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We study multi-field tunneling using exact solutions for additive potentials. We introduce a
binomial potential with non-integer powers that could be considered a generalization of the 4D
Fubini instanton potential. Using scaling arguments, we show that for multi-field potentials taller
and wider barriers may still lead to a smaller bounce action.

I. INTRODUCTION

The string theory landscape motivates the study of
multi-field potentials with a large number of metastable
vacua [1–11]. Since our universe may have occupied
a metastable vacuum in the past or may do so today,
it is of cosmological interest to study tunneling out of
metastable vacua [12–20]. As the tunneling rate depends
on the action of the bounce solution [21], computing the
bounce action for various tunneling scenarios is of interest
for studying tunneling transitions in the early universe.

A complete study of tunneling from the cosmologi-
cal perspective must account for the effects of gravity
[22] and finite temperature [23] on the tunneling process.
However, obtaining the bounce solution and calculating
its action for general multi-field potentials, a difficult
problem to begin with, becomes considerably more com-
plex where we account for these effects; therefore gravi-
tational and finite temperature effects are often ignored
in the interest of simplicity and we shall do the same
in this paper. Following this approach, Sarid [24] and
later Greene et al. [25] discussed methods of estimating
bounce action for quartic potentials using semi-numerical
methods motivated by analytic arguments. Greene et
al. [25] further concluded that for quartic potentials the
bounce action decreases as a power law in the number of
fields, agreeing with the lower bound calculated later in
[26].

For multi-field potentials, part of the difficulty in cal-
culating the bounce action arises from the difficulty in
determining the appropriate tunneling trajectory. The
problem could therefore be made more manageable by
splitting it into two smaller problems - determining the
field-space trajectory of least action from the potential,
and determining the bounce action along the least action
trajectory. In this paper, we discuss the second problem
some detail.

Studying the dependence of the bounce action on the
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potential profile along the path would be facilitated by
studying potentials with exact analytical bounce solu-
tions. We present such a potential in the form of a
binomial with non-integer powers which can be consid-
ered a generalization of the Fubini instanton potential
[23, 27, 28]; unlike the standard Fubini instanton case,
this potential has a barrier through which the field tun-
nels out. We also discuss a potential which has been
previously known [29]. Through these examples of single
field potentials with exact solutions, we study how bar-
rier features are related to the bounce action. We see that
a taller and wider barrier could lead to a smaller bounce
action, contrary to what is expected from non-relativistic
quantum mechanics.

We then introduce a scaling argument that helps iden-
tify how the bounce action scales with barrier parameters
for a general single field potential. We show how this is
consistent with the results we have for the exactly solv-
able potentials. By extending this argument to additive
multi-field potentials, we discuss the accuracy of the ap-
proximation scheme used by Greene et al. [25].

The rest of this paper is organized as follows. In section
II, we briefly review tunneling in field theory. In section
III, we discuss special potentials for which an analytic
bounce solution is available. In section IV, we introduce
a scaling argument for bounce action of single field poten-
tials and discuss its implications. In section V, we apply
this argument to gain insights on tunneling in multi-field
potentials. In section VI, we conclude.

II. REVIEW OF TUNNELING

In this section, we briefly review tunneling in field the-
ory in 4-dimensional Euclidean space in the absence of
gravity, following the approach of Coleman in [21]. For
the rest of this paper, we always assume that the field(s)
has (have) a metastable vacuum at the field-space ori-

gin ~φ = ~0, with potential V (~0) = 0. We assume that
this vacuum is surrounded on all sides by a barrier with
V > 0. For tunneling to happen, there must exist regions
beyond the barrier with V < 0 into which the field can
tunnel.

For the case of a single field φ, it was proven in [30]
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that tunneling proceeds through the formation of an O(4)
symmetric bubble in Euclidean space (more specifically,
it was shown that for a wide class of potentials, the action
is minimized by O(4) symmetric configurations). There-
fore, the field value everywhere in space can be expressed
as a function of the radius r measured from the center
of the bubble. The field profile φ(r) obeys the following
equation of motion obtained from assuming O(4) sym-
metry [21]

d2φ

dr2
+

3

r

dφ

dr
=
∂V

∂φ
, φ̇(0) = 0 , φ(∞) = 0 . (1)

The solution to this equation φ̄(r) (also called the
bounce) corresponds to the position of a classical particle
moving (in field space) in the inverted potential −V (φ)
subject to time-dependent friction. The initial conditions
impose that the particle starts at rest from the point
where the field tunnels out (φ(0) = φ0) and ends at rest
at the false vacuum (φ(∞) = 0). The tunneling rate (per

unit volume) is given by Γ/V ∼ Ae−S/~. Here S is the
bounce action, which can be written as

S = 2π2

∫ ∞
0

dr r3

[
1

2

(
dφ̄

dr

)2

+ V (φ̄)

]

=
π2

2

∫ ∞
0

dr r3

(
dφ̄

dr

)2

. (2)

Here, the last equality follows from Derrick’s theorem
[31].

For multi-field potentials, we are not aware of a proof
for the O(4) symmetry of the tunneling solution. How-
ever, O(4) symmetry is generally assumed [25, 26, 32]
(though not always [9, 10, 33]), and we do the same here.
Under this assumption, the story proceeds in a manner
analogous to the single field case. Each field coordinate
φi obeys the equation

d2φi
dr2

+
3

r

dφi
dr

=
∂V

∂φi
, φ̇i(0) = 0 , φi(∞) = 0 . (3)

The solution to this set of equations is analogous to

the position vector ~φ of a particle moving subject to fric-

tion in an inverted multi-dimensional potential −V (~φ)
along some specific trajectory. Since the position, veloc-
ity and acceleration are multi-component vectors, we can
reorganize these equations into a more intuitive form by
separating the components parallel to and perpendicular
to the trajectory of the particle (see, for example, [32]).
We begin by parametrizing points on the trajectory in
terms of the field-space distance from the false vacuum
measured along the trajectory1, φ(r). In terms of this

1 Note that φ(r) is the arc-length along the trajectory, and not the
radial distance from the field-space origin. At any point on the

trajectory dφ2 =

N∑
i=1

dφ2i , but in general φ2(r) 6=
N∑
i=1

φ2i (r).

variable, the equations (3) can be re-written as

d2φ

dr2
+

3

r

dφ

dr
=

∂

∂φ
V (~φ) ,

d2~φ

dφ2

(
dφ

dr

)2

= ∇⊥V (~φ) . (4)

Here, ∂
∂φV (~φ) and ∇⊥V (~φ) refer to the tangential and

perpendicular components of the gradient of the poten-
tial respectively. The first equation is similar to the sin-
gle field equation of motion (1), while the second equa-
tion causes the bounce trajectory to curve (in field-space)
when the potential slopes in the transverse directions. If
the trajectory is known, the multi-field problem can be
treated effectively as a single field problem with a field
φ subject to a potential V (φ) (the “potential profile” on
the trajectory), with an action identical in form to (2).

If there are multiple solutions to (4), the one with the
lowest action (the bounce) typically dominates tunnel-
ing. For a general potential profile, it is possible to get a
rough estimate/underestimate of the action [25, 26] after
truncating the integral2 in (2)

S & r3
Σ

π2

2

∫ ∞
rΣ

dr

(
dφ

dr

)2

& r3
Σ

π2

2

∫ φΣ

0

dφ
√

2V (φ)

≈ r3
Σ π

2

∫ φS

0

dφ
√

2V (φ) . (5)

Here, rΣ and φΣ refer to the values of r and φ at the
point on the trajectory where the potential is equal to
its false-vacuum value (if there are multiple such points,
we take the one closest to the false vacuum on the trajec-
tory). Similarly, φS refers to the value of φ at the local
maximum of the potential profile closest to the false vac-
uum.

In [25], the authors write the pre-factor multiplying
the surface tension integral in terms of the bounce radius
r. Since bounce radius is not a well-defined quantity in
general (except in the case of a thin-wall bubble), we
shall define it to be rΣ. As a simplifying assumption,
they also argued that tunneling occurs through a nearby
saddle point which presents the smallest barrier. When
that happens, our definition of φS would correspond to
the location of this saddle point. However, we note that
the bounce trajectory in general does not have to pass
through a saddle point [34].

2 The truncated integral

∫ φΣ

0
dφ

√
2V (φ) is commonly referred to

as “surface tension”.
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III. SINGLE FIELD POTENTIALS WITH
EXACT BOUNCE SOLUTIONS

In this section, we discuss two single field potentials
with exact analytical solutions to (1).

A. Binomial Potential With Non-Integer Powers

The first example we discuss can be considered a gen-
eralization of the Fubini instanton to non-integer powers.
The potential is

V (φ) =
4un2(n− 1)

2n+ 1
φ(2n+1)/n − 2u v n2φ(2n+2)/n,

(6)

where {u, v, n} ∈ R with u > 0, v > 0 and n > 1.
The exact bounce solution and bounce action for this

potential are given by

φ̄(r) =
1

(u r2 + v)n
,

S
[
φ̄
]

=
nπ2

(4n2 − 1)

1

u v2n−1
. (7)

Unlike the standard Fubini case, this potential has a
minimum at φ = 0 followed by a barrier for small values
of φ and a runoff (to−∞) for large values of φ. In general,
this potential represents a case of thick-wall tunneling.

FIG. 1: Binomial potential scaling with u.

For physical theories, we might worry about the runoff
and also about the behavior of the potential for φ < 0.
The former could be addressed by adding terms that
avoid runoff for large values of φ, and the latter by re-
placing φ with |φ|. The bounce itself cares only about the
potential profile along the tunneling trajectory (between
φ = 0 and φ = 1/vn), not beyond it.

We notice that for 0 < n ≤ 1 the potential (6) is well
defined, but it does not have a barrier. Therefore the
solution does not involve tunneling. For n = 1 we recover
the Fubini case. This can be compared to the potential
in equation (4.1) of [23] in the zero-temperature limit

FIG. 2: Binomial potential scaling with v.

FIG. 3: Binomial potential dependence on n.

with M = 0. In that limit, on identifying λ = 8u v and
ρ2 = v/u we see that the bounce solution in equation
(4.3) of [23] is identical to our bounce solution (7).

For larger integer values of n, the potential (6) involves
fractional powers and bears some resemblance to poten-
tials encountered in the string theory landscape [4]. It is
worth investigating whether potentials with exactly this
form - a binomial with two non-integer powers between
2 and 4 - appear somewhere in physically relevant situa-
tions.

We note that increasing the value of the parameter u
corresponds to scaling up the potential, while increasing
v corresponds to scaling down the potential as well as
making the barrier narrower as seen in Figs. 1 and 2.
Both of these changes tend to bring down the bounce
action. If we fix u and v and vary the parameter n, the
dependence is more complicated. To take a special case,
if we fix v = 1, we see that as we increase n, the barrier
width and the barrier height increases (the width asymp-
totes to a constant) while the bounce action decreases,
as shown in Fig. 4. Hence, a higher barrier can result in
a lower action, as known from scaling relations [31]. The
dependence of bounce action on scaling of barrier param-
eters will be studied in greater generality in section IV.
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FIG. 4: (color online) Scaling of various quantities with n for the binomial potential (6) with u = 1.5, v = 1. The
four lines represent action S (thick, blue), approximation SLB (thin, orange), height of the potential peak Vmax
(dashed, green) and barrier width φΣ (dot-dashed, red). SLB scaled up by a factor of 5 for ease of comparison.

B. Logarithmic Potential

We now discuss a previously known [29] potential with
exact bounce solution.

V (φ) =
1

2
m2φ2

[
1− ln

(
φ2

w2

)]
, {m,w} ∈ R .

(8)

The bounce solution is given by

φ̄(r) = w exp

[
−1

2
m2r2 + 2

]
,

S =
π2e4

2

w2

m2
. (9)

Similar to the binomial potential, this potential has a
barrier near the false vacuum followed by a run-off for
large values of φ. The log function has a singularity at
φ = 0, but the potential has a well defined limit at that
point. Scaling the parameters w and m correspond to
scaling the field-space width of the barrier or scaling the
height of the potential (with corresponding changes to
the radius-scale rΣ). How the bounce action depends
on these parameters is also clear; the bounce action de-
creases with the barrier height and increases with the
barrier width. We shall generalize this discussion in the
next section.

IV. SCALING OF BOUNCE ACTION WITH
POTENTIAL PROFILE

A. Scaling Argument

In this section we shall discuss how the scaling of
the potential profile along the bounce trajectory (which
changes the height and width of the barrier) affects the
bounce action. Since this is effectively a single field prob-
lem, we shall call the field variable φ, corresponding to ei-
ther the single field coordinate (for the single field poten-
tial) or the arc length along a multi-field trajectory (for
the multi-field potential). The potential profile along the
trajectory includes the barrier region (V > 0) and also
the region beyond it (V < 0).

Let us start with a tunneling potential V (φ) with
a bounce solution φ̄(r) (not necessarily analytic). In
order to parametrize scaling, we introduce a variable
g > 0, with g = 1 corresponding to the original poten-
tial. On changing the value of g, let the potential V
(barrier height) and the length-scale in field-space φ (bar-
rier width) scale as powers of g, ga and gb respectively.
We denote the rescaled potential and bounce solution as
Vg and φ̄g respectively (V1 ≡ V and φ̄1 ≡ φ̄). We observe
that for the scaling to be consistent, the typical radius r
must also scale. Collectively, the scaling relations are as
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follows

rg ≡ gc r ,

φg ≡ gb φ ,

φ̄g(rg) = gb φ̄(r) ,
Vg(φg) = ga V (φ) . (10)

In order to ensure that φ̄g satisfies the equation of mo-
tion (1), we must have an additional constraint

2 c = 2 b− a . (11)

This is consistent with the scaling argument presented
in [35] for the single-field case. From the scaling relations
(10) and (11) and from (2), the bounce action scaling is
obtained

Sg = g4b−aS . (12)

We may also check the scaling of the approxima-
tion/lower bound (5). Naming this quantity as SLB , we
observe that it scales as SLBg = g4b−aSLB , which is the
same as the bounce action. Therefore, any change in the
potential profile and the bounce solution, provided it can
be reduced to a scaling of the height of the potential pro-
file and/or the field space length scale will maintain the
level of accuracy of the approximation. Changes to the
shape of the potential profile (which cannot be reduced
to some form of scaling) can, however, affect the accuracy
of the approximation (5).

B. Application to Exact Solutions

Let us now apply the scaling argument for the poten-
tials discussed in section III. For the logarithmic potential
(8), if the parameters scale as wg = gγw and mg = gδm,
φ and r can be rescaled as

rg ≡ g−δr ,
φg ≡ gγφ ,

to obtain

φ̄g(rg) = gγw exp

[
−1

2
g2δm2r2

g + 2

]
= gγ φ̄(r) ,

Vg(φg) =
1

2
g2δm2φ2

g

(
1− ln

φ2
g

g2γw2

)
= g2(γ+δ)V (φ) .

(13)

This gives us all the scaling exponents in (10) and (12).
This same approach can be followed for the binomial po-
tential. The results are summarized in Table I.

We note that the g-scaling of the action in Table I
agrees with the exact expressions (7) and (9) if we plug
in the scaling of parameters u, v, w and m. This indicates
consistency of the scaling approach.

C. Implications of the Scaling Argument

We shall now discuss the insights gained from the scal-
ing argument regarding the relation between the barrier
parameters and the bounce action. We begin by noting
that the bounce action scales as g4b−a. This means that
in general, taller (a > 0) and narrower (b < 0) barriers
lead to a smaller bounce action. In fact, it is possible to
make the barrier larger in all respects (increase in both
height and width) and still reduce the bounce action pro-
vided the barrier height increases fast enough (a > 4b) to
compensate for the increase in width. The reason for this
becomes clear by recalling the estimate (5): the action
decreases because the decrease in r3

Σ is faster than the
increase in the surface tension integral.

We note that this is different from the case of non-
relativistic quantum mechanics, where barriers with
larger surface tension always lead to a larger action in
the absence of the r3 factor3. Therefore, in the case of
multi-field potentials, we cannot assume tunneling hap-
pens in the direction of the “smallest” barrier. In section
V, using additive potentials, we explicitly show situations
where the tunneling trajectory lies in the direction of a
larger barrier.

While the scaling argument captures the dependence
of action on two barrier parameters (height and width),
the actual diversity in the types of potential profiles is
far greater than what can be described using only two
parameters. Changing the value of n in the binomial
potential (6) provides one such example that leads to a
non-scaling change in shape of the profile, as seen in Fig.
3. The dependence of barrier parameters and bounce
action on n can be seen in Fig. 4. It can be clearly seen
that for small values of n, the exact bounce action S and
the approximation SLB scale differently. We note that for
n� 1, changing n reduces to a scaling of the potential,
which explains why these curves scale the same way for
large values of n.

V. APPLICATION TO MULTI-FIELD
POTENTIALS

A. Additive Potentials

One of the simplest ways of going from a single field
potential to anN -field potential is by defining an additive
potential

V
(
~φ
)

= V (φ1, φ2, ...φN ) =

N∑
i=1

Vi (φi) . (14)

Owing to the fact that the different field coordinates φi
behave as independent, uncoupled fields, the N equa-

3 The surface tension in both cases scales as σg = g(a+2b)/2σ.



6

Potential Transformation
V -scaling φ-scaling r-scaling

Action-scaling
a b c

Binomial
ug = gαu

α− (2n+ 1)β −nβ 1

2
(β − α) Sg = g−α−(2n−1)βS

vg = gβ v

Logarithmic
wg = gγw

2(γ + δ) γ −δ Sg = g2(γ−δ)S
mg = gδm

TABLE I: Summary of scaling relations for the binomial (6) and logarithmic (8) potentials.

tions (3) completely decouple to give N independent sin-
gle field equations of motion of the type (1).

For simplicity, let us assume that each of the Vi’s has a
non-trivial tunneling solution φ̄i(r) apart from the trivial
one (φi(r) = 0). This means that the there are 2N − 1
solutions for the N -field bounce, corresponding to each
field picking either the trivial or non-trivial solution4.

For additive potentials, the action for N -fields is ob-
tained by adding the single field action for each of the N
fields (2) which are completely independent of each-other

S =

N∑
i=1

∫ ∞
0

dr r3

[
1

2

(
dφi
dr

)2

+ Vi (φi(r))

]
=

N∑
i=1

Si .

(15)
Since each of the Si’s can be either positive or 0, the

lowest action is provided by the solution where one of the
Si’s takes the smallest non-trivial value and all others are
0; this is the bounce action.

Effectively, tunneling happens along (or is dominated
by) a field axis which corresponds to the Vi that mini-
mizes the bounce action among the N choices available.
This does not have to correspond to the axis with the
smallest barrier. For example, let us consider an N -field
potential where each of the Vi’s is a binomial potential (6)
with the same value of n but with different u and v (which
scale as powers of g, with a different g for each axis). If
the exponents in Table I are such that {α > 0, β < 0}
and α > (2n− 1)|β|, the axis corresponding to highest
value of g would dominate tunneling. This is not the di-
rection with the smallest barrier as all of the other field
axes have shorter and narrower barriers.

B. N-Dependence

We may study the dependence of the bounce action
on the number of fields N to see how N affects vacuum
metastability. The answer will depend on what class of
additive potentials we consider, i.e., what restrictions we
put on them. Let us consider building an N -field additive

4 We discount the solution φi(r) = 0 ∀ i which does not involve
tunneling out of the false vacuum.

potential of the form (14), starting from individual sin-
gle field components Vi(φi). For simplicity, we assume
the Vi’s are all potentials of the same type (for exam-
ple, potentials such as (6) or (8)) differing only in the
choice of parameters (such as u, v, m or w), which could
all be selected from random distributions. By this (very
restrictive) choice, we are requiring that the potential
profile along each of the axes will have the same shape
(but can have different scaling).

We shall try to enforce some measure of N -
independence in the potential that we construct by re-
quiring that for any N , the typical values of the potential
(heights of its peaks and valleys) at typical points on the
unit N − 1 sphere in field-space must be N -independent.
This constraint is inspired by a similar approach in [25]
for the case of quartic potentials. Points on the unit

sphere can be parametrized as ~φ =
1√
N

(c1, c2, ..., cN ),

where each of the ci’s are typically O(1)5.

Since the potential is additive, we require each com-

ponent potential Vi(ci/
√
N) to scale as 1/N , so that the

overall potential (at typical points) does not scale with
N . Therefore, by imposing this particular form of N -
independence in the potential, we are forced to choose
parameters (u, v, etc.) from distributions such that the
Vi’s and the length-scales of the φi axes scale with N .

From the arguments in the preceding section, we know
that tunneling happens along a field axis (the one which
minimizes the action). Therefore, the barrier height and
barrier width on the tunneling trajectory also scale as
1/N and 1/

√
N , respectively (due to the fact that a field

axis is not a typical direction). Here N plays the role
of g in our scaling arguments, and we are left with the
scaling exponents a = −1/2 and b = −1. This automat-
ically fixes c = 0, i.e., the typical bounce radius is N -
independent. The exact bounce action (2) scales as N−1,
and so does the approximation (5). Thus, for these po-
tentials, tunneling probability is enhanced as N grows.
This agrees with the result found in [25] where the action
scales as N−α with α > 1.

5 Points on the unit-sphere also satisfy

N∑
i=1

c2i = N .
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C. Multi-Field Potentials With Cross Couplings

In the case of additive potentials, the bounce solution
satisfies the longitudinal equation of (4) because it is ef-
fectively a single field bounce. The transverse equation is
trivially satisfied because the path is a straight line and
the variation of the potential in all the remaining N − 1
directions is also 0 (all the remaining field coordinates
rest at a minimum of their potential)6.

When we move away from additive potentials to po-
tentials with cross-couplings, the story becomes consid-
erably more complicated. For such potentials, straight
line directions with no transverse gradients do not gen-
erally exist which makes it difficult to identify solutions
that satisfy both equations (4). However, if we are able
to identify the bounce trajectory, it is possible to com-
pute either the exact action (2) or its approximation (5),
both of which scale the same way.

Greene et al. [25] sought to make the multi-field tun-
neling problem tractable for quartic potentials by cal-
culating estimate (5) in two steps. In one step, they
assumed that the potential profile of the trajectory cor-
responds approximately to a straight-line path and stud-
ied the variation of the bubble radius (presumably rΣ or
something similar) for quartic potential profiles. They
observed that the radius usually took on values within
the same order of magnitude for a distribution of sam-
pled potentials and therefore attributed a standardized
value of radius for their bounce action estimate. In the
second step, they calculated the surface tension integral
for the most “obvious” choice of tunneling trajectory, the
one passing through the smallest surface tension barrier.
Our arguments indicate that this step is not justified as
it may pick the wrong tunneling direction/trajectory.

Using a code improvised from [32], we computed the
exact action for two-field potentials in order to compare
with the estimate of Greene et al. [25]. For the poten-
tials we considered, their estimate was of the same order
of magnitude as the exact bounce action. It would be in-
teresting to check the approximation for larger numbers
of fields by numerically computing the bounce action to
see if the approximation still agrees.

VI. CONCLUSIONS

We introduced a new class of potentials with exact
analytic bounce solutions corresponding to tunneling

through a barrier in the absence of gravity. These solu-
tions could be considered a generalization of the Fubini
instanton to non-integer powers and could prove to be
valuable for further study as they may possibly have a
role to play in the string theory landscape.

We used scaling arguments to observe that for tun-
neling potentials with some fixed shape of the potential
profile, the following hold true:

1. Making the barrier taller (a > 0) and narrower
(b < 0) always lowers the bounce action.

2. Making the barrier taller (a > 0) and broader
(b > 0) can still lead to a lower bounce action if
the height increases faster than the width to the
fourth power (a > 4b).

Furthermore, we recognize that scaling does not account
for the considerable diversity in shapes of barriers, which
means that the dependence of action (and bounce radius)
on various shapes of potential profiles is still an open and
rich problem in its own right.

We also observe that the approximation (5), which in-
volves multiplying the “surface tension” of the bubble
by its 3-dimensional surface area, scales with barrier pa-
rameters the same way as the bounce action; therefore,
its accuracy will be preserved under any transformation
that could be described purely in terms of scaling.

Finally, we note that the intuition from single field po-
tentials directly translates to the case of additive multi-
field potentials, where the bounce trajectory lies along
one of the field axes. For general multi-field potentials,
identifying the actual bounce trajectory is still an open
problem and we do not yet have a simple way of calcu-
lating or estimating the bounce trajectory corresponding
to tunneling out of a false vacuum.
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