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We apply the model of stimulated neutrino transitions to neutrinos traveling through turbulence on a non-

constant density profile. We describe a method to predict the location of large amplitude transitions and demon-

strate the effectiveness of this method by comparing to numerical calculations using a model supernova (SN)

profile. The important wavelength scales of turbulence, both those that stimulate neutrino transformations and

those that suppress them, are presented and discussed. We then examine the effects of changing the parameters

of the turbulent spectrum, specifically the root-mean-square amplitude and cutoff wavelength, and show how

the stimulated transitions model offers an explanation for the increase in both the amplitude and number of

transitions with large amplitude turbulence, as well as a suppression or absence of transitions for long cutoff

wavelengths. The method can also be used to predict the location of transitions between antineutrino states

which, in the normal hierarchy we are using, will not undergo Mikheev-Smirnov-Wolfenstein (MSW) transi-

tions. Finally, the stimulated neutrino transitions method is applied to a turbulent 2D supernova simulation and

explains the minimal observed effect on neutrino oscillations in the simulation as as being due to excessive

long wavelength modes suppressing transitions and the absence of modes that fulfill the parametric resonance

condition.
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I. INTRODUCTION

Neutrino flavor transformations are a fascinating problem that have provided many interesting avenues of research over the

years. One such avenue is the effect different environments have on the evolution of neutrino flavor. In the case of a high

neutrino density, such as in SN, the neutrinos will undergo collective oscillations due to interactions between the neutrinos

themselves [1–10]. Also, neutrinos traveling through matter will undergo various MSW-type transitions due to interactions with

the surrounding matter [11, 12]. That matter profile may be very chaotic and there exists a rich history of study into the effect of

fluctuations on the MSW-type transitions of neutrinos in various environments. For example, the small fluctuations in the Sun

and Earth have been investigated [13–17], as well as the large fluctuations in SN [18–24]. Recently, collective effects in SN have

been studied in the presence of density fluctuations [25–27] and the synthesis of collective, MSW effects and turbulence was

investigated in [28] where it was shown that features in the neutrino spectrum indicating the effects of self-interactions and/or

MSW transitions may be partially or completely erased .

Most of these works explained the effect of turbulence in terms of MSW-type transitions in the sense that density fluctuations

increases the number of locations where a neutrino fulfills the MSW resonance condition in a particular mixing channel. In

addition to increased mixing between the given two states, three flavor effects start to appear as the turbulence amplitude increases

[21, 29] and oscillation channels that show no transitions with small amplitude turbulence are affected when the amplitude

becomes large. In certain cases, a phenomenon known as depolarization has been observed, in which all information about the

neutrinos’ initial state is lost [30, 31]. Depolarization allows one to describe the final state of the ensemble of neutrinos as a

simple probability distribution unrelated to the initial state. It is not known for certain whether these conditions are met in SN.

To determine if depolarization occurs in SN, it is necessary to study the histories of individual SN neutrinos. On the other hand,

if depolarization is found not to occur in SN, the individual histories will be needed since the final state of the ensemble will

depend on the initial conditions.

All of this research has produced important advances, but in order to get the full picture we must have a complete understanding

of the scales of fluctuations that affect the neutrino transformations most. And then there are some neutrino transitions in

fluctuating matter densities which cannot be well explained by MSW theory because they occur of over a distance scale that is

much longer than the oscillation scale. Instead, they fit into a category of transformations known as stimulated transitions, caused

by parametric resonance. This effect is similar to MSW-type transitions, in that it results from interactions with matter. However,

whereas MSW-type transitions occur when neutrinos pass through material at a resonant density, stimulated transitions are caused

by matching the frequency of fluctuation to the eigenvalue splitting of the neutrino system [19, 32–36]. This frequency matching

can happen at any density scale, allowing for the possibility of flavor transformations even far from the MSW resonance. It has

also been shown that harmonics of the eigenvalue splitting can cause a parametric resonance [24]. Parametric resonances in

neutrinos are very similar to stimulating transitions between energy levels in an atom using a laser [37], and in fact many of the

equations used to describe the two systems closely resemble one another. Since any density profile, even a turbulent one, can be

decomposed into Fourier modes of different frequencies, the parametric resonance approach is a natural one to take.

In previous work [38], we have shown that the approach based upon the rotating wave approximation (RWA) can be used to

accurately predict the transition wavelength and amplitude for neutrinos traveling through turbulence with up to forty modes.

This previous work was restricted to turbulence superimposed on a constant density profile and the purpose of this present work

is to expand to tackling the issues associated with a changing profile. In Section II, we reiterate the RWA solution and the

important scales of the problem and propose how one can apply these results to a non-constant density profile. In Section III

we then test our proposal by applying it to a model SN profile and discover that it works well. Based upon that success, section

IV examines the effect of changing parameters of the power spectrum of the turbulence and then in section V we show how we

are able to predict transition between antineutrino states, clearly illustrating the utility of the stimulated transition approach to

explain those cases where MSW transitions are not expected. In section VI we use our method to explain the recent null result

of turbulence upon neutrinos passing through a 2D simulation, and then finish with our conclusions.

II. ANALYTIC SOLUTION

A. Constant Density

We are interested in calculating the probability that a neutrino starting in state |ν(r)〉 at point r is in state |ν′(r′)〉 at some later

point r′. These states are both at different locations and in different Hilbert spaces. This can be accomplished by computing the

S -matrix, which provides a connection between the initial and final states through the equation |ν′(r′)〉 = S |ν(r)〉 [39, 40]. This

S -matrix is the path ordered exponential of the Hamiltonian and evolves via the equation

ı
dS

dr
= H S . (1)
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In the flavor basis, the Hamiltonian H is given by H( f ) = U0K(m)U
†

0
+ V ( f ), where U0 is the vacuum mixing matrix, K(m) is a

matrix containing the vacuum eigenvalues, and V ( f ) describes some potential through which the neutrino moves. We separate our

potential into two pieces: a smooth base potential V̆ and the perturbation δV . With this separation, we now write our Hamiltonian

as H = H̆ + δV . The Hamiltonian H̆ and all other quantities denoted by a ‘breve’ are unperturbed quantities, which includes the

vacuum contribution and the smooth potential, but not the perturbation δV . We can define an unperturbed matter basis, which

is related to the flavor basis through a unitary mixing matrix Ŭ by H̆( f ) = ŬK̆(m̆)Ŭ†, where K̆(m̆) is a diagonal matrix of the

eigenvalues of H̆.

At this point, we will make the assumption that the potential V has only one non-zero component, that of Vee, making the

potential ‘MSW’-like. We are interested in the effects of perturbations of the form

δV(r) = V̆(r)

Nk
∑

a=1

[

Ca sin (qar + ηa)
]

, (2)

where Nk is the number of modes, with each mode having wavenumber qa, amplitude Ca, and phase shift ηa. The phase shifts

ηa are randomly distributed between 0 and 2π, while the amplitudes and wavenumbers follow a Kolmogorov power spectrum,

given by[29]

E(q) =
(α − 1)

2qcut

(

qcut

|q|

)α

Θ(|q| − qcut), (3)

where α = 5/3 and qcut is the cutoff scale and sets the lowest allowed frequencies for the spectrum. The power spectrum E(q)

is a measure of the power in the turbulence at each frequency and is related the amplitudes Ca in equation (2) through the

simple relationship E(qa) ∝ C2
a/qa. Due to the inverse power law nature of the spectrum, longer wavelength modes will have

more power and thus larger amplitudes. The amplitudes and frequencies for the Nk modes are chosen using the Randomization

Method described in [28, 29, 41].

In this work, we investigate the effects of changing two parameters of the turbulent spectrum. The first is the root-mean-square

(RMS) amplitude, defined as C2
rms =

∑

a C2
a . SN simulations have reported a wide range of RMS amplitudes. The amount of

turbulence in the SN progenitor has been reported as Crms ∼ 10−5, providing a lower limit to the turbulence in the explosion

[42]. Upper limits in SN turbulence reach up to Crms ∼ 0.3−0.5, justified from the multidimensional physics required for a large

star to actually explode in simulations [28]. Given the variety of values for Crms reported, we study how these changes alter the

neutrino propagation.

The second parameter is the cutoff wavelength, defined as λcut = 2π~c/qcut. The cutoff wavelengths used in previous work

have varied from tens of kilometers [25] to thousands or tens of thousands of kilometers [16, 17, 21, 28, 29, 41]. From the work

in [38], we know that long wavelength modes can have a suppressive effect on the neutrino transformations, so a change in cutoff

wavelength could make a drastic difference in the resulting transitions. Once again, due to the large range of previously used

cutoff wavelengths, we look into how varying this parameter affects the neutrino propagation.

In the case of a constant density (V̆(r) = V0), the probability of transition between the unperturbed states 1 and 2, the

eigenstates of H̆, is given by [38]

P12 =
κ2

Q2
sin2 (Qr), (4)

where

κ =
Ŭ∗

e1
Ŭe2

|Ŭe1|
2 − |Ŭe2|

2

















Nk
∑

a=1

n⋆a qa

















×

Nk
∏

a=1,

(−ı)n⋆a Jn⋆a
(za) exp

[

ı (n⋆a ηa + za cos ηa)
]

, (5)

and Q2 = p2+κ2. The oscillation wavelength Q−1 is an important quantity for determining where transitions occur on a changing

profile, as will be explained later. We further define 2p = δk̆12+
∑

a n⋆aqa and za = CaV0(|Ŭe1|
2−|Ŭe2|

2)/qa. Here, δk̆12 = k̆1− k̆2,

where the k̆i are the eigenvalues of H̆. The full derivation of this RWA solution can be found in [38].

The n⋆a in the definition of p are integers, chosen using a simplex with −κ2/Q2, or negative the amplitude, as the potential. The

simplex locates the set of n⋆a which best satisfy the parametric resonance condition |δk̆12 +
∑

a n⋆aqa| ≈ 0 while also minimizing

the value of −κ2/Q2. This method was shown to produce predictions similar to brute force numerical results in [38].

Using this analytic solution, two important wavelength scales have been identified. The first is associated with the neutrino

mass splitting and defined as
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λ f luct,split ∼ 20 km
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))2
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) (
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) (

sin 2θ
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))2














−1/2

.

(6)

Density perturbations with wavelengths close to λ f luct,split cause parametric resonances and have been discussed in works such

as [19, 24, 32–36]. This length scale corresponds to those modes with a non-zero contribution to the parametric resonance

condition, |δk̆12 +
∑

a n⋆aqa| ≈ 0, where then λ f luct,split ≈ 2π~c/qa ≈ 2π~c/δk̆12.

The second wavelength is related to the amplitude of the density fluctuations, and can suppress the transitions caused by

λ f luct,split. A good physical analog this suppression is the Stark effect. For a two-level atom, a laser tuned to the correct frequency

can stimulate a transition between states. Applying an external field to that atom will shift the wavefunctions and energies of the

original states, such that the laser that once stimulated transitions can no longer do so.

In the neutrino system, the “laser” consists of the modes which contribute to the parametric resonance. The “external electric

field” is made up of the rest of the modes in the turbulence. These modes cause a distortion to the system which prevents the

parametric resonance from causing a transition. We showed in [38] that this distortion can be quantified, and that the modes

which cause the largest distortion have wavelengths given by λ f luct,ampl, given by

λ f luct,ampl ∼ 125 km

(

0.1

Ca

) (

1000 g/cm3

ρ

)

√

((

δm2

3×10−3 eV2

) (

20MeV
E

) (

cos 2θ
0.95

)

− 0.53
(

ρ

1000 g/cm3

))2
+ 0.1

((

δm2

3×10−3 eV2

) (

20MeV
E

) (

sin 2θ
0.3

))2

((

δm2

3×10−3 eV2

) (

20MeV
E

) (

cos 2θ
0.95

)

− 0.53
(

ρ

1000 g/cm3

)) .

(7)

Note that equation (7) has been modified: here we have included mixing matrix elements that were approximated as being of

order 1 previously. The values of λ f luct,ampl correspond to those modes where the value of za = CaV0(|Ŭe1|
2 − |Ŭe2|

2)/qa is close

to a zero of the Bessel function J0(za). When such a zero is encountered, the value of κ, and the amplitude of the transition, is

heavily suppressed. The modes that contribute the J0(za) to the induced wavelength and amplitude have n⋆a = 0 and therefore

are not the modes that trigger the parametric resonance condition. However, they distort the underlying density profile.

These results are summarized in figures (1) and (2). Figure (1) shows the amplitude as a function of perturbation wavelengths

at a constant density of 941 g/cm3, which is half of the MSW density for neutrinos with an energy of 20 MeV, δm2 = 3×10−3 eV2

and a mixing angle of 9◦. The solid red line shows the value of λ f luct,split, while the dashed blue line represents the second scale

of λ f luct,ampl. The shaded region above λ f luct,ampl is the suppression region. Fluctuations whose wavelength and amplitude places

them in the suppression region are likely to cause a suppression of the stimulated transitions. The black points shown on this

figure are the amplitude and wavelengths for a randomly generated Kolmogorov spectrum with RMS amplitude of 10% and a

cutoff wavelength of 314.1 km. This particular set of wavelengths and frequencies was shown to exhibit a dramatic suppression

effect in figure (4) of [38], reducing the amplitude of the transitions from unity to ∼ 0.1. In fact, as we can see in figure (1), some

of the points in this spectrum fall very close to or within the suppression region.

We can also look at these scales in the plane of perturbation wavelength and density, shown in figure (2). As before, the solid

red and dashed blue curve indicate λ f luct,split and λ f luct,ampl, respectively, and the shaded blue area is the suppression region. In

this case, multiple lines can be drawn for λ f luct,ampl depending on the amplitude Ca being considered. At a given density, any

perturbation with an amplitude Ca and a wavelength that places it above the λ f luct,ampl curve for that Ca will cause suppression.

As an example, we have plotted the curve for Ca = 0.023, the amplitude of the first mode in the spectrum plotted in figure (1).

The single magenta point shows the wavelength and density for that mode in this example. We already know this particular

spectrum displays suppression, and now we can confirm that this mode specifically is contributing to that suppression as it falls

on the λ f luct,ampl curve.

B. Stimulated Transitions with Non-Constant Density Profiles

We want to now move to the case of a non-constant V̆ . As a first case we consider a smooth parameterized supernova model

taken from Fogli et al., with the shock at the t = 4s position [43]. We use a two-flavor system for simplicity, with the energy

of the neutrino set to 20 MeV, a vacuum mass splitting of δm2 = 3 × 10−3 eV2 and a vacuum mixing angle of θ = 9◦. This

parametrized SN model includes a single shock and a 20 MeV neutrino will pass through three MSW resonances, one of which

is the shock, for the mixing parameters and neutrino energy chosen. The turbulence in front of the shock at 4.22×104 km is

expected to be negligible, so our calculation ends at the shock in all cases discussed here.

The probability P12 in the unperturbed matter basis for the unperturbed potential is shown in figure (3). The small rises in the

probability near 1 × 108 cm and 2 × 109 cm occur at the first two MSW resonances. Based on these results, we can conclude

that any large transitions in probability that we see after inserting turbulence must be due to parametric resonances caused by the

perturbations.
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FIG. 1. Example of the important scales and suppression region in terms of wavelength and amplitude of modes in the density perturbation

imposed on a constant density of ρ = 941 g/cm3. The solid red line indicates λ f luct,split , while the dashed blue curve shows λ f luct,ampl. The

shaded blue area is the suppression region. Black points indicate amplitudes and wavelengths for a Kolmogorov power spectrum known to

produce suppression. One of the modes in this spectrum does fall in the suppression region.

Our proposal for how to apply the constant density method is to insert spatial dependence into previously constant quantities,

such as Ŭ and δk̆, and calculating the stimulated transition wavelength 1/Q as a function of position. We then determine whether

the transition wavelength is less than the density scale height, defined as rρ = | ρ(r)/(dρ/dr) |, where the mass density ρ(r) is

proportional to V̆ee(r). The density scale height is a measure of how fast the potential changes with distance. In order to see a

transition we require that the predicted transition wavelength, 1/Q, must be smaller than rρ. This indicates that the transition

is occurring faster than the density is changing. In the following sections, we will use this method to make predictions of the

locations of transitions. We will also use this method to study the effects of changing the turbulence parameters Crms and λcut, as

well as predict transitions between antineutrino states.

III. PREDICTING TRANSITIONS

A. Four Modes

One of the major advantages of the RWA approach is the ability to predict where large transitions are likely to occur as

neutrinos travel through a density profile. Numerical calculations can be computationally expensive, but with the RWA approach,

we can determine if a profile will prove interesting or not before using that valuable computing power. Here, we will show the

predictive power of the RWA solution.

We will start with a case of four modes (Nk = 4) with a RMS amplitude of Crms = 0.1 and a cutoff wavelength of λcut = 314.1

km. Frequencies, amplitudes and phases for the four modes are listed in Table (I). The small number of modes was chosen to

make transitions very clear to the reader while the cutoff wavelength ensures that no suppressive effects will be present. The

method also works with higher numbers of modes, and an example of this will be described later. There are two steps involved

in predicting transitions: finding parametric resonances and comparing predicted wavelengths to the density scale height.
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FIG. 2. Example of the important scales and suppression region in terms of wavelength and density. The red curve, as in figure 1, shows the

value of λ f luct,split while the dashed blue curves show the value of λ f luct,ampl for Ca = 0.1 and Ca = 0.023. The magenta point is the longest

wavelength mode from the example spectrum used in figure (1), which has amplitude Ca = 0.023.

TABLE I. Values of qa, Ca and ηa used for the Nk = 4 modes example shown in figure 4 with λcut = 314.1 km and Crms = 0.05. Figure 8 was

created by multiplying each Ca by a constant factor (eg. for Crms = 0.1, each Ca was multiplied by 2).

a qa (ergs) Ca ηa

1 1.48355 × 10−23 0.07395 4.4432

2 8.16779 × 10−23 0.02167 1.7732

3 1.77399 × 10−21 0.02522 0.07516

4 5.38203 × 10−20 0.006297 5.9402

We first determine the RWA solution at each point along the profile using the simplex method. Then, we find all locations

where the parametric resonance condition is met (0 ≈ δk̆ +
∑

naqa). Large transitions are only possible when this condition is

satisfied. An example of this is shown in the top panel of figure (4). The red curve shows the sum δk̆ +
∑

naqa, and the solid

black line is at 0. There are many locations where this condition holds, but a large fraction will be eliminated by the next step.

Next, we must determine if the constant density approximation is valid. As mentioned above, we will use the density scale

height rρ to accomplish this. The RWA solution found through the simplex method provides us with predicted wavelengths at

each point along the density profile. Since we have already located points where parametric resonances occur, we focus on

the predicted wavelengths at those locations. If the predicted wavelength is lower than rρ the constant density approximation

holds and we can expect a transition. This is illustrated in the middle panel of figure (4). The red curve shows the predicted

wavelengths while the solid black curve is the density scale height for our chosen base profile. Requiring that the predicted

wavelength be less than the density scale height eliminates many points that fulfill the parametric resonance. After these two

steps, we are left with five potential transition locations, indicated by vertical dashed lines labeled A through E.

Finally, in the bottom panel of figure (4), we see the numerically calculated probability for this case. At each point A through
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FIG. 3. The matter potential V̆ (top) and probability of transition (bottom) for the Fogli et al. profile with no perturbations. The MSW

resonance potential for neutrinos with an energy of 20 MeV, δm2 = 3 × 10−3 eV2, and θ = 9◦ is indicated in the top panel by the dotted black

line. The very low probability indicates that any large transitions seen with perturbations are due to parametric resonances.

E, a substantial transition is observed. The method outlined above accurately predicted the locations of each of these transitions.

All of the large transitions in this example are explained by parametric resonance and the RWA solution.

In contrast to the unperturbed case in figure (3) which hit a maximum probability of less than 2 × 10−4, the transitions here

are between 50% and 100%. Transitions such as A and B, which do not reach 100%, are due to the predicted wavelength being

longer than the distance over which the transition occurs. For instance, transition A has a predicted wavelength of ∼ 1.6×107 cm.

Before the neutrino can travel that distance, however, the parametric resonance condition is no longer met and the transition ends.

An extreme example of this is transition C. The parametric resonance condition at location C is met for an almost negligible

distance. The system barely begins transitioning before moving off the resonance. Thus, even though location C meets our

criteria for a potential transition, nothing observable occurs there.

B. 20 Modes

A realistic turbulent profile would have many more than four modes. Figures (5) and (6) show an example with 20 modes,

showing that this method for predicting transitions still works when the number of modes is increased. The turbulent spectrum
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FIG. 4. Example of the transitions caused by a perturbation with four modes. (Top) The sum δk̆ +
∑

naqa (red) is used to locate parametric

resonances. This condition is met when the sum equals 0 (black). (Middle) The predicted wavelengths from the RWA solution (red) compared

to the density scale height (black). (Bottom) Probability of transition P12 in the unperturbed matter basis. Predicted transitions, located by the

method described in the text, are indicated by vertical dashed lines A through E in all panels.
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TABLE II. Values of qa, Ca and ηa used for the Nk = 20 modes example shown in figures 5 and 6 with λcut = 314.1 km and Crms = 0.05. Figure

10 was created by multiplying each qa by a constant factor (eg. for λcut = 3141km, each qa was multiplied by 0.1).

a qa (ergs) Ca ηa

1 6.58566 × 10−24 0.005897 0.7207

2 1.03841 × 10−23 0.04886 1.9441

3 2.39881 × 10−23 0.008197 5.5444

4 3.42764 × 10−23 0.03399 1.0772

5 5.42343 × 10−23 0.04715 4.5935

6 9.71087 × 10−23 0.02723 0.4655

7 1.1913 × 10−22 0.01257 3.2566

8 1.8903 × 10−22 0.004839 0.08640

9 3.75299 × 10−22 0.009708 3.6040

10 4.44391 × 10−22 0.01036 3.6744

11 7.44282 × 10−22 0.005351 2.7812

12 1.55073 × 10−21 0.01207 4.5299

13 2.18166 × 10−21 0.006857 2.7185

14 2.95299 × 10−21 0.003468 5.9316

15 6.24437 × 10−21 0.006489 3.2129

16 8.04399 × 10−21 0.002051 0.6494

17 1.54649 × 10−20 0.003527 2.0944

18 1.83393 × 10−20 0.003387 1.5179

19 3.44584 × 10−20 0.001494 1.9025

20 6.27323 × 10−20 0.0006659 4.9010

has an RMS amplitude Crms = 0.05, half that of the case used in figure (4), and a cutoff scale of λcut = 314.1 km. Values for the

frequencies, amplitudes and phases are included in table (II). As in the previous figure, the top panel shows the sum δk̆ +
∑

naqa

(in red). The middle panel shows the predicted wavelengths in red as compared to the density scale height in black, and the

bottom panel shows the probability P12. Locations which meet both conditions described above are indicated with vertical

dashed lines.

As with the case with Nk = 4, we start by identifying the parametric resonances. By comparing the top panels of figures (4)

and (5), we see that parametric resonances occur much more frequently with more modes. Most of these will be eliminated

by the density scale height condition. After performing both steps, we are left with thirty-four potential transition locations.

For clarity in the figure, only those transitions with a predicted transition amplitude greater than 10% are marked. Transitions

smaller than this are either too small to see on this scale, or they are stopped before they cause any noticeable change. Six of the

transitions are labeled A through F in figure (5). For B through F, we see evidence of a transition on the order of 30% or larger.

Figure (6) shows a close up of the last 3 × 104 km of propagation, with all panels as described before. In this close up, we see

the transitions E and F, observed in figure (5), as well as the remaining transitions now labeled G through P.

We note here that some of these transitions are very close to one another, for example J and K. In this case, the transitions

actually overlap one another. Transition J occurs at r = 3.057 × 109 cm with a predicted wavelength of 1/QJ ∼ 5 × 107 cm.

Transition K, meanwhile, occurs at r = 3.101 × 109 cm with a predicted wavelength 1/QK ∼ 1.8 × 108 cm. The distance

between the two locations is less than either of the predicted wavelengths. What we observe is transition J beginning, then being

interrupted by transition K.

From these examples, we can observe the effect of adding more modes to the turbulence. As mentioned, there are many more

parametric resonances in the Nk = 20 case than in the Nk = 4 example. The larger number of modes results in a higher probability

that one of the frequencies will correspond to δk̆. Also, there are more frequencies to add to one another in combinations to

equal δk̆. For example, the four parametric resonances located in the Nk = 4 case are all caused by a single mode. In fact, they

are all caused by the a = 1 mode. In contrast, in the Nk = 20 case, several of the parametric resonances are from combinations

of two modes, and those with only a single mode are not all from the same mode. The higher number of parametric resonances

leads to more transitions overall. We can expect that with even more modes, this trend will continue.

With the larger number of transitions, we also see that the locations fall closer together. This results in the overlapping noted

in figure (6) for transitions J and K. The overlap seen in that example can be expected to occur more frequently as the number

of modes increases. Predictions could prove more complicated with very large numbers of modes for this reason.

These two examples show the effectiveness of this two step method for individual neutrinos propagating through specific
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instances of turbulence. We now apply this method to investigate the effects of changing the parameters of the turbulent spectrum.

IV. CHANGING TURBULENCE PARAMETERS

A. Effect of RMS Amplitude

As mentioned in Section II, there are two important parameters when defining the turbulent field: Crms and λcut. The first

parameter we investigate is the RMS amplitude of the turbulence. The RMS amplitude, Crms, is responsible for setting the

overall size of the fluctuations. A larger Crms will increase the amplitude of the perturbation at every wavelength. The values

reported in previous work have range from well below 1% to 50% or more. Since there is such a wide range, we need to know

how these different levels of turbulence affect the parametric resonances.

We will show that there are two effects of changing Crms: a broadening of the resonances, and an increase in the number of

parametric resonances. These two effects will be illustrated using the example in figure (4). Recall that the turbulence in figure

(4) used Nk = 4, Crms = 0.1, and λcut = 314.1 km. We will now hold the wavelengths of the four modes constant while varying

the RMS amplitude, allowing it to take on the values Crms = 0.05, 0.1, 0.3, and 0.5.

Before examining the RWA solution and the numeric results, we can first make a prediction using the known important

wavelengths discussed in Section II. We will focus on a particular location, that of transition B previously identified in figure (4)

which is at a density of ρ = 874 g/cm3. Using equations (6) and (7), as well as the known wavelengths and amplitudes for the

turbulence spectrum used in this case, we create a plot similar to that of figure (1). The results of this are shown in figure (7).

The values of λ f luct,split and λ f luct,ampl are indicated as before by solid red and dashed blue curves, respectively. The suppression

region is shaded and labeled. We show the wavelengths and amplitudes for the turbulent spectrum for three of the values of RMS

amplitude: Crms = 0.05 as black stars, Crms = 0.1 as magenta crosses, and Crms = 0.5 as green boxes.

We clearly see that one of the points in this particular spectrum falls almost exactly on λ f luct,split, indicating a strong possibility

of a stimulated transition at this point. Since the amplitude of this mode is increasing, the transition should increase in amplitude

as well. We can also see that for the highest value of Crms (green boxes) this point actually falls into the suppression region.

In this case, however, we do not expect suppression. The suppression region and λ f luct,ampl are defined for those modes not

contributing the parametric resonance, i.e. those with n⋆a = 0. The mode in this case is nearly equal to λ f luct,split, and thus

contributing to the resonance (n⋆a = 1). Thus we will still expect a large transition at this location.

The results of the RWA solution and the numeric calculation can be seen in figure (8). As in the previous figures, the top panel

shows the locations of parametric resonances, the middle panel displays the predicted wavelengths as well as the density scale

height, and the bottom panels show the probability P12. The RMS amplitude increases from left to right.

In each of the four cases shown in figure (8), similar transitions can be seen. The transition location B, identified in figure

(4), is labeled and indicated with dashed vertical lines. With the relatively low values of Crms = 0.05 and 0.1, this transition is

very clearly distinguished. In the latter two panels, with Crms = 0.3 and 0.5, this location still shows a transition, but it is not as

sharp. We can also see that the height of all of the transitions increases as the RMS amplitude increases so that, for example, the

transition B is approximately 30% with Crms = 0.05 and nearly 80% with Crms = 0.5. The wavelengths predicted in the small

Crms case are longer than the transition regions, resulting in the transitions being cutoff before reaching 100%.

This progression can be explained using the RWA solution. If we examine the middle panel for the Crms = 0.05 case, we see

that the peak for transition B indicated by the dashed vertical line is fairly narrow. The system spends a relatively short time at

the peak wavelength and high amplitude, causing a transition of less than 100%. As the value of Crms increases, we see this peak

broaden while the maximum value simultaneously decreases. In this situation the wavelength of the transition is less than the

distance over which the transition occurs, allowing a nearly complete oscillation from one state to the other. The broadening and

shortening of the resonance peaks is the first effect of increasing the RMS amplitude.

Looking at the top panels in figure (8), we also see that as Crms increases there is an increase in the number of points where the

parametric resonance condition is met, as evidenced by the increase in intersections between the black and red curves. At first

glance, this is puzzling, since the wavelengths of the various modes have not changed. The difference comes about because the

sets of RWA integers n⋆a change as the RMS amplitude increases. For larger RMS amplitudes combinations of modes become

more important than having a single mode with qa ∼ δk̆. This is the second effect of increasing the value of Crms.

We can understand this through the RWA solution itself. The RWA solution combines the Fourier modes of the turbulence in

such a way that |δk̆ +
∑

a naqa| is minimized while the transition amplitude κ2/Q2 is maximized. The combinations that achieve

both of these goals will change as the amplitudes of the modes change. For instance, in some cases a combination that is further

from the parametric resonance is actually better because it produces a higher amplitude transition.

Increasing the amplitude of the underlying density perturbations decreases the wavelength 1/Q and increases the amplitude

(κ/Q)2 of the parametric resonance transitions. Mathematically this comes about through the Jn,0(za) terms becoming larger as

za increases. Thus as you increase Ca, more opportunities open up for parametric resonance transitions. This is seen in the top

panel of Fig. (8).
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TABLE III. Comparison of the n⋆a values chosen at a particular point (r = 6.7 × 107 cm) for different values of Crms , as shown in figure 8.

Also included are the values for za, the values of the Bessel functions Jn⋆a (za), the sum |δk̆ +
∑

a naqa | and the RWA amplitude κ2/Q2.

Crms = 0.05 Crms = 0.1 Crms = 0.3 Crms = 0.5

n⋆1 0 0 0 1

n⋆2 1 1 2 4

n⋆3 0 0 0 0

n⋆4 0 0 0 0

z1 −0.5373 −1.0747 −3.2240 −5.3734

z2 −0.24771 −0.4895 −1.4686 −2.44771

z3 −3.800 × 10−4 −7.601 × 10−4 −2.280 × 10−3 −0.003800

z4 −1.665 × 10−4 −3.330 × 10−4 −9.991 × 10−3 −0.001665

Jn⋆1
(z1) 0.9291 0.7314 −0.3264 −0.0504

Jn⋆2
(z2) −0.12147 −0.2375 −0.5534 −0.5096

Jn⋆3
(z3) 1 1 0.9999 0.9999

Jn⋆4
(z4) 1 1 1 0.9999

|δk̆ +
∑

a n⋆aqa| (ergs) 1.00062×10−22 1.00062×10−22 6.484×10−23 9.1863×10−24

κ2/Q2 3.030×10−5 7.178×10−5 1.214×10−4 2.675×10−3

In the case of Crms = 0.05, the small amplitudes Ca for each mode result in small values for za ∼ CaV0/~cqa, the argument

of the Bessel functions used in equation (5) to calculate κ. The value of the Bessel function J0 is much greater than that of any

other Jn at small za. Since κ is a product of these Bessel functions, the best solution is for the single mode closest to qa ∼ δk̆ to

have n⋆a = 1 while the other modes have n⋆a = 0. In fact, this is the type of solution chosen for almost the entire propagation

distance in the Crms = 0.05 example.

As Crms increases, the amplitudes Ca and thus the values for za will also increase. As the za values move away from zero,

Bessel functions other than J0(za) will become important. The best solution for the RWA is more likely to be a combination of

two modes with n⋆a , 0. This proves true for the RWA predictions for the cases with Crms = 0.3 and 0.5. The extra parametric

resonance locations seen in the top panels of figure (8) are all met through combinations of multiple modes. This mathematical

explanation shows that as Crms increases, the importance of having single modes with qa ∼ δk̆ decreases.

Table (III) shows the changing values of n⋆a at a the point r = 6.7 × 107 cm. This location corresponds to a parametric

resonance only when Crms = 0.5. We can see that as Crms increases, the solution changes from a single mode with n⋆a , 1 to a

combination of modes. While the value of |δk̆ +
∑

a n⋆aqa| is larger for the small values of Crms, changing the values of n⋆a will

result in lower predicted amplitudes due to the values of za and the Bessel functions in the definition of κ.

The increase in the number of resonances results in overlapping of transitions, as we saw in figure (6). The overlapping of

transitions leaves us with a more chaotic looking probability. If we continued to increase Crms, we would eventually lose any

recognizable features.

B. Effect of Length Scale Cutoff

The other main parameter defining the turbulence spectrum is the cutoff scale λcut. This parameter controls the longest

wavelengths allowed in the turbulent spectrum. In addition, it controls the amount of power for the shorter wavelength modes in

the spectrum. For example, if λcut is increased from 300 km to 3000 km while holding Crms constant, the amplitudes for modes

with wavelengths ∼10 km will decrease. Previous work has used cutoff wavelengths that vary by orders of magnitude from one

study to the next [16, 17, 21, 25, 28, 29, 41]. This wide range and our knowledge of the wavelengths which most affect neutrino

transformations necessitates an investigation into how these different cutoff scales change the neutrino propagation in the SN

model.

We described a suppression effect due to the long wavelength modes present in a turbulent spectrum in Section II. To study

the effects of varying λcut, we start with the Nk = 20 example shown in figure (5). Keeping the value of Crms constant at 0.05, we

increase the value of λcut by factors of 10. In effect, this increases the wavelength of each mode by a factor of 10. Once again,

this has a dual effect on the spectrum. It not only allows longer wavelengths, which can cause suppression, but decreases the

amplitudes of the shorter wavelength modes as well.

Once again before studying the results of the RWA solution and numerical calculation, we can create a figure of the important

wavelengths and amplitudes and how this particular turbulent spectrum compares. This is shown in figure (9). We have chosen
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to focus on a particular transition, this time the transitions previously identified as E in figure (5). The values of λ f luct,split

and λ f luct,ampl, as well as the suppression region, are indicated as in earlier figures. The points now show the wavelengths and

amplitude for the original turbulent spectrum with λcut = 341.1 km in black stars, and the values with λcut increased by a factor

of 100 in magenta crosses.

From this figure, we see that some of the points for the original spectrum lie close to the value of λ f luct,split and none fall

within the suppression region. We would therefore expect a large transition at this point, exactly as was observed previously. In

contrast, the modified spectrum with a longer cutoff wavelength has several points inside the suppression region. Based on this,

we should expect the transition at this location to be suppressed for the larger value of λcut.

The results of this study can be seen in figure (10). The top, middle, and bottom panels are the same as described above.

The cutoff scale is increased from left to right, from 314.1 km in the leftmost panels to 31410 km in the rightmost. By simply

examining the bottom panels, we see a marked suppression as the cutoff scale is increased. The location chosen for study in

figure 9 is indicated by the dashed vertical line labeled E.

We can explain this suppression through both long wavelength suppression and a lengthening of predicted wavelengths.

Adding long wavelengths to the turbulent spectrum will cause suppression in approximately half of cases [38]. The suppression

is strongest when the ratio of the amplitude and frequency of the mode, given by the parameter za ∼ CaV0/~cqa, are on the order

of the zeroes of the Bessel function J0, the first of which occurs at za ≈ 2.4. By allowing longer wavelengths in the spectrum,

we increase the opportunity for attaining this ratio. In fact, the highest value of za attained in the case with λcut = 314.1 km is

approximately 0.5, while in the case of λcut = 31410 km the first five modes have za > 1 for most of the propagation. These first

five modes would fall within or very close to the shaded blue suppression region figure (2).

We also know that increasing the cutoff scale reduces the power for the shorter wavelengths. Among these wavelengths are

those that correspond to the mass splitting scale, which are the ones that cause the parametric resonance. These modes have

n⋆a = 1 in the RWA solution. From equation (5), we know that κ ∝
∏

a Jn⋆a
(za). As the amplitude of the n⋆a = 1 modes

decrease, the values of J1(za) and thus of κ will also decrease. Since at parametric resonance κ2 = Q2, this results in a longer

predicted wavelength, well above the density scale height. As such, reducing the power in the shorter wavelength modes causes

a suppression in addition to that caused by the long wavelength modes.

From these results, we can conclude that turbulence which follows a Kolmogorov spectrum and has a long cutoff scale will

display some suppression of transitions. This information can be used to predict the possible neutrino transitions in a density

produced from a SN simulation, before performing a numerical calculation.

V. STIMULATED TRANSITION IN ANTINEUTRINOS

All of our previous results have been for neutrinos in the normal hierarchy. For this hierarchy in the standard MSW picture,

transitions between antineutrino species are not expected at any point along the profile. Parametric resonance, which relies on

matching frequencies instead of density scales, allows for possible antineutrino transitions. Here, we use the methods discussed

above to search for these transitions.

To make the switch from neutrinos to antineutrinos, the sign of the matter potential will change from positive to negative, such

that H
( f )
ν̄ = U0K(m)U

†

0
− V ( f ). All other aspects of the calculation will remain the same. Due to this change in the Hamiltonian,

the eigenvalue splitting for the antineutrinos
˘
δk will not be the same as for the eigenvalue splitting for the neutrinos. As such,

the locations of parametric resonances for antineutrinos are not expected to be the same as those for neutrinos.

As with the neutrinos in previous sections, we begin by searching for locations where the parametric resonance condition is

met. Next, we check to see if the predicted wavelengths at those locations fall below the density scale height. Finally, we look

at a numerically generated P12 and compare locations of actual transitions to the predictions. This can be seen in figure (11),

which was created using a Kolmogorov spectrum with 20 modes, Crms = 0.1, and λcut = 314.1 km. While this is a similar set of

turbulence parameters as used for figure (5), this is a completely different set of wavelengths and amplitudes. The values used

are listed in table (IV).

Figure (11) has the same three types of panels as figures (4) - (10). Once again for clarity in the figure, only transitions with a

predicted amplitude larger than 10% are indicated by vertical dashed lines.

In the top panel, we can observe many points where the parametric resonance condition is met. However, nearly all of them

are eliminated by the density scale height condition as can be seen in the middle panel. The bottom panel shows P12, where we

see that the predicted locations for transitions line up well with actual features in the probability. In particular, a transition of

∼ 20% is seen near 2×109 cm.

The size of transitions for antineutrinos are typically of smaller amplitude even when Crms is the same, as can be seen by a

direct comparison of the bottom panels of figure (11) and figures (4) and (5). Similar to the case of small Crms discussed above

and shown in the leftmost panel of figure (8), the resonances for the antineutrinos are very narrow. This causes the system to

spend relatively little time on the resonance, resulting in incomplete transitions.

The narrow resonances can be explained by the fact that the antineutrino system is far from the MSW resonance. As mentioned
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TABLE IV. Values of qa, Ca and ηa used for the Nk = 20 modes example shown in figure 11 with λcut = 314.1 km and Crms = 0.1.

a qa (ergs) Ca ηa

1 7.60623 × 10−24 0.02010 2.4651

2 1.50898 × 10−23 0.03096 4.1117

3 1.84269 × 10−23 0.02776 5.9080

4 3.63138 × 10−23 0.009348 4.5564

5 6.04137 × 10−23 0.006186 0.6541

6 7.2492 × 10−23 0.01866 3.6416

7 1.19595 × 10−22 0.02434 4.5985

8 2.4881 × 10−22 0.004374 2.3538

9 3.82756 × 10−22 0.005666 1.8986

10 4.32779 × 10−22 0.01375 5.3892

11 7.01636 × 10−22 0.003325 0.7955

12 1.136 × 10−21 0.002712 0.3970

13 1.64156 × 10−21 0.0002635 3.3373

14 2.77841 × 10−21 0.0001231 5.5685

15 6.31359 × 10−21 0.008661 2.8629

16 7.51972 × 10−21 0.001621 4.6584

17 1.04759 × 10−20 0.005016 2.4274

18 1.70742 × 10−20 0.003825 2.4564

19 3.33396 × 10−20 0.002563 5.1533

20 5.8992 × 10−20 0.001001 3.4448

in [24], the width of the resonance is proportional to |κ|. From equation (5), we see that |κ| ∝ |Ŭ⋆
e1

Ŭe2|. This product of mixing

matrix elements is small when far from the MSW resonance, resulting in a small value of |κ| and a correspondingly narrow

resonance.

This example clearly illustrates the difference between the MSW and parametric resonance viewpoints. Using strictly MSW

methods, no transitions of any size would be predicted for antineutrinos in the normal hierarchy. Using the parametric resonance

method with the RWA solution, we are able to predict that in fact some transitions should occur as well as locate them as we did

for the neutrinos.

VI. APPLICATION TO HYDRODYNAMICAL SN SIMULATIONS

A recent paper by Borriello et al. [22] performed a Fourier analysis on the results of a 2D SN simulation from the Garching

group [44, 45]. In that work, analysis was carried out for 768 radial directions. For each of these directions, average densities

and complete power spectra were found for the section of the profile before the forward shock. Neutrino crossing probabilities

were then calculated for the entire profile, including the shocks. The authors concluded that the turbulence had no real effect on

the neutrinos, and the most relevant piece of the density profile is in fact the shock.

We have examined the results in order to determine whether it is possible to explain the results using the RWA approach.

Three specific cases from the 768 total radial directions were used by Borriello et al. as examples, with the density profile

and power spectra shown. Using these three examples, we have determined the approximate average density, wavelengths and

amplitudes for the the three radial directions used in that work. From this information, we can create a plot of wavelength and

amplitude like figure (1). This is shown in figure (12).

Unlike in figure (1) which showed the relevant wavelengths for a single neutrino energy, here a red band is used to represent

λ f luct,split for a range of energies from 5 to 50 MeV. The values of λ f luct,ampl are also plotted for various energies in blue dashed

lines, but the different energies are indistinguishable on the scale of these plots. Black points represent the wavelengths and

amplitudes found in the 2D SN analysis.

The first thing to notice is that none of the points for wavelength and amplitude of these spectra fall within the parametric

resonance region indicated by the red band. As such, we can already expect that these profiles will not produce large transitions

due to parametric resonance for any energy of neutrino. In addition, many of these amplitudes and wavelengths fall within the

suppression regions. These modes are likely further suppressing any small transitions that might have occurred. Based on this

analysis, we would also expect to see very little occurring in the region where turbulence is present, exactly as observed by
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Borriello et al. [22].

In order to produce stimulated transitions, these spectra could be modified in several ways. The first would be to reduce the

length of the shortest wavelengths, pulling the lower edge of the spectrum into the parametric resonance region. The length is

constrained by the resolution of this particular SN simulation, which in this case was on the order of 10 km, but the resolution

of these type of simulations is constantly improving.

In addition, strong stimulated transitions are being suppressed by the many modes falling in the suppression region. As such,

even if the spectra are modified to include shorter wavelengths, the size of any transitions will be diminished. These modes must

be removed to eliminate the suppression effect. This would obviously be an artificial process, as those long wavelength modes

were observed in simulated SN data.

Our analysis using the RWA method and the knowledge of the important scales of the problem show that no stimulated

transitions should be expected in the turbulence region of the SN simulation. This matches well with the conclusions of the

authors. Applying our method to simulation data and obtaining similar results shows the strength of the analytic solution we

have presented here.

VII. CONCLUSIONS

We have extended the work of [24] and [38] to encompass a changing density profile. Using the concept of parametric

resonances, we have developed a method to predict the locations of possible transitions in a model SN profile.

From the RWA solution, we locate points where the parametric resonance condition is fulfilled. If the predicted wavelength

at these points is lower than the density scale height, a transition is expected. We have shown that this simple method can

pinpoint the transitions that appear in the probability. We have shown that this method accurately predicts the locations of large

transitions, both in an example with Nk = 4 modes and one with Nk = 20 modes.

We have also shown the effects of changing the RMS amplitude and cutoff scale of the turbulence. Increasing the RMS

amplitude causes two effects: a higher number of parametric resonances and a decrease in the transition wavelengths. The

resonance peaks are also broader, meaning that the system spends a longer amount of time at the shorter wavelength, allowing

for complete transitions from one state to another. The increase in resonances, along with the shorter transition wavelengths,

causes many overlapping transitions for higher RMS amplitudes. The end result is increasingly chaotic looking probabilities as

the RMS amplitude increases.

Increasing the cutoff scale of the turbulence also results in two simultaneous effects. First, the long wavelength modes cause

a suppression, as described in [38]. These modes cause a distortion to the system, to the point that a parametric resonance no

longer causes a transition. This suppression reduces the amplitude of any transitions that do still occur. Second, increasing the

cutoff scale lowers the amplitudes of short wavelength modes, some of which cause the parametric resonance. This second effect

causes longer transition wavelengths, so that the wavelength is much longer than the distance over which the transition occurs.

These two effects, the suppression and the long transition wavelengths, cause transitions that are smaller in amplitude and lower

in number.

The RWA method has been successfully applied to antineutrinos, demonstrating its usefulness in cases where MSW transitions

are not expected. Using the same criteria described for locating stimulated transitions for neutrinos, we are able to predict where

such events would occur in the antineutrinos as well. These predictions were verified upon inspection of the numerically

calculated probabilities.

Finally, we have applied our method to the analysis of a 2D SN simulation [22]. The authors of that study found that

the turbulence present had no effect on the flavor transformations of the neutrinos. We have shown that the wavelengths and

amplitudes found in that analysis do not fall within the parametric resonance region, due to the resolution scale being longer than

the wavelengths λ f luct,split. In addition, many of the modes fall in the suppression region. From these two facts we conclude, as

Borriello et al. did, that the neutrinos would not undergo any transitions in the turbulence region. If this is true of all SN, that

there are no fluctuations on the scale of λ f luct,split and significant fluctuations on the scale of λ f luct,ampl, then transitions in SN

due to parametric resonance are no expected. Future simulations must be carefully analyzed with an eye toward these important

scales.

We have described the important wavelength scales for neutrinos traveling through turbulence, both those that stimulate

transitions and those that suppress them. We have shown that the RWA solution can be used in a problem with a changing

density profile, and discussed the effects of changing certain parameters of the turbulence. We have also been able to apply our

method to a separate SN simulation analysis and explain the results found by the original authors. These steps together show

that the RWA solution is an important tool for the future study of neutrino oscillations in turbulence.



15

ACKNOWLEDGMENTS

This work was supported by DOE grants DE-SC0004786 (GCM+JPK+KMP) and DE-SC0006417 (JPK), DE-FG02-

02ER41216 (GCM+KMP) and by a NC State University GAANN fellowship (KMP).

[1] Y. -Z. Qian and G. M. Fuller, Phys. Rev. D 52, 656 (1995)

[2] G. M. Fuller and Y. -Z. Qian, Phys. Rev. D 73, 023004 (2006)

[3] H. Duan, G. M. Fuller, J. Carlson and Y. -Z. Qian, Phys. Rev. D 74, 105014 (2006)

[4] A. B. Balantekin and Y. Pehlivan, J. Phys. G 34, 47 (2007)

[5] H. Duan, G. M. Fuller and Y. -Z. Qian, Phys. Rev. D 76, 085013 (2007)

[6] H. Duan, G. M. Fuller, J. Carlson and Y. -Z. Qian, Phys. Rev. Lett. 97 (2006) 241101

[7] H. Duan, G. M. Fuller and Y. -Z. Qian, Ann. Rev. Nucl. Part. Sci. 60, 569 (2010)

[8] J. Gava, J. Kneller, C. Volpe and G. C. McLaughlin, Phys. Rev. Lett. 103, 071101 (2009)

[9] A. Esteban-Pretel, S. Pastor, R. Tomas, G. G. Raffelt and G. Sigl, J. Phys. Conf. Ser. 120, 052021 (2008)

[10] A. Banerjee, A. Dighe and G. Raffelt, Phys. Rev. D 84, 053013 (2011)

[11] S. P. Mikheev and A. I. Smirnov 1986 Nuovo Cimento C 9 17

[12] L. Wolfenstein 1978 Phys. Rev. D 17 2369

[13] W. C. Haxton and W. M. Zhang 1991 Phys. Rev. D 43 2484

[14] T. Ohlsson and H. Snellman 2001 European Physical Journal C 20 507

[15] H. Nunokawa, A. Rossi, V. B. Semikoz and J. W. F. Valle, 1996 Nucl. Phys. B 472 495

[16] C. P. Burgess and D. Michaud, 1997 Annals Phys. 256 1

[17] R. F. Sawyer, 1990 Phys Rev. D 42 3908

[18] F. N. Loreti, Y. Z. Qian, G. M. Fuller and A. B. Balantekin, Phys. Rev. D 52 6664 (1995)

[19] A. Friedland and A. Gruzinov, astro-ph/0607244.

[20] G. Fogli, E. Lisi, A. Mirizzi and D. Montanino, 2006 J. Cosmol. Astropart. Phys. 06 012

[21] J. P. Kneller, and C. Volpe, Phys. Rev. D 82 123004 (2010)

[22] E. Borriello, S. Chakraborty, H.-T. Janka, E. Lisi and A. Mirizzi, 2013 arXiv:1310:7488v1 [astro-ph]

[23] S. Choubey, N. P. Harries and G. .G. Ross, 2007 Phys. Rev. D 76 073013

[24] J. P. Kneller, G. C. McLaughlin and K. M. Patton, J. Phys. G 40 055002 (2013)

[25] G. Reid, J. Adams and S. Seunarine 2011 Phys. Rev. D 84 085023

[26] J. F. Cherry, M.-R. Wu, J. Carlson, H. Duan, G. M. Fuller, and Y.-Z. Qian, 2011 Phys. Rev. D 84 105034

[27] J. F. Cherry, M.-R. Wu, J. Carlson, H. Duan, G. M. Fuller, and Y.-Z. Qian, 2011, arXiv:1109.5195v1

[28] T. Lund, and J. P. Kneller, Phys. Rev. D88 023008 (2013)

[29] J. P. Kneller and A. W. Mauney, Phys. Rev. D 88 025004 (2013)

[30] Kneller J. P. Preprint arXiv:1004.1288 [hep-ph]

[31] Loreti F. N. and Balantekin A. B. 1994 Phys. Rev. D50 4762

[32] V. K. Ermilova, V. A. Tsarev and V. A. Chechin, 1986 Kr. Soob, Fiz. Lebedev Institute 5 26
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FIG. 5. Same as figure (4), but for a perturbation with 20 modes.
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FIG. 6. A close up of the last 3 × 104 km of propagation for the example shown in figure (5).
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of Crms. Crms = 0.05 is shown as black stars, Crms = 0.1 as magenta crosses, and Crms = 0.5 as green boxes.
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