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We consider several types of quantum critical phenomena from finite-density gauge-gravity dual-
ity which to different degrees lie outside the Landau-Ginsburg-Wilson paradigm. These include: (1)
a “bifurcating” critical point, for which the order parameter remains gapped at the critical point,
and thus is not driven by soft order parameter fluctuations. Rather it appears to be driven by “con-
finement” which arises when two fixed points annihilate and lose conformality. On the condensed
side, there is an infinite tower of condensed states and the nonlinear response of the tower exhibits
an infinite spiral structure; (2) a “hybridized” critical point which can be described by a standard
Landau-Ginsburg sector of order parameter fluctuations hybridized with a strongly coupled sector;
(3) a “marginal” critical point which is obtained by tuning the above two critical points to occur
together and whose bosonic fluctuation spectrum coincides with that postulated to underly the
“Marginal Fermi Liquid” description of the optimally doped cuprates.
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I. INTRODUCTION AND SUMMARY

In a strongly correlated many-body system, small
changes of external control parameters can lead to qual-
itative changes in the ground state of the system, result-
ing in a quantum phase transition. The quantum criti-
cality associated with continuous quantum phase transi-
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tions give rise to some of the most interesting phenomena
in condensed matter physics, especially in itinerant elec-
tronic systems [1–3]. Among these are the breakdown of
Fermi liquid theory and the emergence of unconventional
superconductivity.

Quantum criticality is traditionally formulated within
the Landau paradigm of phase transitions [4–6]. The crit-
ical theory can be understood in terms of the fluctuations
of the order parameter, a coarse-grained variable mani-
festing the breaking of a global symmetry. This critical
theory lives in d+z dimensions [6], where d is the spatial
dimension, and z the dynamic exponent.

More recent experimental and theoretical develop-
ments [1–3, 7, 8], however, have pointed to new types
of quantum critical points. New modes, which are inher-
ently quantum and are beyond order-parameter fluctua-
tions, emerge as part of the quantum critical excitations.
For example, continuous quantum phase transitions ob-
served in various antiferromagnetic heavy fermion com-
pounds, involve a nontrivial interplay between local and
extended degrees of freedom. While the extended de-
grees of freedom can be described by an antiferromag-
netic order parameter, the Kondo breakdown and the
interplay between Kondo breakdown and antiferromag-
netic fluctuations cannot be captured in the standard
Landau-Ginsburg-Wilson formulation.

It is thus of great interest to identify other examples of
strongly correlated quantum critical points that do not fit
easily into the standard formalism. In this paper we will
discuss a set of such phase transitions using holographic
duality [9]. We will be studying a d-dimensional field the-
ory that is conformal1 in the UV and has a U(1) global
symmetry. Consider turning on a nonzero chemical po-
tential µ for the U(1) charge. This finite charge density
system has a disordered phase described in the bulk by
a charged black hole in AdSd+1 [10, 11]. The conserved
current Jµ of the boundary global U(1) is mapped to a
bulk U(1) gauge field AM , under which the black hole
is charged. Various examples exist of boundary gauge
theories with such a gravity description.

Now consider a scalar operator O dual to a bulk scalar
field φ, which at a finite chemical potential could exhibit
various instabilities towards the condensation of O. If
we tune parameters an instability can be made to vanish,
even at zero temperature, with a critical point separating
an ordered phase characterized by a nonzero expectation
value 〈O〉 from a disordered phase in which 〈O〉 vanishes.
The physical interpretation of the condensed phase de-
pends on the quantum numbers carried by O: for exam-
ple, if it is charged under some U(1) it can be interpreted
as a superconducting phase, whereas if it transforms as
a triplet under an SU(2) denoting spin it can be inter-
preted as an antiferromagnetic order parameter. If it is

1 Choosing a theory which is conformal in the UV is solely based
on technical convenience and our discussion is not sensitive to
this.

charged under a Z2 symmetry, the condensed phase can
be used to model, for example, a Ising-Nematic phase
from a Pomeranchuck instability. The critical point is
largely independent of the precise interpretation of the
condensed phase.

We will essentially discuss two different kinds of criti-
cal phenomena, which we refer to as a “bifurcating” and
a “hybridized” quantum critical point. A “bifurcating”
quantum phase transition happens when a bulk scalar
dips below the Breitenlohner-Freedman bound [12] in
the deep interior of the spacetime. It was shown pre-
viously [13, 14] that the thermodynamical behavior of
this system has an exponentially generated scale remi-
niscent of Berezinskii-Kosterlitz-Thouless transition and
there is an infinite tower of geometrically separated con-
densed states analogous to the Efimov effect [15] in the
formation of three-body bound states.2 Here we study
the dynamical critical behavior in detail. We find that
at a bifurcating critical point, the static susceptibility
for the order parameter does not diverge (i.e. the or-
der parameter remains gapped at the critical point), but
rather develops a branch point singularity. When ex-
tended beyond the critical point into the (unstable) dis-
ordered phase, the susceptibility attempts to bifurcate
into the complex plane. As the order parameter remains
gapped at the critical point, the quantum phase transi-
tion is not driven by soft order parameter fluctuations
as in the Landau-Ginsburg-Wilson paradigm. Rather it
appears to be driven by “confinement” which leads to
the formation of a tower of bound states, which then
Bose condense, i.e. it can be interpreted as a quantum
confinement/deconfinement critical point.3 On the con-
densed side, we find the nonlinear response of the tower
of condensed states exhibits an infinite spiral structure
that is shown in Fig. 7 in Sec. VII B.

The instability corresponding to a “hybridized” phase
transition occurs when the bulk extremal black hole ge-
ometry allows for certain kinds of scalar hair [19]. One
can approach the critical point for onset of the instabil-
ity by a double-trace deformation in the field theory [20].
Here we review and extend the results of [20]. At a hy-
bridized critical point the static susceptibility does di-
verge, but the small frequency and temperature behav-
ior near the critical point does not follow the standard
Landau-Ginzburg-Wilson formulation due to presence of
some soft degrees of freedom other than the order param-
eter fluctuations. In particular, in some parameter range
the dynamical susceptibility exhibits the local quantum
critical behavior observed in quantum phase transitions
of certain heavy fermion materials.

Finally, one can tune the parameters of the system
such that both types of critical point happen at the same

2 See also [16–18].
3 As will be elaborated later here we use the term “confinement” in

a somewhat loose sense, as in our story the “confined” state still
has gapless degrees of freedom left and thus the “confinement”
only removes part of the deconfined spectrum.
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time, resulting in yet another kind of critical point, which
we call a “marginal critical point”, as it is driven by a
marginally relevant operator. Intriguingly, the critical
fluctuations at such a point are precisely the same as the
bosonic fluctuation spectrum postulated to underly the
“Marginal Fermi Liquid” [21] description of the optimally
doped cuprates (see also [22, 23]).

Underlying the various sorts of novel quantum crit-
ical behavior described above is the “semi-local quan-
tum liquid” (or SLQL for short) nature of the disordered
phase. SLQL is a quantum phase dual to gravity in
AdS2 × Rd−1 which is the near-horizon geometry of a
zero-temperature charged black hole. It has a finite spa-
tial correlation length, but a scaling symmetry in the
time direction, and has gapless excitations at generic fi-
nite momenta; its properties have been discussed in detail
recently in [24] (and are also reviewed below in Sec. II). A
hybridized QCP can be described by a standard Landau-
Ginsburg sector of order parameter hybridized with de-
grees of freedom from SLQL. A bifurcating QCP can
be understood as the transition of SLQL to a confining
phase, as a consequence of two fixed points describing
SLQL annihilate. The infinite tower of condensed states
and the associated infinite spiral can be understood as
consequences of a spontaneously broken discrete scaling
symmetry in the time direction.

The plan of the paper is as follows. In the next section,
we discuss various aspects of the disordered phase and in
particular the notion of semi-local quantum liquid from
the point of view taken in [24]. In Section III we dis-
cuss various instabilities of a generic AdS spacetime, and
in Section IV we discuss how these instabilities manifest
themselves in the AdS2 factor in the disordered phase,
resulting in quantum phase transitions. In Section V we
attempt to illuminate the nature of these quantum phase
transitions by providing a low-energy effective theory for
them. In Section VI we discuss various aspects of the
condensed phase. In Sections VII and VIII we provide a
description of the critical behavior around the bifurcat-
ing and hybridized critical points respectively. In Section
IX we discuss the “marginal” critical point that is found
if parameters are tuned so that the hybridized and bi-
furcating critical points collide. Finally in Section X we
conclude with a discussion of the interpretation of the
SLQL as an intermediate-energy phase and the implica-
tions for our results.

Due to the length of this paper various details and most
derivations have been relegated to the appendices. We do
not summarize all appendices here, but we do point out
that in an attempt to make this paper more modular an
index of important symbols (including brief descriptions
and the location of their first definition) is provided in
Appendix G.

Note: While this paper was in preparation, we become
aware of related work by Kristan Jensen [25].

II. DISORDERED PHASE AND SEMI-LOCAL
QUANTUM LIQUIDS

We will be interested in instabilities to the condensa-
tion of a scalar operator for a holographic system at a
finite density, and in particular, the quantum critical be-
havior near a critical point for the onset of an instability.
An important set of observables for diagonalizing possible
instabilities and characterizing the dynamical nature of a
critical point are susceptibilities of the order parameter.
Suppose the order parameter is given by the expectation
value of some bosonic operatorO, then the corresponding

susceptibility χ(ω,~k) are given by the retarded function
for O, which captures the linear responses of the system
to an infinitesimal source4 conjugate to O.

In a stable phase in which O is uncondensed, turning
on an infinitesimal source will result in an expectation
value for O which is proportional to the source with the
proportional constant given by the susceptibility. How-
ever, if the system has an instability to the condensa-
tion of O, turning on an infinitesimal source will lead
to modes exponentially growing with time. Such grow-
ing modes are reflected in the presence of singularities of

χ(ω,~k) in the upper complex ω-plane. Similarly, at the
onset of an instability (i.e. a critical point, both thermal
and quantum), the static susceptibility typically diverges,
reflecting that the tendency of the system to develop an
expectation value of O even in the absence of an exter-
nal source. The divergence is characterized by a critical
exponent γ (see Appendix F for a review of definitions of
other critical exponents)

χ(k = 0, ω = 0) ∼ |g − gc|−γ (2.1)

where g is the tuning parameter (which is temperature
for a thermal transition) with gc the critical point.

In this section we first review the charged black hole ge-
ometry describing the disordered phase and the retarded
response function for a scalar operator in this phase. We
also elaborate on the semi-local behavior of the system,
which is a central theme of our paper.

While the qualitative features of our discussion apply
to any field theory spacetime dimension5 d ≥ 3, for def-
initeness we will restrict our quantitiative discussion to
d = 3.

A. AdS2 and Infrared (IR) behavior

At zero temperature a boundary CFT3 with a chemi-
cal potential µ is described by an extremal AdS charged
black hole, which has a metric and background gauge

4 For example if O is the magnetization of the system, then the
corresponding source is the magnetic field.

5 Explicit examples of the duality are only known for d = 3, 4, 6.
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field given by

ds2 =
R2

z2
(−fdt2 + d~x2) +

R2

z2

dz2

f
(2.2)

with

At = µ(1−µ∗z), f = 1 + 3µ4
∗z

4− 4µ3
∗z

3, µ∗ ≡
µ√
3gF

(2.3)
where R is the curvature radius of AdS4 and gF is
a dimensionless constant which determines the unit of
charge6. Note that the chemical potential µ is the only
scale of the system and provides the basic energy unit.
For convenience we introduce the appropriately rescaled
µ∗, which will be used often below as it avoids having the
factor

√
3gF flying around. f has a double zero at the

horizon z = z∗ ≡ 1
µ∗

, with

f(z) ≈ 6
(z∗ − z)2

z2∗
+ . . . , z → z∗ (2.4)

As a result the near-horizon geometry factorizes into
AdS2 × R2:

ds2 =
R2

2

ζ2
(−dt2 + dζ2) + µ2

∗R
2d~x2 A =

gF√
12ζ

dt.

(2.5)
Here we have defined a new radial coordinate ζ and R2

is the curvature radius of AdS2,

ζ ≡ z2
∗

6(z∗ − z)
, R2 ≡

R√
6
. (2.6)

The metric (2.5) applies to the region z∗−z
z∗
� 1 which

translates into µζ � 1. Also note that the metric (2.2)
has a finite horizon size and thus has a nonzero entropy
density.

AdSd+1 CFTd

AdS2 × Rd−1 SLQL

FIG. 1. At a finite chemical potential, a CFTd flows in the
IR to SLQL. On the gravity side this is realized geometrically
via the flow of the AdSd+1 near the boundary to AdS2×Rd−1

near the horizon.

As discussed in [19] the black hole geometry predicts
that at a finite chemical potential the system is flowing to

6 It is equal to the bulk gauge coupling in appropriate units.

a nontrivial IR fixed point dual to AdS2 × R2 (2.5). See
Fig. 1. Note that the metric (2.5) has a scaling symmetry

t→ λt, ζ → λζ, ~x→ ~x (2.7)

under which only the time coordinate scales. Thus the
IR fixed point has nontrivial scaling behavior only in the
time direction with the R2 directions becoming specta-
tors. Thus we expect that it should be described by a
conformal quantum mechanics, to which we will refer as
“eCFT1” with “e” standing for “emergent.” This confor-
mal quantum mechanics is somewhat unusual due to the
presence of the R2 factor on the gravity side, with scaling
operators labeled by continuous momentum along R2 di-
rection (as we shall see below). As emphasized in [24], the
quantum phase described by such an eCFT1 has some in-
teresting properties in terms of the dependence on spatial
directions, and a more descriptive name semi-local quan-
tum liquid (or SLQL for short) was given (see Sec. II C
for further elaboration). Below the terms eCFT1 and
SLQL can be used interchangeably. SLQL will be more
often used to emphasize the IR fixed point as a quantum
phase.

Let us now consider a scalar operator O(t, ~x) corre-
sponding to a bulk scalar field φ of mass m2 and charge
q. Its conformal dimension ∆ in the vacuum of the CFT3

is related to m by

∆ =
3

2
+ νU , νU ≡

√
m2R2 +

9

4
. (2.8)

At a finite chemical potential, in the IR its Fourier trans-
form O~k(t) along the spatial directions, with momentum
~k, should match onto some operator Φ~k(t) in the SLQL.
The conformal dimension of Φ~k in the SLQL can be found
from asymptotic behavior of classical solutions of φ in the
AdS2 × R2 geometry (2.5) and is given by7 [19]

δk =
1

2
+ νk (2.9)

with

νk =

√
m2R2

2 − q2∗ +
1

4
+

k2

6µ2∗
, k = |~k|, q∗ =

qgF√
12

.

(2.10)
Equation (2.10) has some interesting features. Firstly,
the IR dimension increases with momentum k, as a re-
sult operators with larger k become less important in the
IR. Note, however, this increase with momentum only
becomes significant as k ∼ µ. For k � µ, we can approx-
imately treat δk as momentum independent. Secondly, νk

7 Note that depending on the value of νk there may be an alterna-
tive choice for δk = 1

2
− νk, by imposing a Neumann boundary

condition for φ at the AdS2 boundary [26]. We will review this
in more detail below when needed.
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decreases with q, i.e. an operator with larger q will have
more significant IR fluctuations (given the same vacuum
dimension ∆).

In the low frequency limit ω � µ the susceptibility

(i.e. retarded Green function) χ(ω,~k) for O in the full
CFT3 can be written as [19]

χ(ω,~k) = µ2νU
∗

b+(k, ω) + b−(k, ω)Gk(ω)µ−2νk∗
a+(k, ω) + a−(k, ω)Gk(ω)µ−2νk∗

, (2.11)

where Gk is the retarded function for Φ~k in the SLQL
and can be computed exactly by solving the equation of
motion for φ in (2.5). It is given by [19]

Gk(ω) =
Γ(−2νk)

Γ(2νk)

Γ( 1
2 + νk − iq∗)

Γ( 1
2 − νk − iq∗)

(−2iω)2νk . (2.12)

a±(k, ω) and b±(k, ω) in (2.11) are real (dimensionless)
functions which can be extracted (numerically) by solv-
ing the equation of motion of φ in the full black hole
geometry (2.2). For the reader’s convenience we review
the analytic properties of a±, b± and outline derivation
of (2.11) in Appendix A. a±, b± are analytic in ω and
can be expanded for small ω as

a+(k, ω) = a
(0)
+ (k) + ωa

(1)
+ (k) + . . . (2.13)

a±(k, ω), b±(k, ω) are also analytic functions of νk and
k2. Note that for a neutral scalar the linear term in ω
vanishes and the first nontrivial order starts with ω2. A
relation which will be useful below is (see Appendix A
for a derivation)

a
(0)
+ (k)b

(0)
− (k)− a(0)

− (k)b
(0)
+ (k) =

νk
νU

. (2.14)

We also introduce the uniform and static susceptibili-

ties, given by

χ ≡ χ(ω = 0,~k = 0) = µ2νU
∗

b
(0)
+ (0)

a
(0)
+ (0)

χ(~k) ≡ χ(ω = 0,~k) = µ2νU
∗

b
(0)
+ (k)

a
(0)
+ (k)

. (2.15)

Note that for notational simplicity, we distinguish χ, χ(~k)

and χ(ω,~k) only by their arguments.

B. Finite temperature scaling

The previous considerations were all at precisely zero
temperature; at finite temperature the factor f(z) in
(2.2) develops a single zero at a horizon radius z0 < z∗.
For z∗−z0

z∗
� 1, the near-horizon region is now obtained

by replacing the AdS2 part of (2.5) by a Schwarzschild
black hole metric in AdS2, i.e.

ds2 =
R2

2

ζ2


−

(
1− ζ2

ζ2
0

)
dt2 +

dζ2

1− ζ2

ζ20


+ µ2

∗R
2d~x2

(2.16)

where ζ0 ≡ z2∗
6(z∗−z0) . The inverse Hawking temperature

is given to leading order in z∗−z0
z∗

by

T =
1

2πζ0
. (2.17)

The metric (2.16) applies to the region z∗−z
z∗
� 1 with

the condition z∗−z0
z∗

� 1 which translates into µζ � 1

with the condition µζ0 ∼ µ
T � 1.

Thus at a temperature T � µ, one essentially heats
up the SLQL and equation (2.11) can be generalized to

χ(ω,~k, T ) = µ2νU
∗

b+(k, ω, T ) + b−(k, ω, T )G(T )
k (ω)µ−2νk∗

a+(k, ω, T ) + a−(k, ω, T )G(T )
k (ω)µ−2νk∗

,

(2.18)

where G(T )
k is the retarded function for Φ~k in the SLQL

at temperature T and is given by [19, 27]

G(T )
k (ω) = (4πT )2νk

Γ(−2νk)

Γ(2νk)

Γ( 1
2 + νk − iq∗)

Γ( 1
2 − νk − iq∗)

Γ
(

1
2 + νk − i ω

2πT + iq∗
)

Γ
(

1
2 − νk − i ω

2πT + iq∗
) . (2.19)

Note that at finite T , a±, b± also receive analytic correc-
tions in T as indicated in (2.18). The retarded function

G(T )
k in the SLQL has a scaling form in terms of ω/T as

expected from the scaling symmetry at the zero temper-
ature. Note that there is no scaling in the spatial mo-
mentum and analytic dependence on T and ω in (2.18).

In both (2.12) and (2.19) the k dependence solely arises
from νk, which in turn depends on k through k2/µ2.
This implies that for k � µ, Gk is approximately k-
independent.

For most of this paper we will be considering a neutral
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scalar, for which (2.12) and (2.19) simplify to

Gk(ω) =

(
− iω

2

)2νk Γ(−νk)

Γ(νk)
, (2.20)

and

G(T )
k (ω) = (πT )2νk

Γ(−νk)

Γ(νk)

Γ
(

1
2 + νk − i ω

2πT

)

Γ
(

1
2 − νk − i ω

2πT

)

≡ T 2νkg
(ω
T
, νk

)
, (2.21)

with g(x, νk) a universal scaling function.

C. Semi-local quantum liquids

We expect that the leading low frequency behavior of
the spectral function of O should be given by that of
the IR fixed point, i.e. that of Φ~k in the SLQL. Indeed,

suppose a
(0)
+ (k) 6= 0 and νk is real, we can expand (2.11)

at small frequency as

χ(ω, k) = χ(k) + χ2(k)Gk(ω) + real analytic in ω (2.22)

where

χ(k) = µ2νU
∗

b
(0)
+ (k)

a
(0)
+ (k)

, χ2(k) = µ2νU
∗

νk
νU

1

(a
(0)
+ )2

(2.23)
are real analytic functions of νk and k2. Note we have
used (2.14) in the above expression for χ2. The spectral
function is then given by

Imχ(ω, k) = χ2(k)ImGk(ω) + . . . . (2.24)

The factor χ2(k) can be interpreted as a wave function
renormalization of the operator. The . . . in (2.24) de-
note higher order corrections which can be interpreted
as coming from irrelevant perturbations to the SLQL.

In subsequent sections we will describe situations in
which (2.22) and (2.24) break down and give rise to in-
stabilities. Below we briefly review the semi-local be-
havior of the IR fixed point discussed in [24] to provide
some physical intuition as to the nature of the disordered
phase.

An important feature of the SLQL is that the spectral
weight, which is defined by the imaginary part of the
retarded function (2.12), scales with ω as a power for any
momentum k, which indicates the presence of low energy
excitations for all momenta (although at larger momenta,
with a larger scaling dimension the weight will be more
suppressed).

Another interesting feature of the SLQL, which is a
manifestation of the disparity between the spatial and
time directions of the spacetime metric (2.5), is that the
system has an infinite correlation time, but a finite cor-
relation length in the spatial directions (where the scale
is provided by the nonzero chemical potential). This is

intuitively clear from the presence of (and lack of) scal-
ing symmetry in the time (and spatial) directions in the
near horizon region. The correlation length ξ in spatial
directions can be read from the branch point k = iξ−1 in
νk. More explicitly, νk in (2.10) can be rewritten as

νk =
1√
6µ∗

√
k2 +

1

ξ2
(2.25)

with

ξ ≡ 1

µ∗

1√
m2R2 − 6q2∗ + 3

2

=
1√

6ν0µ∗
. (2.26)

By Fourier transforming (2.24) to coordinate space one
obtains Euclidean correlation function GE(τ = it, ~x)
with the following behavior (For details of the Fourier
transform see Appendix of [28]. See also [24] for argu-
ments based on geodesic approximation):

1. For x ≡ |~x| � ξ (but not so small that the vacuum
behavior takes over),

GE(τ, x) ∼ 1

τ2δk=0
. (2.27)

2. For x� ξ, the correlation function decays at least
exponentially as

GE(τ, x) ∼ e− xξ . (2.28)

ξ ∼ 1

µ∗

G(t) ∼ 1

t2δ

FIG. 2. A cartoon picture: the system separates into domains
of size ξ ∼ 1

µ
. Within each domain a conformal quantum me-

chanics governs dynamics in the time direction with a power
law correlation (i.e. infinite relaxation time).

From the above we see that the system separates into
domains of size ξ ∼ 1

µ . Within each domain a conformal

quantum mechanics governs dynamics in the time direc-
tion with a power law correlation (i.e. infinite relaxation
time) (2.27). Domains separated by distances larger than
ξ are uncorrelated with one another. See Fig. 2 for a car-
toon picture.
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This behavior is reminiscent of the local quantum crit-
ical behavior discussed in [7] as proposed for heavy
fermion quantum critical points and also that exhibited
in the electron spectral function for the strange metal
phase for cuprates [21]. We note that there are also some
important differences. Firstly, here the behavior hap-
pens to be a phase, rather than a critical point. Secondly,
while there is nontrivial scaling only in the time direction,
the local AdS2 correlation functions depend nontrivially
on k. From (2.25) it is precisely this dependence of νk on
k that gives the spatial correlation length of the system.
Also while at a generic point in parameter space, the de-
pendence of νk and Gk on k is analytic and only through
k/µ (and thus can be approximated as k-independent for
k � µ), as we will see in Sec. VII, near a bifurcating
quantum critical point, the dependence becomes nonan-
alytic at k = 0 and is important for understanding the
behavior around the critical point. For these reasons,
such a phase was named as a semi-local quantum liquid
(SLQL) in [24]. As also discussed there, SLQL should
be interpreted as a universal intermediate energy phase
rather than as a zero temperature phase. This will have
important implications for the interpretation of quantum
critical behavior to be discussed in later sections, a point
to which we will return in the conclusion section. For
now we will treat it as a zero-temperature phase.

III. SCALAR INSTABILITIES OF AN ADS
SPACETIME

In preparation for the discussion of instabilities and
quantum phase transitions for the finite density system
we introduced in last section, here we review the scalar
instabilities of a pure AdSd+1 spacetime. As we will see in
the later sections, the instabilities and critical behavior of
our finite density system are closely related to those of the
near horizon AdS2 region. Below we will first consider
general d and then point out some features specific to
AdS2. We will mainly state the results; for details see
Appendix B.

Consider a scalar field φ in AdSd+1, which is dual to
an operator Φ in some boundary CFTd. The conformal
dimension of Φ is given by

∆± =
d

2
± ν, ν =

√
M2R2 +

d2

4
(3.1)

where M2 is the mass square for φ. For ν ≥ 1, only the
+ sign in (3.1) is allowed. For ν ∈ (0, 1), there are two
ways to quantize φ by imposing Dirichlet or Neumann
conditions at the AdS boundary, which are often called
standard and alternative quantizations respectively, and
lead to two different CFTs. We will call the CFTd in
which Φ has dimension ∆+ = d

2 + ν the CFTIR
d and

the corresponding operator Φ+. The one in which Φ has
dimension ∆− = d

2−ν will be denoted as the CFTUV
d and

the operator Φ−. The range of dimensions in the CFTUV
d

is ∆− ∈ (d2 −1, d2 ) with the lower limit (corresponding to
ν → 1) approaching that of a free particle in d spacetime
dimension.

β

CFTUVCFT IR

κ+ > 0 κ− < 0

κ+ = − 1

κ−

FIG. 3. Flow from CFTUV
d to CFTIR

d (the arrows denote flows
to the IR). In the region between two fixed points, one can
describe the system using either fixed point. To the left of
the fixed point corresponding to CFTIR

d , the system develops
a UV instability. To the right of CFTUV

d , the system develops
an IR instability.

Let us consider first ν ∈ (0, 1). In the CFTUV
d the dou-

ble trace operator Φ2
− is relevant (as 2∆− < d). Turning

on a double trace deformation

κ−µ2ν
∗

2

∫
Φ2
− (3.2)

with a positive κ−, the theory will flow in the IR to the
CFTIR

d [29] (and thus their respective names). Turning
on (3.2) with a κ− < 0 will instead lead to an instability
in the IR, and Φ− will condense (see Appendix B for ex-
planation).8 Thus κ− = 0, i.e. the CFTUV

d , is a quantum
critical point for the onset of instability for condensing
the scalar operator. The double trace deformation

κ+µ
−2ν
∗

2

∫
Φ2

+ (3.3)

in the CFTIR
d is an irrelevant perturbation and the theory

flows in the UV to the CFTUV
d for negative κ+. Note that

CFTIR
d deformed by (3.3) with κ+ < 0 is equivalent to

CFTUV
d deformed by (3.2) with the relation9

κ+ = − 1

κ−
. (3.4)

8 As discussed recently in [20] this instability can be used to gen-
erate a new type of holographic superconductors.

9 For a recent discussion of these issues see Appendix of [30].



8

Thus the alternative quantization corresponds to the
limit κ+ → −∞. For positive κ+ the system develops
a UV instability (see Appendix B). See Fig. 3 for a sum-
mary.

For ν > 1, there is only CFTIR
d corresponding to the

standard quantization and the double trace deformation
is always irrelevant. There is a UV instability for κ+ < 0
(κ+ > 0) for ν ∈ (n, n + 1) for n an odd (even) integer
(see Appendix B). For example for ν ∈ (1, 2) there is a
UV instability for κ+ < 0.

As ν → 0, i.e. M2 → −d24 , the two CFTd’s merge

into one at ν = 0. When M2 drops below M2
c ≡ −d

2

4 ,
the so-called Breitenlohner-Freedman bound, the fixed
points become complex and the conformal symmetry is
broken. Relatedly ν becomes complex and Φ develops
exponentially growing modes [12]. The system becomes
unstable to the condensation of Φ modes. Introducing a
UV cutoff Λ, then there is an emergent IR energy scale
ΛIR below which the condensate sets in [31]

ΛIR ∼ Λ exp

(
− π√

M2
c −M2

)
. (3.5)

Thus ν = 0 is another critical point; for all M2 < M2
c an

instability occurs.
Now consider being precisely at ν = 0, i.e. fix M2 =

M2
c . Our system still has another control knob: the dou-

ble trace deformation

κ

2

∫
Φ2 (3.6)

is marginal. One can show that it is marginally relevant
for κ < 0 and irrelevant for κ > 0 [29] (see Appendix B 1 b
for a derivation). Thus for κ > 0 the system is stable in
the IR, but for κ < 0 there is an exponentially generated
IR scale (Λ is a UV cutoff)

ΛIR = Λ exp

(
1

κ

)
(3.7)

below which the operator will again condense. As it re-
quires tuning two parameters, ν = 0 and κ = 0 is a
multi-critical point. See Fig. 14 in Appendix B 1 b.

The above discussions apply to any d including d = 1.
There are some new elements for d = 1, i.e. AdS2,10

which does not happen for d ≥ 2. Firstly, from (2.10),
the dimension of an operator also depends on its charge,
i.e. the second equation in (3.1) is modified to11

ν =

√
M2R2

2 − q2∗ +
1

4
. (3.8)

10 We will assume the AdS2 has a constant radial electric field as
in most applications with (2.5) as one such example.

11 Note that in (2.10), k2 term comes from dimensional reduction
on R2 and should be considered as part of the AdS2 mass square,

i.e. the AdS2 mass square is M2R2
2 = m2R2

2 + k2

6µ2
∗

.

Thus ν can become imaginary when charge is sufficiently
large even for a positive M2. Secondly, for a charged
scalar in AdS2, the range in which both quantizations
exists becomes ν ∈ (0, 1

2 ) (see Appendix B 2 for details).
Both features have to do with that the gauge poten-
tial in (2.5) blows up at the infinity and thus affects
the boundary conditions (including normalizability) of
a charged scalar.

In our discussion below, double trace deformations of
the eCFT1 describing the SLQL will play an important
role. In particular, for an operator Φ in which alternative
quantization exists we should also distinguish eCFTIR

1

and eCFTUV
1 , where Φ has dimension 1

2 ± ν respectively.

IV. INSTABILITIES AND QUANTUM
CRITICAL POINTS AT FINITE DENSITY

We now go back to the (2 + 1)-dimensional system
at a finite density introduced in sec. II. We will slightly
generalize the discussion there by also including double
trace deformations in the dual CFT3. We will mostly
work in the standard quantization so that our discussion
also applies to νU > 1 and the results for the alternative
quantization can be obtained from those for standard
quantization using (3.4). We will work in the parameter
region that the vacuum theory is stable in the IR, i.e.

m2R2 ≥ −9

4
, and κ+ < 0 . (4.1)

Turning on a finite chemical potential can lead to new
IR instabilities and quantum phase transitions. In this
section we discuss these instabilities and the correspond-
ing quantum critical points and in next section we give
an effective theory description. The subsequent sections
will be devoted to a detailed study of critical behavior
around these quantum critical points.

A. Finite density instabilities

Potentially instabilities due to the condensation of a
scalar operator O can be diagonalized by examining the
retarded function (2.11), which can be generalized to in-
clude double trace deformations (3.3) as [26]

χ(ω,~k) = µ2νU
∗

b+(k, ω) + b−(k, ω)Gk(ω)µ−2νk∗
ã+(k, ω) + ã−(k, ω)Gk(ω)µ−2νk∗

(4.2)

where we have used (B6) and

ã±(ω, k) = a±(ω, k) + κ+b±(ω, k)

= a
(0)
± (k) + κ+b

(0)
± (k) +O(ω) . (4.3)

Instabilities will manifest themselves as poles of (4.2) in
the upper half complex-ω-plane, which gives rise to expo-
nentially growing modes and thus leads to condensation
of φ.
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In [19], it was found that when one of the following
two conditions happens, (2.22)–(2.24) do not apply and
Eq. (4.2) always has poles in the upper ω-plane12, imply-
ing instabilities:

1. νk becomes imaginary for some k, for which there
are an infinite number of poles in the upper half
ω-plane13. Writing (2.10) as

νk =

√
u+

k2

6µ2∗
, u ≡ m2R2

2 +
1

4
− q2
∗ (4.4)

νk becomes complex for sufficiently small k when-
ever u < 0. For a given m, this always occurs for a
sufficiently large q. For a neutral operator q = 0, u
can be negative for m2R2 lying in the window

−9

4
< m2R2 < −3

2
(4.5)

where the lower limit comes from the stability of
vacuum theory (4.1) and the upper limit comes
from the condition u < 0 after using the rela-
tion (2.6). Interpreting m2R2

2 − q2
∗ as an effec-

tive AdS2 mass square (at k = 0), on the grav-
ity side the instability can be interpreted as vio-
lating the AdS2 BF bound [32–35]. For a charged
scalar the instability is also related to pair produc-
tion of charged particles from the black hole and
superradiance [19]. On the field theory side, the
instability can be interpreted as due to formation
of bound states in SLQL [24] (see also discussion in
Sec. VII D).

2. ã
(0)
+ (k) can become zero for some special values of

momentum kF . At k = kF it is clear from (4.2) that

since ã
(0)
+ = 0, χ has a singularity at ω = 0. Fur-

thermore since a
(0)
+ changes sign near k = kF , it was

shown in [19] (see sec. VI B), the phase of (2.12) is
such that a pole moves from the upper half ω-plane
(for k < kF ) to the lower half ω-plane (for k > kF )
through ω = 0. In Appendix C Fig. 16, 17 we show
some examples of a neutral scalar field for which

ã
(0)
+ has a zero at some momentum. On the gravity

side a zero of ã
(0)
+ (k) corresponds to the existence

of a normalizable solution of scalar equation in the
black hole geometry, i.e. a scalar hair [19]. Such
a normalizable mode implies in the boundary field
theory the existence of some soft degrees of free-
dom and as we shall see in Sec. V A the instability
can be captured by a standard Landau-Ginsburg
model.

12 Ref. [19] considered only the standard and alternative quantiza-
tion. The argument there generalizes immediately to (4.2) with
double trace deformations.

13 For example, see the right plot of Fig. 1 of [19].

In the parameter range (say for m, q, κ+) where ei-
ther (or both) instability appears, the system is unsta-
ble to the condensation of the operator O (or in bulk
language condensation of φ). For a charged scalar the
condensed phase corresponds to a holographic supercon-
ductor [36, 37] and the first instability underlies that
of [38, 39] as was first pointed out in [32], while holo-
graphic superconductors due to the second type insta-
bility has been discussed recently in [20]. For a neu-
tral scalar, the first type of instability was first pointed
out in [33], and as discussed in [13] the condensed phase
can be used as a model for antiferromagnetism when the
scalar operator is embedded as part of a triplet trans-
forming under a global SU(2) symmetry corresponding
to spin. For a single real scalar field with a Z2 symmetry,
the condensed phase can be considered as a model for an
Ising-nematic phase.

Both types of instabilities can be cured by going to
sufficiently high temperature; there exists a critical tem-
perature Tc, beyond which these instabilities no longer
exist and at which the system undergoes a continuous
superconducting (for a charged scalar) or antiferromag-
netic (for a neutral scalar) phase transition. As has been
discussed extensively in the literature such finite tem-
perature phase transitions are of the mean field type, as
the boundary conditions of the finite-temperature black
hole horizon are analytic (see e.g. [13, 40, 41]). Alterna-
tively one can continuously dial external parameters of
the system at zero temperature to get rid of the instabil-
ities. The critical values of the parameters at which the
instabilities disappear then correspond to quantum crit-
ical points (QCP) where quantum phase transitions into
a superconducting or an antiferromagnetic phase occur.

B. Bifurcating quantum critical point

For the first type of instability a quantum critical point
occurs when the effective AdS2 mass becomes zero for
k = 0 [13, 14], i.e. from (4.4), at

u = uc = 0 . (4.6)

For example for a neutral scalar field (with q = 0) this
happens at

m2
cR

2 = −3

2
. (4.7)

Note that while in AdS/CFT models the mass square
m2 for the vacuum theory is typically not an externally
tunable parameter, the effective AdS2 mass square can
often be tuned. For example, in the set-up of [14, 16], the
effective AdS2 mass square can be tuned by dialing an ex-
ternal magnetic field and so is the the example discussed
in [13] when considering a holographic superconductor
in a magnetic field. See also [13] for a phenomenological
model. In this paper we will not worry about the detailed
mechanism to realize the uc = 0 critical point and will



10

just treat u as a dialable parameter (or just imagine di-
aling the mass square for the vacuum theory). Our main
purpose is to identify and understand the critical behav-
ior around the critical point which is independent of the
specific mechanism to realize it. As will be discussed in
subsequent sections, as we approach uc = 0 from the un-
condensed side (u > 0), the static susceptibility remains
finite, but develops a cusp at u = 0 and if we naively
continue it to u < 0 the susceptibility becomes complex.
Below we will refer to this critical point as a bifurcating
QCP.

C. Hybridized quantum critical point

The second type of instability results in an intricate
phase structure in the u − κ+ plane. For illustration,
we restrict our attention here to 0 < u < 1

24 (i.e.

− 3
2 < m2R2 < − 5

4 ) where the story is relatively sim-

ple, and relegate the discussion of the u > 1
24 regime to

Appendix C.
For 0 < u < 1

24 , one can readily check numerically

that ã
(0)
+ is a monotonically increasing function of k for

negative κ+. See Fig. 16. Thus to diagnose possible

instability we need only to examine the sign of ã
(0)
+ (k = 0)

with the stable region having ã
(0)
+ (k = 0) > 0. This

implies that the system is stable for κ+ satisfying14

0 > κ+ ≥ κc ≡ −
a

(0)
+ (k = 0)

b
(0)
+ (k = 0)

(4.8)

where the upper limit is required by (4.1). For κ+ > 0
there is a UV instability already present in the vacuum,
and this instability is unaffected by the introduction of
finite density.

We will focus on the the critical point κc in (4.8) below.
Note that at the critical point κ+ = κc

ã
(0)
+ (k = 0, κc) = 0 (4.9)

and as a result the uniform susceptibility χ in (2.15) di-
verges. Such a quantum critical point has been discussed
recently in [20]. As already mentioned in [20] and will be
elaborated more in Sec. VIII, the presence of the strongly
coupled IR sector described by AdS2 gives rise to a vari-
ety of new phenomena which cannot be captured by the
standard Laudau-Ginsburg-Wilson paradigm. For rea-
sons to be clear in sec. VIII, below we will refer to such
a critical point as a hybridized QCP.

Note that it is rather interesting that despite that
κ+ being an irrelevant coupling, tuning it could nev-
ertheless result in an IR instability due to finite den-
sity effect. In the u-range we are working in νU < 1,

14 Note that for m2R2 < 0, both b
(0)
+ (k = 0) and a

(0)
+ (k = 0) are

positive, see Fig. 16 in Appendix C.

and this phenomenon can be understood more intuitively
through the description in terms of alternative quantiza-
tion. From (3.4), the stable region (4.8) translates into

κ− ≥ −
1

κc
(4.10)

with the alternative quantization itself (κ− = 0) falling
into the unstable region. Note that turning on a dou-
ble trace deformation in the alternative quantization
1
2κ−µ

2νU∗
∫
O2 translates in the bulk description into

turning on a bulk boundary action 1
2f−

∫
φ2 where f− ∝

κ− and φ is the bulk field dual to O. Thus we see that at
finite density one needs to turn on a nonzero “boundary
mass” to stabilize the alternative quantization.

D. A marginal quantum critical point

We can also tune κ+ and u together to have a doubly
tuned critical point at u = 0, κ+ = κ∗+, where the sus-
ceptibility both diverges and bifurcates. The value of κ∗+
can be obtained from u → 0 limit of the expression for
κc given in (4.8), leading to

κ∗+ = −α
β

(4.11)

where α and β are constants defined in Eq. (A22). For
the specific example (4.7) of tuning the AdS4 mass of a
neutral scalar to reach u = 0, the values of α, β are given
in (A27)–(A28) which gives κ∗ = −2.10.

As we will show in sec. IX, the dynamical susceptibil-
ity around such a critical point coincide with that of the
bosonic fluctuations underlying the “Marginal Fermi Liq-
uid” postulated in [21] for describing the strange metal
region of the high Tc cuprates.15

The full phase diagram for a neutral scalar operator is
given in fig. 4.16 Additional details about the construc-
tion of the phase diagram can be found in Appendix C.

V. EFFECTIVE THEORY DESCRIPTION OF
THE CRITICAL POINTS (µ∗ = 1)

In this section we illuminate the nature of various
quantum critical points discussed in the last section by
giving a low energy effective boundary theory description
for them. For a hybridized QCP, the discussion below
slightly generalizes an earlier discussion of [20].

15 It has also been pointed out by David Vegh [42] that the retarded
function for a scalar operator with ν = 0 in AdS2 gives the
bosonic fluctuations of the “Marginal Fermi Liquid”.

16 A similar phase diagram for AdS5 was determined in [43] for a
wider range of u.
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FIG. 4. The full phase diagram of the system for a neutral
scalar. C (U) denotes regions with (without) IR instabilities;
C stands for condensed, U for uncondensed phase. The region
with UV instability is filled with light blue.
Top plot: phase diagram for the standard quantization. For
u < 0, i.e. m2R2 < − 3

2
the system is always unstable in

the IR with u = 0 the critical line for a bifurcating QCP.
The vertical purple dashed line is at u = 1

24
corresponding

to m2R2 = − 5
4
. There is no alternative quantization to the

right of this line. The vertical black dashed line is at u = 1
4

corresponding to m2 = 0. The curve separating C and U
approaches infinity when approaching this line.
Bottom plot: phase diagram for the alternative quantiza-
tion (for νU ∈ (0, 1), hence the limited range in u compared
to the top plot, u < 1

24
). The κ− > 0 part of the phase dia-

gram can be obtained from the κ+ < 0 part of the standard
quantization phase diagram by using the relation (3.4). In
the vacuum, the system has an IR instability for κ− < 0, i.e.
with κ− = 0 the critical line. At a finite density the critical
line is pushed into the region κ− > 0.

For definiteness, for the rest of the paper we will re-
strict our discussion to a neutral scalar field with q = 0.
Almost all qualitative features of our discussion apply to
the charged case except for some small differences which
we will mention along the way. To avoid clutter we set
µ∗ = 1 in this section.

On general ground we expect that the low energy ef-

fective action of the system can be written as

Seff = SeCFT1
+ SUV (5.1)

where SeCFT1
is the action for the IR fixed point SLQL,

for which we do not have an explicit Lagrangian descrip-
tion, but (as discussed in Sec. II) whose operator di-
mensions and correlation functions are known from from
gravity in AdS2 × R2. SUV arises from integrating out
higher energy degrees of freedom, and can be expanded in
terms of scaling operators in SeCFT1

. The part relevant
for O can be written as

SUV =
1

2

∫
χ(k)J~kJ−~k−

1

2

∫
ξkΦ~kΦ−~k+

∫
ηkΦ~kJ−~k+. . .

(5.2)
where Φ~k is the scaling operator at the IR fixed point
to which O~k matches. We have written the action
in momentum space since the dimension of Φ~k(t) is
momentum-dependent, and the integral signs should be

understood as
∫

=
∫
dtd~k. We have introduced a source

J~k for O~k and . . . denotes higher powers of Φ~k and J .
Since we are only interested in two-point functions it is
enough to keep SUV to quadratic order in Φ and J . We
have also only kept the lowest order terms in the expan-
sion in time derivatives. The “UV data” χ(k), ηk and ξk
can be found from by integrating out the bulk geometry
all the way to the boundary of the near-horizon AdS2

region [30]; χ(k) is the static susceptibility and other co-
efficients can be expressed in terms of functions a±, b±
we introduced earlier as

χ(k) =
b
(0)
+ (k)

ã
(0)
+ (k)

, ξk =
ã

(0)
− (k)

ã
(0)
+ (k)

,

ηk =

√
W

ã
(0)
+ (k)

, W ≡ a(0)
+ b

(0)
− − a(0)

− b
(0)
+ . (5.3)

In (5.1) we are working with the standard quantiza-
tion of eCFT1; in terms of the notation introduced at
the beginning of Sec. III, it corresponds to eCFTIR

1 and
Φk corresponds to Φ+ with dimension 1

2 + νk. Since the
full action (5.1) is essentially given by eCFT1 with (ir-
relevant) double trace deformations, the full correlation
function following from (5.1) can be readily obtained us-
ing (B6),

χ(ω, k) = χ(k) +
η2
k

G−1
k + ξk

. (5.4)

It can be readily checked that (5.4) agrees with the lowest
order ω expansion of (4.2) with the substitution of (5.3).
Alternatively, one can obtain (5.3) by requiring (5.4) to
match (4.2) [30]. 17

When νk for Φ~k lies in the range νk ∈ (0, 1) (or (0, 1
2 )

for a charged operator), it is also useful to write the low

17 This is the approach taken by [44].
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energy theory in terms of the operator in the alternative
quantization, i.e. in terms of eCFTUV

1 . Again following
the procedure of [30] we find

Seff = SeCFTUV
1
− 1

2

∫
ξ−Φ2

− +

∫
η−Φ−J +

1

2

∫
χ−J

2

(5.5)
with

χ− =
b
(0)
− (k)

ã
(0)
− (k)

, ξ− = − ã
(0)
+ (k)

ã
(0)
− (k)

= − 1

ξk

η− =

√
W

ã
(0)
− (k)

. (5.6)

In (5.5) to distinguish from (5.1) we have reinstated the
subscript (−) and suppressed k-dependence.

A. Hybridized QCP

Near a hybridized QCP (4.9), the effective action (5.1)–
(5.2) breaks down as all the coefficient functions in (5.2)
diverge at k = 0. For example, near κc at small k, the
static susceptibility χ(k) has the form

χ(~k) ≈ 1

(κ+ − κc) + hk~k2
, hk ≡

∂k2 ã
(0)
+ (k)

b
(0)
+ (k)

∣∣∣∣
k=0,κ+=κc

(5.7)
which is the standard mean field behavior with the spatial
correlation length scaling as

ξ ∼ (κ+ − κc)−νcrit , νcrit =
1

2
. (5.8)

The reason for these divergences is not difficult to iden-
tify; we must have integrated out some gapless modes,
which should be put back to the low energy effective ac-

tion. Indeed as discussed in [19, 30], when ã
(0)
+ (k) be-

comes zero at some values of k, the bulk equation of
motion develops a normalizable mode with ω = 0, which
will give rise to gapless excitations in the boundary the-
ory. Thus near a hybridized QCP, we should introduce a
new field ϕ in the low energy theory. Clearly there is no
unique way of doing this18 and the simplest choice is

Seff = SeCFT1 −
1

2

∫
ckΦ2

~k
+

∫
λkΦ−~kϕ~k

−1

2

∫
ϕ−~k χ

−1 ϕ~k +

∫
ϕJ (5.9)

18 We can for example make a field redefinition in ϕ as ϕ→ Z1ϕ+
Z2Φ.

where

χ(k) =
b
(0)
+ (k)

ã
(0)
+ (k)

, λk =
ηk
χk

=

√
W

b
(0)
+ (k)

,

ck = ξk + χkλ
2
k =

b
(0)
− (k)

b
(0)
+ (k)

. (5.10)

Now all the coefficient functions are well defined near a
hybridized QCP (4.9), where ϕ becomes gapless.

It is worth reemphasizing that both ϕ and Φ should be
considered as low energy degrees of freedom, represent-
ing different physics. Given that in (5.9) only ϕ couples
to the source J for the operator O, ϕ can be consid-
ered as the standard Laudau-Ginsburg order parameter
(i.e. essentially O written as an effective field) represent-
ing extended correlations. In particular the phase transi-
tion is signaled by that it becomes gapless. The last two
terms in (5.9) then corresponds to the standard Landau-
Ginsburg action for the order parameter. In contrast,
as we discussed in Sec. II C, field Φ from SLQL can be
considered as representing some strongly coupled semi-
local degrees of freedom whose effective action is given by
the first two terms in (5.9). The key element in (5.9) is
that the Laudau-Ginsburg order parameter ϕ is now hy-
bridized with (through the mixing term

∫
λkΦ~kϕ~k) some

degrees of freedom in SLQL, which are not present in
conventional phase transitions. This is the origin of the
name “hybridized QCP.”

In summary, the action (5.9) can be written as

Seff = S̃eCFT1
[Φ] + λ

∫
Φϕ+ SLG[ϕ] +

∫
ϕJ (5.11)

where S̃eCFT1
is given by the first two terms in (5.9) and

SLG = −1

2

∫
ϕ−~k(κ+ − κc + hkk

2)ϕ~k . (5.12)

In this coupled theory, there is then an interesting inter-
play between semi-local and extended degrees of freedom.
As shown in [20] and as we will see in Sec. VIII this leads
to a variety of novel critical behavior. When ϕ is mas-
sive, i.e. away from the critical point, one can integrate
out ϕ and obtain a low energy effective theory solely in
terms of Φ as in (5.1).

In the range of νk for which the alternative quanti-
zation for the SLQL applies, the low energy theory can
also be described using (5.5). It is interesting that in
this formulation all coefficients functions in (5.5) are well
defined near a hybridized QCP. Thus there is no need
to introduce ϕ any more and (5.5) is the full low energy
effective theory. Then how does the SLQL sector of (5.5)
know that we are dialing the effective mass of ϕ in (5.9)
to drive a quantum phase transition through a hybridized
QCP? What happens is that through hybridization be-
tween Φ and ϕ, when one drives the effective mass for ϕ
to zero, the double trace coupling in (5.1), ξk is driven to
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infinity and when expressed in terms of alternative quan-
tization, the corresponding double trace coupling ξ− is
driven through ξ− = 0 (see (5.6)), which is precisely a
quantum critical point of the eCFT1 itself (see discussion
of Sec. III and Appendix B 1 a). Thus in this formulation,
dialing the external parameter directly drives to a critical
point of the SLQL sector.

It is also important to emphasize that in the formu-
lation of (5.5), while eCFT1 involves only the time di-
rection, this theory can nevertheless describe the quan-
tum phase transition of the full system including that
the spatial correlation length goes to infinity near the
critical point, since spatial correlations are encoded in
the various k-dependent coefficient functions (including
the cosmological constant). But this is achieved by some
level of conspiracy among various coefficient functions
in (5.5), which will not work using generic coefficients as
one would normally do in writing a general low energy
effective theory. In this sense the effective action (5.9)
in terms of two sectors is a more “authentic” low energy
theory.

B. Bifurcating QCP

Let us now consider a bifurcating QCP (4.6). Since
κ+ does not play a role here, for notational simplicity we
will set it to zero, i.e. ã± become a±.

At u = 0, the fixed points corresponding to the stan-
dard and alternative quantization for Φk=0 merge into a
single one, and for u < 0, the SLQL becomes unstable as
Φ will develop exponentially growing modes as discussed
in Sec. III and Appendix B 1 b.

At a bifurcating QCP, all the coefficient functions
in (5.2) remain finite. For example, in the u → 0 limit,
the susceptibility χ(k = 0) can be written as

χ(k = 0) =
β

α
−
√
u

2νUα2
+ . . . (5.13)

where α, β are some numerical constants and we have
used (A22), (A26). Thus there is no need to introduce
the Landau-Ginsburg field ϕ as for a hybridized QCP. In
other words, in (5.9), at a bifurcating QCP, ϕ remains
gapped and we can integrate it out. Nevertheless, various
coefficient functions in (5.2) do become singular at u = 0,
with a branch point singularity, as can be seen from the
second term in (5.13). If we naively extending (5.13)
and ηk, ξk to u < 0, they become complex.19 Also note
that from equation (2.26) the spatial correlation length
of SLQL does diverge when u→ 0 as

ξ =
1√

6
√
u
. (5.14)

19 This complexity is of course unphysical as for u < 0 the disor-
dered phase based on which (5.13) is calculated is unstable. As
we will see in Sec. VII the susceptibility for the condensed phase
is indeed real.

Let us now focus on the homogenous mode (i.e. k = 0)
and consider the u → 0 limit of (5.1)–(5.3). Note as
u→ 0,

ξk=0 = 1− 2
√
u
α̃

α
+ . . . , η2

k=0 =

√
u

νUα2
+ . . . (5.15)

where we have used (A22) and (2.14). Also note
from (2.20)

Gk=0(ω)→ −1 + 2
√
uG0(ω), u→ 0 (5.16)

with G0(ω) the retarded function at ν = 0, given by20

G0(ω) = − log

(
− iω

2µ∗

)
− γE (5.17)

where µ∗ is a UV regulator (it is convenient to chose to
use the same µ∗ (2.3) that is supplied by the full theory).
21

Since SeCFT1 in (5.1) is defined to be the theory which
gives Gk of (5.16), we see that the u → 0 is a bit subtle
as a straightforward limit does not gives an action whose
retarded function is (5.17). An efficient way to proceed
is to write down the general action

Seff = S
(ν=0)
eCFT1

+
χ̃0

2

∫
dt J2− ξ̃0

2

∫
dtΦ2+η̃

∫
dtΦJ+. . .

(5.18)

where J,Φ are shorthand for Jk=0 and Φk=0 and S
(ν=0)
eCFT1

denotes the action for the IR fixed point in which the
retarded function for Φ is given by (5.17). Various coeffi-
cients in (5.18) can then be deduced by matching the re-
tarded function from (5.18) with the u = 0 limit of (2.11),
which is

χ(u=0)(ω, k = 0) =
βG0(ω) + β̃

αG0(ω) + α̃
. (5.19)

We find that22

χ̃0 =
β̃

α̃
, ξ̃0 =

α

α̃
, η̃2

0 =
1

2νU α̃2
. (5.20)

For the specific example of tuning to u = 0 by dialing the
mass for the bulk scalar field (4.7), the numerical values

of α, β, α̃, β̃, νU are given in equations (A27)–(A28) in
Appendix A.

20 G0 is obtained by solving directly the bulk equation of motion at
ν = 0.

21 Contrary to other parts of the section we reintroduced µ∗
for (5.17) only.

22 There is a systematic procedure to derive these coefficients di-
rectly from the u→ 0 limit of (5.1), which is not needed here.
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C. Marginal critical point

In (5.18), Φ has dimension 1
2 and thus the double trace

term Φ2 is marginal. As discussed in Sec. III and Ap-
pendix B 1 b, it is marginally irrelevant when its coupling
ξ̃0 is positive and marginally relevant when ξ̃0 is negative
(leading to a condensed phase), with ξ̃ = 0 being a multi-

critical point. When κ+ = 0, the value of ξ̃0 is given
by (5.20), which for the specific example of (4.7) has a
positive value and thus the system is IR stable. Turning
on a nonzero κ+, ξ̃0 generalizes to

ξ̃
(κ)
0 =

α+ κ+β

α̃+ κ+β̃
(5.21)

and the susceptibility (5.19) to

χ(u=0,κ+)(ω, k = 0) =
βG0(ω) + β̃

(α+ κ+β)G0(ω) + (α̃+ κ+β̃)
.

(5.22)
There is thus a critical point at

κ∗+ = −α
β

(5.23)

which agrees with (4.11) obtained from directly taking
the u→ 0 limit of (4.8) . At the critical point, there is a
divergent static susceptibility

χ(u=0,κ+)(ω = 0, k = 0) =
β

α+ κ+β
. (5.24)

For κ+ < κ∗+, ξ̃
(κ)
0 < 0, and the system is unstable to

the condensation of O. In this case, the condensation
is driven by a marginally relevant operator (thus for the
name marginal critical point) which generates an expo-
nential IR scale (3.7)

ΛIR ∼ µ exp

(
1

ξ̃
(κ)
0

)
(5.25)

just as in the BCS instability for superconductivity.

VI. ASPECTS OF THE CONDENSED PHASE

In this section we discuss some qualitative features of
the spacetime geometry corresponding to the condensed
state of a neutral scalar. In particular, we show that in
the IR, the solution again asymptotes to AdS2 × Rd−1,
but with a different curvature radius and transverse size
compared with the uncondensed solution. The discussion
applies to both types of instabilities discussed in Sec. IV.

Consider the Einstein-Maxwell action coupled to a
neutral scalar field φ

S =
1

2κ2

∫
dd+1x

√−g
(
Rd+1 +

d(d− 1)

R2
− R2

g2
F

F 2

)
+Sφ

(6.1)

where F = dA and

Sφ =
1

2κ2g

∫
dd+1x

√−g
(
−1

2
(∂φ)2 − V (φ)

)
, (6.2)

where g is the coupling constant for the matter field.
In the absence of any charged matter the equation of

motion for At is simply Gauss’s law

∂r

(
1

g2
F

√−ggrrgtt∂rAt
)

= 0 (6.3)

Note we work in a gauge in which Ar = 0. This equation
is nothing but the electric flux conservation

Eprop

g2
F

A = const (6.4)

with Eprop ≡
√
grrgtt∂rAt the electric field in a local

proper frame and A ≡
√

−g
gttgrr

the transverse area. The

boundary charge density ρB is the canonical momentum
with respect to At at infinity, which can be written as

ρB =
2R2

κ2

Eprop

g2
F

A

∣∣∣∣
∞

=
2R2

κ2

Eprop

g2
F

A

∣∣∣∣
rh

(6.5)

where we have used (6.4). Given that the entropy density
s is the area of the horizon,

s =
2π

κ2
A(r = rh) (6.6)

equation (6.5) also implies that

ρB
s

=
R2

π

Eprop

g2
F

∣∣∣∣
r=rh

. (6.7)

This is a rather intriguing result which expresses the di-
mensionless ratio of charge density over the entropy den-
sity in terms of the local electric field at the horizon in
units of the asymptotic AdS radius.

We now express this in terms of more geometric quan-
tities. To do this, we assume that φ goes to zero (which
is a local maximum of V ) at asymptotic AdSd+1 infinity
and in the interior settles into a constant value φ = φ0

which is a nearby local minimum. We choose the normal-
ization of V (φ) so that V (0) = 0 and thus V (φ0) < 0. At
the IR fixed point, the effective cosmological constant is
modified from the asymptotic value. For convenience we
define

1

R̃2
2

=
1

R2
2

− V (φ0)

g
,

1

R2
2

=
d(d− 1)

R2
(6.8)

where R2 is the AdS2 radius in the uncondensed phase.
Since V (φ0) < 0, we have R2 > R̃2.

Now if we require a nonsingular solution, i.e. if the
electric field is nonsingular,23 flux conservation (6.4) tells

23 If there is a horizon, this means nonsingular also at the horizon.
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us the area A should be finite in the IR. We thus expect
that the IR geometry factorizes into the formM2×Rd−1

with M2 some two dimensional manifold involving r, t.
Near the horizon we can thus write the d+1 dimensional
metric as

ds2 = gMNdx
MdxN = g(2)

µν dx
µdxν + a2d~x2

d−1 (6.9)

where µ, ν run over the 2d space (r, t) and a is a constant.
Now dimensionally reduce along all the spatial directions,
the action becomes

S =
1

2κ2

∫
d2x
√
−g(2)ad−1

(
R2 +

1

R̃2
2

− R2

g2
F

F 2

)
.

(6.10)
Note that here we assume that all active fields do not cou-
ple in a special way to the transverse spatial components
of the metric a, whose effect can thus be taken into ac-
count purely from the ad−1 factor in the metric determi-
nant; a nonzero magnetic field Fxy for example would vi-
olate this assumption and introduce extra a-dependence
into the action.

Varying the 2d metric g(2) we find

2E2
prop = −F 2 =

g2
F

R2R̃2
2

(6.11)

which is simply a constraint on the electric field. Vary-
ing with respect to a and using (6.11) in the resulting
equation, we find

R2 = − 2

R̃2
2

(6.12)

which implies that M2 is given by an AdS2 with radius
R̃2, i.e. the IR metric can be written as

ds2 =
R̃2

2

ξ2

(
−dt2 + dξ2

)
+ a2d~x2

d−1 . (6.13)

From (6.11) we also find that

At =
ed
ξ
, with ed ≡

gF R̃2√
2R

. (6.14)

Given ρB we can now also determine the value of a
from (6.5)

ad−1 =
ρBκ

2gF√
2

R̃2

R
. (6.15)

Now using (6.11) in (6.7) we also find that

ρB
s

=
1

R̃2

(
R√

2πgF

)
. (6.16)

Note the combination of R and gF appearing in the
brackets is the ratio of gauge to gravitational couplings.
Our discussion leading to (6.16) only depends on the fac-
torized form of (6.9), which of course also applies to the

uncondensed phase with R̃2 replaced by R2. As we are
now in a lower point in the bulk effective potential, we
have R̃2 < R2, and thus ρB

s increases in the condensed
phase. Keeping the charged density fixed, this implies
that the entropy density s is smaller in the condensed
phase, i.e. the condensate appears to have gapped out
some degrees of freedom. Note that (6.16) also provides
a boundary theory way to interpret the AdS2 radius: it
measures the number of degrees of freedom needed to
store one quantum of charge.

�AdS2 AdS2 AdS4

r

AdS2 AdS4

r

Lifz

FIG. 5. Comparison of the spacetime geometries (close to
the critical point) corresponding to the condensed state of
a neutral (left) and charged scalar (right). The vertical di-
rection in the plot denotes the R2 directions. For AdS2 the
transverse directions has a constant size independent of ra-
dial coordinates, while for the Lifshitz geometry, the size of
the transverse directions shrinks to zero in the interior. Close
to the critical point, the IR scale at which the scalar conden-
sate sets in is much smaller than the chemical potential and
we expect an intermediate spacetime region described by the
AdS2 of the original black hole geometry.

We conclude this section by pointing out a differ-
ence between the geometries corresponding to the con-
densed states of a charged (holographic superconductor)
and a neutral (AFM-type state) scalar. As discussed in
the above the infrared region of the bulk geometry for
the condensate of a neutral scalar is still given by an
AdS2 × R2, but with a smaller curvature radius and en-
tropy density than those of the uncondensed geometry.
This implies that such a neutral condensate is not yet
the stable ground state, and at even lower energy some
other order has to take over [24]. We will return to this
point in the conclusion section. In contrast, the geometry
for a holographic superconductor at zero temperature is
given by a Lifshitz geometry (which includes AdS4 as a
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special example) [45–47] in the infrared. The black hole
has disappeared and the system has zero entropy density.
Such a solution may be stable and thus could describe the
genuine ground state. Note, however, in both cases, the
condensed state still has some gapless degrees of freedom
left. See Fig. 5 for a cartoon which contrasts the differ-
ence between the two cases.

VII. CRITICAL BEHAVIOR OF A
BIFURCATING QCP

We now proceed to study the critical behavior of the
various types of critical points identified in section IV.
In this section we study the bifurcating quantum critical
point, including the static and finite frequency behavior
at zero temperature and then thermal behavior. In this
section we will set the double trace deformation to zero,
i.e. κ+ = 0, as the story for a nonzero κ+ is exactly the
same.

A. Zero temperature: from uncondensed side

For convenience we reproduce the expression for the
zero-temperature susceptibility (2.11),

χ(ω,~k) = µ2νU
∗

b+(k, ω) + b−(k, ω)Gk(ω)µ−2νk∗
a+(k, ω) + a−(k, ω)Gk(ω)µ−2νk∗

(7.1)

with

νk =

√
u+

k2

6µ2∗
, u ≡ m2R2

2 +
1

4
. (7.2)

To study the behavior near the critical point u = 0 we
study the implications of taking νk → 0 in (7.1), i.e. both
k2/µ2 and u are small.

1. Static properties

We first study the critical behavior of the static suscep-
tibility (2.15) by setting ω → 0 in (7.1) and taking u→ 0
from the uncondensed side u > 0. From equation (A22)
we find that for small νk,

χ(k) = µ2νU
∗

β + νkβ̃

α+ νkα̃
+O(ν2

k , k
2) (7.3)

where α, β, α̃, β̃ are numerical constants. Setting k = 0
we find the zero momentum susceptibility is given by

χ = µ2νU
∗

β +
√
uβ̃

α+
√
uα̃

. (7.4)

As already mentioned earlier, at the critical point the
static susceptibility remains finite, given by

χ|u→0+
= χ0 ≡ µ2νU

∗
β

α
. (7.5)

which is in sharp contrast with the critical behavior from
the Landau paradigm where one expects that the uni-
form susceptibility always diverges approaching a critical
point. Due to the square root appearing in (7.4), χ has
a branch point at u = 0 and bifurcates into the complex
plane for u < 0. Of course, when u < 0, eq. (7.4) can no
longer be used, but the fact that it becomes complex can
be considered an indication of instability. Furthermore,
taking a derivative with respect to u we find that

∂uχ = µ2νU
∗

αβ̃ − βα̃
2α2

1√
u

= − µ2νU∗
4νUα2

1√
u
→∞, (u→ 0)

(7.6)
where we have used (A26) in the second equality. Thus
even though χ(u) is finite at u = 0, it develops a cusp
there, as shown in Fig. 6. It will turn out convenient to
introduce a quantity

χ∗ ≡ µ2νU
∗

1

4νUα2
= χ0

1

4νUαβ
(7.7)

and then (7.6) becomes

∂uχ = − χ∗√
u
. (7.8)

Similarly, taking derivative over k2 in (7.3) and then set-
ting k = 0, we find that

∂k2χ(~k)
∣∣
k=0

= − χ∗
6µ2∗
√
u
, u→ 0 . (7.9)

Note that this divergence is related to the fact for any

u > 0, χ(~k) is analytic in k2, but not at u = 0, where
νk ∝ k.

-0.02 -0.01 0.01 0.02 0.03 0.04
u

0.5
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ΧHuL

Χ*

FIG. 6. A plot of χ(u) as a function of u with µ∗ = 1. We also
include the behavior on the u < 0 side to be worked out in
Sec. VII B. Note that while there is a cusp in χ approaching
the critical point from the uncondensed side (u > 0), there
is no cusp approaching the critical point from the condensed
side (u < 0). From both sides the susceptibility is finite at
the critical point, but there is a jump in their values.

The above non-analytic behavior at k = 0 should
have important consequences when we Fourier transform
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χ(~k) to coordinate space. Indeed by comparing (4.4)
with (2.25), we find that

ξ =
1√

6µ∗
√
u
. (7.10)

Thus as u→ 0, the correlation length ξ diverges as u−
1
2

which is the same as that in a mean field theory. More
explicitly, Fourier transforming χ(k) to coordinate space
we find asymptotically at large x,

G(x) ≡
∫

d2k

(2π)2
χ(~k)eikx ≈ χ∗

√
u

πx2
exp

(
−x
ξ

)
. (7.11)

Note however that there is additional suppression by fac-
tors of

√
u in the numerator of this expression; this sug-

gests that the actual power law falloff at the critical point
is not the one found from setting u → 0 above, but is
rather faster. Indeed performing the integral at precisely
u = 0 we find

G(x)
∣∣
u=0
∼ µ2∆−1

∗
(µ∗x)3

(7.12)

with a different exponent ∼ x−3.

2. Dynamical properties

We now turn to the critical behavior of the suscepti-
bility (2.11) at a nonzero ω near the critical point from
uncondensed side u > 0. We should be careful with the

νk → 0 limit as the factor
(
ω
µ∗

)2νk
in the AdS2 Green

function (2.20) behaves differently depending on the or-
der we take the νk → 0 and ω → 0 limits. For example,
the Taylor expansion of such a term in small νk involves
terms of the form νk log(ω/µ∗), but in the small ω limit,
the resulting large logarithms may invalidate the small
νk expansion.

To proceed, we note first that the expression (7.1) to-
gether with the explicit expression for the AdS2 Green’s
function (2.20) can be written

χ(ω,~k) = µ2νU
∗



b+Γ(νk)

(
−iω
2µ∗

)−νk
+ b−Γ(−νk)

(
−iω
2µ∗

)νk

a+Γ(νk)
(
−iω
2µ∗

)−νk
+ a−Γ(−νk)

(
−iω
2µ∗

)νk


 . (7.13)

Now from the discussion at the beginning of Ap-
pendix A 2, we can write

a± = a(±νk; k2, ω), b± = b(±νk; k2, ω) (7.14)

where a(ν; k2, ω) and b(ν; k2, ω) are some functions ana-
lytic in all its variables. Using (7.14), eq. (7.13) can be
further written as

χ(ω,~k) = µ2νU
∗

fb(νk)− fb(−νk)

fa(νk)− fa(−νk)
(7.15)

where24

fb(ν) ≡ b(ν)νΓ(ν)

(−iω
2µ∗

)−ν
(7.16)

and similarly for fa(ν). The point of this rewriting is to
illustrate that if fa,b(ν) have nonsingular Taylor expan-
sions in ν – which is the case for any finite ω – then if
we expand numerator and denominator in ν all the terms

that are odd in ν will cancel, and thus χ(ω,~k) contains

24 Note that Γ(ν → 0) ∼ 1
ν
− γ + O(ν), necessitating the extra

factor of ν in the definition of fa,b(ν) to obtain a nonsingular
Taylor expansion.

only even powers of νk, i.e. χ(ω,~k) = χ(ω, u, k2) and for

any nonzero ω, χ(ω,~k) is analytic at u = 0 and k2 = 0.
There is no branch-point singularity that was found in

(7.3). In particular the expression for χ(ω,~k) approach-
ing u = 0 for the condensed side can be simply obtained
by analytically continuing (7.15) to u < 0. This should be
expected since for a given ω, as we take u→ 0−, it should
always be the case that ω is much larger than the scale
where the physics of condensate sets in, which should go
to zero with u. Thus the physics of the condensate is not
visible at a given nonzero ω. We will see in next section
that the same thing happens at finite temperature.

Now expanding the Gamma function and a±, b±
in (7.13) to leading order in νk, but keeping the full de-
pendence on ω, we find that

χ(ω,~k) = χ0

sinh
(
νk log

(
−iω
ωb

))

sinh
(
νk log

(
−iω
ωa

)) + . . . (7.17)

where the energy scales ωa,b are given by

ωa = 2µ∗ exp

(
α̃

α
− γE

)
, ωb = 2µ∗ exp

(
β̃

β
− γE

)
,

(7.18)
where γE is the Euler-Mascheroni constant, and χ0 is
uniform susceptibility at the critical point given earlier
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in (7.5). For a charged scalar, equations (7.15) and (7.17)
still apply with slightly different functions fa, fb and
ωa, ωb becoming complex.

Considering νk → 0 in (7.17) with a fixed ω, we then
find

χ(ω,~k) = χ0

log
(
ω
ωb

)
− iπ2

log
(
ω
ωa

)
− iπ2

+O(u, k2) (7.19)

whose leading term is simply (5.19) and the corrections
are analytic in both u and k2. Note that both above
expression and (7.17) have a pole at ω = iωa in the up-
per half ω-plane. But this should not concern us as our
expressions are only valid for ω � µ∗ ∼ ωa.

Further taking the ω → 0 limit in (7.19) then gives

χ(ω,~k) = χ0

(
1 +

1

2νUαβ

1

logω
+

iπ

4νUαβ

1

(logω)2
+ . . .

)

= χ0 +
2χ∗
logω

+
iπχ∗

(logω)2
+ . . . (7.20)

where we have kept the leading nontrivial ω-dependence
in both real and imaginary parts and used (7.7).

Equations (7.19) and (7.20) give the leading order ex-
pression at nonzero u (for both signs, as χ(ω, k) is ana-
lytic at u = 0 at a nonzero ω) and k2 as far as νk log ω

ωa,b

remains small. They break down when ω becomes expo-
nentially small in 1

ν ,

ω ∼ ΛCO, ΛCO ∼ µ∗e−
#√
u (7.21)

where # denotes some O(1) number. In the regime
of (7.21), the susceptibility (7.17) crosses over to

χ(ω → 0,~k) = χ0 − 2νkχ∗ − 4νkχ∗

(−iω
2µ∗

)2νk

+ . . .

(7.22)
which is the low energy behavior (2.22) for the uncon-
densed phase and also consistent with (7.3). Note that
. . . in the above equation also includes perturbative cor-
rections in ω.

B. Zero temperature: from the condensed side

When u < 0, the IR scaling dimension of O~k becomes

complex for sufficiently small k as νk =
√
u+ k2

6µ2
∗

=

−iλk is now pure imaginary.25 For a given nonzero ω
and |u| sufficiently small, as discussed after (7.15) the
corresponding expression for χ(k, ω) can be obtained

25 Note that the choice of branch of the square root does not matter
as (7.17) is a function of ν2k .

from (7.17) by simply taking u to be negative, after which
we find

χ(ω,~k) = χ0

sin
(
λk log

(
−iω
ωb

))

sin
(
λk log

(
−iω
ωa

)) + . . . . (7.23)

While (7.17) is valid to arbitrarily small ω, equa-
tion (7.23) has poles in the upper half frequency plane
(for k = 0) at26

ωn = iωa exp

(
− nπ√−u

)
≡ iΛn, , n = 1, 2 . . .

(7.24)
with

Λn ∼ µ exp

(
− nπ√−u

)
. (7.25)

In particular, we expect (7.23) to break down for ω ∼ Λ1,
the largest among (7.25), and at which scale the physics
of the condensate should set in. This is indeed consis-
tent with an earlier analysis of classical gravity solutions
in [13, 14] where it was found that O develops an expec-
tation value of order

〈O〉
µ∆
∼
(

Λ1

µ

) 1
2

. (7.26)

The exponent 1
2 in (7.26) is the scaling dimension of O in

the SLQL for u = 0, while ∆ is its UV scaling dimension
in the vacuum. It was also found in [13, 14] there are
an infinite number of excited condensed states with a

dynamically generated scale given by Λn and 〈O〉 ∼ Λ
1
2
n ,

respectively. Thus the pole series in (7.24) in fact signal
a geometric series of condensed states. This tower of
condensed states with geometrically spaced expectation
values is reminiscent of Efimov states [15].27 The largest
is in the first state n = 1, which is the energetically
favored vacuum (see the discussion of free energy below).

1. Static susceptibility

In Appendix D, we compute the response of the system
to a static and uniform external source in this tower of
“Efimov” states. The result is rather interesting and can
be described as follows. One finds that the response in all
the “Efimov” states can be read from a pair of continuous

26 Note that (7.23) also have poles for non-positive integer n. But at
these values ω is either of order or much larger than the chemical
potential µ to which our analysis do not apply.

27 In fact the gravity analysis (from which (7.23) arises) reduces to
the same quantum mechanics problem as that of the formation
of three-body bound states in [15].
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spiral curves described parametrically by (for
√−u �

1)28

A = z3−∆
∗

γ√−uα
√
z∗
ζ∗

sin

(√
−u log

ζ∗
z∗

+
√
−uα̃

α

)
,

B = z−∆
∗

γ√−uβ
√
z∗
ζ∗

sin

(
√
−u log

ζ∗
z∗

+
√
−uβ̃

β

)
.

(7.27)

where A and B denote the source and expectation value
for O respectively, γ is a O(1) constant. ζ−1

∗ is a dynam-
ical energy scale which parametrizes movement through
the solution space; as we vary ζ∗, we trace out a spiral in
the (A,B) plane.29 See fig. 7. Since we are considering
a system with a Z2 symmetry O → −O, in fig. 7 there
is also a mirror spiral obtained from (7.27) by taking
(A,B)→ −(A,B).

The tower of “Efimov” states is obtained by setting
the source A = 0, which leads to

ζ∗ = ζn ≡ z∗e
nπ√
−u−

α̃
α , n = 1, 2, . . . (7.28)

which when plugged into the expression for B in (7.27)
gives

〈O〉 ∝ |B| = µ∆
∗

γ

2νUα
e
− nπ

2
√
−u+ α̃

2α ∼ µ∆
∗ exp

(
−n π

2
√−u

)

(7.29)
where we have used (A26). These are the values at which
the spiral intersects with the vertical axis, with that for
the n = 1 state corresponding to the outermost intersec-
tion. Note that ζn ∼ Λ−1

n and equation (7.29) is consis-
tent with the discussion below (7.26).

As
√−u → 0, from (7.27), A and B are becoming in

phase, and the spiral is being squeezed into a straight
line, with limiting slope

B

A

∣∣∣∣√−u→0

= µ2νU
∗

β

α
= χ0 . (7.30)

This slope agrees with the value found from linear re-
sponse approaching the critical point from the other side
(7.5). This is however not the relevant slope for the sus-
ceptibility, which should be given by

χL =
dB

dA

∣∣∣∣
A=0

(7.31)

which in the usual models of spontaneous symmetry
breaking, corresponds to the longitudinal susceptibility.

28 Note that the following result applies to both neutral and charged
cases.

29 Infinite spirals in holography were previously found by [48] in a
different setting resulting in first order phase transitions, by [49]
in nonrelativistic holography and very recently by [18].
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FIG. 7. The spiral in the B − A plane passing through B
(1)
+

gives the solution described by (7.27) as ζ∗ is varied. The spi-

ral passing through B
(1)
− = −B(1)

+ gives the mirror curve from
O → −O reflection symmetry. The normalizable solutions in
the standard quantization are given by the intersections of the

spiral with respect to the B-axis with B
(1)
± the ground states

and B
(2)
± the first excited states and etc. The red straight line

has slope given by (7.30). As
√
−u→ 0 most part of the spi-

ral becomes parallel to it. For ease of visulazation a nonlinear
mapping has been performed along the the major and minor
axes of the spiral; while the zeros of A and B are preserved
by this mapping the location of divergences and zeros of dB

dA
are not (hence the quotation marks in the location of “PA”
and “PB”, which are only for illustrative purposes).

From (7.27) we find

χL = µ2νU
∗

β

α

(
1 +

α̃β − αβ̃
2αβ

)
+O(u) = χ0 + χ∗ +O(u)

(7.32)

where we have used (A26) and (7.7). Essentially, even
though the spiral is squished into a straight line as we
approach the transition, each intersection of the spiral
with the A = 0 axis has a different slope than the lim-
iting slope of the entire spiral. Note that this result is
independent of n and in particular applies to n = 1, the
ground state. Since χ0 is the value at u = 0 from the
uncondensed side, we thus find a jump in the value of
uniform susceptibility in crossing u = 0 (see Fig. 6) and
the difference is precisely the same coefficient as the di-
vergent terms in (7.6), which also appears in other places
such as (7.20).

We now elaborate a bit more on the interpretation of
various parts of the spirals in Fig. 7. Let us start with

the ground state30 B
(1)
+ , and first follow the spiral to the

right, i.e. we apply an external source A in the same
direction as the condensate. This will increase B accord-
ing to (7.31) and (7.32). Note that near the critical point

30 Equivalently we can also start with its Z2 image B
(1)
− .
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B
(1)
+

PA

P �
A

B

A

FIG. 8. A zoomed in version of the spiral, where there has
been no nonlinear mapping and so the location of PA is faith-
fully reproduced. As described in the text, at PA the system
becomes locally unstable and relaxes to P ′A. Appearances to
the contrary, the spiral continues to wind around infinitely
many times as it approaches the origin, a fact that is difficult
to see without the nonlinear mapping due to the exponential
spacing of the intersections.

B
(1)
+ is exponentially small; thus as we increase A further,

we will eventually reach a regime where the forced re-

sponse is much larger than the condensate B � B
(1)
+ but

is still much smaller than 1, B � 1. One thus expects
that here the system should not care about the (exponen-
tially small) condensate and the response should simply
be given by that at the critical point, i.e. the linear re-
sponse line given by χ0. Thus the spiral will approach a
straight line parallel to the red straight line in the figure.

Now consider applying A in the opposite direction to
the condensate. As the Z2 symmetry was spontaneously

broken, we now expect that B
(1)
− should be the global

minimum and B
(1)
+ should be only locally stable. Never-

theless, we can choose to stay in the “super-cooled” state

given by B
(1)
+ and stay on the response curve given by

following the spiral at B
(1)
+ to the left, where now the

source acts to reduce B. The response curve in the re-

gion between B
(1)
+ and PA is nonlinear as the effect of

the condensate is important. At PA the susceptibility
dB
dA → +∞ (PA corresponds to an inflection point in the
effective potential) and the state that we are on becomes
genuinely (i.e. even locally) unstable and if we continue
to increase |A|, then the system will relax to the point

P ′A on the other branch of the spiral starting from B
(1)
− .

Note that

B(PA)

B
(1)
+

∼ O(1) (7.33)

where by O(1) we mean that the ratio is independent of
the small parameter

√−u.
To complete the story let us now consider starting from

the first excited state B
(2)
+ and again apply the external

source along the direction of the condensate, which now

corresponds to following the spiral to the left. Near B
(2)
+ ,

the response is again controlled by (7.32), but again when

1 � |B| � |B(2)
+ |, the system will forget that it is in a

condensed state and the response will again be controlled
by χ0. The response curve will once again be parallel to
the linear response line until we reach the region near
PB , where the response has now become exponentially

large compared with the value at B
(2)
+ , i.e. it is now

comparable to the value of |B(1)
+ |:

|B(PB)|
B

(1)
+

∼ O(1),

∣∣∣∣∣
B(PB)

B
(2)
+

∣∣∣∣∣ ∼ O
(
e

π√
−u

)
. (7.34)

Near PB the nonlinear effects due to the condensate again
become important. In the region between PA and PB the
susceptibility has the wrong sign and thus the system
becomes locally thermodynamically unstable. Also note

that even though B
(2)
+ is an excited state and so not a

global minimum of the free energy, it does appear to be
locally thermodynamically stable.

The discussion above also gives a physical explanation
as to why as u → 0− the whole spiral is squished into a
straight line with slope given by (7.5): the vast majority
of the spiral (e.g. the exponentially large region between

B
(2)
+ and PB) must become parallel to such a straight

line.
The existence of a tower of “Efimov” states with geo-

metrically spaced expectation values may be considered
as a consequence of spontaneous breaking of the discrete
scaling symmetry of the system. With an imaginary scal-
ing exponent, (7.23) exhibits a discrete scaling symmetry
with (for k = 0)

ω → e
2π√
−uω (7.35)

which is, however, broken by the condensate.31 The
tower of “Efimov” states may then be considered as the
“Goldstone orbit” for this broken discrete symmetry.

We would also like to point out that ∂uχL and ∂k2χL
do not diverge at the critical point unlike from the un-
condensed side. Hence we do not get a cusp approaching

31 Note that for n = 1 state, since the physics of the condensate
sets in already at Λ1, the range of validity for (7.23) is not wide
enough for the discrete scaling symmetry to be manifest.
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the critical point from the condensed side. This is due to
that small u corrections to (7.32) are all analytic, which
can be checked by explicit calculations to next nontrivial
order as already indicated in (7.32).

2. Free energy across the quantum phase transition

The fact the order parameter (7.29) is continuous (to
an infinite number of derivatives) across the transition
implies that the free energy is also continuous (to an in-
finite number of derivatives). We outline the arguments
here. The free energy is simply the (appropriately renor-
malized) Euclidean action of the scalar field configura-
tion. We can divide the radial integral into two parts,
the UV part and the IR AdS2 part. It is clear that the
contribution from the UV portion of the geometry will

scale like φ2 ∼ 〈O〉2 ∼ exp
[
− π√−u

]
, since the scalar is

small there and so a quadratic approximation to the ac-
tion is sufficient.

To make a crude estimate of the IR contribution in
which region φ ∼ O(1), let us ignore backreaction and
imagine that in the IR the scalar is simply a domain
wall: for ζ > Λ−1

IR it sits at the bottom of its potential

φ(ζ) = φ0 and that for ζ < Λ−1
IR it is simply 0. Then we

find for the Euclidean action32 an expression of the form

SE ∼ V (φ0)

∫ Λ−1
IR

∞
dζ
√
g ∼ ΛIR (7.36)

which again scales as SE ∼ ΛIR ∼ exp
[
− π√−u

]
. Note

what has happened: even though the scalar is of O(1)
in the deep IR and so contributes to the potential in a
large way, the infinite redshift deep in the AdS2 horizon
suppresses this contribution to the free energy, making it
comparable to the UV part. A more careful calculation
also reveals that the free energy is indeed negative com-
pared to the uncondensed state. We thus conclude that

F ∼ − exp

[
− π√−u

]
(7.37)

and that the free energy is also continuous across the
transition to an infinite number of derivatives, reminis-
cent of a transition of the Berezinskii-Kosterlitz-Thouless
type.33

32 As we are at zero temperature the Euclidean time is not a com-
pact direction, and so all expressions for the Euclidean action
contain a factor extensive in time that we are not explicitly writ-
ing out.

33 The argument presented here are in agreement with the results
of [14].

C. Thermal aspects

We now look at the critical behavior near the bifurcat-
ing critical point at a finite temperature. Our starting
point is the expression for the finite-temperature suscep-
tibility, which we reproduce below for convenience:

χ(ω,~k, T ) = µ2νU
∗

b+(k, ω, T ) + b−(k, ω, T )G(T )
k (ω)µ−2νk∗

a+(k, ω, T ) + a−(k, ω, T )G(T )
k (ω)µ−2νk∗

,

(7.38)
The finite temperature behavior mirrors the finite fre-
quency behavior of last subsection. We simply repeat
the analysis leading to (7.17), starting with (7.38) rather
than (7.1); somewhat predictably, at ω = 0 but finite T
we find

χ(T )(~k) = χ0

sinh
(
νk log

(
T
Tb

))

sinh
(
νk log

(
T
Ta

)) , (7.39)

where Ta,b differ from ωa,b by factors34,

Ta =
4µ∗
π
e
α̃
α , Tb =

4µ∗
π
e
β̃
β . (7.40)

Similarly to (7.23), the expression for u < 0 is obtained
by analytically continuing (7.39) to obtain

χ(T )(~k) = χ0

sin
(
λk log

(
T
Tb

))

sin
(
λk log

(
T
Ta

)) . (7.41)

And again both (7.39) and (7.41) are analytic at u = 0
and reduce to the same function there

χ(T )(~k) = χ0

log T
Tb

log T
Ta

+O(u, k2) . (7.42)

Similar to (7.19), the pole in (7.42) and (7.39) at T = Ta
should not concern us as this expression is supposed to
be valid only for T � µ∗ ∼ Ta. For nonzero ω, (7.39)
generalizes to

χ(T )(ω, k) = χ0

sinh
(
νk

[
log
(

2πT
ωb

)
+ ψ

(
1
2 − i ω

2πT

)])

sinh
(
νk

[
log
(

2πT
ωa

)
+ ψ

(
1
2 − i ω

2πT

)]) ,

(7.43)
where ψ is the digamma function. It is easy to check
using the identities ψ( 1

2 ) = −γE − log 4 and ψ(x →
∞) → log x that this expression has the correct limit-
ing behavior to interpolate between (7.39) and (7.17).
Taking νk → 0 with ω and T fixed, we then find that

χ(T )(ω,~k) = χ0

log
(

2πT
ωb

)
+ ψ

(
1
2 − i ω

2πT

)

log
(

2πT
ωa

)
+ ψ

(
1
2 − i ω

2πT

) . (7.44)

34 For a charged scalar while ωa,b are complex , Ta,b remain real.
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For u > 0, at a scale of

T ∼ ΛCO ∼ µ∗e−
#√
u (7.45)

eq. (7.39) crosses over to an expression almost identical
to (7.22) with ω replaced by T . For u < 0, at such
small temperature scales equation (7.41) has poles at (for
k = 0)

Tn = Ta exp

(
− nπ√−u

)

=
4µ∗
π

exp

(
− nπ√−u +

α̃

α

)
, n ∈ Z+ . (7.46)

Comparing to (7.25) and (7.28), we see that Tn ∼ Λn ∼
1/ζn. The first of these temperature should be inter-
preted as the critical temperature

Tc =
4µ∗
π

exp

(
− π√−u +

α̃

α

)
(7.47)

below which the scalar operator condenses. Including

frequency dependence, one can check that χ(T )(ω,~k) has
a pole at

ω∗ = −2i

π
(T − Tn) (7.48)

For T > Tn this pole is in the lower half-plane, and it
moves through to the upper half-plane if T is decreased
through Tn. Thus we see the interpretation of each of
these Tn; as the temperature is decreased through each
of them, one more pole moves through to the upper half-
plane. There exist an infinite number of such tempera-
tures with an accumulation point at T = 0; and indeed
at strictly zero temperature there is an infinite number
of poles in the upper half-plane, as seen earlier in (7.24).
Of course in practice once the first pole moves through to
the upper half-plane at Tc = T1, the uncondensed phase
is unstable and we should study the system in its con-
densed phase.

One can further study the critical behavior near the
finite temperature critical point Tc. Here one finds mean
field behavior and we will only give results. See Ap-
pendix E for details. For example the uniform static
susceptibility has the form

χ(T ) ≈
{

χ0

2νUαβ
Tc

T−Tc T → T+
c

χ0

4νUαβ
Tc

Tc−T T → T−c
(7.49)

The result that χ(T−c ) has a prefactor twice as big as
χ(T+

c ) is a general result of Landau theory.
Similarly, the correlation length near Tc is given by

ξ−2 =
6µ2
∗(−u)

3
2

πTc
(T − Tc) . (7.50)

Note that the prefactor of T−Tc diverges exponentially as
u→ 0, and should be contrasted with the behavior (7.10)

at the quantum critical point. Finally we note that at the

critical point T = Tc, we find a diffusion pole in χ(T )(ω,~k)
given by

ω∗ = −i Tc

3µ2∗(−u)
3
2

k2 (7.51)

which is of the standard form for this class of dynamic
critical phenomena (due to the absence of conservation
laws for the order parameter, this is Model A in the classi-
fication of [50]; see also [40] for further discussion in the
holographic context). Note that the diffusion constant
goes to zero exponentially as the quantum critical point
is approached. For a charged scalar, the factor multiply-
ing ik2 on the right hand side of (7.51) becomes complex,
reflecting the breaking of charge conjugation symmetry.

In Fig. 9 we summarize the finite temperature phase
diagram.

Quantum 
critical region 

Condensed 
phase 

QCP 

Condensed phase 

Tc ∼ exp

�
− π�

|u|

�

u

T

ΛCO ∼ exp

�
− #�

|u|

�

FIG. 9. Finite temperature phase diagram with the quantum
critical region for bifurcating criticality as a function of u. The
dotted line is given by ΛCO in (7.21) and (7.45). But note that
the discussions there are not enough to determine the O(1)
factor in the exponent for ΛCO. The dynamical susceptibility
in the bowl-shaped quantum critical region is given by (7.44)
with the zero temperature limit given by (7.19).

D. Summary and physical interpretation

In this section we studied the physics close to a “bi-
furcating” quantum critical point, i.e. the quantum crit-
ical point obtained by tuning the AdS2 mass of the bulk
scalar field through its Breitenlohner-Freedman bound.
Here we briefly summarize the main results and discuss
possible interpretations.

Much of the physics can be understood from the ex-
pression for the dynamic susceptibility at zero tempera-
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ture (7.17),

χ(ω,~k) = χ0

sinh
(
νk log

(
−iω
ωb

))

sinh
(
νk log

(
−iω
ωa

)) + . . . (7.52)

where νk =
√
u+ k2

6µ2
∗

and u = 0 is the location of the

quantum critical point. ωa,b ∼ µ are some constants.
This expression defines a crossover scale as in (7.21)

ΛCO ∼ µ∗ exp

(
− #√
|u|

)
, (7.53)

with # some O(1) number; for ω � ΛCO, one can expand
the arguments of the hyperbolic sine to find

χ(ω,~k) = χ0

log
(
ω
ωb

)
− iπ2

log
(
ω
ωa

)
− iπ2

+O(u, k2) . (7.54)

with the spectral function given by

Imχ(ω, k) =
πχ∗

(logω)2
+ . . . . (7.55)

For ω � ΛCO, approaching the critical point from u >
0 side, we find

χ(ω → 0,~k) = χ0 − 2νkχ∗ − 4νkχ∗

(−iω
2µ∗

)2νk

+ . . . .

(7.56)
Interestingly, the static susceptibility does not diverge
approaching the critical point, but develops a branch
point singularity at u = 0, as νk=0 =

√
u; it is trying

to bifurcate into the complex plane as we cross u = 0.
Upon Fourier transformation to coordinate space, these
singularities lead to a correlation length that diverges at
the critical point,

ξ =
1√

6µ∗
√
u
. (7.57)

While the exponent is the same as that of mean
field, clearly the underlying physics is different. The
coordinate-space expression is also different from that of
the mean field, as shown in (7.11).

For ω � ΛCO, approaching the critical point from u <
0 side, in (7.52), the hyperbolic sine is replaced by a
normal sine, and we find a geometric series of poles in
the upper-half complex frequency-plane at

ωn = iωa exp

(
− nπ√−u

)
∼ iµ

(
ΛIR
µ

)n
, (7.58)

with

ΛIR ≡ µ exp

(
− π√−u

)
, n = 1, 2, . . . (7.59)

indicating that the disordered state is unstable and the
scalar operator condenses in the true vacuum. Inter-
estingly, one finds an infinite tower of “Efimov” con-
densed states in one to one correspondence with the poles
in (7.58)

〈O〉n ∼ µ∆ exp

(
− nπ

2
√−u

)
∼ µ∆

(
ΛIR
µ

)n
2

n = 1, 2, . . . .

(7.60)
Note that the factor 1

2 in the exponent of (7.60) compared

with that of (7.58) is due to that O has IR dimension 1
2

at the critical point u = 0. n = 1 state is the ground
state with the lowest free energy which scales as (with
that of the disordered state being zero)

F ∼ −ΛIR . (7.61)

A study of the full nonlinear response curve of the tower
of “Efimov states” reveals a remarkable spiral structure,
shown in Figure 7, which may be considered as a mani-
festation of a spontaneously broken discrete scaling sym-
metry in the time direction.

At a finite temperature, in the quantum critical region
T � ΛCO (the bowl-shaped region in the right plot of
Fig. 9), the zero temperature expression (7.54) general-
izes to

χ(T )(ω,~k) = χ0

log
(

2πT
ωb

)
+ ψ

(
1
2 − i ω

2πT

)

log
(

2πT
ωa

)
+ ψ

(
1
2 − i ω

2πT

) (7.62)

which can now be applied all the way down to zero fre-
quency. Equation (7.62) reproduces (7.54) for ω � T .
The n = 1 pole in (7.58) provides the scale for the criti-
cal temperature

Tc ∼ µ exp

(
− π√−u

)
∼ ΛIR . (7.63)

Now let us now try to interpret the above results. First
we emphasize that nowhere on the uncondensed side do
we see a coherent and gapless quasiparticle pole in the
dynamical susceptibility, which usually appears close to
a quantum phase transition and indicates the presence
of soft order parameter fluctuations. That at the critical
point the susceptibility (7.56) does not diverge and the
spectral function (7.55) is logarithmically suppressed at
small frequencies are also manifestations of the lack of
soft order parameter fluctuations.

We would like to argue that the quantum phase transi-
tion at a bifurcating critical point corresponds to a con-
finement/deconfinement transition [24]. At the critical
point, two fixed points eCFTUV

1 and eCFTIR
1 of SLQL

merge and annihilate, beyond which the scalar opera-
tor Ok=0 develops a complex dimension and conformal-
ity is lost. The loss of conformality is realized through
a dynamically generated “confinement” scale ΛIR below
which an infinite tower of geometrically separated bound
states of operator O form; from this infinite tower the
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lowest energy bound state Bose condenses. There are in-
finitely many metastable vacua, where a higher Efimov
state condenses (7.60). The physical picture here is simi-
lar to the BEC regime in a strongly interacting ultracold
Fermi system where fermions form bound molecules and
then Bose condense. This also explains why the sus-
ceptibility does not diverge at the critical point and the
spectral density is suppressed. The bifurcating QCP is
characterized by the onset of forming bound states rather
than by soft order parameter fluctuations.

From this perspective, SLQL should be considered as a
fractionalized state where degrees of freedom from which
O is formed become deconfined. Indeed this interpreta-
tion is consistent with the power law behavior (2.12) of
the spectral function of O in the SLQL phase and finite
entropy density of SLQL.

Our story has some interesting differences with stan-
dard discussion of a confinement/decofinement transition
(or crossover) which is driven by temperature:

1. Here we use the term “confinement” in a somewhat
loose sense, as in our context the “confined” state
still has gapless degrees of freedom left for both the
condensation of a neutral and charged scalar. Thus
in our story the “confinement” only removes part
of the deconfined spectrum.

2. Here the transition is driven by an external param-
eter and thus is quantum mechanical in nature.

3. The confinement (i.e. formation of bound states)
and Bose condensation set in at the same point in
parameter space.

To summarize, for a bifurcating QCP, while the phase
transition can still be characterized by an order param-
eter, the order parameter remains gapped at the critical
point and the phase transition is not driven by its fluctu-
ations. Instead the phase transition appears to be driven
by confinement coming from the merger of two differ-
ent CFTs, in contrast with the Landau-Ginzburg-Wilson
paradigm which is characterized by a single critical CFT
with some relevant direction.

VIII. CRITICAL BEHAVIOR OF A
HYBRIDIZED QCP

In this section we examine the critical behavior around
a hybridized QCP (4.9), reviewing and slightly general-
izing an earlier discussion of [20].

A. Zero temperature: statics (µ∗ = 1)

Let us first look at the the scaling of the expectation
value and free energy on the condensed side.35 This can
be done by analyzing the condensed solution on the grav-
ity side [20]. Alternatively, one could use the low en-
ergy effective action (5.11), which we copy here for con-
venience

Seff = S̃eCFT1
[Φ] + λ

∫
Φϕ+ SLG[ϕ] +

∫
ϕJ . (8.1)

We can generalize the Landau-Ginsburg action
SLG (5.12) in (8.1) by including the next order
nonlinear and time derivative terms

SLG = −1

2

∫
ϕ−~k(κ+ − κc + hkk

2)ϕ~k

−u
∫

ϕ4 + ht

∫
(∂tϕ)2 + . . . (8.2)

with u and ht some (positive) constants.36 We will con-
sider k = 0 and denote νk=0 simply as ν. The eCFT1

operator Φ has a scaling dimension 1
2 + ν and from the

second term in (8.1), ϕ thus has dimension 1
2 − ν. Then

from the last term in (8.1) J has dimension 1
2 + ν, the

same as Φ. Note that spatial coordinates or momenta
all have zero IR dimension. Now let us imagine that ϕ
develops some nonzero expectation value. From the rel-
ative scaling dimensions between Φ and ϕ, we can then
write Φ as

Φ ∼ ϕ
1
2
+ν

1
2
−ν (8.3)

and the free energy density F corresponding to (8.1) can
then be written as

F ∼ Cϕ
1

1
2
−ν +

1

2
(κ+ − κc)ϕ2 + uϕ4 (8.4)

where the first term comes from the Φϕ term with C
some constant. Equation (8.4) can also be derived from
a detailed bulk analysis37 which also gives that C > 0
for ν < 1

2 . Now notice that for ϕ small, the first term

dominates over ϕ4 term if ν < 1
4 , while the Landau-

Ginsburg ϕ4 term dominates for ν > 1
4 . In other words,

since the first term is marginal by assignment, ϕ4 term
becomes relevant when ν > 1

4 .38

35 In this subsection we will mainly use effective field theory argu-
ments, hence we will set µ∗ = 1 to alleviate the notation. In
later subsections however we restore µ∗.

36 Their specific values can be worked out from gravity. Here we
are only interested in the scaling behavior and their values are
not important.

37 See [20]. This expression was argued for in [51].
38 Some readers might worry that higher powers like ϕ6 may also

become relevant at some point (for example for ν > 1
3

). But note
that once the last two terms in (8.4) dominate we should reassign
dimension of ϕ and the standard Landau-Ginsburg story applies.
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For ν < 1
4 we can ignore the last term in (8.4) and for

κ+ < κc find that

〈O〉 ∼ ϕ ∼ (κc − κ+)
1
2
−ν
2ν (8.5)

and as a result

F ∼ (κc − κ+)
1
2ν . (8.6)

Including the source J , which has dimension 1
2 + ν, the

free energy should then be given by a scaling function

F = (κc−κ+)
1
2ν f1

(
J(κc − κ+)−

1
2
+ν

2ν

)
= ξ−

1
ν f2

(
Jξ

1
2
+ν

ν

)

(8.7)
where in the second equality we have expressed the free
energy in terms of the correlation length using (5.8).
From (8.7) we can also deduce that at the critical point
we should have

〈O〉 ∼ ϕ ∼ J
1
2
−ν

1
2
+ν (8.8)

which can again be confirmed by a bulk analysis.
From (8.5), (8.8) and (8.7) we can collect the values of
various scaling exponents (see Appendix F for a review
of their definitions)

α = 2− 1

2ν
, β =

1
2 − ν

2ν
, δ =

1
2 + ν
1
2 − ν

. (8.9)

For ν > 1
4 , we can ignore the first term in (8.4) and

the analysis becomes the standard Landau-Ginsburg one.
As a result, the behavior near the critical point becomes
that of the mean field, as pointed out earlier in [20] from
a detailed bulk gravity analysis. We thus find that for
ν > 1

4 ,

〈O〉 ∼ ϕ ∼ (κc−κ+)
1
2 , F ∼ −(κc−κ+)2, 〈O〉κ+=κc ∼ J

1
3

(8.10)
and various exponents become

α = 0, β =
1

2
, δ = 3 (8.11)

which agree with the values of (8.9) for ν = 1
4 .

B. Dynamical critical behavior

Let us now examine the dynamical behavior near the
critical point. Expanding ã+(ω, k) around ω = 0, k = 0
and κ+ = κc, we find that the full dynamical suscepti-
bility (2.11) can now be written as (for a neutral scalar)

χ(ω,~k) ≈ µ2νU∗
κ+ − κc + hk~k2 − hωω2 + hGk(ω)

(8.12)

where hk was introduced earlier in (5.7) and

hω ≡ −
ã

(2)
+ (k)

b
(0)
+ (k)

∣∣∣∣
k=0,κ+=κc

, h ≡ µ−2νk∗ ã
(0)
− (k)

b
(0)
+ (k)

∣∣∣∣
k=0,κ+=κc

.

(8.13)
Recall that the SLQL retarded function Gk(ω) ∝ ω2νk .
From explicit gravity calculation one finds various con-
stants in (8.12) have the following behavior: hk > 0, h <
0 and hω > 0 (for νk=0 > 1).

The behavior of full dynamical susceptibility (8.12) de-
pends on the competition between the analytic contribu-
tion hωω

2 and the non-analytic contribution Gk(ω) from
SLQL. When ν ∈ (0, 1), the non-analytic part dominates
at low energies and the analytic contribution can be ig-
nored, leading to

χ(ω,~k) ≈ µ2νU∗
(κ+ − κc) + hkk2 + hC(ν)(−iω)2ν

(8.14)

with C(ν) < 0. We will consider k = 0 below. At the
critical point κ+ = κc we find that

χ(ω, k = 0) ∼ (−iω)−2ν . (8.15)

Away from the critical point, the relative magnitude of
the two terms (with k = 0) in the denominator of (8.14)
defines a crossover energy scale

Λ
(ω)
CO ∼ |κc − κ+|

1
2ν . (8.16)

For ω � Λ
(ω)
CO we find that

χ(ω) ∼ µ2νU∗
κ− κc

+O(ω2ν) (8.17)

which is the typical behavior in the uncondensed phase

(see e.g. (2.22)), while for ω � Λ
(ω)
CO we recover the crit-

ical behavior (8.15). The crossover scale (8.16) defines
the correlation time ξτ of the system

ξτ ∼
1

Λ
(ω)
CO

∼ |κc − κ+|−
1
2ν . (8.18)

Comparing the above expression with (5.8) we then find
that ξτ ∼ ξz with the dynamical exponent z given by

z =
1

ν
. (8.19)

Of course this exponent can equivalently be seen by bal-
ancing the k2 term and the ω2ν term in (8.14). Also note
that when κ+ < κc equation (8.14) has a pole in the
upper half plane (since hC(ν) > 0) at

ωpole ∼ iΛ(ω)
CO . (8.20)

When ν > 1, in (8.12), the non-analytic part Gk(ω) ∼
ω2ν from the SLQL becomes less important than the an-
alytic corrections ∼ ω2 and one finds mean field like be-
havior. Now the full dynamical susceptibility is given by
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χ(ω,~k) ≈ µ2νU∗
(κ+ − κc) + hkk2 − hωω2 + hC(ν)(−iω)2ν

(8.21)
which describes a long-lived (nearly gapless) relativistic
particle with a small width Γ ∼ ω2ν . The dynamical
exponent is now z = 1.

This crossover to mean field dynamical behavior at
ν = 1 can also be readily seen from the effective ac-
tion (8.1)–(8.2). For ν > 1, the dimension for ϕ become
smaller than − 1

2 , for which the kinetic term (∂tϕ)2 be-
comes relevant and more important than the hybridiza-
tion term Φϕ (which is marginal by definition). Alter-
natively, we can now assign − 1

2 as dimension of ϕ using

(∂tϕ)2, under which the hybridization term Φϕ will have
dimension ν which becomes irrelevant for ν > 1.

It is interesting to note that while the free energy al-
ready exhibits mean field behavior for ν > 1

4 , the dy-
namical quantity exhibits mean field behavior only for
ν > 1.

C. Finite temperature

At a finite temperature T � µ, equation (8.12) gener-
alizes at leading order in T/µ to (from expanding (2.18)),

χ(ω,~k;T ) ≈ µ2νU∗
κ+ − κc + hk~k2 − hωω2 + hTT + hG(T )

k (ω)
(8.22)

where hTT (hT a constant) comes from (analytic) fi-
nite temperature corrections to a+ and b+. Finite tem-

perature SLQL retarded function G(T )
k (ω) has the form

G(T )
k (ω) = T 2νkg(ωT , νk) with g a universal scaling func-

tion (see (2.21)). Explicit gravity calculations give hT >
0 (for νk=0 >

1
2 ). Let us first look at the static uniform

susceptibility at finite T , which is

χ(T ) ∼ µ2νU∗
κ+ − κc + hTT + hC(ν)T 2ν

. (8.23)

It is interesting that the analytic contribution now dom-
inates for ν > 1

2 .

For ν < 1
2 we find that there is a pole at

Tc ∼ (κc − κ+)
1
2ν (8.24)

for κ+ < κc. It should be interpreted at the critical
temperature for a thermal phase transition, above which
the instability disappears. From the uncondensed side,
such a temperature scale gives the crossover scale

ΛCO ∼ |κc − κ+|
1
2ν (8.25)

to the quantum critical behavior; for T � ΛCO

χ(ω,~k;T ) ≈ µ2νU∗
κ+ − κc + hk~k2 + hT 2νg(ωT , ν)

(8.26)

which exhibits ω/T scaling. Note that the finite tem-
perature crossover scale tracks that of zero temperature
equation (8.16).

For ν > 1
2 , we find instead mean field behavior

Tc ∼ (κc − κ+) (8.27)

and the finite temperature crossover scale becomes

Λ
(T )
CO ∼ |κc − κ+| (8.28)

which no longer tracks that of zero temperature. In this
regime, there is no ω/T scaling and the non-analytic fre-
quency dependence from the SLQL becomes irrelevant
compared to leading temperature effects.

This crossover at ν = 1
2 can again be readily seen from

the effective action (5.11). Finite temperature generates
a term

∫
Tϕ2, which becomes relevant when the dimen-

sion of ϕ becomes smaller than zero, i.e. for ν > 1
2 .

Alternatively we can now use Tϕ2 term to assign dimen-
sion 0 to ϕ, under which the hybridization term Φϕ then
becomes irrelevant for ν > 1

2 as now the dimension for Φ
becomes larger than 1.

We summarize various the finite T phase diagram for
various values of ν in Fig. 10 and 11.

Quantum 
critical region 

Condensed 
phase 

QCP 

Condensed phase 
(κ+ − κc)

T

Tc ∼ (κ+ − κc)
1
2ν

ΛCO ∼ |κ+ − κc|
1
2ν

FIG. 10. Finite temperature phase diagram with the quantum critical region for a hybridized QCP for a fixed 0 < ν < 1
2
.

In the quantum critical region the dynamical susceptibility is given by (8.22) with (8.14) as the zero temperature limit.

D. Summary and discussion

We summarize the critical behavior near a hybridized
QCP for various values of ν in the following table (see
Appendix F for a review of definitions of various scaling
exponents):
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Quantum 
critical region 

T

QCP 

Condensed 
phase 

(κ+ − κc)

Tc ∼ (κ+ − κc)

Quantum 
critical region 

QCP 

ω

(κ+ − κc)

ΛCO ∼
�

|κ+ − κc|
1
2ν ( 1

2 < ν < 1)

|κ+ − κc|
1
2 (1 < ν)

FIG. 11. The crossover diagrams for a hybridized QCP for ν > 1
2
. Given the difference in the crossover scales between

frequency (at zero temperature) and temperature, we plot them separately. For ν ∈ ( 1
2
, 1), the zero temperature dynamical

susceptibility exhibit nontrivial scaling (or for ω2ν � T ), but finite temperature behavior is given by that of mean field.
For ν ≥ 1, essentially everything is mean field at leading order.

Quantity ν ∈
(
0, 1

4

)
ν ∈

(
1
4 ,

1
2

)
ν ∈

(
1
2 , 1
)

ν > 1

ω/T scaling yes yes no no

Λ
(ω)
CO (κc − κ+)

1
2ν (κc − κ+)

1
2ν (κc − κ+)

1
2ν (κc − κ+)

1
2

z 1
ν

1
ν

1
ν 1

Tc (κc − κ+)
1
2ν (κc − κ+)

1
2ν κc − κ+ κc − κ+

〈O〉 (κc − κ+)
1
2
−ν
2ν (κc − κ+)

1
2 (κc − κ+)

1
2 (κc − κ+)

1
2

Critcal behavior for the neutral scalar.

In the above the expressions which are independent of ν
are all mean field behavior. For all values of ν the static
susceptibility from the uncondensed side is always given
by the mean field behavior

χ0(~k) ≈ µ2νU∗
(κ+ − κc) + hk~k2

(8.29)

with the spatial correlation length

ξ ∼ |κ+ − κc|−
1
2 . (8.30)

In the range ν ∈ (0, 1
4 ) the free energy from the condensed

side is given by the scaling form

F = ξ−
1
ν f

(
Jξ

1
2
+ν

ν , T ξ
1
ν

)
, (8.31)

with f a universal scaling function, while for ν ∈ (0, 1
2 ),

the full dynamical susceptibility exhibits ω/T scaling at
a finite temperature

χ(ω,~k;T ) ≈ µ2νU∗
(κ+ − κc) + hk~k2 + Σ(ω, k, T )

,

Σ = hT 2νkg
(ω
T
, νk

)
(8.32)

where Σ can be interpreted as self-energy and g a univer-
sal scaling function given by (2.21). Note that since νk
depends on k through k/µ, for k � µ we can approximate
νk in the self energy Σ (8.32) as νk=0 and Σ becomes k
independent. As pointed out in [20], then equation (8.32)
resembles the dynamical susceptibility of CeCu6−xAux
near the quantum critical point x = 0.1 [52].

From the definitions in Appendix F it is easy to check
that various exponents here satisfy the relation

γ = (2− η)νcrit = β(δ − 1) (8.33)

but the so-called hyperscaling relation

2β = (d− 2 + η)νcrit (8.34)

is violated for the trivial reason that our results are in-
dependent of spacetime dimension d.

Note that for a charged scalar, the discussion is very
similar except that the perturbative corrections in ω
starts at linear order. As a result everything becomes
mean field for ν > 1

2 , i.e. there are only three columns in
the table below. Note that the mean field values of the
dynamical quantities for the charged case are different
from those of the neutral scalar, while the static expo-
nents remain the same.
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Quantity ν ∈
(
0, 1

4

)
ν ∈

(
1
4
, 1
2

)
ν > 1

2

ω/T scaling yes yes no

Λ
(ω)
CO (κc − κ+)

1
2ν (κc − κ+)

1
2ν κc − κ+

z 1
ν

1
ν

2

Tc (κc − κ+)
1
2ν (κc − κ+)

1
2ν κc − κ+

〈O〉 (κc − κ+)
1
2
−ν
2ν (κc − κ+)

1
2 (κc − κ+)

1
2

Critcal behavior for the charged scalar.

For a hybridized QCP, the critical behavior is not de-
scribed by the order parameter fluctuations alone as the
order parameter is hybridized with degrees of freedom in
SLQL. The interplay between two sectors gives rise to
a rich spectrum of critical behavior. In particular, the
semi-local nature of the SLQL leads to that the suscep-
tibility of the order parameter has mean field behavior
in the spatial sector, but exhibits nontrivial ω/T scaling
in some parameter range, reminiscent of local quantum
critical behavior observed in certain heavy fermion ma-
terials. Note that the mean field nature of the spatial
sector and the independence of spacetime dimension of
our results should be related to that gravity approxima-
tion corresponds to the large N limit of the boundary
theory. It would be interesting to understand better how
the hybridized theory (8.1) works when the SLG is below

the upper critical dimension.

IX. DOUBLY FINE-TUNING TO A MARGINAL
CRITICAL POINT

Let us now consider the critical behavior around a
marginal critical point, which can be obtained by tun-
ing u→ 0 and κ+ → κ∗c at the same time, with κ∗c given
by (5.23),

κ∗c = −α
β
. (9.1)

We have already studied the behavior as we vary u
through 0 away from this point; for definiteness below
we will fix u = 0 and vary κ+.

From earlier discussion in Sec. V C, at u = 0 and gen-
eral κ+, the system can be described by the low energy
action (5.18), which we copy here for convenience (keep-
ing most essential terms),

Seff = S
(ν=0)
eCFT1

− ξ̃
(κ)
0

2

∫
dtΦ2 + . . . (9.2)

where

ξ̃
(κ)
0 =

α+ κ+β

α̃+ κ+β̃
= 2νUβ

2(κ+ − κ∗+) + . . . . (9.3)

In the second equality we have expanded ξ̃
(κ)
0 around κ∗+

and used (A26). The dynamical susceptibility for O is
given by the u→ 0 limit of (4.2)

χ(u=0,κ+)(ω, k) = µ2νU
∗

(β +O(k2))G0(ω) + β̃ +O(k2)

(α+ κ+β +O(k2))G0(ω) + (α̃+ κ+β̃) +O(k2)
=

µ2νU∗ log
(
−iω
ωb

)

(κ+ − κ∗c) log
(
−iω
ωb

)
− 1

2νUβ2

+ . . .(9.4)

with G0 given by (5.17) and in the second line we have
suppressed k dependence which always comes with k2/µ2

and is small when k � µ. ωb was introduced earlier
in (7.18).

The system develops an instability to the condensation

of Φ (and thus O)39 when ξ̃
(κ)
0 becomes negative (i.e.

κ+ < κ∗+), where it becomes marginally relevant and
generates an IR scale

ΛIR ∼ µ exp

(
1

ξ̃
(κ)
0

)
= µ exp

(
1

2νUβ2

1

κ+ − κ∗c

)
(9.5)

39 Recall that Φ is the operator in SLQL to which O match in the
IR.

which can be seen from a pole of (9.4) in the upper half
ω-plane at40

ω∗ = iωb exp

(
1

2νUβ2

1

κ+ − κ∗c

)
∼ iΛIR . (9.6)

Equation (9.4) defines a crossover scale

ΛCO ∼ µ exp

(
− 1

2νUβ2

#

|κ+ − κ∗c |

)
(9.7)

where # is some O(1) number. For ω � ΛCO we can
ignore the first term in the denominator and are thus in

40 There is also a UV pole for κ+ > κ∗+ which is at an exponentially
high energy scale. Our low-frequency formula breaks down far
before the pole, and is thus of no concern to us.
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the quantum critical regime with

χ(u=0,κ+)(ω, k) = −2νUβ
2µ2νU
∗

(
log

(
ω

ωb

)
− iπ

2

)

(9.8)
The appearance of a pure logarithm in the numerator of
this propagator at criticality is interesting. It leads to
the spectral density

Imχ(u=0,κ+) = πνUβ
2µ2νU
∗ sgn(ω) (9.9)

which is a pure step function.41 This should be con-
trasted with the situation for a bifurcating critical
point (7.55) in which there is a logarithmic suppression
at low frequencies.

When ω � ΛCO, the first term in the denominator
of (9.4) dominates and expanding in powers of the inverse
logarithm, we find

χ(u=0,κ+)(ω → 0, k) =
µ2νU∗

κ+ − κ∗c
+O

(
1

logω

)
. (9.10)

with a spectral density appears at order log−2(ω),

Imχ(u=0,κ+)(ω → 0, k)

=
πµ2νU∗

4(κ+ − κ∗c)2νUβ2
log−2

(
ω

ωb

)
+O

(
1

log3 ω

)

(9.11)

which is of course the generic behavior at a bifurcating
critical point. Note that for κ+ < κ∗+, below ΛCO the
above equations no longer apply as the condensate sets
in. Given that Φ has dimension 1

2 we can easily deduce
the expectation value for O in the condensed side should
scale as

〈O〉 ∼ Λ
1
2

IR ∼ µ∆
∗ exp

(
1

4νUβ2(κ+ − κ∗c)

)
. (9.12)

Similarly from (9.2) the free energy should scale as

F ∼ 〈O〉2 ∼ ΛIR ∼ exp

(
1

2νUβ2(κ+ − κ∗c)

)
. (9.13)

Both (9.12) and (9.13) can be confirmed by an explicit
bulk analysis of the nonlinear solution for the condensed
phase.

From the u→ 0 limit of (2.18), Eq (9.4) can be imme-
diately generalized to a finite temperature

χ(u=0,κ+)(ω, k;T ) = µ2νU
∗

log
(

2πT
ωb

)
+ ψ

(
1
2 − i ω

2πT

)

(κ+ − κ∗c)
(

log
(

2πT
ωb

)
+ ψ

(
1
2 − i ω

2πT

))
− 1

2νUβ2

. (9.14)

From here we can see that for κ+ < κ∗c the static susceptibility diverges at the critical temperature (Tb was defined
in (7.40))

Tc = Tb exp

(
1

2νUβ2

1

κ+ − κ∗c

)
∼ ΛIR (9.15)

above which the system is stable. The temperature is set by the same dynamically generated scale.
Now for T � ΛCO we find in the quantum critical region

χ(u=0,κ+=κ∗+)(ω, k;T ) = −2νUβ
2µ2νU
∗

(
log

(
2πT

ωb

)
+ ψ

(
1

2
− i ω

2πT

))
(9.16)

Taking the imaginary part and using the identity42 Imψ
(

1
2 + ix

)
= π

2 tanh(πx) we find the expression

Imχ(u=0,κ+=κ∗+)(ω, k;T ) = πνUβ
2µ2νU
∗ tanh

( ω
2T

)
(9.17)

41 The logarithm jumps by iπ as we cross through ω = 0, resulting
in the step function; note that this was necessary in order to maintain the relation ωImχ(ω) > 0, true for any bosonic spectral
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which is simply a smoothed-out version of the step func-
tion (9.9) that we find at zero temperature.

Equation (9.17) implies that

Imχ(u=0,κ+=κ∗+)(ω, k;T ) ∼
{
ω
T ω � T

sgn(ω) ω � T
(9.18)

which is precisely of the form for spin and charge fluc-
tuations in the phenomenological “Marginal Fermi liq-
uid” [21] description of High-Tc cuprates in the strange
metal region (see also [22, 23]). Thus the marginal crit-
ical point can be viewed as a concrete realization of
the bosonic fluctuation spectrum needed to support a
Marginal Fermi liquid. In particular, this gives an alter-
native approach to construct holographic Marginal Fermi
liquid.

In Fig. 12 we summarize the phase diagram for a
marginal critical point.

Quantum 
critical region 

Condensed 
phase 

QCP 

Condensed phase 

T

(κ+ − κ∗c)

Tc ∼ exp

�
1

2νUβ2

1

κ+ − κ∗c

�

ΛCO ∼ exp

�
− 1

2νUβ2

#

|κ+ − κ∗c |

�

FIG. 12. Finite temperature phase diagram with the quantum
critical region for marginal criticality at u = 0 and changing
(κ+ − κ∗+). The susceptibility in the bowl-shaped quantum
critical region is given by (9.16) with the ω � T limit given
by (9.8)

.

X. DISCUSSION

In this paper we have discussed several types of quan-
tum critical points from gauge-gravity duality which to
different degrees lie outside the Landau-Ginsburg-Wilson
paradigm. Let us first briefly summarize some key fea-
tures:

1. A hybridized QCP is described by an order param-
eter ϕ with a Landau-Ginsburg effective action SLG

density.
42 This can be proved using the reflection formula ψ(1−x)−ψ(x) =
π cot(πx).

hybridized with degrees of freedom in SLQL, i.e.

Seff = SSLQL[Φ] +

∫
λΦϕ+ SLG[ϕ] . (10.1)

The SLQL sector is strongly coupled (with no
quasiparticle description). It has a scaling symme-
try in the time direction only, and gapless excita-
tions at generic finite momenta. Due to these fea-
tures, the phase transition could exhibit a rich spec-
trum of critical behavior, including locally quan-
tum critical behavior with nontrivial ω/T scaling,
depending on the scaling dimension of Φ in the
SLQL. At the level of effective theory, this criti-
cal point lies mildly outside the standard Landau
paradigm, as the phase transition is still driven by
soft fluctuations of the order parameter and all the
critical behavior is fully captured by (10.1), given
(still mysterious) properties of the SLQL.

On the gravity side the Landau-Ginsburg sector
is associated with the appearance of certain scalar
hair in the black hole geometry, which lies outside
the AdS2 region which describes the SLQL.

2. A bifurcating QCP arises from instabilities of the
SLQL itself to a confined state and appears not
driven by soft order parameter fluctuations. On the
condensed side, a scalar operator develops a com-
plex scaling dimension in the SLQL, generating a
tower of bound states, which then Bose-Einstein
condense (at a geometric series of exponentially
generated scales).43 In particular, one finds a fi-
nite critical susceptibility with a branch point sin-
gularity, and the response of condensed states is
described by an infinite spiral.

At a field theoretical level, underlying these fea-
tures is the annihilation (and moving to the com-
plex plane of a coupling constant) of two confor-
mal fixed points (eCFTUV

1 and eCFTIR
1 ). We ex-

pect these critical phenomena generically occur in
such a situation, where eCFT1 can be replaced
by some higher dimensional CFTs. We empha-
size that this is very different from the standard
Landau-Ginsburg-Wilson paradigm of phase tran-
sitions, which can be characterized as a single crit-
ical CFT with some relevant directions.

On the gravity side, for charged operators the in-
stabilities of the SLQL manifest themselves as pair
production of charged particles which then subse-
quently backreact on the geometry. For a neutral
scalar operator, the instability is related to the vi-
olation of the BF bound in the AdS2 region.

43 SLQL may be considered as a “deconfined” state in which the
composite bound states deconfine and fractionalize into more
fundamental degrees of freedom.
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3. A marginal QCP can be obtained by sitting at the
critical point of a bifurcating QCP and then dialing
the external parameter which drives a hybridized
QCP. Here given the critical theory describing a
bifurcating QCP (which comes from the merger of
two fixed points), the phase transition can be de-
scribed as the appearance of a marginally relevant
operator. Interestingly, the fluctuation spectrum
that emerges is (when coupled to a Fermi surface)
thought to underly the “Marginal Fermi Liquid”
description of the optimally doped cuprates [21],
making this critical point of potential importance.

Note that while our results were found from gravity
analysis, given the general field theoretical descriptions
above, they likely correspond to generic phenomena, and
it would be interesting to understand them better using
field theoretical methods.

u

T

SLQL 

Condensed e.g. FL 

u = 0

Quantum  
Critical 

FIG. 13. How to interpret the results found in this paper. As
discussed in [24], SLQL should be interpreted as a universal
intermediate phase which orders into some other phases, such
as a Fermi liquid, at lower energies. Thus the results of the
paper only describe the quantum critical behavior outside the
dome-shaped region. In contrast to the results found in this
paper, which do not depend on the details of a given system
(both microscopically and macroscopically), what is inside the
dome is model-dependent and likely requires understanding
finite N effects.

Finally let us elaborate on an important point, which
we have glossed over in our discussion so far. As em-
phasized recently in [24], SLQL, which describes the dis-
ordered phase in our examples above, should be inter-
preted an intermediate-energy phase, rather than a gen-
uine ground state. That is, we expect SLQL to order
into some other phases at lower energies, which may not
be visible at the large N limit we are working with.
An example discussed in [24] is that at some exponen-

tially small scale in N2, SLQL orders into a Fermi liquid
phase.44 Thus the quantum critical behavior found in
this paper should be more correctly interpreted as de-
scribing the intermediate-region indicated in Fig. 13. In
the case of condensation of a neutral order parameter,
as discussed at the end of Sec. VI, even the condensed
side may go to some other phase (e.g. a Fermi liquid
phase co-existence with AFM). Our discussion is never-
theless robust in region outside the dome-shaped region
in Fig. 13.
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Appendix A: Matching formulas and properties of
a±, b±

In this appendix we first briefly review some aspects
of the derivation of the master formula (2.11),

GR(ω,~k) = µ2νU
∗

b+(k, ω) + b−(k, ω)Gk(ω)µ−2νk∗
a+(k, ω) + a−(k, ω)Gk(ω)µ−2νk∗

, (A1)

This was first derived in [19], and we refer readers to
that work or the more recent review [28] for a more in-
depth discussion; here we simply recall some aspects of
their treatment which require greater care in our analysis.
We then discuss the properties of the functions a±, b±
appearing in the master formula.

1. Derivation of the master formula

Recall that the equation of motion (in momentum
space ) for φ in the charged black hole geometry (2.2)
can be written as

z4∂z

(
f

z2
∂zφ

)
+ z2

(
(ω + qAt)

2

f
− k2

)
φ−m2R2φ = 0 .

(A2)
As z → 0 (i.e. to the AdS4 boundary), φ has the standard
asymptotic behavior

φ(z → 0) ∼ Az3−∆ +Bz∆ (A3)

44 See [53] for a recent discussion of nucleation of a neutral order
parameter in a Fermi liquid-like phase.
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where ∆ is the conformal dimension (2.8) for φ in the
vacuum. The retarded function for O in standard quan-
tization can then be written as45

GR(ω,~k) =
B

A
(A4)

provided that φ is an in-falling wave at the horizon.
We are interested in the small-frequency expansion of

(A4). The key point here, emphasized in the main text,
is that near the horizon the geometry factors into an
AdS2 × R2, where the AdS2 involves the time and ra-
dial directions. This introduces nontrivial scaling in the
time direction, meaning that great care must be taken in
performing a small-frequency expansion. This problem
was solved in [19]: we start with an exact solution in the
AdS2 ×R2 region, in which the frequency dependence is
treated exactly. We then evolve it outwards, eventually
matching it to a solution in the UV region (away from
the AdS2) to determine the coefficients A and B. In the
UV region it is safe to treat frequency dependence per-
turbatively.

The scalar wave equation on the AdS2×R2 region (2.5)
is

−∂2
ζφ~k +

R2
2m

2
k

ζ2
φ~k =

(
ω +

q∗
ζ

)2

φ~k, (A5)

where m2
k = k2

µ2
∗R

2 + m2 and q∗ = qgF√
12

. Equation (A5)

has solutions near the AdS2 boundary

φ~k(ζ) ∼ ζ 1
2±νk , ζ → 0 (A6)

with

νk =

√
u+

k2

6µ2∗
, u ≡ m2R2

2 − q2
∗ +

1

4
(A7)

which implies that the corresponding CFT1 operator
Φ~k(t) dual to φ~k(t, ζ) has a conformal dimension46 δk =
1
2 + νk.

Expanding the in-falling solution, which behaves as
eiωζ for ζ → ∞, near the AdS2 boundary for small ζ,
we find (up to an overall normalizing constant)

φ(ζ) = ζ
1
2−νk + Gk(ω)ζ

1
2 +νk , (A8)

where by definition Gk(ω) is the retarded Green’s func-
tion for Φ~k(t) in the SLQL; it can be found by directly
solving (A5) and has been given earlier in (2.12).

We now match the IR solution (A8) to a solution in the
UV region. To leading order we can set ω = 0 in (A2)

45 Note we are using a nonstandard normalization for the Green’s
function, which differs from the standard one by a factor of 2νU .
The same normalization difference applies to the Green’s func-
tion in the AdS2 region.

46 This is the dimension in the AdS2 standard quantization; the
full UV answer is of course insensitive to this choice.

in the UV region. The resulting equation has two in-

dependent solutions η
(0)
± which can be specified by their

behavior near z → z∗ as

η
(0)
± (z)→

(
6(z∗ − z)

z∗

)− 1
2±νk

=

(
ζ

z∗

) 1
2∓νk

, z → z∗

(A9)
with the corresponding asymptotic behavior as z → 0 as

η
(0)
± (z) ≈ a(0)

± (k)

(
z

z∗

)3−∆

+ b
(0)
± (k)

(
z

z∗

)∆

. (A10)

a
(0)
± (k) and b

(0)
± (k) thus defined are (dimensionless) func-

tions of k which can be computed numerically.
At small ω, there is an overlapping region in which

both both (A8) and (A9) should apply, which determines
the full UV solution to be

φ(z) = η
(0)
+ (z) + Gk(ω)z2νk

∗ η
(0)
− (z) . (A11)

Equation (A11) can be generalized to higher orders in ω

φ(z) = η+(z) + Gk(ω)z2νk
∗ η−(z) (A12)

where

η± = η
(0)
± + ωη

(1)
± +O(ω2) (A13)

are the two linearly independent perturbative solutions
to the full UV region equation. We have glossed over sev-
eral details here and again refer the interested reader to
[19]. The key point here is that the η± do depend on fre-
quency, but analytically with smooth Taylor expansions
near ω = 0; the non-trivial scaling behavior all arises
from the AdS2 region. If νk is real than the η± are also
real, as they obey a real equation with real boundary
conditions. Nevertheless, the case where νk is imaginary
is important in our analysis and is discussed below.

Near z = 0, the η± have the expansion of the

form (A10) with various coefficients a
(0)
± , b

(0)
± replaced by

a±, b± which also have an analytic ω-expansion such as

a+(k, ω) = a
(0)
+ (k) + ωa

(1)
+ (k) + . . . . (A14)

Note that since both the boundary conditions and the
equation (A2) are real, a±, b± are real. From (A12) and
the expansion of η± near z = 0 we thus find the boundary
theory Green’s function to be

GR(ω,~k) = µ2νU
∗

b+(ω, k) + b−(ω, k)Gk(ω)µ−2νk∗
a+(ω, k) + a−(ω, k)Gk(ω)µ−2νk∗

.

(A15)
We conclude this discussion with some remarks:

1. Note that for a neutral scalar with q = 0, equa-
tion (A2) only depends on ω2 and the expansion
parameter in (A13) and (A14) should be ω2, i.e.

a+(k, ω) = a
(0)
+ (k) + ω2a

(2)
+ (k) +O(ω4) (A16)

and so on.
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2. For νk = 0, which happens for k = 0 and u = 0
(see (A7)), some new elements arise. At νk = 0,
the basis of functions in (A9) should be replaced
by

η(0)(z) =

(
ζ

z∗

) 1
2

η̃(0)(z) = −
(
ζ

z∗

) 1
2

log
ζ

z∗
(A17)

where the asymptotic behavior for them at z → 0
is

η(0)(z) ≈ α
(
z

z∗

)3−∆

+ β

(
z

z∗

)∆

,

η̃(0)(z) ≈ α̃
(
z

z∗

)3−∆

+ β̃

(
z

z∗

)∆

(A18)

α, β, α̃, β̃ are now dimensionless real numbers which
can again be found numerically. They play a key
role in understanding the analytic properties of a±,
b± as is discussed in some detail below.

3. For u < 0, νk = −iλk is pure imaginary for small
enough k, and the basis of solutions (A9) now has
the form

η
(0)
± (z)→

(
6(z∗ − z)

z∗

)− 1
2∓iλk

=

(
ζ

z∗

) 1
2±iλk

, z → z∗

(A19)
These boundary conditions are now complex, and
thus so are the η±. As the η± actually obey a real
wave equation, the full analytic structure is deter-
mined by the boundary conditions in the infrared;
thus we find that now η+ = η∗−. This also implies
that a±, b± are complex and

a∗+ = a−, b∗+ = b− . (A20)

We now discuss some further properties of the UV ex-
pansion coefficients a±, b±.

2. Analytic properties of a±, b±

The functions a±(ω, k), b±(ω, k) are obtained by solv-
ing equation (A2) perturbatively in ω in the UV region.
Their k-dependence comes from two sources, from depen-
dence on νk via the boundary condition (A9) and from k2

dependence in the equation (A2) itself. Since the geom-
etry is smooth throughout the UV region we expect the
dependence on both νk and k2 to be analytic. In fact we
can think of b± and a± as functions of νk; i.e. there exists
a function b(νk, k

2, ω), analytic in all its arguments, such
that b± = b(±νk, k2, ω). This is clear from the boundary
condition (A9) (and its generalization for higher orders
in ω) and from the fact that there is no other dependence
on νk from the equation of motion itself.

Let us now look at the behavior of a
(0)
± , b

(0)
± in the limit

of νk → 0 in some detail. Note that this limit should be

considered as a double limit k2 → 0 and u → 0. First,
we note that in the limit νk → 0, the basis of functions
introduced in (A9) can be expanded as

η
(0)
± = η(0)(z)± νkη̃(0)(z) +O(ν2

k) , (A21)

where η(0) and η̃(0) were introduced in (A17). This leads
to

b
(0)
± = β ± νkβ̃ + (c1k

2 + d1u) + . . . ,

a
(0)
± = α± νkα̃+ (c2k

2 + d2u) + . . . . (A22)

In the above equations the linear order terms directly
come from the linear order term in (A21), while the
quadratic order terms also receive contributions from
equation of motion itself (not just the boundary condi-
tions) and cannot be expressed in terms of ν2

k alone. The
important point is that the quadratic order terms are in-
dependent of the signs before νk and thus are the same
for a± and b± repsectively. Similarly approaching νk = 0
from the imaginary νk = −iλk side, we have for small
λk,

b
(0)
± = β∓ iλkβ̃+ . . . , a

(0)
± = α∓ iλkα̃+ . . . . (A23)

Again the quadratic order terms should be the same for
a± and b±.

Note also that νk itself becomes non-analytic in k2 at
u = 0 (see (A7)) and as a result through formula such as
(A22) a±, b± will also develop non-analytic behavior in
k2 at u = 0. This fact is important for understanding the
critical behavior around the critical point u = 0 discussed
in the main text.

We conclude this section by noting that coefficients
a±, b± are not independent. For example evaluating the

Wronskian of (A2) (for ω = 0)47 for η
(0)
± and demanding

that it be equal at infinity and at the horizon, we find
the elegant relation:

a
(0)
+ (k)b

(0)
− (k)− a(0)

− (k)b
(0)
+ (k) =

νk
νU

. (A25)

A similar analysis on η, η̃ results in

αβ̃ − βα̃ = − 1

2νU
. (A26)

Interestingly, this particular combination of coefficients
appears many times throughout this paper.

We conclude this section by specifying the explicit val-
ues for these constants for a neutral scalar moving on the
pure Reissner-Nordstrom background; in this model by

47 The Wronskian of equation (A2) is given by

W [φ1, φ2] =
f

z2
(φ1∂zφ2 − φ2∂zφ1) (A24)

which is independent of z.



34

requiring νk=0 = 0 we fix the value of the mass to be
m2R2 = − 3

2 , and thus we can (numerically) compute the
coefficients once and for all to be:

α = 0.528 α̃ = 0.965 (A27)

β = 0.251 β̃ = −0.640 . (A28)

One can check that within numerical error these values
satisfy (A26) with νU =

√
3

2 .

Appendix B: AdS correlators and instabilities

In this Appendix we give a more detailed discussion of
various scalar instabilities of a (d + 1)-dimensional AdS
spacetime mentioned in Sec. III. We will first consider
general d and then specify to d = 1, i.e. AdS2, for
which more can be said and which plays an important
role in this paper. Our discussion for d > 1 applies to
any scalar operator, but for AdS2 (which often contains
a background electric field) the results for charged and
neutral scalars are different and we will comment on this.
We treat only linear response and so will describe the na-
ture and onset of the instability, not the endpoint of the
condensate (which depends on the specific model.)

1. General d

As in Sec. III, consider a scalar field φ in AdSd+1, which
is dual to an operator Φ in some boundary CFTd. The
possible conformal dimensions of Φ are given by (3.1)
which we reproduce here for convenience,

∆± =
d

2
± ν, ν =

√
M2R2 +

d2

4
(B1)

where M2 is the mass square for φ. As discussed be-
low (3.1), for ν ∈ (0, 1), there are two ways to quan-
tize φ in AdS, giving rise to the two theories CFTIR

d and
CFTUV

d , in which the corresponding operators Φ± have

dimension ∆+ = d
2 + ν and ∆− = d

2 − ν respectively.
These are often called the “standard” and “alternative”
quantizations; for ν > 1 only the standard quantization
is allowed. This can be seen via a simple normalizabil-
ity argument and as we will see below is modified for a
charged scalar in AdS2.

The two-point retarded Green’s function for Φ+ in the
CFTIR

d (“standard quantization”) is given by

G+(ω,~k) = C(ν)

(
~k2 − (ω + iε)2

4

)ν
, C(ν) ≡ Γ(−ν)

Γ(ν)

(B2)
and at zero spatial momentum

G+(ω,~k = 0) =

(
− iω

2

)2ν
Γ(−ν)

Γ(ν)
(B3)

That for Φ− in the “alternative quantization” CFTUV
d

(which we denote by G−(kµ)) is given by

G−(kµ) = −G+(kµ)−1 . (B4)

Also note that for a theory deformed by a double-trace
operator48

δS =
κ

2

∫
ddxO2 (B5)

in the large N limit, the retarded correlation function for
O becomes

G
(κ)
R (ω,~k) =

1

G−1
R (ω,~k) + κ

(B6)

where GR(ω,~k) is the retarded function in the absence
of deformation.

a. Instabilities from double trace deformations

We now consider instabilities induced by a double trace
deformation of the system. We begin by considering ν ∈
(0, 1) with the alternative quantization, CFTUV

d and turn
on the following double trace deformation:

κ−
2

∫
ddxΦ2

− . (B7)

From (B6) the retarded Green’s function of the operator
Φ− now becomes

G
(κ−)
− (ω,~k) =

1

G−1
− (ω,~k) + κ−

, (B8)

where G−(ω,~k) is the undeformed correlator in alterna-
tive quantization. The double-trace deformation (B7)
has dimension d − 2ν and so is relevant. For κ− > 0
it triggers a flow which leads to the standard quanti-
zation, CFTIR

d (and hence the respective names of the
two theories). This can be seen by expanding (B8) at
small momentum; for any nonzero κ− the resulting an-
swer will coincide (up to a contact term) with the corre-

lator G+(ω,~k).
For κ− < 0, the theory develops an IR instabil-

ity [54, 55], as the static susceptibility becomes negative
at k = 0, signaling a tachyonic mode. The scale at which
the instability sets in can be found either by examining
the beta function for the running double-trace coupling
which develops an IR Landau pole at certain scale or
from that equation (B8) develops a pole in the upper

48 Note that in this Appendix we use a dimensionful κ as opposed
to the main text.
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half complex plane. We now elaborate on the latter a bit

more. With ~k = 0, from (B3)

G−(ω) = − 1

G+(ω)
= − 1

C(ν)

(
− iω

2

)−2ν

. (B9)

Plugging this into (B8) we find that G
(κ−)
− (ω, k) has a

pole at

ω = iωκ ωκ = 2

(
κ−
C(ν)

) 1
2ν

(B10)

As C(ν) is negative for ν ∈ (0, 1), this pole is in the
upper-half plane when κ− < 0, indicating a dynamical
instability, meaning the bulk scalar field will condense.49

Note that as we increase κ− from zero, the pole appears
from the origin; thus it is an IR instability, consistent
with our understanding of the double-trace deformation
(3.2) as a relevant operator.

To summarize, κ− = 0 can be considered as a quan-
tum critical point separating two different phases; for
κ− > 0 we flow to a conformal phase which in the IR is
simply the standard quantization theory CFTIR

d , whereas
for κ− < 0 we have a different phase in which the bulk
scalar field condenses; the final endpoint of the instability
cannot be answered without knowing more details about
the nonlinear structure of the theory.

The story for the standard quantization with a double
trace deformation κ+

2

∫
ddx Φ2

+ can be similarly worked
out. For ν ∈ (0, 1), the system is stable for κ+ < 0 and
the alternative quantization is obtained in the κ+ → −∞
limit. However for positive κ+ we find a pole in the upper
half plane at50

ω = iωκ, ωκ = 2(−κ+C(ν))−
1
2ν . (B11)

Note that as we increase κ+ from zero, the pole (B11)
moves in from +i∞, which means that it is a UV instabil-
ity. This is consistent with our RG understanding, as Φ2

+

has dimension d + 2ν; it is irrelevant and so is expected
to be important only at large energies. This UV instabil-
ity can also be seen from a Landau pole in the running
coupling of the double-trace operator Φ2

+ [54, 55]. See
Fig. 3 which summarizes the above conclusions.

For ν > 1, there is only standard quantization. For ν ∈
(1, 2), C(ν) in (B2) becomes positive. Thus in contrast
with ν ∈ (0, 1), now the system develops a UV instability
for κ+ < 0. While there is no apparent instability for
κ+ > 0, the UV completion is not currently known. The
sign of C(ν) oscillates with integer n for ν ∈ (n, n + 1)
and the instability region oscillates between κ+ > 0 and
κ+ < 0 depending on whether n is even or odd.

49 Turning on a finite temperature can stabilize the system, and

the critical temperature scales as Tc ∼ (−κ−)
1
2ν [20].

50 It is intriguing that C(ν) oscillates; this implies for example that
there are poles in the upper-half plane for negative κ+ and ν ∈
(1, 2). It would be good to understand this better.

b. Instabilities from the Breitenlohner-Freedman bound

We now study a different mechanism for an instabil-

ity. As ν → 0, i.e. M2 → −d24 ≡ M2
c , the two possible

quantizations – two different CFTd’s – merge into one
at ν = 0. If M2 further drops below M2

c , the so-called
Breitenlohner-Freedman bound, ν becomes complex and
Φ develops exponentially growing modes [12]. The sys-
tem becomes unstable to the condensation of Φ modes.
Introducing a UV cutoff Λ, then there is an exponentially
generated IR energy scale ΛIR [31]

ΛIR ∼ Λ exp

(
− π√

M2
c −M2

)
(B12)

below which the physics of condensate sets in.
Now instead of going below the BF bound, consider

sitting precisely at ν = 0, we find that the double-trace
deformation κΦ2 is marginal. Whether it is marginally
relevant or irrelevant depends on its sign [29]. To see this,
note that at ν = 0, equation (B3) should be replaced by51

G0(ω) = − log

(
− iω

Λ

)
(B14)

where Λ is a UV regulator. Under a double trace defor-
mation with coupling κ we find

G
(κ)
0 (ω) =

1

G−1
0 (ω) + κ

. (B15)

The above equation has a pole in the upper half frequency
plane at

ωκ = iΛ exp

(
1

κ

)
≡ iΛκ . (B16)

Considering increasing κ from zero to some positive
value, then the above pole emerges from +i∞, im-
plying a UV instability. We thus conclude that κ >
0 is marginally irrelevant. Similarly a negative κ is
marginally relevant and leads to an IR instability. In
both cases we can identify Λκ as a dynamically gener-
ated scale.

Here we note a curious fact. Suppose we deform the
system with κ > 0 at some scale far below Λκ where the
UV instability sets in. Naively we would expect that the
system should flow back to κ = 0 in the IR. However, it
follows from (B15) that in the ω → 0 limit, the retarded
function is given by Gκ0 ∼ 1

log(−iω) instead of G0. The sit-

uation is summarized in Fig. 14. Starting from MFTUV ,

51 Note that (B14) is obtained by directly solving the bulk equation
of motion at ν = 0. Taking ν → 0 limit in (B3) one instead finds

G+(ω)→ −1 + 2νG0(ω) + . . . , ν → 0 . (B13)
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under a double trace deformation κ, the theory flows to
MFTIR for positive κ in the IR, while for κ < 0, the the-
ory develops an IR instability and flows to a condensed
phase. Thus MFTUV is a multi-critical point (since we
need to tune to ν = 0 and κ = 0 at the same time).

β

MFT IR MFTUV

κ = 0κ

FIG. 14. The RG flow diagram at ν = 0 for double trace
coupling κ. Note the positive κ-axis is pointed to the left and
the arrow denotes flowing to IR. MFTUV denotes the fixed
point in which the retarded function for Φ is given by (B14)
and MFTIR denotes the theory in which the retarded function
for Φ is proportional to 1

log(−iω) .

2. Specializing to AdS2

We now specialize to d = 1, i.e. an AdS2 bulk geom-
etry, for which there are some new elements. We work
with an AdS2 metric with the form

ds2 = −R
2
2

ζ2
(−dt2 + dζ2) A =

ed
ζ
dt (B17)

Note that if are finding this as the near-horizon limit
of the Reissner-Nordstrom black hole in an asymptically
AdS4 spacetime the value of ed is fixed to be gF√

12
, as

in (2.5). Note that the gauge field actually blows up as
we go to the boundary ζ → 0. This influences various
properties of operators dual to bulk charged fields; for
example, the conformal dimension of the operator can
now depend on the charge q. For a scalar with mass m
we find using the metric (B17)

∆± =
1

2
± ν ν =

√
m2R2

2 − q2∗ +
1

4
. (B18)

where q∗ ≡ qed.
The allowable ∆− range that can be reached using

alternative quantization is also different; for a neutral
scalar in any AdSd+1 we find that alternative quanti-
zation is allowed if ν ∈ (0, 1), but for a charged scalar
in AdS2 normalizability of the wave function requires
ν ∈ (0, 1

2 ). Note this imposes a new “unitarity bound”

on the lowest possible dimension of a charged operator in
AdS2/CFT1: ∆− > 0; this is stronger than the usual uni-
tarity bound, which is ∆− > d−2

2 → − 1
2 for d = 1. There

is a heuristic way to understand this new bound; usually
the field theoretical unitarity bound coincides with the
dimension of a free massless (field theoretical) scalar in
d-dimensions. In one-dimensional quantum mechanics if
we turn on a chemical potential for a charged scalar X
its scaling is determined not by the

∫
dtẊ†Ẋ term but

rather by the term
∫
dtAtX

†Ẋ, which results in a free
charged scalar of dimension [X] = 0, coinciding with the
bound derived above.

Appendix C: Details of the phase diagram

In this Appendix we go through the steps of construct-
ing the standard quantization phase diagram Fig. 4. We
begin by drawing the phase diagram of the system at zero
density. As discussed in Appendix B, for νU ∈ (n, n+ 1)
the instability region oscillates between κ+ > 0 and
κ+ < 0 depending on whether n is even or odd. Translat-
ing between νU and u gives us the vacuum phase diagram
for a neutral scalar, Fig. 15. By introducing finite density,
on top of the UV instabilities determined by the vacuum
structure the system can develop other IR instabilities.
We devote the rest of the Appendix to their study.

-0.1 0.1 0.2 0.3 0.4
u

-20

-15

-10

-5
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10

15

κ+

�� ��������

FIG. 15. Phase diagram of the neutral scalar system in the
standard quantization at zero density.

To determine when finite density instabilities occur,

we have to solve for a
(0)
+ (k) and b

(0)
+ (k) numerically. As

explained in Sec. IV, in the double trace deformed theory

we look for the zeros of ã
(0)
+ (k) = a

(0)
+ (k) + κ+b

(0)
+ (k) as

a function of k. At these special values of k there is a
pole crossing over to the upper half ω-plane resulting in
a dynamical instability. The phase boundaries are then

easily mapped out. In Fig. 16, 17 we plot a
(0)
+ (k), b

(0)
+ (k),

and ã
(0)
+ (k) for various values of u (equivalently m2R2)

and κ+.
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FIG. 16. Top plot: a
(0)
+ (k) and b

(0)
+ (k) plotted for different values of m2R2 < − 5

4
with q = 0; blue is m2R2 = −1.4999,

green m2R2 = −1.4, red m2R2 = −1.3 and black m2R2 = −1.27. a
(0)
+ (k) is positive and monotonically increases with k,

while b
(0)
+ (k) monotonically decreases with k. Thus for κ+ < 0, ã

(0)
+ (k) = a

(0)
+ (k) + κ+b

(0)
+ (k) is a monotonically increasing

function of k.
Bottom plot: ã

(0)
+ (k) for m2R2 = −1.4999 and q = 0. ã

(0)
+ (k) has a zero for some k when κ+ < κc = −2.13, which implies

an IR instability. For 0 > κ+ > κc there is no instability (see the κ+ = −1 curve). When κ+ > 0, ã
(0)
+ (k) can again develop

a zero for some kF (with the value of kF approaching infinity for κ+ → 0+); this is the UV instability discussed in Sec. III

which is already present in the vacuum. To lead the eye we use solid lines for stable values of κ (i.e. ã
(0)
+ (k) does not have

any zero), dotted lines for those with an IR instability, and dashed lines for those with a UV instability.
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FIG. 17. Top plot: a
(0)
+ (k) and b

(0)
+ (k) plotted for different values of − 5

4
< m2R2 < 7

4
with q = 0; blue is m2R2 = −1.23,

purple m2R2 = −1.15, green m2R2 = −0.5, red m2R2 = 0 and black m2R2 = 0.5. While as in Fig. 16, a
(0)
+ (k) is

positive and monotonically increases with k, for this mass range b
(0)
+ (k) becomes monotonically increasing with k. Note

that b
(0)
+ (k = 0) = 0 for m2 = 0 and b

(0)
+ (k = 0) < 0 for m2 > 0.

Bottom left plot: ã
(0)
+ (k) for m2R2 = −1 and q = 0. For 0 ≥ m2R2 > − 5

4
the system is stable for any κ+ > 0, but develops

a UV instability for 0 > κ+ > κc, ã
(0)
+ (k) has a zero which approaches infinity for κ+ → 0−. For κ < κc, ã

(0)
+ (k) becomes

negative definite. This is the only instance, when we cannot resort to the logic of the second point in Sec. III. However,
because the UV and IR effects are independent, we can conclude that phase has both a UV and an IR instability.

Bottom right plot: ã
(0)
+ (k) for m2R2 = 0.5 and q = 0. For m2 > 0, the system now develops an IR instability for

κ+ > κc > 0. For κ+ < 0, there is a UV instability.

From these plots we can read off the movement of the poles on the ω-plane. There can be two sources of insta-
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bilities and correspondingly two types of poles can make
appearance in the upper half plane. The position of the
UV poles is determined by vacuum physics, and gives the
vacuum phase diagram Fig. 15. The IR poles are a result
of finite temperature physics. When such poles cross the
real line the static susceptibility, χ diverges. We show
where these poles are in the various phases in Fig. 18.
We emphasize that the physics of UV and IR instabili-
ties is different, and correspondingly the movement of IR
and UV poles is independent.

u

k+

IR#

UV#

IR#

IR#

IR#

IR#

UV#

IR#UV#

A#

B#

C#

D#

E#

F#

FIG. 18. Cartoon illustration of movement of UV and IR
poles in the complex ω-plane. Each box with two halves rep-
resents the upper and lower complex plane, with dots indi-
cating where the UV and IR poles sit. The color coding is
the same as on the complete phase diagram Fig. 4. Note that
when moving across certain lines on the phase diagram it is
evident from Fig. 16, 17 that the asymptotic large k struc-

ture of ã
(0)
+ (k) changes completely, allowing the UV pole to

move (or return) from infinity: e.g. from A to B it moves
to infinity, and from B to E it returns from infinity. On the
other hand the IR pole crosses from the upper to the lower
half plane (or vice-versa) through ω = 0 whenever the sus-
ceptibility changes sign (e.g. from B to C, or from F to E).

Consideration of the functions ã
(0)
+ (k) results eventually in

this assignment of poles.

Finally, we complete the phase diagram with the bi-
furcating critical line at uc = 0, see Fig. 4.

Appendix D: Nonlinear solution near bifurcating
critical point: Efimov spiral

In this Appendix we give the gravity analysis of the
critical behavior near the bifurcating quantum critical
point approaching from the condensed side, i.e. u < 0.
As discussed in [13, 14], for the lowest n = 1 state there
is a new exponentially generated scale

ΛIR ∼ µ exp

(
− π√−u

)
(D1)

and when the AdS2 radial coordinate ζ satisfies ΛIRζ �
1 (i.e. deep in the AdS2 region), φ becomes of order O(1).
Thus at zero temperature, no matter how close one is to
the critical point and even though the vacuum expecta-
tion value of the condensed operator is very small near
the critical point, the nonlinear dynamics of φ and the
backreaction to the bulk geometry will be needed deep in
the AdS2 region. Nevertheless, we will find that a great
deal of information can be obtained even without detailed
analysis of the nonlinear equations and backreaction. For
illustration purpose, as in [13] we will consider an action
for φ of the form

Lφ =
1

2κ2g

[
−1

2
(∂φ)2 − V (φ)

]
(D2)

where g is a coupling constant. The precise form of the
potential V (φ) is not important for our discussion below
except that V (0) = 0, V ′′(0) = m2 and it has a minimum
at some φ0 6= 0. To be close to u = 0 critical point on
the condensed side, we will thus take m2 to be slightly
smaller than the value in (4.7) and u = (m2−m2

c)R
2
2 < 0.

We will now proceed to compute the response of the
system to a static, uniform external source. Thus we
consider equation of motion following from (D2) with φ
depending on radial coordinate only. The analysis is a
slight generalization of that in [13, 14, 31]. To describe
the behavior of the bulk solution describing a condensed
phase, we separate the spacetime into three regions:

1. IR region I: ζ > Λ−1
IR. Here the nonlinear effect of

the scalar potential is important and the value of
φ is of O(1). We note that the boundary condition
at the horizon is given by

φ(ζ →∞) = φ0 (D3)

where φ0 is the minimum of the potential V (φ).
Thus as ζ → ∞, the spacetime metric approaches

ÃdS2 × R2 where ÃdS2 has a different curvature
radius from the near-horizon AdS2 region of the
condensed phase,

1

R̃2
2

=
1

R2
2

− V (φ0)

g
. (D4)

2. IR region II: AdS2 region with ζ < Λ−1
IR (but still

µζ � 1 so that the AdS2 scaling is appropriate).
In this region the value of φ is small, and we can
treat it linearly and neglect its backreaction on the
geometry. Here φ has a well-defined but complex
conformal dimension in SLQL dual to the original
AdS2 (with k = 0) :

δ± =
1

2
± i
√
−u, −u� 1 (D5)

and general solution to linearized equation can be
written as aζδ+ + bζδ− .
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3. UV region: the rest of the black hole spacetime.
Again in this region linear analysis suffices.

Note that the IR region II is not guaranteed to exist a
priori, but will be justified by the results, i.e. (D1) (right
now ΛIR should be considered just as a parameter we
introduce to distinguish IR region I and II).

We will solve the nonlinear equation following
from (D2) starting in IR region I and moving towards
the boundary of the spacetime. Note that the horizon
boundary condition (D3) fixes one of the integration con-
stants in the second-order equation for φ. As we move
outwards, the scalar becomes smaller and smaller until
around ζ ∼ Λ−1

IR, where we can neglect its backreaction
on the geometry and treat it linearly. Note that the so-
lution to the nonlinear equation in IR region I should be
insensitive to the precise value of m2 (which is the mass
square near φ = 0) and thus when |u| � 1, we could set u
to 0 in solving it. This implies that, near Λ−1

IR, it should
be a good approximation to solve the linearized equation
(around φ = 0) with u = 0, and a general solution can
be written as52

φ(ζ) = γ

√
ζ

ζ∗
log

ζ

ζ∗
+O(

√
−u) (D6)

where γ ∼ O(1) and ζ∗ ∼ Λ−1
IR are integration constants.

In the limit of no backreaction (e.g. g →∞ in (D4)), it
can be readily checked that the full nonlinear problem in
AdS2 region has an AdS2 scaling symmetry under which
both the IR boundary condition (D3) and the equations
of motion are invariant. Recall that the horizon bound-
ary condition (D3) fixed only one of the two integration
constants, leaving a one-parameter family of acceptable
solutions. We conclude that in this case because of the
scaling symmetry this family is parametrized by ζ∗, and
the number γ must be fixed by (D3) to be an O(1) con-
stant (as there are no small parameters in the nonlinear
analysis). If we allow backreaction then these statements
are no longer strictly true, in that as we traverse the re-
maining one-parameter family of solutions we will likely
move through a nontrivial trajectory in the (γ, ζ∗) space.
This should be kept in mind; however in the remainder of
the analysis for simplicity we will assume that backreac-
tion is small and so we can assume that γ is fixed by (D3)
and the remaining solutions are parametrized by ζ∗.

Now from (D5) the most general solution to the lin-
earized equation in IR region II can be written as

φ(ζ) = d1

√
ζ

ζ∗
cos

[√
−u log

ζ

ζ∗
+ d2

]
(D7)

52 Note at u = 0, the two exponents in (D5) become degenerate

and the independent solutions to the linear equation become ζ
1
2

and ζ
1
2 log ζ respectively.

where we have chosen ζ∗ as a reference point and d1, d2

are numerical integration constants. For ζ ∼ ζ∗, expand-
ing (D7) in

√−u and comparing with (D6) we conclude
that d1 ∼ 1√−u and d2 = π

2 + O(−u) and (D7) can be

written as

φ(ζ) =
γ√−u

√
ζ

ζ∗
sin

(√
−u log

ζ

ζ∗

)
. (D8)

It is important to emphasize that the
√−u log ζ

ζ∗
term

may not be small, as ζ may vary over exponentially large
distance in 1/

√−u.
Finally we now consider matching (D8) to the solu-

tion in the UV region near µζ ∼ O(1) with identification

ζ =
z2∗

6(z∗−z) . This is exactly the same as the linear match-

ing problems discussed in Appendix A 1 and so we will
be brief. In terms of the basis of solutions introduced
in (A19) we can write φ as

φ(z) =
γ√−u

√
z∗
ζ∗

1

2i

(
e−i
√−u log ζ∗

z∗ η
(0)
+ − ei

√−u log ζ∗
z∗ η

(0)
−
)
.

(D9)
Using the expansion (A10) and the following definitions
and properties of a±, b±:

a+ = |a+|eiθa , b+ = |b+|eiθb , a− = a∗+, b− = b∗+
(D10)

we then conclude that the coefficients A and B in (A3)
are given by

A = −z3−∆
∗

γ√−u |a+|
√
z∗
ζ∗

sin

(√
−u log

ζ∗
z∗
− θa

)
,

B = −z−∆
∗

γ√−u |b+|
√
z∗
ζ∗

sin

(√
−u log

ζ∗
z∗
− θb

)
.

(D11)

Recall that ζ∗ parametrizes movement through the so-
lution space; as we vary ζ∗, we see that we trace out a
spiral in the (A,B) plane. See fig. 7. If we are studying
a normalizable solution (in standard quantization), then
we require A = 0: the spiral will cross this axis an infi-
nite number of times as we take ζ∗ → ∞, giving as an
infinite tower of states. These are the “Efimov” states
described in the main text. Note that no matter how
small we consider A or B to be, the curve continues to
spiral and nonlinear dynamics remains important–this is
because the scalar in the deep interior is always of O(1).
Comparing with (A23) we find that as

√−u→ 0,

|a+| = α, θa = −
√
−uα̃

α
,

|b+| = β, θb = −
√
−uβ̃

β
(D12)

giving (7.27) quoted in the main text.
For the case of the double-well potential:

V (φ) =
1

4R2

(
φ2 +m2R2

)2 − m4R2

4
. (D13)
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there is a φ → −φ symmetry which results in the sym-
metry A, B → −A, −B of fig. 7. For this potential in
the limit of no backreaction we find γ ≈ 2.

Appendix E: Finite-temperature line near
bifurcating critical point

The bifurcating quantum phase transition is the end-
point of a line of finite-temperature phase transitions.
In this Appendix we present some calculations near this
line. As argued earlier this is a rather standard mean
field second order transition, so we do not present much
detail. One novel feature is that close to the quantum
critical point then we are at exponentially small temper-

atures and so we have a great deal of analytic control over
the calculations, allowing us to verify explicitly many of
the features expected of such a transition.

1. Dynamic critical phenomena near finite-T
transition

We first turn on a finite ω and k2 and study the critical
behavior close to the finite-temperature critical line. The
leading ω behavior comes from the dependence of the IR
Green’s function in (7.38) on ω/T . At finite ω this IR
Green’s function is no longer a pure phase, and to lowest
order we find

Gk(ω;T ) = (πT )
−2iλk Γ(iλk)

Γ(−iλk)

Γ
(

1
2 − iλk

)

Γ
(

1
2 + iλk

)
(

1− πω

2T
(λk +O(λ2

k))
)

(E1)

Recall that u measures the distance from the critical
point. The leading k2 dependence comes from expanding
λk in powers of k2 close to the critical point:

λk =
√
−u− k2

6µ2∗
√−u +O(k4) (E2)

Note that a sufficiently large k will take us out of the
imaginary ν phase and invalidate this expansion; while
this could presumably be dealt with, it would complicate
the analysis, and thus throughout we will simply assume
that k2 is parametrically small: k2 � (gc − g). In this
regime the UV contributions to the k2 dependence can
be ignored, as they will be higher order in u.

We now insert these expansions into (7.38). The de-
nominator of the Green’s function then takes the form

GR(ω, k;T )−1 ∼ sin

(
log

(
T

Ta

)(
λ0 +

dλ

dk2
k2

))
− iωλ0π

2T
e−iλ0 log( T

Ta
) , (E3)

where λ0 = λk=0 =
√−u. We now further expand the

temperature in the vicinity of the n-th “Efimov temper-
ature” Tn, defined in (7.46). We now find

(−1)nGR(ω, k;T )−1 ∼ λ0(T − T (n)
c )

T
(n)
c

+
nπ

6µ2∗λ
2
0

k2−i ωπλ0

2T
(n)
c

(E4)
Let us now study this expression, first setting k → 0; we
find then that the Green’s function has a pole at

ω∗ = −2i

π
(T − Tn) (E5)

For T > Tn this pole is in the lower half-plane, and it
moves through to the upper half-plane if T is decreased
through Tn.

Of course in practice once the first pole moves through
to the upper half-plane, the uncondensed phase is un-
stable and we should study the system in its condensed
phase; thus we see that the true critical temperature is

precisely at the first Efimov temperature, Tc = T1 =

Ta exp
(
− π√−u

)
.

We can also set ω → 0 and study the static correla-
tion length; we see that near each Efimov temperature
(including the critical temperature) we have a standard
finite correlation length ζ with a mean field scaling in
(T − Tc):

ζ−2 =
6µ2
∗(−u)

3
2

Tnnπ
(T − Tn) (E6)

This correlation length exhibits an intriguing scaling in
−u.

Finally, we can keep both ω and k2 nonzero and sit at
the critical point T = Tn; we then find a diffusion mode

ω∗ = −i n

3µ2∗(−u)
3
2

k2 (E7)

which is of the standard form for this class of dynamic
critical phenomena (due to the absence of conservation
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laws for the order parameter, this is Model A in the clas-
sification of [50]; see also [40] for further discussion in the
holographic context).

2. Susceptibility across the critical point

We now compute the linear susceptibility near the crit-
ical point as we approach from the uncondensed side, i.e.
T > Tc. We already have all of the ingredients; from
(7.41) we have

χ(T ) = χ0

sin
(
λ0 log

(
T
Tb

))

sin
(
λ0 log

(
T
Ta

)) (E8)

Now expanding near T = Tc = Ta exp
(
− π
λ0

)
we find

χ(T ) ≈ χ0

Tc log
(
Ta
Tb

)

T − Tc
=

χ0

2νUαβ

Tc
T − Tc

, (E9)

where as usual we have used (A26).
We will now perform the analogous calculation from

the condensed side. This will require some understand-
ing of the nonlinear solution close to the critical point.
We will use analyticity properties of nonlinear classical
field configurations on black hole backgrounds; these are
precisely analogous to the analyticity arguments in the
Landau theory of phase transitions. Similar arguments
led us in [13] to conclude that for finite temperature phase
transitions we find mean field critical exponents.

First we express A, B as functions of the horizon value
of the scalar field, φh. We have

B

µ−∆
∗

= b+(T )φh + b3(T )φ3
h + . . . (E10)

and the corresponding expression for A:

A

µ∆−3
∗

= a+(T )φh + a3(T )φ3
h + . . . (E11)

For small values of the scalar linear response must apply,
and thus the a+ and b+ appearing above are the same
as those used throughout this paper in calculating lin-
ear response functions. Now from the calculation above
we know that close to the critical temperature we have
a+(T ) ∼ ã(T − Tc); matching to (E9) above we see that

b+(Tc)

ã
=

Tc
2νUα2

(E12)

Now we see that for T < Tc we have a nontrivial zero in
A (and thus a normalizable bulk solution) at

φh =

(
ã(T − Tc)

a3

) 1
2

≡ φnorm (E13)

The definition of the nonlinear susceptibility χL is the
derivative of the vacuum expectation value (i.e. B) with
the source as we approach the normalizable solution on
the condensed side, i.e.

χL = µ2νU
∗

dB

dA

∣∣∣∣
A→0

= µ2νU
∗

dB

dA

∣∣∣∣
φh=φnorm

. (E14)

Evaluating the derivatives this works out to be

χL = µ2νU
∗

dB

dφh

dφh
dA

∣∣∣∣
φh=φnorm

=
χ0

4νUαβ

Tc
Tc − T

(E15)

Compare this to the linear susceptibility χ calculated in
(E9); we see that the leading divergence in χL has a a
prefactor that is half that of χ. This fact is a general
result of Landau theory and follows from the symmetry
and analyticity arguments that allowed us to write down
(E10) and (E11).

Appendix F: Review of critical exponents

In the vicinity of a critical point we observe scaling
behavior of various observable quantities, which is char-
acterized by a set of critical exponents. We list some of
the most commonly used exponents in the following. We
will denote the external tuning parameter g with which
we tune the system to the critical point g = gc. Near the
critical point the spatial correlation length diverges as

ξ ∼ |g − gc|−νcrit . (F1)

The energy gap for elementary excitations scales as

Egap ∼ ξ−z ∼ |g − gc|−zνcrit , (F2)

where z is called the dynamic critical exponent and de-
termines the characteristic time scale of the approach to
equilibrium via τeq ∼ 1/Egap. On the condensed side the
order parameter O also exhibits scaling near the critical
point; the corresponding exponent is:

〈O〉 ∼ |g − gc|β , (F3)

and exactly at the critical point it will depend on the
source as

〈O〉 ∼ J1/δ , (F4)

where the coupling to the external source is JO. The
correlation function χ = 〈OO〉 can also be used to probe
the physical properties of the critical point. The next
critical exponent we introduce is for χ at zero momentum:

χ(k = 0, ω = 0) ∼ |g − gc|−γ . (F5)

The decay of GR at the critical point in the free theory
would be 1/xd−2, the deviation from this is characterized
by η:

χ(x, ω = 0)|g=gc ∼
1

xd−2+η
. (F6)
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To study the scaling of thermodynamic functions we in-
troduce α as:

f ∼ |g − gc|2−α , (F7)

where f is the free energy density.
The scaling exponents obey scaling relations which can

be derived from scaling arguments.

γ = (2− η)νcrit = β(δ − 1) (F8)

With some additional input one can derive the hyper-
scaling relation which is obeyed by critical theories in
the Landau-Ginsburg-Wilson paradigm in the absence of
dangerously irrelevant operators:

2β = (d− 2 + η)νcrit . (F9)

We will see in the bulk of the paper that hybridized crit-
icality violates the hyperscaling relation, hence we only
accept (F8) as valid equations. Choosing the indepen-
dent exponents to be β, γ, νcrit we can express all other
exponents with them:

α = 2− 2β − γ (F10)

δ =
β + γ

β
(F11)

η = 2− γ

νcrit
. (F12)

Hyperscaling would give us an additional relation be-
tween β, γ, νcrit.

Appendix G: Index of Symbols

For convenience here we compile (in rough alphabetical
order) the important symbols used in this paper, with
brief definitions and a reference to the equation number
where they are defined.

1. A, B: UV expansion coefficients of a general solu-
tion to the bulk wave equation. Defined in (A3).

2. a±, b±: UV expansion coefficients of a particular
basis of solutions to the bulk wave equation, cho-
sen to have definite scaling behavior in the AdS2

geometry. Defined in (A10).

3. α, α̃, β, β̃: Taylor expansion coefficients of a±, b±
in small νk limit. Defined in (A22) and (A23).

4. ∆: UV (i.e. in asymptotic AdS4 region) conformal
dimension of scalar operator O. Defined in (2.8).

5. δk: IR (i.e. in eCFT1, or infrared AdS2 region)
conformal dimension of each Fourier mode of IR
scalar operator. Defined in (2.9).

6. γ: Dimensionless parameter describing overall scale
of nonlinear condensed phase solution near bifur-
cating critical point. Defined in (D8); see also
(7.27).

7. GR(ω, k): Full retarded correlator of UV operator
O. Expression given in (2.11).

8. Gk(ω): IR (i.e. in eCFT1) correlator of IR scalar
operator. Expression at zero temperature given in
(2.12); finite temperature generalization given in
(2.19).

9. κ±: Coefficients of various double trace-
deformations that can be used to tune system
through hybridized critical point; see (3.2), (3.3)
and (B7).

10. κc: Critical value of κ+ for hybridized critical point.
Defined in (4.8).

11. κ∗+: Value of κc for which hybridized phase transi-
tion line intersects bifurcating phase transition line,
leading to marginal quantum phase transition. De-
fined in (9.1).

12. m2: Bulk mass of scalar. See (2.8) and (2.10) for
effect on UV and IR conformal dimension respec-
tively.

13. µ∗: Rescaled chemical potential. Defined in (2.3).

14. νU : Number related to UV conformal dimension by
∆ = d

2 + νU . Defined in (2.8).

15. νk, ν: Number related to IR conformal dimension
by δk = 1

2 +νk. Defined in (2.9); ν with no subscript
is ν = νk=0.

16. q∗: Rescaled charge q of scalar field. Defined in
(2.10).

17. R,R2: Curvature radii of asymptotic UV AdS4 and
IR AdS2 regions respectively. Defined in (2.2) and
(2.5).

18. u: Control parameter describing distance from bi-
furcating quantum critical point, which is at u = 0,
with condensed phase for u < 0. Defined in (4.4).

19. χ0: Susceptibility approaching bifurcating quan-
tum phase transition from uncondensed side. De-
fined in (7.5).

20. χ∗: Parameter characterizing non-analyticity in
susceptibility across bifurcating quantum phase
transition. Defined in (7.7).

21. ψ(x): Digamma function, logarithmic derivative
of gamma function ψ(x) ≡ d

dx log Γ(x). Appears
in thermal response near bifurcating critical point,
e.g. (7.43).
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