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Abstract

We study Yangian-invariant deformations of scattering amplitudes
in 4d N = 4 super Yang–Mills theory and 3d N = 6 ABJM theory.
In particular, we obtain the deformed Graßmannian integral for 4d
N = 4 SYM theory, both in momentum and momentum-twistor
space. For 3d ABJM theory, we initiate the study of deformed scat-
tering amplitudes. We investigate general deformations of on-shell
diagrams, and find the deformed Graßmannian integral for this the-
ory. We furthermore introduce the algebraic R-matrix construction
of deformed Yangian-invariants for ABJM theory.
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1 Introduction
Recently it has become clear that the physics of scattering amplitudes contains a plethora of inter-
esting mathematical structures and unexpected symmetries.1 The prime examples for investigating
these phenomena are N = 4 super Yang–Mills and N = 6 super Chern–Simons (ABJM) [2] theory
in four and three dimensions, respectively. Both of these theories are believed to be equivalent to
an AdS/CFT-dual string theory, and both are believed to be completely integrable in the planar
limit.

In the context of scattering amplitudes, integrability is realized as a Yangian symmetry acting on
the external legs of the supersymmetric amplitude [3]. Equivalently, the Yangian can be formulated
as the combination of superconformal and dual superconformal symmetry, where—at least in four
dimensions—the latter arises from the duality between amplitudes and Wilson loops. The Yangian
symmetry is highly restrictive and, when combined with locality, completely fixes the tree-level
scattering matrix [4, 5].

Lately, it has been noticed that the tree-level S-matrix of N = 4 SYM theory can be identified
with the maximally length-changing contributions of the dilatation operator of the same theory [6].
The simplest example of this map is the four-point amplitude, which serves as an integral kernel
for the celebrated one-loop dilatation operator alias a super spin-chain Hamiltonian. Like the spin-
chain Hamiltonian, the four-point scattering amplitude can be obtained from an R-matrix which
depends on a spectral parameter z [7, 8]. Remarkably, this implies the existence of a deformation
of the tree-level four-point amplitude in the parameter z. Importantly, this deformation is still
Yangian-invariant. In fact, it is necessary to consider a corresponding deformation of the Yangian
generators known as the evaluation representation. This representation is more general than the
previously considered representation and thus allows for more general invariant functions of the
kinematical scattering data. Interestingly, if the evaluation parameters are all real, the deformed
Yangian generators preserve the positive Graßmannian.

It turns out that such deformed invariants also exist for higher multiplicities. The most natural
approaches to construct these invariants are closely related to the on-shell methods of Arkani-
Hamed et al. (see e.g. [9]). In four dimensions, in particular a diagrammatic approach has been
studied [7, 8, 10], as well as an R-matrix construction of Yangian invariants, similar in spirit to the
algebraic Bethe ansatz [11–13].

As these invariants are functions of the external data on which the S-matrix is defined, a natural
question is how they are related to the scattering amplitudes. Preliminary attempts to relate
these invariants to the BCFW [14] building blocks of scattering amplitudes via a uniform set of
deformation parameters, however, appear to break down when going beyond six points and the
MHV level [10]. More precisely, attempts to simultaneously deform all contributing BCFW terms
in a consistent fashion have failed so far.

To circumvent the above difficulties, instead of deforming the individual BCFW contributions,
one might consider embedding the BCFW terms into a parent integral with some unspecified
contour, and which depends on the deformation parameters. As one turns off the deformation, we
are allowed to choose the contour such that the integral reduces to the individual BCFW terms. In
this way, as the deformation parameters are introduced at the level of the parent integral, there is

1For example, see [1] for a recent review.
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a priori no inconsistency. Luckily such an integral already exists in the form of the Graßmannian
integral [15], and the first task is to introduce deformations such that Yangian invariance is preserved.

In the present paper, we study deformed scattering amplitudes in four-dimensional N = 4 super
Yang–Mills theory, and in three-dimensional N = 6 super Chern–Simons theory (ABJM). The
purpose of this work is the following:
• 4d: We present a deformed and Yangian-invariant Graßmannian integral and discuss its rôle

for further investigations of amplitude deformations. We review and summarize the recent
progress on deformed scattering amplitudes in N = 4 SYM theory in a compact form and
highlight the connections among different approaches.

• 3d: In four dimensions, the deformation parameters are to some extent associated with central
charges or deformed helicities of the external particles. The osp(6|4) algebra of ABJM theory
does not contain a central charge and the considered three-dimensional particles do not carry
helicity degrees of freedom. Thus it is interesting to ask whether or not integrable deformations
for ABJM theory exist as well. Indeed, we find that the four-point amplitude allows for
a one-parameter deformation which is invariant under the evaluation representation of the
Yangian algebra Y [osp(6|4)]. This deformed four-point vertex furnishes the building block
for invariants with higher multiplicities, which we construct along the lines of the on-shell
diagram methods of [9, 16]. We then propose a deformation of the orthogonal Graßmannian
integral introduced in [17] and show that it is consistent with the previous investigations.
Finally, we also introduce an algebraic R-matrix construction of deformed Yangian invariants
for the three-dimensional theory.

This paper is organized as follows. In Section 2 we review the construction of deformed Yangian
invariants in N = 4 SYM theory: In particular, we present the deformed Graßmannian integral in
Section 2.2, whose Yangian-invariance follows from the on-shell diagram formalism discussed in
Section 2.1 or the direct proof in Appendix B. We also obtain the deformed momentum-twistor
version of the Graßmannian. The study of deformed scattering amplitudes in three-dimensional
ABJM theory is initiated in Section 3: We demonstrate Yangian-invariance of the deformed four-
point amplitude in Section 3.1. We then propose a deformed orthogonal Graßmannian integral
and show its Yangian symmetry in Section 3.3. We explain how to build deformed Yangian-
invariant on-shell diagrams in Section 3.2, and introduce an algebraic R-matrix construction of
these invariants in Section 3.4. Finally, we comment on differences and similarities between the
four- and three-dimensional case and point out interesting directions for the future in Section 4.

Note added: While this manuscript was in preparation, we found out that the deformed Graß-
mannian integrals for N = 4 SYM theory (both in momentum space and in momentum-twistor
space) were independently obtained by L. Ferro, T. Łukowski and M. Staudacher [18]. We would
like to thank them for correspondence, and for discussions during the Strings 2014 conference.

2 Integrable Deformations in N = 4 SYM Theory
Recently, it has been found that on-shell diagrams allow for interesting deformations that maintain
the complete Yangian invariance [7,8,10]. Here, we will briefly summarize these ideas in preparation
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for the ABJM case below, and comment on a number of features of the deformations.
The Yangian level-one generators generically take the form2

Ĵa = fabc
n∑

i,j=1
i<j

Jbi J
c
j +

n∑
i=1

ui J
a
i , (2.1)

where Jai are the local level-zero generators acting on the leg i, and fabc are the structure constants
of the level-zero algebra. The evaluation parameters ui are set to zero in the undeformed case. For
the superconformal symmetry algebra psu(2, 2|4) in twistor variables,3 the level-zero and level-one
generators take the form [3]

JAB =
n∑
i=1

JAi B , JAi B = ZAi
∂

∂ZBi
− (trace) , (2.2)

ĴAB =
∑
i<j

(−1)C
[
JAi CJ

C
j B − (i↔ j)

]
+
∑
i

uiJ
A
i B , (2.3)

where A, B are fundamental su(2, 2|4) indices. The central charge operators read

Ci = −ZCi
∂

∂ZCi
. (2.4)

2.1 Deformed On-Shell Diagrams
Every on-shell diagram is either a BCFW term of a tree amplitude or loop integrand, or a leading
singularity of a loop amplitude [9]. In the following, we review the known integrable deformations
of general on-shell diagrams.

Three-Vertices. The basic building blocks for the deformed on-shell diagrams are the three-point
vertices

Â◦3 = α3

α2

1 3

2

=
∫ dα2

α1+a2
2

dα3

α1+a3
3

δ4|4(C◦ · Z) , Â•3 = α1

α2

1 3

2

=
∫ dα1

α1+a1
1

dα2

α1+a2
2

δ8|8(C• · Z) ,

(2.5)
where

C◦ =
(
1 α2 α3

)
, C• =

(
1 0 α1
0 1 α2

)
, (2.6)

and ZAi are twistor variables that parametrize the external states. Unlike the undeformed vertices
(with ai = 0), these vertices have non-vanishing eigenvalues ci under the action of the “local” central

2More about Yangian symmetry in the present context can be found in [3, 19, 20]. For general introductions,
see [21].

3For a definition of the twistor variables Zi, see [22]. In (2, 2) signature, ZAi = (µ̃α̇i , λ̃α̇i |ηAi ), where µ̃i is the
Fourier transform of the momentum spinor λi. Here, pµi = σµαα̇λ

α
i λ̃

α̇
i , and the anticommuting spinor ηAi , with

A = 1, . . . , 4, parametrizes the N = 4 on-shell superfield [23].
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charges (2.4), where
Â◦3 : c1 = a2 + a3 ≡ a1 , c2 = −a2 , c3 = −a3 ,

Â•3 : c1 = a1 , c2 = a2 , c3 = −a1 − a2 ≡ −a3 . (2.7)
They are invariant under the Yangian with evaluation parameters ui, where [10]4

Â◦3 : c1 = u3 − u2 , c2 = u1 − u3 , c3 = u2 − u1 ,

Â•3 : c1 = u2 − u3 , c2 = u3 − u1 , c3 = u1 − u2 . (2.8)
Converting the twistors back to spinor-helicity variables, the three-vertices evaluate to the deformed
amplitudes

Â◦3 = δ4(P ) δ4(Q̃)
[12]1+a3 [23]1−a2−a3 [31]1+a2

, Â•3 = δ4(P ) δ8(Q)
〈12〉1−a1−a2〈23〉1+a1〈31〉1+a2

. (2.9)

Here, [ij] ≡ εα̇β̇λ̃
α̇
i λ̃

β̇
j , 〈ij〉 ≡ εαβλ

α
i λ

β
j , P ≡

∑n
i=1 λiλ̃i, Q ≡

∑n
i=1 λiηi, and Q̃ ≡ ([12]η3 + [23]η1 +

[31]η2).

Gluing. All bigger on-shell diagrams Y can be built by iterating two gluing operations: Taking
products,

(Y1,Y2) 7→ Y1Y2 , (2.10)
and fusing lines,

Y(Z1, . . . ,Zn,ZI ,ZJ) 7→
∫
d3|4ZI Y(Z1, . . . ,Zn,ZI ,ZJ)

∣∣∣
ZJ=Z−I

, (2.11)

where Z−I is the twistor of line I with inverse momentum. Yangian invariance is preserved under
both of these operations. In addition to the twistor, each external line of a deformed diagram carries
two labels: A central charge ci and an evaluation parameter ui. When fusing lines of deformed
diagrams, Yangian invariance requires that [10]

cI = −cJ , uI = uJ . (2.12)
Successively applying these two operations generates all Yangian-invariant deformed on-shell
diagrams. Combining (2.12) with the invariance conditions (2.8) for the three-vertices, one finds
that the external central charges ci and the evaluation parameters ui of any invariant diagram must
obey [10] �

�
�

u+

i = u−σ(i) , (2.13)

where
u±i ≡ ui ± ci , (2.14)

and σ is the permutation associated to the diagram. The permutation is obtained as follows:
Starting at the external line i, follow a path through the diagram, turning left/right at each
white/black vertex. The external line at the end of the path will be σ(i).5

4An overall shift of all evaluation parameters ui is generated by the level-zero symmetry and is thus trivial, hence
all relevant parameters are captured by the differences of consecutive evaluation parameters.

5While every on-shell diagram has a unique permutation associated to it, the converse is only true for “reduced”
diagrams. See [9] for more details.
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General Deformed Diagrams. Every deformed on-shell diagram can be written as

Ŷ(1, . . . , n) =
∫ nF−1∏

j=1

dαj

α
1+aj
j

δ4k|4k(C · Z) , (2.15)

where nF is the number of faces of the diagram, αj are a minimal number of edge variables,6 and C
is the matrix constructed from the edge variables by “boundary measurement” as explained in [9].
The gluing conditions (2.12) together with the identifications (2.7) for the three-vertices imply that
the deformation parameter aj in the exponent of an edge variable αj equals the central charge on
the respective line up to a sign:

ci = ±ai . (2.16)
Here the sign is plus/minus if the arrow on the line points in the same/opposite direction as the
permutation path.

The constraints (2.13) impose n conditions on the 2n central charges and evaluation parameters,
hence it is clear that every diagram admits n− 1 independent non-trivial deformation parameters
(an additional parameter is the trivial uniform shift of all ui).

R-matrix Construction. Alternatively, (deformed) on-shell amplitudes can be constructed by
acting with a chain of R-matrices on a suitable “vacuum state”, where the action of the R-matrices
exactly corresponds to the insertion of a (deformed) BCFW bridge [11,12]. Each R-matrix /BCFW
bridge contributes an adjacent transposition σi to the (decorated) permutation σ associated with
the final diagram. Following the procedure of [9], we can associate a canonical decomposition into
transpositions σi,

σ = σ` . . . σ1 . (2.17)
The deformed amplitude (2.15) can then be written as

Ŷ(~u) = Rσ`(a`) . . . Rσ1(a1) δ4k|4k(Cvac · Z) , (2.18)
Here Cvac is a suitable “vacuum matrix”, which is a k × n matrix with k unit columns and (n− k)
zero columns. For example, for n = 6, k = 3, a valid choice is

Cvac =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

 . (2.19)

The operator Rσ=(ij) is defined by [11]

Rσ=(ij)(a)f(Z) =
∫ dα

α1+a f(Z)
∣∣∣∣
Zi→Zi+αZj

. (2.20)

This R-operator can be identified with (an integral kernel for) an R-matrix; the shift of Z in the
definition is nothing but the BCFW-shift. We can prove (2.18) by induction with respect to the
number of BCFW bridges.

This algebraic formulation is another way of demonstrating the Yangian invariance of the
amplitude (at the level of on-shell diagrams), and the integrable structures behind it. In Section 3.4
we provide a similar discussion for the ABJM theory.

6The edge variables are essentially BCFW shift parameters. Fixing a GL(1) gauge redundancy at each vertex,
their number can always be reduced to nF − 1.
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2.2 Deformed Graßmannian Integral
In this section we present the deformed Graßmannian integral7 for N = 4 SYM theory as a special
case of the above on-shell diagrams. Being embedded into the on-shell-diagram formalism already
implies the Yangian-symmetry of the deformed integral. We additionally demonstrate the Yangian
invariance of the Graßmannian integral explicitly in Appendix B.

The Graßmannian Integral. A special class of diagrams are the “top cells” [15]. These are
diagrams of maximal dimension (maximal number of integration variables). Their name stems
from the fact that all lower-dimensional on-shell diagrams are realized as (iterated) boundaries of
top-cell diagrams. They can be classified by the number n of external lines and the helicity

k = 2nb + nw − ni , (2.21)

where nb/w is the number of black/white vertices, and ni is the number of internal lines. For each
n and k, there is a unique top-cell diagram. It is the reduced diagram with the maximal number of
faces, nF = k(n−k)+1. Every boundary measurement on the top-cell diagram equals a gauge-fixed
version of the Graßmannian integral of [15],

Gn,k(Z1, . . . ,Zn) =
∫ dk·nC

|GL(k)|
1

M1+b1
1 . . .M1+bn

n

δ4k|4k(C · Z) , (2.22)

whereMi = |i, . . . , i+k−1| is the i’th minor of C. The integrand is invariant under C 7→ GL(k) ·C,
and |GL(k)| is the volume of the gauge group. The permutation associated to the top cell
simply is a k-fold cyclic shift, σ : {1, . . . , n} 7→ {n − k + 1, . . . , n, 1, . . . , n − k}. Noting that
ci = −(bi−k+1 + · · ·+ bi), the invariance conditions (2.13) imply�

�
�

bi = 1

2(u−i − u−i−1) = 1
2(u+

i−k − u+
i−k−1) , (2.23)

and hence ∑i bi = 0, which ensures GL(k) invariance. The Yangian invariance of (2.22), with
the parameters set to (2.23), can also be shown by directly acting with the Yangian generators,
see Appendix B.

Singularities and Residues. In the undeformed case, lower-dimensional on-shell diagrams
are obtained from the top cell (2.22) by localizing some of the integrations on residues. The
n-point, helicity k top-cell diagram is defined in terms of k(n− k) integrations, of which 2n− 4
can be performed trivially, using the bosonic delta functions. Iteratively localizing all remaining
integrations on a suitable combination of residues gives the tree-level amplitude An,k. In terms of
edge variables, taking a residue amounts to setting one edge variable to zero, and the residue is
given by the on-shell diagram with the corresponding edge removed. Hence tree-level amplitudes
are given by summing a certain set of on-shell diagrams.

In the presence of generic deformations, the integrations can no longer be performed on residues.
From the perspective of the gauge-fixed integral (2.15), one possibility to proceed is to just evaluate

7Note that the deformed Graßmannian formula as well as its momentum-twistor version discussed below, were
independently obtained in [18].
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the integral on the same contour as in the undeformed case. This requires to set the deformation
parameters aj to zero on the respective edge variables, as otherwise the contour would not be
closed, due to branch cuts. In this case, the result of the integration is a sum over the same set
of on-shell diagrams as in the undeformed case, where now each diagram is deformed. However,
setting some of the parameters aj to zero reduces the space of deformation moduli. In fact, it was
noted in [10] that for generic tree amplitudes, the constraints imposed by this procedure rule out
all deformations. In other words, the integral can only be localized by residues on a standard tree
contour when all moduli aj are set to zero. Setting the exponent of an edge variable α to unity
and localizing the integration by residue on α = 0 amounts to “undoing” a deformed BCFW bridge
(R-matrix insertion). The deformation parameters of the diagram obtained in this way from the
top cell will by construction satisfy (2.13) for σ being the k-fold cyclic shift of the top cell; but they
will also satisfy (2.13) for all intermediate permutations σ′ that lead from σ to the permutation of
the final diagram. Therefore, localizing the Graßmannian integral generates only a subspace of all
admitted deformations for all lower-dimensional diagrams.

Another perspective on the incompatibility of BCFW and deformations is provided by the
Graßmannian integral in its original, un-gauge-fixed form (2.22). In the undeformed case, the
tree-level amplitudes are given by the residues as the integral localizes on the zeros of the minors.
Thus an amplitude is identified with the locus of zeros for a collection of minors. To further admit
this localization, the exponents of these minors should be undeformed. As the number of BCFW
terms increases, eventually this collection of minors covers the whole set, and thus no deformation
is allowed. Indeed from [15], we see that in the seven-point NMHV case, the collection of minors
involved in the localization covers six of them, and since the sum of bi’s must vanish, there are no
admissible deformations left.

An alternative and perhaps more promising treatment for the deformed Graßmannian integral
(2.22) would be to leave the deformation parameters generic and to evaluate the integral by other
means on an appropriate contour. We will comment on this idea in Section 4 below.

Note on Positivity. There exists a remarkable relation between on-shell diagrams and the
positroid stratification of the Graßmannian [9]. The positroid stratification is the classification
of all distinct linear dependencies of consecutive columns in the C-matrix, and it turns out that
there is a one-to-one correspondence between inequivalent on-shell diagrams and inequivalent cells
in the stratification. An interesting property that can be associated with these cells is that there
exist parametrizations such that all non-vanishing minors are positive. It has been noted that the
Yangian generators generate diffeomorphisms that act on the Graßmannian in such a way that
positivity is preserved [9]. One may ask if the deformed Yangian generators can still be understood
as positivity-preserving diffeomorphism. This is indeed the case: The level-one generators are
deformed by terms uiZi ∂/∂Zi, which, when acting on the delta functions δ4k|4k(C · Z), translate
into ui

∑
aCai ∂/∂Cai, which is nothing but a little group scaling that simply rescales the i’th

column of the matrix C. Thus, as long as all evaluation parameters ui are real, positivity of the
cell is preserved.

2.3 Relation to Deformed Momentum-Twistor Invariants
Everything that has been stated above for on-shell diagrams in twistor variables Z is equally true
for on-shell diagrams in momentum-twistor variables W : Replacing Zi with Wi in the expressions
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(2.15,2.5,2.11,2.22), the resulting momentum-twistor diagrams are invariant under the momentum-
twistor Yangian8 with generators [24]

Îa = fabc
n∑

i,j=1
i<j

Ibi I
c
j +

n∑
i=1

vi I
a
i , (2.25)

IAB =
n∑
i=1

IAi B , IAi B =WAi
∂

∂WBi
− (trace) , Ci =WCi

∂

∂WC
i

. (2.26)

On the other hand, in the undeformed case it is known that for any invariant Y(W) of the
momentum-twistor Yangian, the expression

δ4(P )δ8(Q)
〈12〉〈23〉 . . . 〈n1〉 Y(W) , (2.27)

when transformed to twistor variables Z, is an invariant of the twistor-variable Yangian, and
vice versa [25, 24].9 It turns out that a similar statement holds in the deformed case. This
can be seen as follows: An explicit procedure for reducing any on-shell twistor diagram to a
corresponding momentum-twistor diagram is given in Section 8.3 of [9]. The deformation only
affects the integration measure, and hence the reduction procedure applies in exactly the same way
to the deformed diagrams. Under the reduction, the minors of the matrix C transform to minors of
the reduced matrix C̃ as

detC
∣∣∣
(i,...,i+k−1)

= 〈i, i+ 1〉〈i+ 1, i+ 2〉 . . . 〈i+ k − 2, i+ k − 1〉 det C̃
∣∣∣
(i+1,...,i+k−2)

. (2.28)

Hence the only modification in the deformed case is a deformation of the MHV tree prefactor in
(2.27). In particular, for the deformed top cell (2.22), one finds

Ĝn,k(Z) Z→W−−−→ δ4(P )δ8(Q)
〈12〉1+(u−1 −u

−
n−k+2)/2 . . . 〈n1〉1+(u−n−u−n−k+1)/2

Ĝn,k−2(W) , (2.29)

Ĝn,k(W) ≡
∫ dk·nC̃

|GL(k)|
1

M̃1+bn
1 M̃1+b1

2 . . . M̃
1+bn−1
n

δ4k|4k(C̃ · W) , (2.30)

where the M̃i are the minors of the reduced matrix C̃. At the same time, we know that the
momentum-twistor top cell Ĝn,k−2(W) by itself is invariant under the deformed momentum-twistor
Yangian (2.26,2.25) once we identify

b̂i ≡ bi−1 = 1
2(v−i − v−i−1) , v−i = vi − cdual

i , (2.31)

according to (2.23). Here, cdual
i = ci−1 are the eigenvalues of Ĝn,k−2(W) under the local central

charges Ci in (2.26). It follows that the deformed Graßmannian integral is invariant, both under
8Here, Wi ≡ (λαi , µα̇i |χIi ), with

µα̇i ≡ εαβ yα̇αi λβi , χi ≡ εαβ θαi λ
β
i , (2.24)

where the dual coordinates (yi, θi) are defined through yi − yi+1 = pi and θi − θi+1 = λiηi.
9The underlying reason is that the Yangian of the ordinary superconformal algebra with generators (2.2,2.3)

and the Yangian of the dual superconformal algebra with generators (2.25,2.26) in fact can be mapped to each
other [3, 24].
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the deformed original-twistor Yangian (2.3,2.2) and the deformed momentum-twistor Yangian
(2.25,2.26), once one identifies �

�
�

u−i − u−i−1 = v−i+1 − v−i , (2.32)

where the prefactor in (2.29) has to be taken into account in the invariance statement. The relation
(2.29) between invariants of the twistor Yangian and the momentum-twistor Yangian generalizes to
all deformed on-shell diagrams that can be obtained from the deformed Graßmannian formula by
localization on residues as explained above:

Ŷn,k(Z) Z→W−−−→ δ4(P )δ8(Q)
〈12〉1+(u−1 −u

−
n−k+2)/2 . . . 〈n1〉1+(u−n−u−n−k+1)/2

Ŷn,k−2(W) . (2.33)

Here the parameters u−i now satisfy additional constraints imposed by setting the appropriate
moduli bi to zero for the purpose of localizing the integrations. It would be interesting to understand
whether the equivalence (2.33) extends also to deformed diagrams that can not be obtained by
localizing the top cell, i.e. whose deformation parameters u−i are unconstrained. Also, it would
be interesting to check whether the deformed Yangians (2.3,2.2) and (2.25,2.26) still map to each
other as in the undeformed case.

2.4 Examples
Let us summarize the construction of invariant deformed diagrams, and close the discussion of N = 4
SYM deformations by commenting on some interesting examples, including curious deformations for
MHV amplitudes as well as an explicit exposition of the deformed six-point NMHV Graßmannian
integral.

Summary of Construction. Working out the admissible deformations for any given single
diagram works as follows [10]. First pick a perfect orientation and a set of (nF − 1) edge variables.
The candidate invariant then is (2.15), and the invariance constraints on the external central charges
c1,...,n, evaluation parameters u1,...,n, and edge variable parameters a1,...,nF−1 are the following: For
each left-right path10 from site i to site j, set u+

i = u−j , which also must equal the internal parameter
uint ± cint on each labeled edge along the path. Here the sign depends on the direction of the edge,
and the internal central charge cint equals the edge parameter a` on that edge, as follows from (2.7).

For diagrams that appear in BCFW decompositions of tree-level amplitudes, the number of
integrations (nF − 1) equals the number (2n − 4) of bosonic delta functions. In this case, the
expression for the diagram in terms of spinor-helicity variables can be worked out by solving the
delta function constraints for the edge variables, taking into account the resulting Jacobi factor. In
the case of MHV tree amplitudes (which are single top-cell diagrams), the minors (ij) of the matrix
C equal the spinor brackets 〈ij〉, and the edge variables are given in terms of these minors by
the function bridgeToMinors of the Mathematica package given in [26]. Comparing the measure
(α1 . . . α2n−4)−1 to the Parke–Taylor MHV denominator, one can directly infer the Jacobi factor
from the delta functions and write down the deformed amplitude.

10Turn left at each white vertex (MHV), turn right at each black vertex (MHV).
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MHV Amplitudes. For MHV amplitudes, the explicit deformations can be worked out and
analyzed using [26] as explained above. Let us briefly discuss these deformations (see also [8]).

For odd multiplicities, all ci can be expressed in terms of the ui, which remain free. The ci
among themselves only satisfy the single equation ∑n

i=1 ci = 0. When all u are set to zero, no
deformation remains. Conversely, there is no deformation with all ci = 0.

For even multiplicities, invariance requires that the sums of even/odd ci vanish separately:
n∑
i=1
i odd

ci = 0 ,
n∑
i=2
i even

ci = 0 . (2.34)

These cases admit a one-parameter family of solutions where all ci vanish, namely

(u1, . . . , un) = (z,−z, . . . , z,−z) , (2.35)

in this case the deformed amplitudes take the form

AMHV
n (z) = AMHV

n

(
〈12〉〈34〉 . . . 〈n− 1n〉
〈23〉〈45〉 . . . 〈n1〉

)z
. (2.36)

Note that cyclic shifts of these deformations amount to flipping the sign of z, such that the deformed
amplitude is invariant under two-site cyclic shifts.

When n = (6 mod 4), still all ci can be expressed in terms of the ui, which remain unconstrained;
and there is no deformation where all ui vanish. However when n = (4 mod 4), then not only do
the ci need to satisfy (2.34), but also the even and odd ui need to satisfy separate equations:

n∑
i=1
i odd

(−1)(i−1)/2 ui = 0 ,
n∑
i=2
i even

(−1)i/2 ui = 0 . (2.37)

As a consequence, not all ci can be expressed in terms of ui, and in addition to the solutions (2.35),
there is a two-parameter family of solutions with all ui = 0, namely

(c1, . . . , cn) = (co, ce,−co,−ce, . . . , co, ce,−co,−ce) . (2.38)

These deformations take the form

AMHV
n (c+, c−) = AMHV

n

(
〈12〉〈56〉 . . . 〈n−3, n−2〉
〈34〉〈78〉 . . . 〈n−1, n〉

)c+ (
〈45〉〈89〉 . . . 〈n1〉

〈23〉〈67〉 . . . 〈n−2, n−1〉

)c−
, (2.39)

where c± ≡ (co ± ce)/2. Note that this implies that MHV-amplitudes with n = (4 mod 4) allow for
a deformation without deforming the Yangian generators.

General Cells. The different types of deformations for MHV amplitudes discussed above can
be understood as follows: For a given n-point diagram with associated permutation σ, let Pσ be
the finest partition of {1, . . . , n} such that σ only permutes labels within individual parts of the
partition. Summing up the invariance conditions (2.13) for each part of the partition results in the
constraints

0 =
∑
j∈p

cj for all p ∈ Pσ , (2.40)
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where p denotes any single part of Pσ. For parts with an even number of elements one finds the
further conditions

0 =
∑
j∈p

(−1)ip(j)uj for all p ∈ Pσ with |p| even , (2.41)

where ip(j) denotes the position of j in p, i.e. the sign alternates. For p with |p| odd, one cannot
sum the invariance relations in a way that all cj drop out.

For MHV amplitudes, the permutation is a shift by two sites. When n is odd, the corresponding
partition is trivial, and there are no non-trivial constraints solely among u’s or c’s. When n is even,
the partition simply consists of a part that contains only odd sites and a part that contains only
even sites; hence the ci will satisfy the relations (2.34). The relations (2.37) solely among u’s will
only hold when n = (4 mod 4), in which case each of the two parts contains an even number of
elements. This kind of analysis straightforwardly generalizes to all top-cell diagrams.

The most extreme examples of partitions arise when the permutation satisfies σ(i) = j ⇔ σ(j) =
i. In this case, each part of the partition has only two elements, and the invariance conditions
simply become ci = −cj, ui = uj for each p = {i, j}. The simplest example of this type is given
by the four-point amplitude. As will become clear in Section 3.2, this case is relevant for ABJM
theory [16,27].

Remark. Curiously, one type of deformation was already mentioned in the literature long before
the idea of general invariance-preserving deformations was proposed in [7, 8]: Section 6 of [28]
discusses the possibility of deformations with non-vanishing central charges ci. In particular, a
specific deformation of the six-point NMHV top cell was identified, which has alternating exponents
on the minors in the Graßmannian integral. This specific deformation is not compatible with a
conventional BCFW decomposition though.

Six-Point NMHV Integral. In the NMHV case (k = 3), the momentum-twistor-space Graß-
mannian is G(1, n). For n = 6, after gauge-fixing the GL(1) and using the bosonic delta functions to
localize four of the integrations, one obtains a one-dimensional integral. The deformed momentum-
twistor integral then takes the form

Ĝ6,1(W) =
∫
dc

δ4(χ1 +∑5
i=2 a

∗
i (c− c∗i )χi + cχ6)

(c− c∗2)1+b2(c− c∗3)1+b3(c− c∗4)1+b4(c− c∗5)1+b5c1+b6
∏5
i=2(a∗i )1+bi

, (2.42)

where Wi = (Wi, χi) and

c∗2 = −〈3451〉
〈3456〉 , c∗3 = −〈4512〉

〈4562〉 , c∗4 = −〈5123〉
〈5623〉 , c∗5 = −〈1234〉

〈6234〉

a∗2 = +〈3456〉
〈2345〉 , a∗3 = +〈4562〉

〈2345〉 , a∗4 = +〈5623〉
〈2345〉 , a∗5 = +〈6234〉

〈2345〉 , (2.43)

with 〈1234〉 ≡ εABCDW
A
1 W

B
2 W

C
3 W

D
4 .

3 Integrable Deformations in ABJM Theory
In this section we initiate the investigation of integrable deformations of scattering amplitudes in
ABJM theory. Leading singularities of the N = 6 superconformal Chern–Simons matter theory,
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also known as ABJM theory, are invariant under the undeformed osp(6|4) Yangian algebra. These
leading singularities are equivalent to the residues of an integral formula: An integral over the
space of k null planes in a 2k-dimensional space, whose integration contour localizes on the zeros of
consecutive minors of the respective (k × 2k) matrix.11 Tree-level amplitudes again are given by
linear combinations of these leading singularities in which all unphysical poles cancel.

At four points, there is only one leading singularity and thus, without loss of generality, we
will consider the most general possible deformation of the four-point amplitude that is consistent
with the level-zero generators, i.e. the osp(6|4) superconformal symmetry. The deformation will
generically break the invariance under the original level-one generators. However, symmetry is
preserved if we deform the level-one generators appropriately, that is if we use the evaluation
representation of the Yangian with non-vanishing evaluation parameters.

The resulting four-point deformation will serve as a template from which we construct a
deformation of the orthogonal Graßmannian integral and the corresponding deformed symmetry
generators. It will also serve as the fundamental building block for constructing more general
deformed Yangian invariants, which are deformations of the residues of the undeformed Graßmannian
integral.

3.1 Deformed Four-Point Amplitude
Super-Poincaré invariance requires the four-point amplitude to be proportional to the (super)momentum
conserving delta functions. Dilatation invariance constrains the proportionality function to be
a degree −2 polynomial of 〈ij〉.12 We thus make the following natural ansatz for the deformed
four-point amplitude:13

A4(Φ̄1, Φ2, Φ̄3, Φ4)(z′) = δ3(P ) δ6(Q)
〈12〉1+z′〈23〉1−z′

≡ δ3(P ) δ6(Q) f(λ). (3.3)

Following [19], it is straightforward to see that this is invariant under the superconformal boost
(level-zero) generators, and thus under the full osp(6|4) level-zero symmetry algebra.

Invariance under the Level-One Momentum Generator. For Yangian invariance, we only
need to show the invariance under the level-one momentum generator; invariance under all other
level-one generators then follows from the commutation relations and the level-zero invariance. The
level-one momentum generator in the evaluation representation takes the form [19]

P̂αβ =
∑

1≤j<k≤n

1
2

[(
L

(α
jγ + δ(α

γ Dj

)
P
γβ)
k −Q

(αA
j Q

β)
k A − (j ↔ k)

]
+
∑
k

ukP
αβ
k . (3.4)

11Conformal three-dimensional Chern–Simons matter theories have non-trivial S-matrix elements for even-
multiplicity only. This is because only the matter fields carry physical degrees of freedom and dimensional
analysis forbids cubic couplings among the matter fields.

12Here, 〈ij〉 ≡ εαβλ
α
i λ

β
j , where the spinors λi parametrize the three-dimensional massless momenta as

pµi = σµαβλ
α
i λ

β
i for symmetric matrices σµ.

13There are two superfields in ABJM theory that take the form [19]

Φ(Λ) = φ4(λ) + ηAψA(λ) + 1
2εABCη

AηBφC(λ) + 1
6εABCη

AηBηCψ4(λ) , (3.1)
Φ̄(Λ) = ψ̄4(λ) + ηAφ̄A(λ) + 1

2εABCη
AηBψ̄C(λ) + 1

6εABCη
AηBηC φ̄4(λ) . (3.2)

Here Φ is bosonic while Φ̄ is fermionic.
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The single-site generators are given in Appendix A. Using the transformation properties of the
delta-functions, the symmetry equation simplifies to14

P̂αβA4(z′) = δ3(P ) δ6(Q)
( ∑

1≤j<k≤4

[
1
2P

γ(β
k

(
λ
α)
j ∂jγ + 1

2δ
α)
γ

)
f(λ)− (j ↔ k)

]
+

4∑
k=1

ukP
αβ
k f(λ)

)
. (3.5)

We know from [19] that the undeformed amplitude is invariant under P̂|uk=0, and thus only the
terms proportional to z′ remain when acting with P̂|uk=0 on the deformed amplitude. These terms
are generated when the bosonic derivatives act on the denominator of A4(z′). We can collect the
terms from the first term in the square bracket as follows:

Uαδ
k ≡

k−1∑
j=1

λαj ∂
δ
j f(λ) =



0 + . . . , k = 1 ,
−z′ λ

α
1 λ

δ
2

〈12〉 f(λ) + . . . , k = 2 ,(
−z′ λ

[α
1 λ

δ]
2

〈12〉 + z′
λα2 λ

δ
3

〈23〉

)
f(λ) + . . . , k = 3 ,(

−z′ λ
[α
1 λ

δ]
2

〈12〉 + z′
λ

[α
2 λ

δ]
3

〈23〉

)
f(λ) + . . . , k = 4 .

(3.6)

Here we only display the terms proportional to z′ since the rest is known to cancel in the undeformed
limit. Evaluating the symmetric and anti-symmetric contributions from Uαδ

k separately, we find15

1
2

4∑
k=1

Pγβ
k εγδU

(αδ)
k + (α↔ β) = +z′

[
Pαβ

2 −Pαβ
3

]
f(λ) ,

1
2

4∑
k=1

Pγβ
k εγδU

[αδ]
k + (α↔ β) = −z′

[
Pαβ

2 + Pαβ
3

]
f(λ) . (3.7)

Repeating the analysis for the term with (j ↔ k) in (3.5), we find (we relabel the summation
indices)

Ūαδ
k ≡

4∑
j=k+1

λαj ∂
δ
j f(λ) =


z′
(
λα2 λ

δ
1

〈12〉 + λ
[α
2 λ

δ]
3

〈23〉

)
f(λ) + . . . , k = 1 ,

−z′ λ
α
3 λ

δ
2

〈23〉 f(λ) + . . . , k = 2 ,
0 + . . . , k = 3, 4 ,

(3.8)

and thus

−1
2

4∑
k=1

Pγβ
k εγδŪ

(αδ)
k + (α↔ β) = +z′

[
−Pαβ

1 + Pαβ
2

]
f(λ) ,

−1
2

4∑
k=1

Pγβ
k εγδŪ

[αδ]
k + (α↔ β) = −z′

[
+Pαβ

1 + Pαβ
2

]
f(λ) . (3.9)

Combining the results from (3.7,3.9), we finally arrive at

P̂αβA4(z′) = δ3(P ) δ6(Q)
[
Pαβ

1 (u1 − z′) + Pαβ
2 u2 + Pαβ

3 (u3 − z′) + Pαβ
4 u4

]
f(λ) . (3.10)

14Here we use the notation X(αβ) = Xαβ +Xβα and X [αβ] = Xαβ −Xβα.
15We use that εγδεαδ = −δαγ and λ[α

j λ
β]
k = −εαβ〈jk〉, where we define ε12 = 1 = −ε12.
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Hence, requiring this expression to be proportional to the total momentum acting on the deformed
amplitude (i.e. to vanish), we find the following constraints on the parameters following from
invariance under the level-one momentum generator:

u1 − z′ = u2 = u3 − z′ = u4 = const . (3.11)

Alternatively, these constraints can be expressed as�
�

�

uk − uk−1 = (−1)k−1z′ , k = 1, . . . , 4 . (3.12)

In conclusion, the deformed four-point amplitude in (3.3) is invariant under the evaluation rep-
resentation of the Yangian generators of Y [osp(6|4)], provided that the level-one generators are
deformed as in (3.4) with the parameters ui related to z′ via (3.12).

Note that the deformation (3.3) changes the weight of A4(Φ̄, Φ, Φ̄, Φ) under exp(iπλi · ∂/∂λi) for
i = 1, 3, but not for i = 2, 4. That is, the deformation deforms the phase of the fermionic legs, but
preserves the phase of the bosonic legs. For further comments on this, see the discussion around
(3.49) below.

In the next two sections we will discuss deformed invariants at higher multiplicities. First we
will construct bigger deformed on-shell diagrams by gluing four-point vertices. Next we show the
invariance of the deformed Graßmannian integral explicitly.

3.2 Gluing Invariants
All ABJM on-shell diagrams can be constructed by iteratively gluing four-point vertices together [9,
16]. Along the lines of the four-dimensional case [10] reviewed in Section 2.1 above, the gluing
procedure can be split into two steps that need to be iterated: Taking products of diagrams, and
fusing lines. In the following we will show that the gluing procedure indeed preserves the Yangian
invariance also in the deformed case, provided that the deformation parameters are identified
appropriately. For showing invariance, we will use the completely general form (2.1) of the n-point
Yangian level-one generators.

Products. Given two diagrams Y1(1, . . . ,m) and Y2(m + 1, . . . , n) that are invariant under
the m-point and (n − m)-point Yangian algebras with evaluation parameters {u1, . . . , um} and
{um+1, . . . , un}, the product

Y ′(1, . . . , n) = Y1(1, . . . ,m)Y2(m+ 1, . . . , n) (3.13)

is invariant under the n-point Yangian algebra with evaluation parameters {u1, . . . , un}:

ĴaY ′ =
(
ĴaY1

)
Y2 + Y1

(
ĴaY2

)
+ fabc

(
JaY1

)(
JbY2

)
= 0 . (3.14)

Fusion. From any invariant (n+ 2)-point diagram Y(1, . . . , n, n+ 1, n+ 2), one can construct an
n-point diagram by fusing two adjacent external lines,

Y ′(1, . . . , n) =
∫
d2|3Λd2|3Λ′ δ2|3(Λ− iΛ′)Y(1, . . . , n, Λ, Λ′) . (3.15)
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Here we will use the kinematical variables ΛA = (λα, ηA) with α = 1, 2 and A = 1, 2, 3.16 The
diagram Y ′ will be invariant under the n-point Yangian algebra with evaluation parameters
{u1, . . . , un} provided that �

�
�

un+1 = un+2 . (3.16)

Both the level-zero and the level-one invariance of Y ′ can be shown straightforwardly, using the
(n+ 2)-point invariance of Y and the fact that∫

d2|3Λd2|3Λ′ δ2|3(Λ− iΛ′)
(
JaΛ + JaΛ′

)
f(Λ,Λ′) = 0 (3.17)

for any function f . The latter can be verified directly with the explicit osp(6|4) generators given in
Appendix A. Using the invariance of Y , the action of the level-one generator on Y ′ can be written
as

Ĵa1...n Y ′(1, . . . , n) = −fabc
∫
d2|3Λd2|3Λ′ δ2|3(Λ− iΛ′)

·
(

n∑
i=1

Jbi
(
JcΛ + JcΛ′

)
+ JbΛJ

c
Λ′

)
Y(1, . . . , n, Λ, Λ′) . (3.18)

The first term in the parentheses vanishes due to (3.17). Again using (3.17), the second term can
be rewritten as JbΛJcΛ ' 1

2 [JbΛ, JcΛ] = 1
2f

bc
dJ

d. Hence, this term is proportional to fabcf bcd, which
vanishes for osp(6|4), as it does for psu(2, 2|4), since the dual Coxeter number is zero.

The above procedure of taking products and fusing lines allows to fuse two legs from different
diagrams, or two legs sitting on the same diagram. Note, however, that the two fused legs have to
correspond to different multiplets, i.e. to fields Φ and Φ̄, and that they must be adjacent.

Four-Vertex. We have seen above that the deformed Yangian-invariant four-vertex reads17

A4(Φ̄i, Φj, Φ̄k, Φ`)(z′) = `j

ī

k̄

z′ = δ3(P ) δ6(Q)
〈ij〉1+z′〈jk〉1−z′

= δ3(P ) δ6(Q)
〈kl〉1+z′〈li〉1−z′

, (3.19)

where the Yangian evaluation parameters ui,j,k,` need to satisfy

ui = uk , uj = u` , z′ = ui − uj . (3.20)

All bigger deformed on-shell diagrams can be constructed from this four-vertex by applying the
invariance-preserving operations described above. For this purpose, it is most useful to write the
vertex (3.19) in a gauge-fixed integral form18

A4(z) =
∫ dθ

sin(θ)1+z δ
4|6
(
C(θ) · Λ

)
, (3.21)

16Some care needs to be taken in the definition of the on-shell integration over d2|3Λ, see e.g. [29]. Throughout
this work, such integrations will always be localized on delta functions.

17The last equality follows from 〈ij〉 = ±〈kl〉, 〈jk〉 = ±〈li〉 (with aligned signs) due to momentum conservation.
18The domain of integration has to be chosen such that the delta functions localize the integral on a single point.

For real kinematics in Minkowski space, a valid choice for the integration domain is [0, π).
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where the C-matrix C(θ) is given by [16]:

C(θ) =
(

1 0 i sin θ i cos θ
0 1 −i cos θ i sin θ

)
. (3.22)

It is easy to see that z = −z′ for this choice of C-matrix. In general, the relative sign between z and
z′ depends on which columns of C(θ) are set to unit vectors. Therefore, as we build up a general
on-shell diagram, we need to keep track of which columns of C(θ) are set to unity. A convenient
way of keeping track is to decorate the lines connected to each vertex with two incoming and two
outgoing arrows, where the former indicates that these columns form the unit matrix. We will only
consider the cases where the two incoming arrows are adjacent, which leads to a constraint on z
included in the following figure:

z = uj − uk

uj

uk
. (3.23)

The sign of z is determined by the following rule: Start with a line associated with the parameter
uj and compare its arrow to the clockwise neighboring line associated with uk. If both arrows have
the same orientation with respect to the vertex, then z = uk − uj; if the arrows have opposite
orientations, then z = uj − uk. As we will see further below, the lines in (3.23) will be identified
with the rapidity lines of integrable models, and the parameters ui with rapidity parameters.

General Deformed Diagrams. Any reduced 2k-point on-shell diagram of ABJM theory can
be drawn as k straight lines that intersect,19 where each intersection is a four-point on-shell vertex.
Turning on the deformations, there is one deformation modulus zi for each four-vertex, where i labels
the vertices in the respective diagram. For the larger diagrams, the invariance conditions (3.23)
for each four-vertex, and the invariance conditions (3.16) from fusing lines must be respected. It
immediately follows that for every invariant 2k-point diagram, there remains exactly one evaluation
parameter for each of the k straight lines, as the evaluation parameters ui on glued lines need to be
identified. For example for the following diagram we have:

3̄

2

8

1̄

4

5̄

7̄

6

u1 = u6 ,

u2 = u5 ,

u3 = u8 ,

u4 = u7 .

19For reduced diagrams, any two lines intersect at most once.
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Φ2 Φ6

Φ̄1

Φ̄5

Φ8

Φ4

Φ̄7

Φ̄3

u1

u2

z1 z4

z6

z5

z3

z2
u3

u4

Figure 1: An example of a deformed on-shell diagram with the invariance constraints
given by (3.24).

Each vertex deformation modulus zi is in turn determined to be the difference of the evaluation
parameters on the lines that pass through the vertex according to (3.23). As an example, the zi’s
in Figure 1 are given by:

z1 = u2 − u1 , z2 = u3 − u1 , z3 = u4 − u1 ,

z4 = u3 − u2 , z5 = u4 − u2 , z6 = u4 − u3 . (3.24)

For generic diagrams, the conditions (3.23) not only determine the vertex moduli, but also induce
constraints among them: For each closed loop, ∑i(±zi) = 0, where i enumerates the vertices along
the loop, and where the sign depends on the relative directions of arrows along the loop at the
respective vertex.

In summary, every 2k-point diagram admits a (k − 1)-parameter family of deformations, where
the (k− 1) parameters are given by the evaluation parameters u1...k on the k lines, modulo a trivial
overall shift of all ui’s.

As described in [16], the vertex (3.21) provides “canonical coordinates”, which means that
gluing multiple such vertices produces no Jacobian from combining the delta functions; that is a
general (deformed) diagram constructed in this way takes the simple form

Y(Λ) =
∫ dθ1

sin(θ1)1+z1
. . .

dθ`
sin(θ`)1+z`

δ2k|3k
(
C(θi) · Λ

)
, (3.25)

where the orthogonal matrix C(θi) can be read off algorithmically from the diagram.

Deformed Triangle Move. Undeformed on-shell diagrams are invariant under triangle moves,
which take one line past the intersection of two other lines [9, 16]. The triangle move amounts to
a change of integration variables in the Graßmannian integral that preserves the canonical form
(3.25) in the undeformed case. Not surprisingly, this remains true without modifications in the
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deformed case:

Φ2 Φ̄5

Φ̄1

Φ4

Φ6

Φ̄3

z1 u2 z2

u1 u3

z3

=
Φ̄5Φ2

Φ4

Φ̄1

Φ̄3

Φ6

z3

u2

z2 z1

u3 u1 . (3.26)

The triangle equality holds regardless of the orientations of the three lines, as long as the orientations
are the same on both sides of the equation. Note that this result is consistent with the invariance
constraints (3.23). In fact, it is not a coincidence that this diagrammatic equation looks very much
like the Yang–Baxter equation, as will become more clear in Section 3.4 below.

Invariance and Permutations. Due to the triangle equality (3.26), every (deformed) reduced
diagram is uniquely specified by a permutation σ that simply interchanges pairs of external legs.
In other words, σ is composed of pairwise commuting transpositions, and σ2 equals the identity
permutation. The invariance equations for the evaluation parameters then take the rather trivial
form �

�
�

ui = uσ(i) . (3.27)

In order to identify the vertex deformation moduli zi, one needs to decorate the 2k-point diagram
with arrows such that each line (connecting legs i and σ(i)) carries a definite orientation. Then k
columns of the C-matrix form the identity matrix, and each four-vertex is of the form (3.23), such
that the zi can be read off.

Deformed BCFW Decomposition. Tree-level amplitudes in ABJM theory can be decomposed
into a sum of BCFW terms [30], where each term is an on-shell diagram [16]. An interesting
question is whether higher-point tree-level amplitudes can be consistently deformed by deforming
each diagram in the sum, using the same evaluation parameters for each diagram. The six-point
amplitude consists of a single triangle-shaped diagram as in (3.26), and thus allows for a two-
parameter family of deformations. The diagrams for the eight- and ten-point amplitudes are given
explicitly in [16]. The eight-point tree-level amplitude consists of two terms, in which the lines
connect the eight points as {[15][27][36][48]}, {[14][26][37][58]}. Hence it allows for a one-parameter
deformation in terms of u1 − u2, where u1 = u4 = u5 = u8, and u2 = u3 = u6 = u7. The ten-point
amplitude consists of the five terms:

{[14][27][39][58][6, 10]}, {[14][26][38][58][6, 10]}, {[16][29][37][4, 10][58]},
{[17][29][36][48][5, 10]}, {[15][28][36][49][7, 10]}. (3.28)

Combining the resulting invariance constraints enforces that all evaluation parameters must be
equal, and hence there is no non-trivial deformation at ten points. In fact, the (2p + 4)-point
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tree-level amplitude consists of (2p)!/(p!(p + 1)!) diagrams [16]. Since each diagram implies a
different set of constraints, the number of constraints at higher points by far outweighs the number
of parameters, and hence a consistent deformation of the BCFW decomposition beyond eight points
cannot be expected.

Branches. Similar to the N = 4 SYM case, every ABJM on-shell diagram is an integral over a cell
in the orthogonal Graßmannian [9, 16]. Every cell in the orthogonal Graßmannian in fact consists
of two distinct branches. The two branches can be distinguished by the ratios of non-overlapping
minors

Mj/Mj+k = ∓1 . (3.29)

In gluing on-shell diagrams, this subtlety is reflected in the matrix C(θ) of the four-point vertex
(3.21), where

OG2,± : C(θ) =
(

1 0 ±i sin θ ±i cos θ
0 1 −i cos θ i sin θ

)
. (3.30)

Note that these two C-matrices are not related by any coordinate transformation. While it may
appear that there are 2nv distinct branches for a given on-shell diagram with nv vertices, most of
them are related by coordinate transformations, leaving only two distinct branches. Denoting the
branches at each vertex by a sign, the branch of the final C-matrix is simply the product of all
signs of the individual vertices. Since each branch is individually Yangian invariant, we restrict
ourselves to diagrams built from the positive branch of the four-vertex. Generalizing to include the
other branch is straightforward.

3.3 Deformed Orthogonal Graßmannian
In this section we consider integrable deformations of the orthogonal Graßmannian integral of
ABJM theory. As in four dimensions, the deformation under consideration is again a modification
of the power of the minors, which are the only admissible deformations that maintain GL(k)
invariance. We will first map the deformation parameters of the four-point Graßmannian to that
of the four-point amplitude. Then we will show that for general multiplicities, the deformed
Graßmannian is invariant under Yangian symmetry, provided that the deformation parameters
obey a set of constraints that are a generalization of the four-point constraints (3.12).

Proposal for the Deformed Graßmannian. We consider the following deformation of the
orthogonal Graßmannian integral:

G2k(bi) =
∫ dk×2kC

|GL(k)|
δk(k+1)/2(C · CT) δ2k|3k(C · Λ)∏k

i=1 M
1+bi
i

. (3.31)

The undeformed integral was originally proposed in [17]. Here C ·CT ≡ ∑iCaiCbi is a k×k-symmetric
matrix whose vanishing implies that the Graßmannian matrix C consists of k n-dimensional null-
vectors. We will denote the orthogonal Graßmannian G(k, 2k) as OGk. For the integral to be
GL(k) invariant, the deformation parameters bi must satisfy the relation ∑k

i=1 bi = 0. When all bi
vanish, this reduces to the formula given in [17].
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Figure 2: The ABJM top-cell diagram.

Relation to the Four-Point Amplitude. For the simplest case of k = 2, the relation between
z′ in (3.3) and b1 in (3.31) can be deduced by simply using the bosonic delta functions to localize
the Graßmannian integration variables. More precisely, let us begin with the following integral,
where we already used that b1 + b2 = 0 in (3.31):

G4(b1,−b1) =
∫ d2×4C

|GL(2)|
δ3(C · CT) δ4|6(C · Λ)

M1+b1
1 M1−b1

2
. (3.32)

We work with the gauge

C =
(

1 0 C13 C14
0 1 C23 C24

)
, (3.33)

and the momentum delta function δ4(C · λ) gives [30]

δ4(C · λ) = 1
〈34〉2

∏
r,s

δ4
(
Cr,s − C∗r,s

)
,

(
C∗13 C∗14
C∗23 C∗24

)
= − 1
〈34〉

(
〈14〉 〈31〉
〈24〉 〈32〉

)
. (3.34)

Substituting the solutions into (3.32), we find the following deformed amplitude:

A4(b1) = δ3(P )δ6(Q)
〈12〉1+b1〈23〉1−b1

. (3.35)

Setting b1 = z′, we see that the above deformation of the Graßmannian indeed induces the same
deformed four-point amplitude as in (3.3).

Relation to Deformed On-Shell Diagrams. For higher multiplicities, we first note that the
deformation of the Graßmannian integral can be obtained from the deformed on-shell diagrams
simply by considering the top-cell diagram. The 2k-point top cell has dimension k(k − 1)/2. All
2k-point diagrams consist of k lines, and each four-vertex contributes one integration variable.
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Hence, in the top-cell diagram, each of the k lines has to cross each other line exactly once. Modulo
triangle moves, this diagram is unique. A canonical representative is sketched in Figure 2. Iteratively
building up the top cell by gluing four-vertices (3.21), the top-cell integral will take the form (3.25),
with ` = k(k − 1)/2. Comparing that form to the deformed Graßmannian integral formula (3.31),
one could in principle read off the relation between bi and zi, and in turn express bi in terms of the
Yangian evaluation parameters ui.

In four dimensions, we saw that the invariance conditions for the top cell directly lead to the
simple relation (2.23) between the exponents bi and the parameters u±i , which are the natural
deformation moduli from the on-shell diagram perspective. The relation followed from a direct
identification of the central charges ci in terms of the exponents bi.

However, the symmetry algebra osp(6|4) of ABJM theory does not admit a central extension,
and thus there are no central charges that could be deformed.20 Hence, the relation between the
exponents bi and the evaluation parameters ui apparently cannot be deduced directly. Below, we
will therefore derive the invariance relations by directly acting with the Yangian generators on the
deformed Graßmannian integral.

Yangian Invariance of the Deformed Graßmannian. For the four-point example, we have
deduced that the relation between the deformation parameter of the Graßmannian integral and
the evaluation parameters is given by (3.12), with b1 = z′. We now proceed to derive the general
n-point relations.

For compactness we present the level-zero and level-one generators in Λ-space. For the invariance
under the level-zero algebra, note that the level-zero generators take the form

ΛAi Λ
B
i , ΛAi

∂

∂ΛBi
,

∂

∂ΛAi

∂

∂ΛBi
. (3.36)

The invariance follows, respectively, from the momentum conservation, delta function constraint
δ2k|3k(C · Λ), and the orthogonality of C [17].

The undeformed level-one generators ĴAB with two upper indices of the same statistics (Pab

and RAB) can be written as [19]

Ĵ(AB] =
(∑
l<i

−
∑
i<l

)(
(−1)|C|Λ(A

l

∂

∂ΛCl
ΛCi Λ

B]
i + Λ

(A
i Λ

B]
i

2

)
, (3.37)

where the indices (A, B] are understood to be (anti)symmetrized if A and B denote indices
of sp(4) (su(3)). Here we will simply consider the case where they have the same statistics,
since invariance under all other generators follows from the osp(6|4) algebra.21 We first rewrite
(∑l<i−

∑
i<l) = 2∑l<i−

∑
i,l +

∑
i=l. Then for Ĵ(AB], this amounts to

Ĵ(AB] '

2
(∑
l<i

Λ
(A
l Λ

B]
i Λ
C
i

∂

∂ΛCl
+ Λ

(A
i Λ

B]
i

2

)
+
∑
i

Λ
(A
i Λ

B]
i Λ
C
i

∂

∂ΛCi

 , (3.38)

20More concretely, the scattering amplitudes and the Graßmannian integral for ABJM are not eigenstates of the
local scaling operators Λi · ∂/∂Λi; see also the discussion around (3.49) below.

21The level-one generators Ĵ transform in the adjoint representation of the level-zero algebra.
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up to terms proportional to level-zero generators. As the invariance of the undeformed orthogonal
Graßmannian was not proved in the literature, we provide the details in Appendix C. The crucial
step in the proof, as pointed out for the four-dimensional case in [24], is to realize that ΛCl ∂/∂ΛCi
acts only on the delta functions and can be converted into a rotation generator acting on the
Graßmannian variables:

ΛCi
∂

∂ΛCl
−→ Ol

i ≡
∑
a

Cal
∂

∂Cai
. (3.39)

Using integration by parts, the linear operator then acts on the integration measure. This operator
simply replaces column i of the matrix C by column l, that is Ol

iMp = M i→l
p , if p ≤ i ≤ p+k−1 and

l < p, while its action vanishes otherwise. As we demonstrate in Appendix C, it is straightforward
to show that ∑

l<i

ΛAi Λ
B
l Ol

iMp =
p−1∑
l=1

ΛBl Λ
A
l Mp . (3.40)

In other words, the minors transform covariantly under the operator Ol
i. Note that one must be

careful as the integral formula has a GL(k) symmetry and is well defined only after gauge fixing.
Thus, to prove the invariance of the integral, one should either introduce a gauge-fixing function,
on which Oi

l acts, or directly work with the gauge-fixed integral.
For consistency, we will proceed with the gauge-fixed integral with the columns 1 through k of

the matrix C set to the unit matrix:
1 · · · 0 C1,k+1 · · · C1,2k

0 · · · 0 ... ... ...
0 · · · 1 Ck+1,2k · · · Ck,2k

 . (3.41)

We see that for k ≤ i the operator Ol
i is defined simply by replacing Cai → Cal or Cai → δal.

However, for i < k the operator requires careful treatment. For the four-dimensional case, this
situation was discussed in detail in [24], where it was shown that for i ≤ k, Ol

i should be replaced
by Ni l ≡

∑2k
r=k+1 Clr

∂
∂Cir

, which is nothing but a GL(k) rotation on the rows of the unfixed part
Cai of the gauge-fixed C-matrix. Thus ∑i<lNi lMp = 0 for k < p ≤ 2k, whilst Ni lMp = −M l→i

p

for p ≤ k.
Collecting these results, and noting that since the undeformed Graßmannian integral vanishes

under Ĵ(AB], we can focus solely on the extra terms that are generated due to the additional
exponents bi of the measure. These additional terms are given by

Ĵ(AB]G2k(bi) = G2k(bi)
2k∑
j=1

(
k∑

l=j+1
2bl − b′j

)
Λ

(A
j Λ

B]
j , (3.42)

where b′j is defined as: (
k∑
a=1

Caj
∂

∂Caj

)
1∏k

i=1 Mi(C)bi
= b′j

1∏k
i=1 Mi(C)bi

. (3.43)

Note that unlike in N = 4 SYM theory, the eigenvalue b′j does not correspond to a central charge.
We will further comment on this point below. In terms of the exponents bi, the eigenvalue b′j
expands to

− b′j =

b1 + · · ·+ bj j ≤ k

bj−k+1 + · · ·+ bk j ≥ k .
(3.44)
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To retain Yangian invariance, it is necessary to deform the level-one generators by

Ĵ(AB] → Ĵ(AB] +
2k∑
j=1

uj Λ
(A
j Λ

B]
j , (3.45)

where, for general n = 2k, the relation between the deformation parameters is given by

k∑
l=j+1

2bl + u−j = constant . (3.46)

Here, we define u−j = uj − b′j, and the constant must be independent of j. This implies

1
2(u−j − u−j−1) =

bj for j ≤ k

0 for j > k .
(3.47)

Using (3.44), these conditions can be rewritten as�
�

�

uj = uj+k , bj = uj − uj−1 , 1 ≤ j ≤ k . (3.48)

In particular, this reproduces (3.27) for the permutation σ of the top cell, which is just a cyclic shift
by k sites. Note that (3.46,3.47) closely resemble the constraints (B.8,2.23) of the four-dimensional
case. For four points, we have b1 = 1

2(u−1 − u−4 ) and b2 = 1
2(u−2 − u−1 ), which, combined with

b1 + b2 = 0, implies u4 = u2 and b1 = u1 − u2, in agreement with (3.12).

Little Group and Fermion Number. In our discussion of the invariance of the deformed
Graßmannian integral, we encountered the scaling operator fj = ΛCj ∂/∂Λ

C
j , which acts on the

external scattering data as
fj = λαj

∂

∂λαj
+ ηAj

∂

∂ηAi
. (3.49)

This operator generates the three-dimensional little group Z2: The exponentiated operator

Fj ≡ exp (iπ fj) (3.50)

commutes with the whole osp(6|4) algebra, and the amplitude transforms according to

Fj A(1̄23̄ . . . 2k) = (−1)jA(1̄23̄ . . . 2k) . (3.51)

As pointed out in [19], this equation looks similar to the local central charge constraint in N = 4
SYM theory. The group-like operator Fj measures the fermion number, i.e. whether the external
leg j is a bosonic or fermionic superfield Φ or Φ̄, respectively.

An obvious question is how the deformed invariants behave under the operator Fj. For the
deformed four-point amplitude (3.3) the answer is simple and similar to the central charge constraint
in four dimensions: While the local invariance under Fj is broken (only for the fermionic legs
though), the global constraint given by ∏j FjA4 = A4 is preserved. Here we consider the product
of Fj due to the group-like structure of the operator F as opposed to f.
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Note that the superfield in N = 4 SYM theory has a similar inconspicuous symmetry under the
operator

F4d
j = exp iπ

(
λαj

∂

∂λαj
+ λ̄α̇j

∂

∂λ̄α̇j
+ ηAj

∂

∂ηAj

)
: F4d

j An = +An . (3.52)

This corresponds to the fact that Φ(−Λ) = Φ(Λ), i.e. to the statement that the total number of
spinors in all terms of the bosonic superfield is even, or even more simple: the bosonic superfield is
bosonic. Note that F4d

j is not generated by the central charge Ci. The breaking of the local fermion
number operators Fj and F4d

j in three and four dimensions, respectively, demonstrates the anyonic
character of the above deformations.

The Cells of the Deformed Graßmannian and BCFW. The integral in (3.31) is a k(k−1)/2-
dimensional integral representing the top cell, and it is invariant under the deformed Yangian.
Here the evaluation parameters ui of the level-one generators are constrained by (3.48). The
bosonic delta function δ2k(C · λ) imposes (2k−3) constraints, and thus the top cell has dimension
(k−2)(k−3)/2. If some of the deformation parameters are turned off, then one can localize the
top cell by residues on poles in the respective minor to obtain lower-dimensional cells, and thus
obtain deformed descendant invariants. However, this does not yield the most general deformations
of the lower-dimensional cells. As shown in Section 3.2, one can instead directly transform the
lower-dimensional cells (on-shell diagrams), which leads to further deformations that do not form
boundaries of the deformed top cell.

We can reconsider the question of consistent deformations for the BCFW terms of tree amplitudes
from the perspective of the Graßmannian integral. Similar to the four-dimensional case, consistent
deformations are only possible if the tree contour involves residues on fewer than (k − 1) minors.
As soon as the tree contour includes poles from (k − 1) or all k minors, all exponents bi need to be
set to zero and no deformation remains. For six points, the amplitude is the top-cell, and thus
there is a consistent two-parameter deformation. For eight points, the BCFW terms are given by
the sum of residues for M1 and M3, and thus only a one-parameter deformation remains. For ten
points, as discussed in [16], the five BCFW terms are given by the zeros of

{4, 5, 1}, {5, 1, 2}, {3, 4, 5}, {2, 3, 4}, {1, 2, 3}, (3.53)

where {i, j, k} indicates the collection of minors that are necessary to localize the three-dimensional
integral. As one can see, all five minors are involved in the localization, and no consistent deformation
remains. It is to be expected that there will be no BCFW-preserving deformation for any amplitude
beyond eight points. These results are consistent with the on-shell diagram analysis in Section 3.2
above.

3.4 R-matrix Construction for ABJM
In Section 3.2 above, we have verified the invariance of the deformed four-point amplitude A4(z)
under the evaluation representation of the Yangian generators, and have obtained higher-point
diagrams by successive gluing of the fundamental four-point invariant. In this section, we will
identify A4(z) with an integral kernel for the R-matrix Rjk(z) of an integrable model, where z
represents the spectral parameter.
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R-Matrix. Let us define the action of the operator Rjk(z) on a function f(Λ) by22

(Rjk(z) ◦ f)(. . . , Λj, Λk, . . . ) ≡
∫
dΛ] dΛ[A4(z)(Λj, Λk, iΛ], iΛ[) f(. . . , Λ[, Λ], . . . ) . (3.54)

An important property of this operator Rjk(z) is that it preserves the Yangian invariance when
applied to a Yangian-invariant function. To show this, first note that the expression (3.54) can be
rewritten as

(Rjk(z) ◦ f)(. . . , Λj, Λk, . . . ) =
∫
d2|3Λ] d

2|3Λ[ d
2|3Λ\ d

2|3Λ�

δ2|3(Λ\ − iΛ]) δ2|3(Λ� − iΛ[)A4(z)(Λj, Λk, Λ\, Λ�) f(. . . , Λ[, Λ], . . . ) . (3.55)

The expression (3.55) is a combination of the Yangian-preserving operations discussed in Section 3.2:
We first take the product of two Yangian invariants, A4(Λj, Λk, Λ\, Λ�) and f(Λ[, Λ]), and then glue
these objects by using the two delta-function identifications Λ\ = iΛ] and Λ� = iΛ[. This implies
that Rjk(z) as defined in (3.54) preserves the Yangian invariance. Recall that A4(z)(Λj, Λk, Λ\, Λ�)
is invariant under the Yangian with evaluation parameters that satisfy uj = u\, uk = u�, and
z = ±(uj − uk) according to (3.23). In addition, the gluing conditions (3.16) require u\ = u] and
u� = u[. Hence the action of Rjk permutes the evaluation parameters uj and uk: If f(. . . , Λj, Λk, . . . )
is Yangian invariant with ~u = (. . . , uj, uk, . . . ), then (Rjk ◦ f)(. . . , Λj, Λk, . . . ) is invariant with
~u = (. . . , uk, uj, . . . ). In other words, we have

[Ja, Rjk(z)] = 0 , Ĵa(. . . , uj, uk, . . . )Rjk(z) = Rjk(z) Ĵa(. . . , uk, uj, . . . ), (3.56)

when acting on Yangian-invariant functions. Here the number of legs in the definition of the
generators Ja and Ĵa (cf. (2.1)) depends on the number of legs of the invariant acted on. However,
since all other terms commute trivially, the Yangian generators Ja and Ĵa in (3.56) reduce to
the two-site Yangian generators with evaluation parameters (uj, uk). Note that invariance is only
preserved when Rjk acts on adjacent legs of the invariant f .

For later purposes, let us simplify the definition of the R-matrix. Plugging in the definition of
the four-point amplitude in (3.21), we obtain

(Rjk(z) ◦ f)(Λj, Λk) =
∫ dθ

sin(θ)1+z

∫
d2|3Λ] d

2|3Λ[ δ
4|6
(
C(θ) · (Λj, Λk, iΛ], iΛ[)

)
f(Λ[, Λ]) , (3.57)

where the matrix C(θ) is defined as in (3.22). We can trivially solve the delta function constraint
for Λ], Λ[, giving rise to

(Rjk(z) ◦ f)(Λ) ≡
∫ dθ

sin(θ)1+z f(Λ)
∣∣∣∣Λj→+ sin(θ)Λk+cos(θ)Λj ,
Λk→− cos(θ)Λk+sin(θ)Λj

. (3.58)

22Since OG2 has two branches, we correspondingly have two different R-matrices R±(z). In the following
we concentrate on one of the branches, say R+(z). Note that the actual undeformed 4-point amplitude is a
linear combination of two contributions from two kinematical branches R±(z), each contribution being separately
Yangian-invariant (see, however, the comments on the discussion of the collinear anomaly in Section 4).
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RLL Relation. The discussion in the previous sections can be nicely reformulated in the language
of integrable models. To explain this, let us first define the L-operator Li(u) by

Li(u) ≡ u1 +
∑
a

Jai ea , (3.59)

where Jai are the level-zero generators for the representation of the particle i, and ea denotes the
generators of the fundamental representation. Let us also define the monodromy operator by

T (u0, ~u) ≡ L1(u0 − 1
2u1)L2(u0 − 1

2u2) . . . L2k(u0 − 1
2u2k). (3.60)

By standard procedure,23 expanding the monodromy yields the Yangian generators:

T (u0, ~u) =
2k∑
n=0

u2k−n
0 J(n−1)(~u) , (3.61)

where J(n)(~u) is (up to additive constants and combinations of lower-level generators) the level-n
generator with evaluation parameters ~u, namely24

J(−1) = 1 , J(0)(~u) = Jaea , J(1)(~u) = 1
2

(
Ĵaea + Jaea J

beb − α Jaea + 1
2

∑
i<j

uiuj1
)
. (3.62)

Here, the constant α stems from the single-site relation

Jai ea J
b
ieb = α Jai ea . (3.63)

This relation is representation-dependent, but holds for the fundamental representation. It ensures
that the Yangian generators obey the Serre relations [32, 19]. Now we can use (3.61) to encode
(3.56) into the relation

Rij(uj − ui)Li(u0 − 1
2ui)Lj(u0 − 1

2uj) = Li(u0 − 1
2uj)Lj(u0 − 1

2ui)Rij(uj − ui) , (3.64)

see Figure 3. This equation is the so-called RLL relation, which is one version of the Yang–Baxter
relation often found in integrable models [33]. As we have seen, this relation encodes the fact
that Rij(z) preserves the Yangian-invariance. The relation (3.64) holds when the operators act in
the space of Yangian invariant functions; this will be sufficient for the construction of Yangian
invariants in the later part of this section.25

Yang–Baxter Equation. The relation (3.64) means that the R-operator is the intertwiner for
the tensor product of representations of Y [osp(6|4)]. In particular, consistency with the associativity
of the tensor product is guaranteed by the Yang–Baxter relation:

Rij(w − v)Rj`(w − u)Rij(v − u) = Rj`(v − u)Rij(w − u)Rj`(w − v) . (3.65)

For our R-matrix (3.58), this can be shown to hold by direct computation: The θ-rotation in (3.58)
is a rotation in the (Λi, Λj)-plane, and both sides of (3.65) give rise to a parametrization of the

23See e.g. [31].
24Recall the constraint

∑
i ui = 0.

25We thank Carlo Meneghelli for helpful comments on the relation between (3.64) and (3.56).
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v u

Li(v) Lj(u)

Rij(u− v)

=

u v

Li(u) Lj(v)

Rij(u− v)

Figure 3: The graphical representation of the RLL relation. The R-matrix is associated
with an intersection of two undotted lines, while the L-matrix with that of an undotted line
and a dotted line. The spectral parameters are associated with the particle lines, which
will be identified with the rapidity lines of integrable models.

rotation group in terms of Euler angles, which are thus related by a coordinate transformation.
One can verify explicitly that the product of measure factors in the integrals is kept invariant by
the transformation.

This result shows that the R-operator (3.58) gives the R-matrix for a representation of Y [osp(6|4)].
It can be written in the Graßmannian integral form, a fact which we have not found in the literature.
It would be nice to compare our expression for the R-matrix with the known expressions in the
literature.

Yangian Invariants. Having understood the four-vertex, the next task is to understand the
more complicated on-shell diagrams obtained by fusing lines. In the language of R-matrices, this
can be reformulated as the statement that higher-point invariants are obtained by iterated action
with the R-matrix on vacuum delta functions. This is similar to the N = 4 case (see the discussion
around (2.18)).26

To explain this, let us start with an on-shell diagram, i.e. a set of k lines connecting 2k points
on a circle, such that no three lines intersect at the same point. By following each line, we obtain a
permutation σ of order two, σ2 = 1. That is, σ decomposes into k commuting transpositions of two
elements: σ = σk . . . σ1, with each σj = [aj, bj]. Just as the diagram itself, also the permutation is
kept invariant under triangle moves. While every diagram has a unique associated permutation,
the converse is only true for reduced diagrams. Every permutation of order two uniquely specifies a
reduced diagram (modulo triangle moves), but the same permutation is associated to an infinite
number of inequivalent unreduced diagrams.27

Now, every on-shell diagram can be obtained from a k-line diagram without any four-vertex (a
“vacuum diagram”) by a sequence of BCFW bridges [9,16]. Let us first restrict to reduced diagrams,

26The connection to Yangians and integrable models is more direct for ABJM theory than for the N = 4 theory.
For ABJM theory, the R-matrix (3.54) coming from the BCFW shift directly gives the R-matrix for (a representation
of) the Yangian. By contrast the operator coming from the BCFW shift in N = 4 SYM is the 3-point amplitude,
while the R-matrix for the Yangian corresponds to a 4-point amplitude, which is obtained by combining four BCFW
operators.

27Among all the diagrams associated to a given permutation, the reduced diagram is the one that has minimal
degree (number of integration variables).
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which are uniquely specified by their permutation. Starting from the “vacuum permutation”28

σvac = [12][34] . . . [2k − 1, 2k] , (3.66)

we can arrive at any other permutation σ (representing a reduced on-shell diagram) by a sequence
of BCFW bridges: Each BCFW bridge lets two adjacent legs intersect, and thus conjugates the
associated permutation by a transposition. Hence

σ = σR σvac σ
−1
R , σR = [i`, j`] . . . [i1, j1] , (3.67)

with each [im, jm] being a transposition of two adjacent elements.
Let us translate this into the language of integrable models. With the vacuum permutation σvac

we associate an amplitude which is given by a product of delta functions

Ω2k ≡
k∏
j=1

δ2|3(Λ2j−1 + iΛ2j) . (3.68)

Next, each BCFW bridge is represented by the R-matrix acting on the two respective lines, as
we have already seen. This means that a general Yangian invariant, corresponding to a general
reduced on-shell diagram described by σ, can be obtained by acting with a chain of R-matrices on
the vacuum amplitude:

Yσ(z1, . . . , z`) = RσR(~z)Ω2k = Ri`,j`(z`) . . . Ri1,j1(z1)Ω2k , (3.69)

where the sequence of transpositions σR = [i`, j`] . . . [i1, j1] is defined by (3.67).
For a given permutation σ (of order two), both the choice of σR and its decomposition into

adjacent transpositions are not unique. Two permutations σR, σ′R lead to the same permutation σ
if and only if σ′R = σR σ

′, where σ′ is in the centralizer C(σvac). Hence the distinct permutations σ
are in one-to-one correspondence with the elements of the coset Sn/C(σvac). The ambiguity in the
decomposition of σR into adjacent transpositions is due to the permutation group relation

[i, i+ 1][i+ 1, i+ 2][i, i+ 1] = [i+ 1, i+ 2][i, i+ 1][i+ 1, i+ 2] . (3.70)

In terms of invariants (3.69), this identity amounts to the triangle move alias Yang–Baxter equation
(3.65). Also the ambiguity in the choice of σR is due to this relation, in this case applied to the full
permutation σ. Hence, for a given permutation σ, the invariant (3.69) is independent of the choice
and decomposition of σR.

To summarize: For every reduced on-shell diagram, there is a decomposition of the associated
permutation into adjacent transpositions that encodes the chain of R-matrices that need to act
on the appropriate vacuum to reconstruct the diagram. Even though the decomposition into
transpositions is ambiguous, the invariant is unique.

Unreduced on-shell diagrams are not uniquely specified by their associated permutation. Never-
theless, they are constructed just as reduced diagrams, by successively applying BCFW bridges.
Hence also unreduced diagrams can be written as a chain of R-matrices that act on a vacuum
amplitude,

Y[i`,j`],...,[i1,j1](z1, . . . , z`) = Ri`,j`(z`) . . . Ri1,j1(z1)Ω2k . (3.71)
28The choice of vacuum is not unique, but one can restrict to this particular choice [16].
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Figure 4: Graphical proof of the Yangian invariance, c.f. (3.75). Using the RLL relations
of Figure 3 multiple times, we can commute the product of L-operators (gray dots) through
the product of R-matrices (black dots) when acting on the vacuum (3.68) (half circles). In
the above example we have k = 2, i.e. 2k = 4 external points, and the Yangian invariant
(3.69) contains six R-matrices. The “. . . ” represent additional lines that can be added in
general.

Here, the sequence of transpositions [i`, j`], . . . , [i1, j1] is sufficient to define the diagram, even
though the resulting permutation σ = [i`, j`] . . . [i1, j1] is not.

Our claim here is that (3.69,3.71) are indeed Yangian invariant if the spectral parameters zi are
constrained to obey the relation (3.23), that is

zm = ±(ujm − uim) . (3.72)
Since the overall shift of ui is irrelevant, only (k − 1) of these parameters are independent.

Yangian Invariance. Let us prove the Yangian invariance of (3.69). Note that the invariance
already follows from the fact that the action of an R-matrix is equivalent to gluing an invariant
four-vertex to another invariant (Section 3.2). The purpose of this section is to recast the argument
in a form closer to standard integrable models.

Since the monodromy operator is the generating function of the Yangian generators, Yangian
invariance is equivalent to the statement that (3.69) is an eigenfunction of the monodromy operator:

T (u0, ~u)Yσ(~z) =
2k∏
i=1

(u0 − 1
2ui)Yσ(~z) . (3.73)

where u0 is arbitrary and ~u are fixed to be the evaluation parameters of the Yangian representation.
On the left hand side we can express T (u0, ~u) as a product of the L-operators, and then, due to
(3.72), commute with the R-matrices with the help of the RLL relation (3.64):
L1(u0 − 1

2u1) . . . L2k(u0 − 1
2u2k)Rab(~z) = Rab(~z)L1(u0 − 1

2u[ab](1)) . . . L2k(u0 − 1
2u[ab](2k)) (3.74)

for any transposition [ab] of two adjacent elements.29 By induction we obtain (see Figure 4 for a
29Note that this argument does not work for the transposition [2k, 1], since the RLL relation does not apply in this

case. However, one can always choose σR such that it does not act on the first and last legs (for any permutation σ).
Hence at first sight, (3.75) only applies for such σR. However, different choices of σR are related to each other by
triangle moves, and we know that triangle moves preserve diagrams, and hence also preserve Yangian invariance.
Therefore, RσRΩ2k is invariant for all σR. In fact, from the on-shell diagram point of view, the choice of first and
last leg in the definition (3.60) of the monodromy matrix is arbitrary, and thus the invariance discussion should not
depend upon this choice. Indeed one can show that the Yangian algebra is invariant under cyclic rotations of the
chain of L-operators in (3.60) (for algebras with vanishing dual Coxeter number).
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graphical representation)

T (u0, ~u)Yσ(~z) = T (u0, ~u)RσR(~z)Ω2k

= L1(u0 − 1
2u1) . . . L2k(u0 − 1

2u2k)RσR(~z)Ω2k

= RσR(~z)L1(u0 − 1
2uσR(1)) . . . L2k(u0 − 1

2uσR(2k))Ω2k .

(3.75)

Recalling the definition (3.68) of Ω2k, this becomes

T (u0, ~u)Yσ(~z) = RσR(~z)
k∏
j=1

L2j−1(u0 − 1
2uσR(2j−1))L2j(u0 − 1

2uσR(2j)) δ2|3(Λ2j−1 + iΛ2j) . (3.76)

After some algebra, and using the relation (3.63), each factor in the product takes the form

Li(u)Lj(v) δ2|3(Λi + iΛj)

=
[
uv +

(
u Jaj + v Jai

)
ea + 1

2J
aea J

beb − 1
2α Jaea + 1

2J
a
i J

b
j fab

c ec

]
δ2|3(Λi + iΛj) , (3.77)

where Ja = Jai + Jaj are the two-site level-zero generators. Now the third and fourth term in
the bracket vanish by (3.17), and the last term vanishes due to the argument below (3.18): It is
proportional to the dual Coxeter number, which is zero for osp(6|4). Finally, the vanishing of the
second term requires u = v. Hence, (3.76) equals (3.73) if and only if�

�
�

uσR(2j−1) = uσR(2j) , j = 1, . . . , k . (3.78)

Using (3.67,3.66), one can easily see that these conditions are equivalent to the previously derived
invariance constraints (3.27). In conclusion, Yangian invariance of (3.69) is recovered provided that
the constraints (3.78) and (3.72) hold.

An Example. Let us consider as an example the deformation of the six-point top cell. Like all
other on-shell diagrams, it can be represented as a disk with intersecting lines that end at the
boundary, e.g.

1
2

3

4

5

6
∼

6 5 4 3 2 1

, (3.79)

where the second figure illustrates the relation to diagrams of the type shown in Figure 4. This
diagram corresponds to a permutation σ = [14][25][36]. As described above, we can build such a
diagram from a vacuum diagram by applying successive transpositions:

1
2

3

4
5

6

[45]−−−→

1
2

3

4
5

6

[23]−−−→

1
2

3

4
5

6

[34]−−−→

1
2

3

4

5

6
. (3.80)
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Above, each transposition labeled by [ij] corresponds to applying an additional four-point vertex /R-
matrix to the previous diagram. For the permutation, this means

σ = [34][23][45]σvac[45][23][34] , σvac = [12][34][56] . (3.81)

The vacuum amplitude (3.68) is simply given by

Ω6 = δ2|3(Λ1 + iΛ2) δ2|3(Λ3 + iΛ4) δ2|3(Λ5 + iΛ6) . (3.82)

We can then act iteratively with the R-operator (3.58) and the sequence in (3.80) translates into

R34(z3)R23(z2)R45(z1)Ω6 . (3.83)

The corresponding orthogonal Graßmannian C-matrix takes the form:1 ic2 is2c3 is2s3 0 0
0 s2 −c2c3 + ic1s3 −ic1c3 − c2s3 is1 0
0 0 s1s3 −s1c3 −c1 i

 , (3.84)

where sj = sin θj and cj = cos θj. One can verify that this indeed corresponds to the top-cell
diagram, as all consecutive minors are non-vanishing.

As we have seen above, diagrams that are equivalent under triangle moves simply correspond to
using a different sequence of R-matrices that yields the same final permutation. In our example,
the triangle move corresponds to the equivalence between (3.83) and

R61(z3)R23(z2)R45(z1)Ω6 , (3.85)

The corresponding matrix parametrizing the orthogonal Graßmannian is given by−c3 ic2 is2 0 0 s3
0 s2 −c2 ic1 is1 0
−is3 0 0 s1 −c1 ic3

 . (3.86)

Again one can verify that all adjacent minors are non-vanishing, and hence the top-cell is recovered.

4 Discussion, Conclusions & Outlook
In this paper, we have considered integrable deformations of scattering amplitudes in four-
dimensional N = 4 super Yang–Mills theory and three-dimensional ABJM theory. We found
a similar structure of deformed invariants for both theories, which incorporates the deformed
Graßmannian integrals, the construction of deformed on-shell diagrams via gluing, as well as the
algebraic R-matrix construction.

Interestingly, while part of the deformation parameters in four dimensions is associated with
the violation of invariance under the local central charge generators of N = 4 SYM theory, there
is no such central charge for the three-dimensional symmetry algebra osp(6|4). Furthermore, the
four-dimensional deformations remind of deformed helicities, but the external particles in ABJM
do not carry helicity charges either. Nevertheless, we demonstrate that consistent deformations are
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Yangian-invariant N = 4 SYM Theory N = 6 SCS Theory
n-leg Amplitude MHV, . . . , MHV

3 2, 2 —
4 3 1
5 4, 4 —
6 5, 1, 5 2
7 6, 0, 0, 6 —
8 7, 0, 0, 0, 7 1
9 8, 0, 0, 0, 0, 8 —

n ≥ 10 n− 1, 0, . . . , 0, n− 1 0
n-leg Diagram n− 1 n

2 − 1

Table 1: Comparison of the deformation degrees of freedom. Each Yangian-invariant
n-leg diagram in four or three dimensions has n− 1 or n

2 − 1 free parameters, respectively.
Scattering amplitudes on the other hand may be BCFW-composed of several diagrams.
Requiring that the external data of all diagrams contributing to a certain amplitude is the
same, this imposes stronger constraints, which in general result in less degrees of freedom.
In four dimensions the numbers were checked explicitly up to n = 16. The numbers in
ABJM, and at higher n in four dimensions, result from the naive counting of degrees of
freedom and constraints; for larger n the constraints outweigh the parameters and no
degrees of freedom remain (beyond the MHV-sector in 4d).

possible in 3d ABJM theory, which can be attributed to the introduction of non-trivial evaluation
parameters in the Yangian level-one generators. A local operator, similar to the central charge
generator in four dimensions, is the Z2 phase of the three-dimensional little group in ABJM. We
have briefly commented on this fermion number operator at the end of Section 3.2, whose breaking
indicates the anyonic nature of the introduced deformations. We close with some comments on
both cases, and discuss future directions.

Certainly the most pressing question is whether the deformations discussed here will be useful
for computing loop amplitudes. Up to now, the deformations might mostly look like a mathematical
curiosity. For instance, the famous BCFW decomposition cannot be deformed consistently, not
even at tree level [10], cf. Table 1.30 Moreover, the deformed one-loop four-point amplitude in four
dimensions generically integrates to zero: Only very special deformations give a non-vanishing
result [10]. Still there are a few interesting approaches one might want to pursue. For example,
noting that the four-point amplitude is maximally helicity-violating, it is not excluded that suitable
deformations will be useful for computing the ratio function of [34]. Perhaps most promising
is the idea to give up on a BCFW-like decomposition, and to interpret the deformed top cell,
or equivalently the deformed Graßmannian integral, as the complete deformed amplitude. The
challenge is to find a suitable contour on which the deformed top cell integrates to a useful function.
As proposed in [18], one could try to require that the integrated result is meromorphic in the

30In principle, one could consider deforming each term in the BCFW decomposition with a different set of central
charges ci, as long as the Yangian evaluation parameters ui remain universal. Empiric case studies for higher
multiplicities (up to n = 18) and helicities (up to k = 5) suggest that such deformations are admissible for generic
amplitudes. However, while a plethora of deformation parameters remains unconstrained, the physical interpretation
and the practical use of such deformations remains unclear.
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deformation parameters. Interestingly, irrespective of the contour, the resulting function will
have deformed helicities for the external legs. This points towards a possible connection with
continuous-spin theories proposed recently [35].

Note that the form of the (deformed) Graßmannian integrals mainly follows from the symmetry
structure of the underlying gauge theory. This suggests to identify a similar Graßmannian integral
also in other theories, for instance in two and six dimensions, where much less is known about
scattering amplitudes. In particular, for the two-dimensional theories with an AdS3 string dual, it
would be interesting to initiate the study of scattering amplitudes based on the symmetry algebras
in analogy to the steps taken in [19] for three dimensions. Comparison should then allow to write
down a Graßmannian integral and to study amplitude-like symmetry invariants. This could be
helpful to make progress on understanding the gauge-theory duals of these AdS3 string theories.

Importantly, here—as in all previous considerations of the deformed scattering invariants—
we have not considered the exact symmetry generators of Y [psu(2, 2|4)] and Y [osp(6|4)]. That
is we have ignored the fact that at collinear momentum configurations the above symmetry
generators do not annihilate the tree-level S-matrices, but have to be corrected due to the collinear
anomaly [4, 36,29,37]. It is known that these collinear contributions recursively relate amplitudes
with different numbers of external legs to each other and it might be very enlightening to see
whether these relations impose further constraints on the deformation parameters. In this context,
it is interesting to note that the vacuum (3.68) of the algebraic R-matrix construction of invariants
in ABJM theory is a product of two-point invariants that might be the necessary starting point to
render the recursive symmetry in three dimensions exact, cf. the discussion in [29].

As mentioned in Section 1, the study of deformed scattering amplitudes in four dimensions
was motivated by the map between the one-loop dilatation operator and the four-point scattering
amplitude of N = 4 SYM theory [6]. Construction of the amplitude form of the associated R-matrix
then led to the introduction of a (spectral) deformation parameter [7, 8]. In this paper we have
introduced the deformation of scattering amplitudes in three dimensions. It would be interesting to
see how the dilatation operator of ABJM theory can be constructed from deformed amplitudes or
on-shell diagrams.

It would also be interesting to further explore the similarities with the integrable structures
discussed in the context of 4d N = 1 quiver gauge theories [38]. Our discussion of ABJM scattering
amplitudes suggests the existence of a new 3d duality associated with the triangle move, cf. (3.26).

Another notable question concerns the bonus symmetry of scattering amplitudes in N = 4 SYM
theory found in [39]. Is this symmetry still preserved and what is its rôle for the deformations of
four-dimensional scattering amplitudes? Since the generator of this level-one symmetry is bilocal
in both the ordinary and the dual conformal coordinates, and acts as a raising operator for the
Yangian levels, this might also clarify the relation between the Yangian generators in twistor and
momentum-twistor space discussed in Section 2.3, which remains an interesting open problem.
Finally, studying these issues could shed light on the existence of a similar symmetry in ABJM
theory.

Lastly, an important question is whether we can incorporate the above deformations into other
approaches like the amplituhedron of [40]. Studying this question would be a good opportunity
to elucidate the fate of Yangian symmetry in the amplituhedron. Another recent development to
use integrability for the computation of scattering amplitudes is the non-perturbative flux-tube
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formulation introduced in [41]. Since the approaches of [40] and [41] seem to bring many advantages
over the previous methods, combining them with the deformation might be the most useful step in
order to continue to investigate the rôle of Yangian symmetry and the impact of integrability for
amplitudes in planar supersymmetric gauge theories.
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A Explicit osp(6|4) Generators
For reference, here we list the level-zero generators of the osp(6|4) algebra in the singleton repre-
sentation as given in [19]:

Lαβ = λα∂β − 1
2δ
α
βλ

γ∂γ , Pαβ = λαλβ ,

D = 1
2λ

α∂α + 1
2 , Kαβ = ∂α∂β ,

RAB = ηAηB , RA
B = ηA∂B − 1

2δ
A
B , RAB = ∂A∂B ,

QαA = λαηA , SA
α = ηA∂α ,

Qα
A = λα∂A , SαA = ∂α∂A . (A.1)

See Appendices F and G of [19] for the construction of the level-one Yangian generators.

B Yangian Invariance of the 4d Deformed Graßmannian
Integral

In this appendix, we check the Yangian invariance of the deformed Graßmannian formula (2.22).
The discussion is parallel to the case of the ABJM theory discussed in section 3. We only need to
prove the invariance under level-zero and level-one generators, since all other generators can be
obtained from the commutation relations.

The invariance under the level-zero is unaffected by the deformation: It simply follows from the
fact that the level-zero generators (2.2) are realized linearly in the twistor variables Zi, and thus
annihilate the delta function δ4k|4k(C · Z) present in the Graßmannian integral.
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The invariance under the level-one generator will be verified below following the methods of [24].
Let us first rewrite ĴAB as

ĴAB =
(

2
∑
i<j

−
∑
i,j

+
∑
i=j

)(
ZAi

∂

∂ZBj
ZCj

∂

∂ZCi
−ZAi

∂

∂ZBi

)
+
∑
i

uiZAi
∂

∂ZBi
. (B.1)

The sum ∑
i,j gives a square of the level-zero generator and acts trivially on the Graßmannian

formula. In the sum ∑
i=j on the other hand, we find the central charge operator Ci = −ZCi ∂/∂ZCi

(2.4), which yields the following expression when acting on the Graßmannian integral

2
∑
i<j

(
ZAi

∂

∂ZBj
ZCj

∂

∂ZCi
−ZAi

∂

∂ZBi

)
+
∑
i

(ui − ci)ZAi
∂

∂ZBi
. (B.2)

Now the crucial observation is that the operator ZCj ∂/∂ZCi , when acting on the delta functions,
can be replaced by a GL(k)-rotation on the rows of the matrix C [24].

To do this properly, we need to fix the GL(k)-gauge ambiguity as31

C =


1 · · · 0 C1,k+1 · · · C1,n

0 · · · 0 ... ... ...
0 · · · 1 Ck+1,n · · · Ck,n

 . (B.3)

The operator ZCj ∂/∂ZCi then can be replaced by a GL(k)-rotation on the row of the non-gauge-fixed
part of the matrix C. It then follows that

ĴABGk,n =
∑
b

∫ ∏k
a=1

∏n
m=k+1 dCam

M1+b1
1 . . .M1+bn

n

[
NAb − VAb + UAb

]
(∂Bδb)

∏
a6=b

δa , (B.4)

where δa ≡ δ4|4
(
Za +∑n

l=k+1 CalZl
)
,

NAb ≡ 2
∑
i<j

NijZAi Cbj , VAb ≡ 2
∑
i<j

ZAi Cbi , UAb ≡
∑
i

u−i ZAi Cbi . (B.5)

Here, u−i = ui − ci as before, and the operator Nij is a gauge-fixed version of the operator∑k
a=1 Cai ∂/∂Caj [24].
We can integrate by parts for the operator NA

b . The operator annihilates the measure, but acts
non-trivially on the minors Mi(C). Generalizing the commutation relations of [24], we find[

1
M1+b1

1 . . .M1+bn
n

,NAb

]
= 1
M1+b1

1 . . .M1+bn
n

∑
i<j

(1 + bj)ZAi Cbi , (B.6)

and therefore

ĴABAk,n =
∫ ∏k

a=1
∏n
m=k+1 dtam

M1+b1
1 . . .M1+bn

n

∑
b

[
2
∑
i<j

bjZ
A
i Cbi +

∑
i

u−i Z
A
i Cbi

]
(∂Bδb)

∏
a6=b

δa . (B.7)

31For the deformed amplitude it is crucial to fix the GL(k)-ambiguity to obtain correct identification of deformation
parameters. This contrasts with the case of the undeformed case, where the formal analysis without fixing the GL(k)
ambiguity also gives the Yangian invariance of the amplitude [24].
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Requiring that the coefficient of ZA
i Cbi is a constant, we thus find the invariance constraints

n∑
j=i+1

2bj + u−i = const (B.8)

for all i = 1, . . . , n, and where the constant is independent of i. In other words we have

bi = 1
2(u−i − u−i−1) , (B.9)

which agrees with the constraints in (2.23).

C Yangian Invariance of the 3d Graßmannian Integral
In this appendix, we prove the Yangian invariance of the (undeformed) orthogonal Graßmannian
integral:

G2k =
∫ dk×2kC

|GL(k)|
δk(k+1)/2(C · CT) δ2k|3k(C · Λ)∏k

i=1 Mi(C)
. (C.1)

To show that the above integral is invariant under the level-one generator in (3.37), we begin by
rewriting again

(−)|C|Λ(A
l

∂

∂ΛCl
ΛCi Λ

B]
i = Λ

(A
l Λ

B]
i Λ
C
i

∂

∂ΛCl
≡ Λ

(A
l Λ

B]
i Oi l , (C.2)

where Oi l is simply an GL(2k) rotation on the external data Λi, and we again can conveniently
rewrite the action of the first term in (3.37) as∑

l<i

(
Λ

(A
l Λ

B]
i Oi l − Λ

(A
i Λ

B]
l Ol i

)
δ2|3(C · Λ) =

∑
l<i

Λ
(A
l Λ

B]
i

(
Ol

i −Oi
l
)
δ2|3(C · Λ) , (C.3)

where Oi
l is defined in (3.39), and in obtaining the last line we have used the fact that the indices

of the level-one generators under consideration are (anti-)symmetrized. Since the operator in the
square bracket is in fact an O(2k) rotation, after integration by parts it vanishes when acting on
the O(2k) invariant constraint δ(C · CT). Thus the only contribution we receive after integration
by parts is when the linear operator acts on the minors:

∑
l<i

Oi
lMp =

p+k−1∑
l=p

2k∑
i=p+k

M l→i
p ,

∑
l<i

Ol
iMp =

p−1∑
l=1

p+k−1∑
i=p

M i→l
p . (C.4)

Finally, since on the support of δ(C · CT), the matrix C is a collection of null k-planes in a
2k-dimensional space, one can define a set of dual k-planes to construct Ĉ such that [17]

Ĉ · ĈT = 0 , C · ĈT = Ĉ · CT = Ik×k . (C.5)

Note that due to (C.5), one can immediately deduce:

CT · Ĉ + ĈT · C = I2k×2k . (C.6)
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This is a useful identity, since we can now rewrite

ΛAi =
2k∑
j=1

ΛAj
∑
a

(CjaĈia + ĈjaCia) . (C.7)

On the support of δ2|3(C · Λ), the first term vanishes. Using this result, with p ≤ k, we find that

∑
l<i

Λ
(A
i Λ

B]
l Oi

lMp =
∑
l<i

2k∑
j=1

Λ
(A
i Λ

B]
j

∑
a

(ĈjaCla)Oi
lMp

=
2k∑
j=1

2k∑
i=p+k

Λ
(A
i Λ

B]
j

∑
a

Ĉja

p+k−1∑
l=p

M l→i
p Cla =

2k∑
i=p+k

Λ
(A
i Λ

B]
i Mp , (C.8)

where a k-term Schouten identity was used in the last line, as well as the completeness relation in
(C.6). This leads to the following rewriting of the first term in (C.3):

∑
l<i

Λ
(A
i Λ

B]
l Oi

l 1∏k
j=1 Mj

= −

(∑k
l=1

∑2k
i=l+k Λ

(A
i Λ

B]
i

)
∏k
j=1 Mj

= 1∏k
j=1 Mj

∑
k≤l<i

Λ
(A
i Λ

B]
i . (C.9)

Similarly, we find:

∑
l<i

Λ
(A
i Λ

B]
l Ol

iMp =
∑
l<i

2k∑
j=1

Λ
(A
j Λ

B]
l

∑
a

ĈajCaiOl
iMp

=
p−1∑
l=1

2k∑
j=1

Λ
(A
j Λ

B]
l

∑
a

Ĉaj

p+k−1∑
i=p

CaiM
i→l
p =

p−1∑
l=1

Λ
(A
l Λ

B]
l Mp . (C.10)

Hence, for the second term in (C.3) we now have:

−
∑
l<i

Λ
(A
i Λ

B]
l Ol

i 1∏k
j=1 Mj

= 1∏k
j=1 Mj

∑
l<i≤k

Λ
(A
l Λ

B]
l . (C.11)

Collecting these results, and using the level-zero constraint ∑i Λ
A
i Λ
B
i = 0, we find that (C.9) and

(C.11) is exactly what is needed to cancel against the terms of the form ΛiΛi in (3.37). For example,
for n = 2k = 4, the ΛiΛi terms in (3.37) are given by:(∑

l<i

−
∑
i<l

)
Λ

(A
i Λ

B]
i

2 = 1
2
(
−3Λ(A

1 Λ
B]
1 − Λ

(A
2 Λ

B]
2 + Λ

(A
3 Λ

B]
3 + 3Λ(A

4 Λ
B]
4

)
= −3Λ(A

1 Λ
B]
1 − 2Λ(A

2 Λ
B]
2 − Λ

(A
3 Λ

B]
3 . (C.12)

On the other hand (C.9) and (C.11) yield:(
−Λ(A

3 Λ
B]
3 − 2Λ(A

4 Λ
B]
4

)
+ (Λ(A

1 Λ
B]
1 ) = 3Λ(A

1 Λ
B]
1 + 2Λ(A

2 Λ
B]
2 + Λ

(A
3 Λ

B]
3 . (C.13)

Indeed the above is what is necessary to cancel (C.12). This completes the proof of the invariance
of the orthogonal Graßmannian integral under the level-one generator in (3.37).
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