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Synchrotron radiation of vector bosons at relativistic colliders

Kirill Tuchin1

1Department of Physics and Astronomy, Iowa State University, Ames, IA 50011

Magnetic fields produced in collisions of electrically charged particles at relativistic energies

are strong enough to affect the dynamics of the strong interactions. In particular, it induces

radiation of vector bosons by relativistic fermions. I calculate the corresponding spectrum

in constant magnetic field and analyze its angular distribution and mass dependence. As an

application, synchrotron radiation of vector bosons by relativistic plasmas is considered.

I. INTRODUCTION

It has been known since the pioneering paper of Ambjorn and Olesen [1] that extremely strong

electromagnetic fields are produced in high energy collisions of charged particles. In recent years it

was realized that these fields have an important impact on the dynamics of the strong interactions,

though their precise structure and dynamics is being debated [2–7]. In this paper we focus on

vector boson radiation by relativistic particles in an external magnetic field. In particular, we

are interested in real and virtual photon production, which has important applications to the

phenomenology of heavy-ion collisions [8–10], astrophysics [11] and the physics of intense laser

pulses [12].

The real photon radiation rate in vacuum was calculated in [13] and is given by an infinite

sum over the Landau levels. Based on this result synchrotron radiation from electromagnetic

plasmas was calculated in [14–16]. Pair production by a photon in an external magnetic field is a

cross channel of the synchrotron radiation. The most general expression for the pair production

probability by a virtual photon in vacuum is derived in [17]. The results of [13, 17] are especially

useful in very strong fields (defined below) when only a few lowest Landau levels contribute to

the radiation rate. At not so strong fields and at ultra-relativistic energies, summation over the

Landau levels is slowly convergent and is not convenient to deal with (in the context of heavy-ion

physics see [8] for a detailed discussion of this issue). An alternative efficient method to calculate

the scattering matrix in the ultra-relativistic approximation was developed by Baier and Katkov

(see e.g. [18] and references therein) and is described in [19]. It is based on the quasi-classical

approximation and allows one to perform explicit summation over the Landau levels yielding rather

simple formulas that are convenient in numerical and analytical calculations, see e.g. [16]. While

synchrotron radiation of real photons is of great interest in astrophysics, radiation of massive
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vectors bosons is of interest in heavy-ion collisions and in high intensity laser physics. Thus, in

view of possible applications, it is very useful to have a compact expression for the synchrotron

radiation of vector bosons. The goal of this paper is to feel the gap in the literature by calculating

the synchrotron radiation of massive vector bosons and in particular virtual photons using the

quasi-classical method.

In order to calculate the vector meson production rate we need to know their coupling to quarks.

A simple model inspired by the Vector Meson Dominance is to assume that coupling of different

vector mesons to quarks has the same structure as the coupling of the photon. The corresponding

terms in the Lagrangian are

Lγ = eq̄γµQqAµ , Lρ = gρq̄γ
µτ q · ρµ , Lω = gω q̄γ

µq ωµ , (1)

where q is the SU(2) doublet of u and d quarks, τ are symmetry generators and Q = diag(qu, qd).

Eqs. (1) constitute a part of the quark–meson coupling model [20, 21], which is used to describe the

nuclear matter. Similar approach is successfully used for calculation of the vector meson production

at high energy in perturbative QCD [22, 23].

Throughout the paper we employ the ultra-relativistic approximation that requires fermion and

the vector boson to be relativistic and assume that magnetic field is adiabatic. Let p = (ε,p) be

the initial fermion four-momentum and k = (ω,k) the vector boson four-momentum, m and M

their respective masses. Ultra-relativistic approximation requires that fermion energy before and

after the vector boson emission satisfy ε� m and ε′ = ε− ω � m. This implies that ε′/ε� m/ε

meaning that the vector boson does not carry away all the fermion energy. Another implication

of the ultra-relativistic approximation, which is instrumental for the spectrum derivation in the

next section, is that the angular distribution of the vector boson spectrum is concentrated inside

a narrow solid angle with the opening angle θ around the fermion direction. This can be seen by

examining the denominator of the outgoing fermion propagator

(p− k)2 −m2 ≈ −εω
(
m2

ε2
+
M2

ω2

ε′

ε
+ θ2

)
. (2)

The same expression appears in the argument of the Airy function in the formulas for the spectrum

(27),(28). Thus, the radiation cone is determined by the largest among the small ratios m/ε and
√
M2ε′/

√
ω2ε < M/ω.

The distance between the energy levels of a fermion in magnetic field is of the order of eB/ε. If

eB � ε2 the spectrum can be considered as approximately continuous. This is always true in fields

weaker than the Schwinger field BS = m2/e. In the following I will assume that the magnetic field
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strength is such that the quasi-classical approximation holds, i.e. eB � ε2 (but not necessarily

B < BS).

The paper is structured as follows: In Sec. II A I derive the vector boson spectrum radiated by

a fast fermion moving in a plane perpendicular to the direction of magnetic field and in Sec. II B

I analyze its mass dependence. In Sec. III the spectrum is boosted to an arbitrary frame. Sec. III

is dedicated to synchrotron radiation from plasma. Conclusions are presented in Sec. V.

II. VECTOR BOSON RADIATION IN THE REACTION PLANE p ·B = 0.

A. Calculation of the spectrum

For the calculation of the vector boson spectrum I employ the method described in [18, 19]. I

follow the notations of [19] apart from minor changes. The calculation is convenient to do in the

frame K0 where the fermion’s momentum is perpendicular to the direction of magnetic field. The

emission probability per unit time reads [19]

dẇ =
α

(2π)2

d3k

ω

∫ ∞
−∞

dτ 〈R∗2R1〉 eiΦ , (3)

where α = g2/4π (g stands for e, gρ, or gω), 〈R∗2R1〉 denotes the average over the initial fermion

polarization and summation over the final fermion and boson polarization and

Φ =
ε

ε′
[k · r2 − k · r1 − ωτ ] +

M2τ

2ε′
, (4)

R = − ū(p′)√
2ε′

γ · ε∗ u(p)√
2ε
. (5)

Indexes 1 and 2 is a shorthand notation meaning that the corresponding quantity is taken at time

t1 = t+ τ/2 or t2 = t− τ/2. The bi-spinor is normalized as follows:

u(p) =
1√
ε+m

 (ε+m)ϕp

(p · σ)ϕp

 , (6)

where ϕp is a two-component spinor and σ are Pauli matrices. The four-momentum of the incident

fermion can be written as p = ε(1,v). Similarly, I denote

s =

√
1− M2

ω2
, (7)

so that the vector boson four-momentum can be written as k = (ω,k) = ω(1, sn), where n is a

unit vector. Substituting (6) into (5) I obtain for transversely polarized boson

RT = ϕ∗p′ε
∗
T · (A+ iB × σ)ϕp , (8)
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where the following auxiliary vectors are introduced:

A =

(√
ε′ +m

ε+m
+

√
ε+m

ε′ +m

) √
ε√

2ε′
v , (9)

B =

[(√
ε′ +m

ε+m
−
√
ε+m

ε′ +m

)
p+

√
ε+m

ε′ +m
k

]
1

2
√
εε′

, (10)

and ε′ = ε − ω. Multiplying (8) by its complex conjugate and averaging using the formula

〈εT,jεT,k〉 = (δjk − njnk)/2 we get

〈
R∗T,2RT,1

〉
= A1 ·A2 − (A1 · n)(A2 · n) +B1 ·B2 + (B1 · n)(B2 · n) . (11)

Expanding (9),(10) in m2/ε2 and M2/ω2 yields

A ≈
(

1 +
ε

ε′

) v
2
, (12)

B ≈ ω

2ε′

(
−v + n+

m

ε
n+ (s− 1)n

)
. (13)

Terms like v1 · n arising in (11) can be simplified using integration by parts in (3) as follows [19]

v1 · n eiΦ = v2 · n eiΦ =

[
1 +

ω(s2 − 1)

2sε

]
eiΦ , (14)

where terms proportional to the total time derivative with respect to t1, which vanish upon inte-

gration over time in (3), are dropped. Substituting (12),(13) into (11) I derive

〈
R∗T,2RT,1

〉
=
ε′2 + ε2

2ε′2
(v1 · v2 − 1) +

M2

2ω2

ω

ε′

(
ε

ε′
+
ε′

ε

)
+
ω2m2

2ε2ε′2
. (15)

Explicit expression for the fermion trajectory in a plane perpendicular to magnetic field yields at

small τ :

v1 · v2 = 1− m2

ε2
− 1

2
ω2
Bτ

2 , (16)

where ωB = eB/ε is the synchrotron frequency. Thus, (15) takes form

〈
R∗T,2RT,1

〉
= −ε

′2 + ε2

2ε′2
ω2
Bτ

2 +
M2

2ω2

ω

ε′

(
ε

ε′
+
ε′

ε

)
− m2

εε′
. (17)

The longitudinal polarization is described by the four-vector εL = (s, n̂)/
√
s2 − 1, which satisfies

ε · k = 0 and ε2 = 1. Writing R = −j · ε and using the Ward identity j · k = 0 we have j0 = sj · n

implying that

j · εL =
j0s− j · n√

s2 − 1
=
√
s2 − 1 j · n . (18)
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Using (6) and (5) produces

RL = i
√

1− s2 ϕ∗p′(F + iσ ·G)ϕp . (19)

and 〈
R∗L,2RL,1

〉
= (1− s2)(F2F1 +G2 ·G1) , (20)

where

F =
1

2
√
εε′
√
ε+m

√
ε′ +m

[(ε′ +m)(n · p) + (ε+m)(p′ · n)] (21)

G =
1

2
√
εε′
√
ε+m

√
ε′ +m

[(ε′ +m)(n× p) + (ε+m)(n× p′)] , (22)

with p′ = p − k. In view of a small factor 1 − s2 in the right hand side of (20) we only need

to keep terms of the order one in expansion of F and G in powers of m2/ε2 and M2/ω2. Thus,

in view of (14) p · n ≈ ε, p′ · n ≈ ε′ and we have F ≈ 1, G ≈ − ω
2ε′ n × v. This implies that

G1 ·G2 ∝ 1− v1 · v2 ∼ m2/ε2 can be neglected and we derive〈
R∗L,2RL,1

〉
≈ M2

ω2
. (23)

The expression in the exponent of (3) upon expansion in τ and then in M/ω becomes

Φ = − ε
ε′
ωτ

[
1− sn · v +

ω

2ε
(s2 − 1) + sω2

B

τ2

24

]
≈ − ε

ε′
ωτ

[
1− n · v +

M2

2ω2

ε′

ε
+ ω2

B

τ2

24

]
. (24)

Substituting (17), (23) and (24) into (3) we obtain for the transverse and longitudinal vector boson

production rates

dẇT =
α

(2π)2

d3k

ω

∫ ∞
−∞

dτ exp

{
− iε
ε′
ωτ

[
1− n · v +

M2

2ω2

ε′

ε
+ ω2

B

τ2

24

]}
×
[
−ε
′2 + ε2

4ε′2
ω2
Bτ

2 +
M2

2ω2

ω

ε′

(
ε

ε′
+
ε′

ε

)
− m2

εε′

]
, (25)

dẇL =
α

(2π)2

d3k

ω

M2

ω2

∫ ∞
−∞

dτ exp

{
− iε
ε′
ωτ

[
1− n · v +

M2

2ω2

ε′

ε
+ ω2

B

τ2

24

]}
. (26)

One can do integrals over τ using equations (A1) and (A3) which yields the angular distribution

of the spectrum

dẇT
dωdΩ

=
α

π
ω

(
ε′

εωω2
B

)1/3 [M2

2ω2

(
ε

ε′
+
ε′

ε

)
ε+ ε′

ε′
− m2

εε′
+ 2 (1− n · v)

ε′2 + ε2

ε′2

]
×Ai

(
2

(
εω

ε′ωB

)2/3(
1− n · v +

M2ε′

2ω2ε

))
, (27)

dẇL
dωdΩ

=
α

π
ω

(
ε′

εωω2
B

)1/3 M2

ω2
Ai

(
2

(
εω

ε′ωB

)2/3(
1− n · v +

M2ε′

2ω2ε

))
, (28)
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where we used d3k = sω2dωdΩ ≈ ω2dωdΩ. Notice the follwing expression

2

(
1− n · v +

M2ε′

2ω2ε

)
≈ θ2 +

m2

ω2
+
M2ε′

2ω2ε
, (29)

which appears in the argument of the Airy function. It is proportional to the denominator of the

outgoing fermion propagator (2) and guarantees emission of vector boson into a narrow cone.

Integration over the photon directions is convenient to do in (25),(26) followed by integration

over τ [19]. The result is

dẇT
dω

=− αm2

ε2

{(
1− M2

2ωε′
ε2 + ε′2

m2

)∫ ∞
z

Ai(z′)dz′ +
( ε
ε′

)1/3 (ωB
ω

)2/3 ε2 + ε′2

m2
Ai′(z)

}
, (30)

dẇL
dω

=
αM2ε′

ω2ε

∫ ∞
z

Ai(z′)dz′ , (31)

where

z =
( ε
ε′

)2/3
(
ω

ωB

)2/3(m2

ε2
+
M2

ω2

ε′

ε

)
. (32)

B. Analysis of the spectrum

Vector boson spectrum (30),(31) is a function of ω and ε. Instead, we can express the spectrum

in terms of the boost-invariant dimensionless quantities X and ξ defined as follows:

X =

√
− e2

m6
(Fµνpν)2 ≈ ωBε

2

m3
=
eBε

m3
(33)

and

ξ =
ω

ωc
, (34)

where

ωc =
εX

2
3 +X

, (35)

is the characteristic frequency of the classical photon spectrum. Its is also convenient to denote

µ = M/m. In terms of these variables we can write

z =
ξ2/3

[2
3 +X(1− ξ)]2/3

+ µ2 [2
3 +X(1− ξ)]1/3(2

3 +X)

X2ξ4/3
, (36)

ε′ =
ωc
[

2
3 +X(1− ξ)

]
X

. (37)

Becasue ε′ ≥ 0, it follows form (37) that

ξ ≤ 2

3X
+ 1 . (38)
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When multiplied by ω, (30),(31) yield the radiation power. Dividing it by 3/2 of the total classical

photon radiation power αm2X2 we represent the spectrum in terms of the dimensionless quantities

Jλ(ξ,X, µ) =
ω

αm2X2

dẇλ
dξ

, λ = L, T . (39)

Their explicit form reads as follows

JT =− ξ

(2
3 +X)2

{[
1− µ2

(
2
3 +X

ξX
+

ξX
4
3 + 2X(1− ξ)

)]∫ ∞
z

Ai(z′)dz′

+
(2

3 +X)2 + [2
3 +X(1− ξ)]2

ξ2/3[2
3 +X(1− ξ)]1/3(2

3 +X)
Ai′(z)

}
, (40)

JL =
µ2[2

3 +X(1− ξ)]
X2ξ(2

3 +X)

∫ ∞
z

Ai(z′)dz′ . (41)

Airy function exponentially decays at large values of its argument, hence the spectrum is sup-

pressed at z � 1. Variable z as a function of ξ has a minimum z0 at ξ0 that depends on the

values of X and µ. The main contribution to the spectrum comes form the kinematic region z < 1

which exists only if z0 < 1. To determine z0 and ξ0 it is convenient to use instead of ξ an auxiliary

variable u:

u =
1

ξ

[
2

3
+X(1− ξ)

]
, (42)

z =
1

u2/3
+
µ2u1/3(u+X)

X2
. (43)

The minimum of z as a function of u is located at

u0 =
X

8

(√
1 +

32

µ2
− 1

)
. (44)

The corresponding value of ξ reads

ξ0 =
2
3 +X

u0 +X
=

2
3 +X

X

8

7 +
√

1 + 32
µ2

. (45)

At µ� 1, corresponding to an almost real photon,

u0 ≈
X√
2µ

, ξ0 ≈ µ
√

2
2
3 +X

X
, µ� 1 . (46)

Replacing X =
√

2u0µ in (43) we get

z0 ≈
3

2u
2/3
0

, µ� 1 . (47)

Thus, the condition z0 < 1 is satisfied only if X > 2.6µ. Otherwise, the spectrum is exponentially

suppressed.
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In the opposite case, which is realized e.g. in production of high invariant mass dileptons,

µ2 � 32 we have

u0 ≈
2X

µ2
, ξ0 ≈

2
3 +X

X
, µ� 4

√
2 , (48)

Comparing with (38), we observe that in this case the minimum of z is very close to the upper

cutoff of the boson spectrum (i.e. when the boson takes nearly all energy of the fermion). Using

X = u0µ
2/2 in (43) we have

z0 ≈
3

u
2/3
0

, µ� 4
√

2 . (49)

In this case z0 < 1 is satisfied if X > 2.6µ2 which is a much stronger condition than in the previous

case.

The main contribution to the spectrum arises from z ∼ 1, which for X and µ satisfying the

above constraints and taking (43) into account happens when u ∼ 1 fairly independently from the

value of µ. This statement has been verified numerically. In particular, according to (42) u ∼ 1

means that ξ ∼ 2
3 + X(1 − ξ). In weak fields X � 1, ξ ∼ 1 and so ω ∼ ωc ∼ εX, while in strong

fields X � 1, ξ ∼ Xε′/ωc (see (37)) implying that ε′ ∼ ω/X ∼ ε/X ∼ m3/eB [19].

These features of the spectrum are seen in Figs. 1–3. In Fig. 1 the transverse vector boson

spectrum as a function of ξ is shown at different values of X and µ. The transverse bosons are

much more abundantly produced than the longitudinal ones, which can be seen by comparing

Fig. 1(b) and Fig. 2. Therefore, Fig. 1 represents approximately the total spectrum. The general

trend observed in all figures is that the spectrum decreases with increase of µ. At larger µ it tends

to peak around ξ = 1. This is because with increase of µ, X also increases, see the text after

(48),(49); it follows from (48) that once X � 1, the typical ξ is about 1.

III. VECTOR BOSON SPECTRUM IN AN ARBITRARY FRAME

Consider now a reference frame K where fermions have an arbitrary direction of momentum.

It is convenient to change our notations. We will append a subscript 0 to all quantities pertaining

to the reference frame K0. Thus, for example, ε0 and ω0 are the fermion and vector boson energies

in K0, whereas ε and ω are the fermion and vector boson energies in K. Let the y-axis be in the

magnetic field direction B = Bŷ and V = V ŷ be velocity of K with respect to K0. Then the
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FIG. 1: Spectrum of transversely polarized vector bosons JT as a function of ξ. (a) µ = 0 and X = 0 (solid

line), X = 0.3 (dashed line), X = 3 (dash-dotted line). (b) µ = 0.3 and X = 0.15 (solid line), X = 0.3

(dashed line), X = 1 (dash-dotted line), X = 10 (dotted lines). (c) µ = 3 and X = 3 (solid line), X = 10

(dashed line), X = 30 (dash-dotted line), X = 100 (dotted lines). (d) µ = 10 and X = 100 (solid line),

X = 400 (dashed line), X = 1000 (dash-dotted line). Notice different scales of the x and y axes.

Lorentz transformation reads

px0 = px , 0 = py0 = γ(py + V ε) , pz0 = pz , ε0 = γ(ε+ V py) . (50)

kx0 = kx , ky0 = γ(ky + V ω) , kz0 = kz , ω0 = γ(ω + V ky) . (51)

B0 = B , (52)

where γ = 1/
√

1− V 2. It follows from the second equation in (50) that

V = −py
ε

(53)

and

ε0 =
√
ε2 − p2

y , ω0 =
ωε− pyky√
ε2 − p2

y

. (54)
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FIG. 2: Spectrum of longitudinaly polarized vector bosons JL as a function of ξ at µ = 0.3 and X = 0.15

(solid line), X = 0.3 (dashed line), X = 1 (dash-dotted line), X = 10 (dotted lines)
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FIG. 3: Spectrum of transversely polarized vector bosons JT as a function of µ at ξ = 1 and X = 0.3 (solid

line), X = 1 (dashed line) and X = 3 (dashed-dotted line).

Using the boost invariance of k · p we get

1− n0 · v0 =
ωε

ω0ε0
(1− n · v) , (55)

accurate up to the terms of the order m2/ε2 and M2/ω2.

Transformation of the photon emission rate reads [9]

dẇ

dΩdω
=

1

γ2(1 + V cos θ)

dẇ0

dΩ0dω0
=
ωε0

εω0

dẇ0

dΩ0dω0
, (56)

where θ is angle between the photon momentum k and the magnetic field, i.e. cos θ = ny. In the

last step we used (53) and (54). dẇ0 in the right-hand-side of (56) is given by (27) and (28) with

the replacements ε→ ε0, ω → ω0 etc.
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IV. VECTOR BOSON RADIATION BY A PLASMA

A system of electrically charged particles in thermal equilibrium in external magnetic field

radiates vector bosons at the following rate per unit interval of vector boson energy dω into a solid

angle dΩ:

dN

dtdΩdω
= 2Nc

∑
f

∫
dVd3p

(2π)3
f(ε)[1− f(ε′)]

dẇ

dΩdω
, (57)

where the sum runs over all charged particle species in plasma, and f(ε) are their distribution

functions. Integration over the fermion momentum can be done using a Cartesian reference frame

span by three unit vectors e1, e2,n, such that vector B lies in plane span by e1,n. In terms of the

polar and azimuthal angles χ and ψ we can write

v = v(cosχn+ sinχ cosψ e1 + sinχ sinψ e2) , (58)

B = B(cos θn1 + sin θ e1) . (59)

Element of the solid angle is do = d cosχdψ. In this reference frame

py =
p ·B
B

= εv(cosχ cos θ + sinχ cosψ sin θ) , (60)

ky =
k ·B
B

= k cos θ , (61)

n · v = v cosχ . (62)

Fermions moving in plasma parallel to the magnetic field direction do not radiate due to the

vanishing Lorentz force. Taking into account that at high energies fermions radiate mostly into

a narrow cone with the opening angle χ ∼ m/ε,M/ω (see (2)), we conclude that vector boson

radiation at angles θ . m/ε,M/ω can be neglected. Thus, expanding at small χ we obtain from

(54),(60)

ε0 ≈ ε sin θ , ω0 ≈ ω sin θ , θ >
m

ε
,
M

ω
. (63)

Omission of terms of order m/ε, Mω is consistent with the accuracy of (27),(28). Dependence of

the integrand of (57) on the fermion direction specified by the angles χ, ψ comes only through

(55), viz.

1− n0 · v0 =
1

sin2 θ

(
1− cosχ+

m2

2ε2

)
. (64)
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For this reason, integration over the quark momentum directions is similar to the one that led us

from (25), (26) to (30), (31) (in the K0 reference frame). Writing (57) as

dN

dtdΩdω
=

2Nc

(2π)3

∑
f

∫
dV
∫ ∞
ω

dε ε2f(ε)[1− f(ε′)]
∑
λ=L,T

∫
do

dẇλ
dΩdω

(65)

and substituting (56), (25), (26) (with appropriate notation changes as described in Sec. III) and

(63) we integrate first over do and then over τ with the following result∫
do

dẇT
dΩdω

=− αm2

ε2
sin2 θ

{(
1− M2

2ωε′
ε2 + ε′2

m2

)∫ ∞
zθ

Ai(z′)dz′

+(sin θ)2/3
( ε
ε′

)1/3 (ωB
ω

)2/3 ε2 + ε′2

m2
Ai′(zθ)

}
, (66)∫

do
dẇL
dΩdω

=
αM2ε′

ω2ε
sin2 θ

∫ ∞
zθ

Ai(z′)dz′ , (67)

where

zθ = (sin θ)−2/3
( ε
ε′

)2/3
(
ω

ωB

)2/3( m2

ε2 sin2 θ
+
M2

ω2

ε′

ε

)
. (68)

If magnetic field is a slow function of time and/or coordinates one can adopt an adiabatic

approximation and integrate (66) and (67) over the time and space which yields the total vector

boson multiplicity spectrum radiated into a unit solid angle. This is the formula that has been

recently employed in [26] for the calculation of the synchrotron radiation of real photons in heavy-

ion collisions, which is one of the outstanding problems in the high energy nuclear physics [27–34].

For practical applications in relativistic heavy-ion phenomenology it is customary to represent

the bosom spectra as functions of rapidity y and transverse momentum k⊥ with respect to the

collision axis z, in place of energy ω and emission angle θ with respect to the magnetic field. Let

α and φ be the polar and azimuthal angles of boson with respect to the collision axis. They are

related to ω and θ as follows [8]:

ω = k⊥ cosh y , cos θ =
sinφ

cosh y
. (69)

The differential boson multiplicity can be represented as

dN

dV dt d2k⊥dy
=

dN

dV dt ωdωdΩ
, (70)

where one should substitute (69) in the right-hand-side of (70).

In deriving (65)–(68) we assumed that plasma is relativistic, i.e. that fermion energy satisfies

ε ∼ T � m. This condition must hold not only for the current mass m, but also for the temperature

dependent contribution that fermions receive due to their interaction with the plasma. Evidently,
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this contribution must be small compared to the plasma temperature. This is true in a weakly

coupled plasma, such as the electromagnetic plasma, because fermion mass receives a correction of

order gT � T , where g is the coupling constant. As far as the quark-gluon plasma is concerned,

the coupling g is not small at temperatures relevant in experiment. In practice, effective quark and

gluon masses are treated as free parameters in models describing the quark-gluon plasma. Under

such circumstances accuracy of the ultra-relativistic limit used to derive (65)–(68) depends on a

particular model used to describe the plasma dynamics.

V. SUMMARY

In this paper we used the quasi-classical method to derive the synchrotron radiation rate of

massive vector bosons including virtual photons. The main result is expressed in formulas (27)–

(32) that give the vector boson radiation rate by a relativistic electrically charged fermion. They

describe spectrum and the angular distribution of ultra-relativistic vector bosons. Our analysis of

the mass dependence of the synchrotron spectra revealed that with increase of M , spectra become

increasingly monochromatic with energy ωc, given by (35). A more detailed structure is shown in

Fig. 1 and Fig. 2.

Eqs. (27)–(32) can be directly applied to investigate the space-time structure of magnetic field

and its dynamics in experiments with intense laser beams. In view of possible applications in high

energy nuclear physics and in astrophysics, we derived vector boson spectrum (65)–(68) radiated

by a relativistic plasma. These equations can be used, for example, to evaluate a contribution

of synchrotron radiation to the dilepton spectrum produced in relativistic heavy-ion collisions at

k⊥ > M and y = 0 and compare with the experimental data reported in [35].

These and other applications deserve full consideration in separate publications.
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Appendix A: Some useful integrals involving the Airy function Ai(z)

In the following integrals a, b are real numbers and z = a/(3b)1/3.

1

2π

∫ ∞
−∞

e−i[aτ+bτ3]dτ =
1

(3b)1/3
Ai(z) , (A1)

1

2πi

∫ ∞
−∞

τe−i[aτ+bτ3]dτ =
1

(3b)2/3
Ai′(z) , (A2)

1

2π

∫ ∞
−∞

τ2e−i[aτ+bτ3]dτ = − z

3b
Ai(z) , (A3)

1

2πi

∫ ∞
−∞

1

τ
e−i[aτ+bτ3]dτ =

∫ ∞
z

Ai(z′) dz′ , (A4)
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