxxN ,0)〉

=− lim
t→0

d

dt

∫ { N

∏
n=1

d3x′nd3xn

}
f ∗(x′1, ...,x

′
N) f (x1, ...,xN)D̃(xxx′1 − xxx1, t)D̃(xxx′2 − xxx2, t)...D̃(xxx′N − xxxN , t)

=

∫ ( N

∏
i=1

d3kl

(2π)3

)(
∑
n

ωkn

)
F∗(k1, ...,kN)F(k1, ...,kN)

=

〈〈
N

∑
n=1

√
k2

nx + k2
ny + k2

nz+m2

〉〉
(A.8)

where F(k1...kN) is the Fourier transform of f (x1...xN), and

the 〈〈...〉〉 symbol indicates an ordinary quantum mechanics

expectation value in the N-particle wavefunction specified by

f .

A first approximation is to take the expectation values in-

side the square root

〈N|H|N〉 ≈
N

∑
n=1

√
〈〈k2

nx〉〉+ 〈〈k2
ny〉〉+ 〈〈k2

nz〉〉+m2

=
N

∑
n=1

√
∆k2

nx +∆k2
ny +∆k2

nz+m2 (A.9)

Applying the approximate relation ∆knx ≈ 1/∆xn, where ∆xn

is the positional uncertainty of the n-th particle in wavefunc-

tion f , we can estimate that

〈N|H|N〉 ≈
N

∑
n=1

√
1

∆x2
n

+
1

∆y2
n

+
1

∆z2
n

+m2 (A.10)

Finally, if f represents a chain state analogous to (16), then

transverse fluctuations ∆xn = ∆yn = ρ are approximately the

same for each of the N constituent particles, and ∆zn ≈ R/N.

Then we have

〈N|H|N〉 ≈ N

√
N2

R2
+

2

ρ2
+m2 (A.11)

For a massless particle, this is the kinetic energy estimate

given in (23).
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