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The frequencies of r -mode oscillations of rotating neutron stars can be useful for guiding
and interpreting gravitational wave and electromagnetic observations. The frequencies of slowly
rotating, barotropic, and non-magnetic Newtonian stars are well known, but subject to various
corrections. After making simple estimates of the relative strengths of these corrections we conclude
that relativistic corrections are likely to be the most important. For this reason we extend the
formalism of K. H. Lockitch, J. L. Friedman, and N. Andersson [Phys. Rev. D 68, 124010 (2003)],
who consider relativistic polytropes, to the case of realistic equations of state. This formulation
results in perturbation equations which are solved using a spectral method. We find that for
realistic equations of state the r -mode frequency ranges from 1.39–1.57 times the spin frequency
of the star when the relativistic compactness parameter (M/R) is varied over the astrophysically
motivated interval 0.11–0.31. The results presented here are relevant to the design of gravitational
wave and electromagnetic r -mode searches, and following a successful r -mode detection could help
constrain the high density equation of state.

I. INTRODUCTION

R-modes [1] are non-radial stellar oscillations
which can become unstable to gravitational wave (GW)
emission via the CFS [2, 3] mechanism [4, 5], even in
the presence of viscosity [6, 7]. This makes r -modes a
promising source of gravitational waves for ground based
detectors [8–10]. The energy thus radiated has been used
to explain the spins of newly born neutron stars [6, 7]
and of accreting neutron stars [8, 10]. The r -modes have
also been proposed as a model for quasi-periodic oscilla-
tions of low mass X-ray binaries, and for burst oscillations
of accretion-powered millisecond X-ray pulsars (AMXPs)
[11]. Possible detections of r -modes in X-ray oscillations
have been made from AMXPs XTE J1814−338 [12] and
4U 1636−536 [13]. (It has been argued [14] that the dis-
covery in [12] is inconsistent with the spin-down of the
pulsar, though an alternative explanation has been of-
fered by reference [15].)

Because of its physical importance many authors
have calculated the r -mode frequency. Results are of-
ten given in terms of the rotating frame mode angular
frequency σR, or in dimensionless form as

κ ≡ σR
Ω
, (1)

where Ω is the rotational angular velocity of the star.
Reference [1] showed that r -modes are rotationally re-
stored oscillations and so their frequencies are propor-
tional to the stellar rotation frequency. The authors cal-
culated that for slowly and uniformly rotating Newtonian
stars, κ is equal to a constant which is independent of the
equation of state (EoS):

κ = κ0 =
2m

l(l + 1)
, (2)

where l and m are spherical harmonic indices. It was
shown by [16] that for barotropic stars the r-modes must
satisfy l = |m|. The l = m = 2 r -mode, for which
κ0 = 2/3, is the most susceptible to the CFS instability
[6, 7].

Reference [17] extended the slow-rotation expan-
sion for Newtonian stars and found corrections for κ to
second order in the rotation rate of the star. Reference
[18] examined slowly rotating relativistic stars to lead-
ing order in the rotation rate and accounted for met-
ric perturbations. References [19–21] examined rapidly
rotating relativistic stars using the Cowling approxima-
tion, in which metric perturbations are neglected. The
rotational and relativistic corrections to κ are dependent
upon the EoS used to model the star. The studies men-
tioned thus far used polytropic EoS to simplify the cal-
culation of κ.

In this paper we present the first calculation of κ
for stellar models constructed from realistic (tabulated)
EoS. We use a subset of the EoS studied by [22, 23]. EoS
which can not support a maximum mass of least 1.85 so-
lar masses are excluded from our analysis. This mass is
a conservative upper limit derived from the 99.7% confi-
dence limit of the observed “1.97 M�”pulsar, see Fig. 2 of
[24] for more details. This left 14 EoS for which a range
of κ values were calculated over a range of masses.

There are several applications of our results. Our
calculation of κ can be used to interpret electromag-
netic observations of r -modes, such as those (possibly)
of [12, 13]. Our calculation can also be used in collabora-
tive work between GW detectors and (electromagnetic)
astronomical observatories. Assuming r -mode GWs are
detected from a previously unknown pulsar, our range of
κ would give electromagnetic astronomers a frequency
band in which to search for pulsations from rotation.
If one has the r -mode frequency (from GW data) and
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the pulsation frequency (from electromagnetic data), it is
possible to get the pulsar’s compactness which might be
used to constrain the EoS. Finally, for GW searches con-
ducted on pulsars with known spin frequencies, such as
the Crab, our results define a narrow frequency band over
which to search for GWs from r -modes. A narrow band
search [25] has already been conducted on the Crab but
it was not looking for gravitational waves from r -modes.
Rather the search was centered around the usual, two
times the spin-frequency of the pulsar. Our results can
also be used by a new narrow-band search pipeline [26]
which claims to be twice as sensitive as the previous Crab
search.

The outline of the paper is as follows. In Sec. II
we estimate how general relativity affects the r -mode fre-
quency in comparison to other physical phenomena such
as the star’s crust, rotation rate, magnetic fields, and
stratification. In Sec. III we present the formulation of
the r -mode oscillation problem found in [18]. In Sec. IV
we discuss the numerical methods used to solve the equa-
tions that arise from this formulation. We also give more
details than [18], including convergence details for our
code, and accuracy estimates for our results. In Sec. V
we discuss the results of applying our numerical solu-
tion to both polytropic and realistic equations of state,
with a focus on the latter. Finally in Sec. VI we draw
conclusions from our results and examine the aforemen-
tioned applications in light of these results. Throughout
we use geometrized units, where Newton’s gravitational
constant and the speed of light are unity.

II. PHYSICAL PHENOMENA WHICH AFFECT
THE R-MODE FREQUENCY

We now estimate the importance of various correc-
tions to the Newtonian slow-rotation r -mode frequency.
In common with much of the literature, we make use
of the dimensionless rotating frame mode frequency κ
defined in Eq. (1). Note that the corresponding gravita-
tional wave emission will be at the inertial frame mode
frequency σI, related to the rotating frame mode fre-
quency by:

σI = (κ−m)Ω = σR −mΩ. (3)

For the l = m = 2 r -mode of a slowly rotating Newtonian
star, σR = 2Ω/3 while |σI| = 4Ω/3. Strictly, σI = −4Ω/3;
the negative sign is a consequence of the opposite sense of
rotation of the patterns produced by the mode as viewed
in the inertial and rotating frames. This opposite sense
of rotation is responsible for the CFS instability. It fol-
lows that a decrease of κ by a small fraction will increase
the inertial frame gravitational wave frequency by half
of that fraction. This must be borne in mind when de-
signing gravitational wave searches (see Sec. VI for some
discussion of detection issues).

A. General relativity

The importance of general relativistic effects can
be estimated by looking at the ratio of stellar mass to ra-
dius, M/R, a dimensionless measure of the compactness
of the star:

M

R
≈ 0.207

(
M

1.4M�

)(
10 km

R

)
. (4)

It follows that departures from the Newtonian κ = κ0
results, at the level of a few tens of percent, can be ex-
pected when relativistic effects are included. This ex-
pectation is confirmed by the post-Newtonian and fully
relativistic numerical calculations of [18], who considered
polytropic stars. For instance, for a uniform density star
with M/R = 0.207, they found that κ/κ0 ≈ 0.85, a re-
duction of ∼ 15% compared to the Newtonian case. Note
that (consistent with the results to be presented in this
paper), [18] found that the effect of relativity is to de-
crease the rotating frame mode frequency, and therefore
increase the inertial frame frequency.

Given that we will conclude that relativistic ef-
fects are likely to be the dominant factor influencing the
r -mode frequency, it is worth considering how large a
spread of the compactness parameter might be found in
the neutron star population. This is of immediate astro-
physical interest, as it would determine how large a range
in gravitational wave frequency must be searched when
looking for r -mode emission from a pulsar of known spin
frequency (but unknown compactness). In the numerical
calculations that follow, for each chosen realistic EoS, a
range of masses from 1 M� up to a value close to the
maximum mass (specific to that equation of state) are
considered. The lower limit of 1 M� was adopted since
the lepton-rich, hot matter in supernova explosions most
likely does not support proto-neutron stars with smaller
masses. Also, most measured masses with tight error
bars are greater than this; see Fig. 1 of [27]. Thus we
have taken the conservative lower limit of 1 M�.

This led to a range of compactnesses 0.110 ≤
M/R ≤ 0.310. The graphs of r -mode frequency that
follow are plotted over this range. That this is a sen-
sible estimate of the range of possible compactnesses of
realistic neutron stars can be confirmed from Fig. 2 of
[28], which shows mass-radius curves for a large collec-
tion of realistic EoS, some of which are also considered
in this paper. As illustrated, there is a hard upper limit
of M/R . 0.350 that comes from the constraint that the
EoS be causal. The maximum mass members of soft EoS
come close to (but do not quite reach) this limit, e.g. the
EoS AP4, which is one of the EoS considered here. In
terms of a lower limit on compactness, low mass stars
with stiff equations of state are relevant. Reference [28]
find EoS whose 1 M� members have R ≈ 14.5 km, cor-
responding to M/R ≈ 0.103. However, for the EoS con-
sidered here this lower limit would result in stars with
masses less than 1 M�. Therefore we increase this lower
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limit to 0.110. Taken together, we see that the range of
compactnesses considered in this paper includes neutron
stars presently considered realistic in the literature. We
will return to this in Sec. VI, after having calculated the
range in r -mode frequencies corresponding to this range
in compactness.

B. Rapid rotation

The effect of stellar rotation on the r -mode fre-
quency was considered by [17], who calculated the lead-
ing order correction to the mode frequency, as quantified
by a parameter κ2 satisfying

κ = κ0 + κ2
Ω2

πGρ̄0
. (5)

Here ρ̄0 is the average mass density of the correspond-
ing non-rotating star and κ2 is dimensionless, of order
unity, and dependent upon the equation-of-state. The
factor

Ω2

πGρ̄0
= 0.145

(
fspin

716 Hz

)2(
R

106 cm

)3(
1.4M�
M

)
(6)

is a dimensionless measure of the effect of rotation on the
star. We have scaled the spin frequency fspin = Ω/2π to
a value of 716 Hz, the spin rate of the fastest observed
millisecond pulsar [29]. Taking a representative value of
κ2 ≈ 0.29 from [17], we see that rapid rotation can in-
crease the value of κ by ∼ 6% for the fastest rotating
stars, while rotational corrections rapidly become neg-
ligible for more slowly spinning stars. It follows that
rotational effects can indeed be significant, but probably
never dominate the relativistic ones. Note that the sign
of the frequency shift corresponds to a decrease in the
gravitational wave frequency, and so acts oppositely to
the relativistic effects described above.

C. The crust

The presence of a solid crust is very important for
r -mode damping [30, 31], and it can have an effect on the
mode frequency as well. In addition to Coriolis restoring
forces acting throughout the star, there are also elastic
restoring forces in the crust. Information on how this
influences the r -mode frequency can be extracted from
Fig. 1 of [31]. For sufficiently slow rotation rates, the
mode frequency is close to the standard κ = κ0 = 2/3 re-
sult, with the fluid core but not the solid crust participat-
ing in the motion. For sufficiently high rotation rates the
mode frequency is again close to κ = κ0 = 2/3, but now
the whole star, crust plus core, participates in the motion.
For intermediate spin rates, there is an avoided crossing,
which means that the ‘r -mode’ is more accurately de-
scribed as a hybrid rotational–elastic mode.

From Fig. 1 of [31] it seems that the departure from
the κ = κ0 = 2/3 result is significant (i.e. more than a
few percent and can be discerned by eye) over the spin
frequency interval 0.05 . Ω/ΩK . 0.1, where ΩK is the
Keplerian angular velocity of the star. Being dependent
upon the EoS, this quantity is not known accurately, but
taking a representative value of ΩK/(2π) ∼ 1500 Hz, this
corresponds to the spin interval 75 < fspin/Hz < 150,
so crustal corrections could be relevant for some milli-
second pulsars.

Looking at the right hand panel of Fig. 1 of [31],
we see that departures from κ = κ0 = 2/3 of ∼ ±20% are
possible. This is comparable with the shift of Sec. II A,
but is double-sided, i.e. the mode frequency might be
shifted up or down. However, the modification of the
mode frequency at this level only applies over a narrow
range in spin frequency so it is unlikely to affect most
stars.

D. Other effects

There will be other factors that will have effects
on the r -mode frequency. We very briefly mention two
more here.

Real neutron stars are stratified, with radial en-
tropy and composition gradients. The effect of stratifi-
cation was considered by [32], who found that while the
majority of the inertial modes are significantly affected
by stratification, the nodeless l = m r -modes are rela-
tively unaffected; see Fig. 4 of [32]. The effect of strati-
fication on inertial modes was also investigated by [33],
who found the r -mode frequency was affected only very
slightly. This was shown to be true even for very rapidly
rotating stars; see Fig. 12 of [33].

Magnetic fields will also alter the r -mode fre-
quency, but the effect is again likely to be slight, see
[34, 35], or the numerical simulations of [36]. Physically,
the smallness of the corrections corresponds to the mag-
netic restoring forces being small compared the Coriolis
restoring forces. It should, however, be pointed out that
the above references consider non-superconducting stars.
The effect of superconductivity may make magnetic cor-
rections more important, but quantitative estimates of
such effects are not currently available.

In neglecting the magnetic field we are also assum-
ing that the internal field is not greatly amplified with
respect to the external field, as has been argued would
happen if the r-mode were to go unstable [37].

E. Summary

We have presented estimates of the importance of
various effects on the r -mode spin frequency, using some
simple estimates and results from the literature. General
relativistic effects can have a significant influence on the
r -mode frequency, at the level of tens of percent. The
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effects of rapid rotation are insignificant in all but the
fastest spinning pulsars. The effects of an elastic crust
are slightly more difficult to quantity, but it seems likely
they will only be competitive with relativistic ones in
rather narrow intervals in stellar spin frequency, and so
are unlikely to be significant in the majority of the known
pulsars.

The likely dominance of relativistic effects moti-
vates the careful treatment of relativistic stars with real-
istic EoS presented in the remainder of this paper.

III. FORMULATION

In this section we summarize the formulation of
the r -mode oscillation problem in order to provide con-
text, and establish terminology and notation. The full
details are available in [18, 38]. In this formulation, the
PDEs resulting from the perturbed Einstein equations
for a perfect fluid star, are turned into ODEs via spheri-
cal harmonic expansion. This expansion is only possible
if the star is assumed to be slowly rotating.

A. Equilibrium Solution

In order to derive the perturbation equations,
equilibrium solutions of slowly rotating and non-rotating
stars must be found first.

1. Equilibrium non-rotating star

The non-rotating equilibrium solution is found by
solving the Einstein equations Gαβ = 8πTαβ , where Gαβ
is derived from the line element:

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2dθ2 + r2sin2θdϕ2, (7)

Tαβ is the energy-momentum tensor for a perfect
fluid:

Tαβ = (ε+ p)uαuβ + pgαβ , (8)

ε(r) is fluid energy density, p(r) is fluid pressure,
and

uα = e−νtα (9)

is the fluid 4-velocity with tα = (∂t)
α the time-like Killing

vector. Applying this information and comparing Gαβ =
8πTαβ term-by-term leads to the Oppenheimer-Volkov
(OV) equations [39]. Therefore solving the OV equations
is equivalent to solving the Einstein equations.

The OV equations must be solved numerically.
The numerical solution is better realized when one uses
the enthalpy, h, of the star instead of the radial distance,
r, as the dependent variable [40] (we refer to these as the

OVL equations). The OVL equations for a non-rotating
star are

dr

dh
= − r(r − 2M)

(M + 4πr3p)
, (10)

and

dM

dh
= 4πr2ε

dr

dh
, (11)

where M(h = 0) is the mass of the star. The metric
functions λ and ν are found using

ν(h)− νc = hc − h, (12)

where

νc = −hc +
1

2
ln

(
1 +

2M(h = 0)

r(h = 0)

)
(13)

and

λ(h) = −1

2
log

[
1− 2M(h)

r(h)

]
. (14)

Just like the OV equations the OVL equations are
singular at the center of the star. Therefore, the numer-
ical integration is started near the center, h = hc, using
the following truncated power series solutions

r(h) =

[
3(hc − h)

2π(εc + 3pc)

] 1
2
{

1− 1

4

[
εc − 3pc +

3

5
ε1

]
× (hc − h)

(εc + 3pc)

}
,(15)

M(h) =
4π

3
εcr

3(h)

{
1 +

3ε1
5εc

(hc − h)

}
, (16)

where εc is the central energy density, pc is the central
pressure and

ε1 = − dε

dh

∣∣∣∣
h=hc

. (17)

The integration is carried out to h = 0, which is guaran-
teed to be the surface of the star.

In order to solve the OVL equations one also needs
to specify an equation of state. The details of using poly-
tropic EoS in the OVL equations are explained in [41].
Realistic EoS are presented as tables with columns given
by values of pressure, pi, energy density, εi, and baryon
number density ni, where the i subscript indexes the row
of the table. The values in the columns must be inter-
polated in order to get a well-behaved EoS which can be
used with an OV or OVL solver. We use the interpolation
scheme of [23] for our analysis.

The interpolation scheme of [23] assumes a power
law relationship between pressure and energy den-
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sity,

p

pi
=

(
ε

εi

)ci+1

, (18)

where

ci+1 =
log(pi+1/pi)

log(εi+1/εi)
, (19)

for εi ≤ ε ≤ εi+1. Using this and the definition of the
co-moving enthalpy

h(p) =

∫ p

0

dp′

ε(p′) + p′
, (20)

a column of values, hi = h(pi), is generated and is used
to get the piecewise function
ε(h) =

εi

{
εi + pi
pi

exp

[
ci+1 − 1

ci+1
(h− hi)

]
− εi
pi

}1/(ci+1−1)

(21)

(22)
for hi ≤ h ≤ hi+1. Using Eq. (18) one can get p(h).

The interpolation scheme of [42] by contrast as-
sumes a power law relationship between pressure and the
number density

p(n) = pi

(
n

ni

)γi
, (23)

where

γi =
ln pi+1 − ln pi
lnni+1 − lnni

, (24)

for ni ≤ n ≤ ni+1. This scheme requires creating an
auxiliary column of values ε̃i,

ε̃i+1 = ε̃i +
1

γi − 1

(
pi+1

ni+1
− pi
ni

)
(25)

to get the auxiliary energy density ε̃(n),

ε̃(n) = ε̃i +
1

γi − 1

(
p

n
− pi
ni

)
(26)

which is used to find the energy density

ε(n) = n [ε̃(n) +mn] , (27)

where mn is the mass of a neutron. For our purposes we
require ε(h), and p(h). Thus we use Eq. (20) to find a
column of values for hi. Then we interpolate the hi and
ni values using cubic splines, to define the function n(h),
which we substitute into ε(n), and p(n).

Finally, in our implementation of a simple spline
interpolation (see [43] for details) we assume a power
law relationship between pressure and energy density.
Whereas the interpolation schemes of [23, 42] take the

first law of thermodynamics into account this alternative
spline scheme does not. Therefore this scheme mainly
serves as a test of how much the first law affects the re-
sult for κ.

We used a linear interpolation of log pi and log εi
values to determine the power law between the points.
Making use of Eq. (20) to get values for hi, we interpo-
lated hi with pi and εi using a quadratic spline, to get
the function p(h) and ε(h) respectively. The quadratic
spline was used because first order splines lead to discon-
tinuities in the solutions to the OVL equations, and the
third order splines lead to extra inflection points in the
solutions.

To check that our results are robust to the inter-
polation method used, we compared the scheme in [23]
to that found in [42], and our own spline interpolation
for a sample group of EoS. We found that the percent
difference in κ from the different schemes was less than
0.3% overall, and in some cases less than 0.1%. From
these small percent differences, we see that our code is
robust to the interpolation scheme used.

2. Equilibrium rotating Star

The equilibrium solution for a rotating star is
again found by solving the Einstein equations. This time,
Gαβ is derived from the line element:

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2dθ2 (28)

+ r2 sin2 θdϕ2 − 2ω(r)r2 sin2 θ dt dϕ
with the definition

ω̄(r) ≡ Ω− ω, (29)

where ω(r) accounts for the frame-dragging effect. The
line element in Eq. (28) is only correct up to order Ω.
This slow rotation limit means that the star retains its
spherical geometry, since the centrifugal deformation of
its figure is an order Ω2 effect [44]. In the rotating case
the fluid 4-velocity becomes

uα = e−ν(tα + Ωϕα) (30)

where tα = (∂t)
α and ϕα = (∂ϕ)α, are respectively the

time-like and rotational Killing vectors. For a rotating
star the equilibrium solution comes from solving the OVL
Eqs. (10)–(11) and the Hartle equation [44]. In the en-
thalpy formulation, which was extended to slow rotation
by [22], the Hartle equation is broken up into a pair of
first order ODEs as

dω̄

dh
= e(ν−νc+λ)f

dr

dh
(31)

and

df

dh
=

[
16π(ε+ p)e−(ν−νc−λ)ω̄ − 4

r
f

]
dr

dh
. (32)
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These equations are also singular at the center of the star,
and so the following power series are used to begin the
integration,

ω̄(h) = ωc

{
1 +

12(εc + pc)

5(εc + 3pc)
(hc − h)

}
, (33)

f(h) =
16π

5
(εc + pc)ωcr(h)

{
1 +

5

7

[
6(2εc − 3pc)

5(εc + 3pc)

+
ε1

(εc + pc)

]
(hc − h)

}
(34)

After solving Eqs. (10)–(11) , and Eqs. (31)–(32) we nu-
merically invert the solution for Eq. (10). Using this
we change the functions λ(h), ν(h), . . . into λ(r), ν(r),
etc.

B. Perturbation equations

In this section we sketch out the derivation of
the perturbation equations, full details of which are in
[18]. The metric and fluid perturbation terms in these
equations are expanded in terms of scalar (Y ml ), vector
(r∇Y ml , r×∇Y ml ) and tensor (∇βY ml uγ) spherical har-
monics. This basis makes it possible to classify pertur-
bations as axial or polar parity. Axial parity modes have
the same parity as r×∇Y ml , whereas polar parity modes

have the parity of Y ml and ∇Y ml . The generic oscillation
will be a combination of polar and axial modes. However,
the leading order term in the expansion will either be of
polar parity or axial parity. This leads to the terminol-
ogy of axial-led and polar-led modes, with r -modes being
the former. This classification works for rotating as well
as non-rotating stars because the parity of the leading
order term does not change due to rotation.

1. Perturbations of non-rotating stars

The equilibrium configuration for a non-rotating
star is given as a solution to the OVL Eqs. (10)–(11).
The perturbations are

δε = δε(r)Y ml , (35)

δp = δp(r)Y ml , (36)

δuαP =

{
1

2
H0(r)Y ml tα +

1

r
W (r)Y ml rα + V (r)∇αY ml

}
×e−ν , (37)

δuαA = −U(r)e(λ−ν)εαβγδ∇βY ml uγ∇δ r. (38)

Notice that δuαP is of polar parity and δuαA is of axial
parity. Employing the Regge-Wheeler gauge [45] and ex-
panding the metric in tensor spherical harmonics, the
metric perturbation of polar-parity mode can be writ-
ten

hPµν =


H0(r)e2ν H1(r) 0 0
H1(r) H2(r)e2λ 0 0

0 0 r2K(r) 0
0 0 0 r2 sin2 θK(r)

Y ml , (39)

and that of an axial-parity mode can be written

hAµν =

 0 0 −h0(r) csc θ∂ϕY
m
l h0(r) sin θ∂θY

m
l

0 0 −h1(r) csc θ∂ϕY
m
l h1(r) sin θ∂θY

m
l

symm symm 0 0
symm symm 0 0

 (40)

where “symm” indicates components obtained by symmetry.

The final step in finding the perturbation
equations is to examine δGαβ = 8πδTαβ term-
by-term. This leads to 10 differential equations
for (H0, H1, H2,K, h0,W, V, U, δε, δp). The equations
decouple into equations for (H1, h0,W, V, U) and
(H0, H2,K, δε, δp). Under the assumption of linear sta-

bility, reference [41] showed that for non-radial oscilla-
tions H0 = H2 = K = δε = δp = 0. Thus the perturba-
tion equations of O(1) in Ω are

Vl[l(l+ 1)(ε+ p)]− e−(ν+λ)
[
(ε+ p)eν+λrWl

]′
= 0, (41)

r2h
′′

l − r2(ν′ + λ′)h′l +

[
(2− l2 − l)r2e2λ − r(ν′ + λ′)− 2

]
hl − 4r(ν′ + λ′)Ul = 0. (42)
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In the Newtonian limit Eq. (41) corresponds to conserva-
tion of mass and Eq. (42), which relates the metric per-
turbation to the fluid perturbation, reduces to identity
(vanishing metric perturbation). We have made slight
algebraic changes to Eq. (41) and Eq. (42) from the way
they appear in [18], so that they are easier to use in the
numerical computation discussed in Sec. IV.

2. Perturbations of slowly rotating stars

Similar to the non-rotating case the fluid pertur-
bation is decomposed into spherical scalar and vector

harmonics. But this time the Lagrangian perturbation
formalism is used. In general the Lagrangian change of
a quantity Q, ∆Q, is related to the Eulerian change, δQ,
via ∆Q = δQ+LξQ, where Lξ is the Lie derivative with
respect to the fluid displacement vector ξ. Here, the dis-
placement vector is defined as:

ξα ≡ 1

iκΩ

∞∑
l=m

{
1

r
Wl(r)Y

m
l rα + Vl(r)∇αY ml − iUl(r)Pαµεµβγδ∇βY ml ∇γ t∇δ r

}
eiσt, (43)

where

Pαµ ≡ e(ν+λ)
(
δαµ − tµ∇αt

)
. (44)

It should be noted that Wl, Vl are of polar parity whereas Ul is of axial parity. Again using the Regge-Wheeler gauge
the metric perturbation is

hµν =

∞∑
l=m


H0,l(r)e

2νY ml H1,l(r)Y
m
l h0,l(r) ( m

sin θ )Y ml ih0,l(r) sin θ∂θY
m
l

H1,l(r)Y
m
l H2,l(r)e

2λY ml h1,l(r) ( m
sin θ )Y ml ih1,l(r) sin θ∂θY

m
l

symm symm r2Kl(r)Y
m
l 0

symm symm 0 r2sin2θKl(r)Y
m
l

 eiσt, (45)

where the polar parity components are H0,l, H1,l,K, and the axial parity components are h0,l, h1,1. The coefficients
can be grouped as:

Wl, Vl, Ul, H1,l, h0,l ∼ O(1), (46)

H0,l, H2,l,Klh1,l, δε, δp ∼ O(Ω). (47)
The O(1) coefficients obey the O(1) Eqs. (41)–(42).

The definition of ξα leads to κΩ terms in the perturbation equations, and so only the O(1) variables are kept
in the perturbation equations. This ensures that the order of the equations is no higher than O(Ω). Reference [38]
derives the O(Ω) equations by invoking the conservation of circulation for an isentropic fluid, which gives

[l(l + 1)κΩ(hl + Ul)− 2mω̄Ul] + (l + 1)Ql

[
e2ν

r
∂r
(
r2ω̄e−2ν

)
Wl−1 − 2(l − 1)ω̄Vl−1

]
− lQl+1

[
e2ν

r
∂r
(
r2ω̄e−2ν

)
Wl+1 + 2(l + 2)ω̄Vl+1

]
= 0, (48)
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(l − 2)Ql−1Ql

[
−2∂r

(
ω̄e−2νUl−2

)
+

(l − 1)

r2
∂r
(
r2ω̄e−2ν

)
Ul−2

]

+Ql

[
(l − 1)κΩ∂r

(
e−2νVl−1

)
− 2m∂r

(
ω̄e−2νVl−1

)
+m(l−1)

r2 ∂r
(
r2ω̄e−2ν

)
Vl−1 + (l − 1)κΩe−2ν

(
16πr(ε+p)

(l−1)l −
1
r

)
e2λWl−1

]
+

[
mκΩ∂r

[
e−2ν(hl + Ul)

]
+ 2∂r

(
ω̄e−2νUl

) (
(l + 1)Q2

l − lQ2
l+1

)
+ 1
r2 ∂r

(
r2ω̄e−2ν

)
Ul
[
m2 + l(l + 1)

(
Q2
l+1 +Q2

l − 1
)]]

−Ql+1

[
(l + 2)κΩ∂r

(
e−2νVl+1

)
+ 2m∂r

(
ω̄e−2νVl+1

)
+m(l+2)

r2 ∂r
(
r2ω̄e−2ν

)
Vl+1 + (l + 2)κΩe−2ν

(
16πr(ε+p)
(l+1)(l+2) −

1
r

)
e2λWl+1

]
+(l + 3)Ql+1Ql+2

[
2∂r

(
ω̄e−2νUl+2

)
+

(l + 2)

r2
∂r
(
r2ω̄e−2ν

)
Ul+2

]
= 0, (49)

where the constants Ql are defined as

Ql ≡
[

(l +m)(l −m)

(2l − 1)(2l + 1)

]1/2
. (50)

C. Boundary Conditions

In order to solve Eqs. (41)–(42) and Eqs. (48)–
(49) we need to apply the appropriate boundary con-
ditions. Notice that the perturbation equations are a
set of linear ODEs. This indicates that multiplying
a solution by a constant gives another solution, which
means that the boundary conditions must take the form
ζ(hl, Ul, Vl,Wl) = 0, where ζ represents an arbitrary lin-
ear combination. Alternatively, the boundary condition
must be given in terms of a condition on a logarithmic
derivative, e.g. U ′l/Ul = constant.

First let us consider the boundary conditions near
the center of the star. These are also known as the reg-
ularity conditions:

Ul(r → 0) =
( r
R

)l
Ul(r), Wl(r → 0) =

( r
R

)l+1

Wl(r)

hl(r → 0) =
( r
R

)l
hl(r), Vl(r → 0) =

( r
R

)l+1

Vl(r)

(51)
where R is the surface of the star, and the barred func-
tions are slowly varying. Only two of these boundary con-
ditions are linearly independent as shown by [18].

Next let us examine the boundary conditions at
the surface of the star. The Lagrangian perturbation of
the pressure is zero at the surface, which leads to

Wl(R) = 0. (52)

Note that hl is the only unknown function defined outside
of the star, where it obeys(

1− 2M

r

)
d2hl
dr2
−
[
l(l + 1)

r2
− 4M

r3

]
hl = 0, (53)

which has the exact solution

hl(r) =

∞∑
s=0

ĥl,s

(
R

r

)l+s
, (54)

and

ĥl,s =
(l + s− 2)!(l + s+ 1)!(2l + 1)!

s!(l − 2)!(l + 1)!(2l + s+ 1)!

(
2M

R

)s
ĥl,0.

(55)
The sum in Eq. (54) is the hypergeometric function

2F1 (l − 1, l + 2; 2l + 2; 2M/r), see [46]. The factor ĥl,0
is arbitrary, as it corresponds to an overall normalization

of the perturbation. assuming ĥl,0 = 1.

Matching the interior and exterior solutions for
hl(r) completes the boundary conditions. The first
matches the function at the surface,

lim
ε→0

[hl(R− ε)− hl(R+ ε)] = 0. (56)

The second, which is given by the condition on the Wron-
skian, matches the derivatives at the surface,

lim
ε→0

[hl(R− ε)h′l(R+ ε)− h′l(R− ε)hl(R+ ε)] = 0.

(57)
Both conditions must be true for all values of l.
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IV. NUMERICAL SOLUTION

Following the formulation presented in [18], as
summarized by Sec. III , has effectively changed the
problem of finding κ from solving the dynamical Ein-
stein equations to solving coupled ODEs for spherical
harmonic expansion coefficients. Solving the perturba-
tion Eqs. (41)–(42), and (48)–(49), with the boundary
conditions Eqs. (51)–(52) and (56)–(57) is analytically
intractable, but numerically feasible.

The first step is to solve the OVL equations and
find the equilibrium functions λ(r), ν(r), ω(r), p(r) and
ε(r). Next, insert the regularity conditions explicitly into
the perturbation equations. Since the eigenfunctions,
hl, Ul, Vl+1,Wl+1, represent coefficients of an infinite se-
ries we must truncate at maximum value for l, let us
denote it as lmax, to get a finite number of equations. Be-
cause we are focusing on axial-led hybrid modes we need
to set lmax to be a odd number in order to get a closed
system of equations. This choice of axial-led hybrids also
means we solve for the eigenfunctions, hl, Ul,Wl+1, Vl+1,
where l = m,m+ 2 . . ., and set the others to zero. Next,
note that each term in the perturbation equations and
boundary conditions can be written as the product of a
background (equilibrium) function B(r) and foreground
(perturbation) function Fl(r). For example, in the term
4r(λ+ν)Ūl(r) the background function is 4r(λ+ν)(r/R)l

and the foreground function is Ul.

A. Chebyshev-Galerkin Method

We solve the perturbation equations by expanding
both B(r) and Fl(r) in Chebyshev polynomials. Cheby-
shev polynomials have the form

Ti(y) = cos(i arccos y), i = 1, 2, 3, . . . (58)

and are defined on the domain [−1, 1]. For our purposes
the Chebyshev polynomials’ most important property is
their exponential convergence when approximating well-
behaved functions [43]. In general one can express any
well-behaved function S(y) on the domain [−1, 1] in
terms of these polynomials as

S(y) =

imax∑
i=0

siTi(y)− 1

2
s0, (59)

where imax represents the highest order Chebyshev poly-
nomial that is used to approximate the function. The
coefficients si are extracted using the following for-
mula:

si =
2

imax

imax+1∑
j=0

S

[
cos

(
π(j + 1

2 )

imax

)]
cos

(
πi(j + 1

2 )

imax

)
(60)

In order to make use of these functions we have to change
the domain of our functions from [0, R] to [−1, 1] us-
ing

y = 2
( r
R

)
− 1. (61)

Thus we transform B(r) into B(y) and expand as,

B(y) =

imax∑
i=0

bi Ti(y)− 1

2
b0, (62)

similarly for Fl(r) we have,

Fl(y) =

imax∑
i=0

fl,i Ti(y)− 1

2
fl,0. (63)

Let us define the derivative of Fl(r) as

F ′l (y) =
d

dr
Fl =

imax∑
i=0

f ′l,i Ti(y)− 1

2
f ′l,0. (64)

Here the prime notation in f ′l,i does not mean derivative,
rather it is a numeric coefficient for the derivative expan-
sion of a function. Similarly we define F ′′l (y) for second
derivatives of Fl(r), and f ′′l,i as its coefficients.

With these definitions in place, the terms in the
perturbation equations will be of the form B(y)F (y),
or B(y)F ′l (y), or B(y)F ′′l (y). There is a relationship
between the f ′li and fli coefficients given by the iden-
tity:

f ′l,i − f ′l,i+2 = 4(i+ 1)fl,i+1. (65)

It should be noted that Eq.(65) has a 4 whereas the stan-
dard formula, e.g. in [43], has a 2. We include the extra
factor of 2 to transform d/dy to d/dr via Eq.(61). The
identity Eq.(65) can be used twice to find the relationship
between f ′′li and fli . Since f ′li and f ′′li are not really new
coefficients it will be sufficient to say that every term in
the perturbation equations is of the form B(y)F (y). This
allows us to use another Chebyshev identity [46],

B(y)Fl(y) =
1

2

[
imax∑
i=0

πl,i Ti(y)− 1

2
πl,0

]
(66)

where

πl,i =

imax∑
j=0

[
bi+j + Θ(j − 1)b|i−j|

]
fl,j (67)

with

Θ(k) =

{
0 for k < 0
1 for k ≥ 0

, (68)

to expand every term in the perturbation equations in
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Chebyshev polynomials.

Using the definitions Eqs. (62)–(66) we can also
re-write the boundary conditions in Chebyshev form in
the same way

B. Finding κ

With all of the terms in the perturbation equa-
tions in Chebyshev form we can extract the Chebyshev
coefficients using Eq. (60). This will lead to a system of,
2(lmax − 3) + 4imax, algebraic equations for κ and coef-
ficients of the unknown functions, fli . We can schemat-
ically represent the system of equations as A(κ)x = 0,
where A is a matrix and x is the vector

x =
[
hl0 hl1 . . . hlimax

. . . U l0 U l1 . . . U limax
. . .W (l+1)0

W (l+1)1
. . .W (l+1)imax

. . . V (l+1)0
V (l+1)1

. . . V (l+1)imax

]
.

(69)

Before finding κ we must incorporate the 3
2 (lmax−2) + 3

equations that come from converting the boundary con-
ditions into Chebyshev form. To do this we replace the
equation that came from the highest order extracted co-
efficient πimax for each eigenfunction with a boundary
condition.

We solve for κ using the condition det(A(κ)) = 0.
This leads to a high degree (O(500+)) polynomial equa-
tion for κ. Finding the roots for such a polynomial is
difficult when using standard root-finders. Therefore we
created two root-finding algorithms which incorporated
and went beyond some of the standard root-finding tech-
niques. The key idea of one, is to solve for the roots of the
function: tan−1 log |det(A(κ))| instead. The key idea of
the other is use the decomposition, SV D(A) = {U ,Σ,V},
and find the value of κ that results in the smallest value
for last element on the diagonal of Σ.

Both root finders achieved convergence at the
fourth decimal place for polytropic EoS, and the third
decimal place for realistic EoS. The loss of precision
comes form the fact that realistic EoS have to be nu-
merically interpolated, whereas polytropic EoS have an-
alytical forms, see Sec. VI. The first algorithm mentioned
was used for the results that appear below, because it was
easier to automate. In Fig. 1 we show the convergence for
an n = 1 polytrope with compactness of .150. Although
this figure does show that our code quickly converges,
it obscures the fact that in practice one should increase
imax and lmax in step to get convergence. This figure
also shows that the eigenvalue stops converging above
lmax = 11 and imax = 9. For tabulated EoS, a minimum
of lmax = 15 and imax = 13 are required for convergence.
Divergence sets in for tabulated EoS at lmax = 21 and
imax = 19. The convergence stops after certain values
due to truncation errors and the high orders of the poly-
nomials.

The issue with both root-finders is that they lead
to multiple roots. The way to determine which root is
correct is to start lmax and imax at small values so that
one only finds 3 to 5 roots, and then keep the root(s)
closest to the Newtonian estimate of κ0 = 2/3. Then as
lmax and imax are increased the correct root will converge

4 5 6 7 8 9 10 11 12
0.5900

0.5902

0.5904

0.5906

0.5908

0.5910
5 7 9 11

imax

Κ

lmax

n = 1
M�R = 0.15 lmax = 9

imax = 9

FIG. 1: Convergence of eigenvalue for n = 1 polytropic
EoS. The short (blue) dashes show convergence in imax
while fixing lmax = 9, and the longer (purple) dashes
show the convergence in lmax when fixing imax = 9.

The divergence of the eigenvalue sets for higher values
of lmax and imax due to finite precision, see text.

whereas the others will change unpredictably.

C. The eigenfunctions

Our procedure for finding the eigenfunctions is as
follows. First rewrite all of the variables in the set of
equations, A(κ)x = 0, in terms of one variable, e.g. h20 .
Then impose a normalization condition such that h20 = 1
at the surface of the star. With this solution for h20 at
hand, populate the rest of ~x.

There is an issue with solution for the eigenfunc-
tions, hl, Ul,Wl, Vl for stars near the maximum compact-
ness, i.e. the maximum mass of a star stable against ra-
dial collapse. Very close to the maximum mass, the so-
lutions develop extra maxima and minima. Evidently
the highest-order Chebyshev coefficients are acquiring
spuriously high values. We conjecture that this is due
to the sensitivity of the stellar equilibrium functions to
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small perturbations near the maximum mass. This does
not seem to significantly affect the eigenvalues though,
which continue their smooth trend as functions of com-
pactness.

V. RESULTS

A. The n = 1 polytrope

We have successfully reproduced results presented
in [18] for an n = 1 polytrope. They found that for a
compactness of M/R = .15, κ = 0.5901. We calculated
κ = 0.5902 for such a star, which represents a differ-
ence of only 0.01%. This small discrepancy could have
come from the precision of the code that was used in the
calculations (we used Mathematica standard precision,
which is somewhat better than double precision). Also
that is about the current level of uncertainty in the CO-
DATA standard value of G [47] and the level of changes
in that value in recent years [48]. The eigenfunctions
we calculated for the κ = 0.5902 r -mode are exactly the
same as those present in Fig. 3 and 4 of [18], as far as
the eye can see.

We have extended the results of [18] for an n =
1 polytrope by examining how the r -mode frequency
changes as compactness of the star is varied. The re-
sults are shown in Fig. 2. The compactness was changed
by increasing the mass, from 1.01–1.95 M�, while hold-
ing the radius fixed at 12.53 km. It is clear from the plot
that κ decreases as compactness increases. In the plot we
include least-squares fits to a linear and quadratic model.
The R2 values indicate that the quadratic model

κ = 0.616 + 0.352(M/R)− 3.47(M/R)2 (70)

is a better fit for the data.
It seems that the negative coefficient for the

quadratic term is a generic result. The same result was
found by [18] for the stellar equilibrium sequence of an
n = 0 polytrope. The results for polytropic EoS are a
useful guide when examining the results from the realistic
or tabulated EoS, because tabulated EoS do not have an-
alytical form like the polytropes but rather one has to use
the interpolation methods mentioned in Sec. III.

B. Tabulated Equations of State

Figure 3 contains the values of κ for all 14 EoS
under consideration. These were chosen from a standard
list of EoS used by [23], and [22], under the constraint
that the EoS could support a 1.85 M� star, see Sec. I.
The lowest mass that was used for any EoS was 1.02
M�, the maximum mass used in any calculation was 2.76
M�.

There are three main things to notice in Fig. 3.
One, the values of κ decrease as the compactness of

0.12 0.14 0.16 0.18 0.20 0.22 0.24

M/R

κ

0.52

0.54

0.56

0.58

0.60

κ = 0.719 − 0.864(M R)
R-squared: 0.9837

κ = 0.616 + 0.352(M R) − 3.47(M R)2
R-squared: 0.9985

FIG. 2: The eigenvalue, κ, for an equilibrium stellar
mass sequence of an n=1 polytrope. The radius was
kept fixed at 12.53 km, and the mass changed ranged
from 1.01–1.95 M�. Linear and quadratic fits to the

data are also presented.

the star increases. Two, the generic shape of the data
is parabolic, as shown by the solid (blue) fitted curve.
Ordinary-least-squares regression was used to get both
the linear and quadratic fit. Examining the R2 value we
see again that the quadratic model

κ = 0.627 + 0.079(M/R)− 2.25(M/R)2 (71)

is a better fit to the data. We also calculated the root
mean square error (RMSE) [49], as a way to quantify the
deviation of the individual EoS from the quadratic fit.
These values are presented in Table I. The total RMSE
for all data points is 2.02 × 10−3. Three, the range of
κ for tabulated EoS is larger than that for n = 1 poly-
tropic model. This is mainly due to the fact that realistic
equations are less stiff than the n = 1 polytrope, and so
one can squeeze more mass into the same radius, thus in-
creasing the maximum compactness from .220 to .310 for
some realistic EoS. This greater range for κ has impor-
tant implications for the applications of our results, and
these will be explored further in the next section.

To further examine the results for the tabulated
EoS we have split Fig. 3 into two plots. Figure 4(a) shows
a plot for a family of variational method EoS, and shows
that the value of κ does not change very much within
this family. Figure 4(b) shows the difference between
a member of this family and an EoS derived by very
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0.11 0.15 0.19 0.23 0.27 0.31

0.
44

0.
48

0.
52

0.
56

0.
60

M/R

κ

κ = 0.718 − 0.852(M R)
R-squared: 0.9815

κ = 0.627 + 0.079(M R) − 2.25(M R)2

R-squared: 0.9978

SLy
AP3
AP4
WFF1
WFF2
MPA1
ENG
MS1
MS1b
ALF2
ALF4
GNH3
H4
BBB2

FIG. 3: The values of κ for all 14 EoS under consideration. The dashed (red) line represents linear fit, and the solid
(blue) line represents the quadratic fit. Ordinary-least-squares regression was used to get both the linear and
quadratic fit. The equations for the linear and quadratic fit along with their R2 for the fits are also presented.

different methods. It examines whether our results can
be used to constrain or rule out certain EoS. The plots
show how the range of κ for SLy [50] (which is the only
EoS in its family) relates to that for AP3 [51] from the
family shown in Fig. 4(a). These graphs will be discussed
further in the next section.

Finally we present two tables. Table I lists all the
tabulated EoS that were used, along with the stable max-
imum mass of a non-rotating star, the radius of a 1.4M�
star in the sequence, κ for a compactness of .15, the coef-
ficients for the quadratic fit of the κ values for that EoS,
and the RMSE. The R2 value for each fit (not shown in
the table) ranged from 0.9986 to 0.9998, again showing
that the quadratic model is a good fit for the data. From
this fit we see that the quadratic term can be up to a
few percent of the frequency. This has significant impli-
cations for GW searches, as well as attempts to measure

compactness from an r -mode frequency. Table II gives
the numerical values plotted in Fig. 3.

VI. CONCLUSIONS

We begin with a discussion of the n = 1 poly-
trope results. The fact that the r -mode frequencies go
down as compactness increases might come as a sur-
prise. However, one must remember to keep track of
reference frames. In the reference frame of the star κ
does decrease because the restoring force is proportional
to ω̄(r) = Ω − ω, and this goes down as compactness
is increased. But the observed frequency in the inertial
frame is |κ − m|Ω, see Eq. (3), and this increases as κ
decreases.

To compare the results from the n = 1 polytrope,
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M/R

κ
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0.55
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(a)

0.11 0.15 0.19 0.23 0.27 0.31

M/R

κ
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0.50
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0.60
Sly
AP3

(b)

FIG. 4: In (a) we compare the values of κ for EoS derived using variational methods. In (b) we compare the values
of κ for SLy and AP3 EoS.

EoS Mmax R1.4 κ.15 a b c RMSE

1× 10−3

Sly 2.049 11.736 0.587 0.622 0.151 -2.48 2.35

AP3 2.390 12.094 0.588 0.619 0.142 -2.36 1.39

AP4 2.213 11.428 0.587 0.626 0.150 -2.41 1.56

WFF1 2.133 10.414 0.587 0.617 0.160 -2.40 1.54

WFF2 2.198 11.159 0.587 0.628 0.060 -2.17 1.08

MPA1 2.461 12.473 0.588 0.629 0.052 -2.14 1.70

ENG 2.240 12.059 0.588 0.613 0.215 -2.56 1.51

MS1 2.767 14.918 0.588 0.624 0.107 -2.30 1.62

MS1b 2.776 14.583 0.589 0.619 0.156 -2.40 1.98

ALF2 2.086 13.188 0.588 0.632 0.026 -2.08 1.63

ALF4 1.943 11.667 0.587 0.632 0.002 -1.98 1.25

GNH3 1.962 14.203 0.587 0.639 -0.027 -2.09 2.80

H4 2.032 13.774 0.591 0.640 - 0.002 -2.13 3.65

BBB2 1.918 11.139 0.587, 0.611 0.249 -2.71 2.83

TABLE I: We present a list of all the tabulated EoS, for
each EoS we show the stable maximum mass, the radius

for a 1.4M� star, κ for a compactness of .15, the
coefficients for the quadratic fit of the κ of the form

a+ b
(
M
R

)
+ c

(
M
R

)2
, and the root mean square error

(RMSE) of the EoS data points to the quadratic fit.

and tabulated EoS we can examine Fig. 2 and 3. From

this we notice that the κ for tabulated EoS can differ from
those of the polytropic model by of order ten percent in
frequency. This shows the need to use realistic EoS when
calculating r -mode frequencies.

Let us now discuss the implications of the
parabolic shape of the κ values shown in Fig. 2, and 3.
Overlaid on these plots are two fits from which it is clear
that the quadratic fit is better than the linear one. These
figures show that the corrections to the r -mode frequency
using post-Newtonian approximations must be carried
out to at least second order. For example, the first order
post-Newtonian formula for an n = 0 polytrope given by
Lockitch et al. [18] is

κpN =
2

m+ 1

[
1− 8(m− 1)(2m+ 11)

5(2m+ 1)(2m+ 5)

M

R

]
, (72)

for m = 2 this gives

κpN =
2

3

(
1− 8

15

M

R

)
. (73)

Figure 2 and 3 show that the equation above is insuf-
ficient since it does not account for quadratic, (M/R)2,
corrections.

Moving on to the astrophysical applications of our
results. Gathering data from realistic EoS we see that
the range of κ is approximately 0.614–0.433 for compact-
ness values 0.110–0.310. If the spin frequency of a star
is known from electromagnetic observations, this range
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can be used to conduct narrow-band gravitational wave
searches for known pulsars. Using Eq. (3) we see that our
range of κ gives the range 1.39Ω < σI < 1.57Ω, where σI
is the frequency observed in our reference frame. Taking
the Crab pulsar (Ω/2π = 29.7 Hz, [29]) as an exam-
ple, our range of σI suggests a narrow-band search for
r -modes be carried out from 41.3–46.6 Hz.

Alternatively, our results will be of use in the case
where a GW detection is made for an electromagnetically
unknown pulsar. Suppose the gravitational wave signal
has a frequency of 100 Hz. Astronomers can search for
the pulses at 50 Hz, assuming the signal came from a non-
axisymmetric deformation in the star, and in the range
of 63.7–71.9 Hz, assuming the signal came from r -modes
of the star.

Another potential use for this research that was
mentioned in the introduction was the ability use the
r -mode frequencies to constrain the nuclear equation of
state. We see from Fig. 4(a) that r -mode detections alone
will not be enough to distinguish between members of an
EoS family. Figure 4(b) shows a slightly more promis-
ing result. This figure shows that it may be possible to
distinguish between different EoS families. However, this
would be made difficult without additional electromag-
netic data on quantities such as the compactness. This is
due to the scale of the deviations seen in Fig. 4(b), which
are less than 1%. These deviations to κ have to com-
pete with the physical phenomena described in Sec. II
which for most stars can also change κ by 1%. Therefore
it will be impossible to distinguish what is truly giving
rise to the change in κ without more research into these
effects.

In this context it is interesting to note the recent
report in [12] of the possible detection of an r -mode in the
outburst of the accreting millisecond pulsar XTE J1751-
305. Reference [14] showed that the observed frequency
of the oscillation, if interpreted as the r -mode frequency,
gave rise to a sensible constraint on the mass-radius re-
lation for the star, see their Fig. 1. Reference [14] in-
cluded both relativistic corrections and rotational ones in
their analysis, but the former were based on the uniform-
density calculations of [18], rather than realistic EoS of
the sort considered in this paper. However, comparison
of the plot of κ verses compactness in Fig. 1 of [14] with
Fig. 3 above shows that the analysis would not change
significantly if it were repeated using realistic EoS, some-
thing to be expected given the rather narrow variation of
κ with EoS shown in our Fig. 3. The situation is broadly
similar for the second possible neutron-star r-mode de-

tection [13].
To sum up, we have been successful in finding a

range of r -mode frequencies for both polytropic and tab-
ulated EoS. Furthermore we have shown that our results
can be used as input data for electromagnetic and GW
searches. Along with these successes there are some is-
sues that should be discussed.

One issue we encountered is that the precision of
the κ values decreased by an order of magnitude for the
tabulated EoS compared to polytropes. We believe this
comes from the fact that the tabulated EoS have to be in-
terpolated instead of coming in analytical form like poly-
tropes. From our discussion in Sec. III A we know that
the different interpolation schemes results in percent dif-
ferences 0.1%. This shows that when using tabulated
values we can only hope to get up to three significant
digits, regardless of the interpolation scheme used. It is
difficult to address this issue since it is an inherent prob-
lem with tabulated EoS. Perhaps in future work we can
use analytical (piecewise polytropic or spectral) fits to
the tabulated EOS such as those presented in [22] and
[23] to mitigate this issue.

Another issue is of course the various physical phe-
nomena that were ignored. These will inevitably have
some impact upon the r -mode frequency, even if our sim-
ple estimates indicated that relativistic effects were likely
to be the most important. Therefore it is still necessary
to explore the effects of other mechanisms. In particu-
lar, in the future we would like verify that the corrections
that come from rapid rotation are significant only for very
rapidly rotating stars, and that the crustal effects are im-
portant only in narrow spin frequency bands. Including
these effects would allow us to distinguish between fam-
ilies of EoS if we get compactness information.
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M/R SLY AP3 AP4 WFF1 WFF2 MPA1 ENG MS1 MS1B ALF2 ALF4 GNH3 H4 BBB2

0.11 - - - - - - - - - - - 0.612 0.616 -

0.12 0.606 - - - - 0.606 - - - 0.606 - 0.606 0.610 -

0.13 0.600 0.600 0.600 0.599 0.600 0.600 0.600 0.601 0.601 0.600 0.599 0.600 0.604 0.599

0.14 0.594 0.594 0.594 0.593 0.594 0.594 0.594 0.595 0.595 0.595 0.593 0.595 0.597 0.594

0.15 0.588 0.588 0.587 0.587 0.587 0.588 0.588 0.588 0.589 0.588 0.587 0.587 0.591 0.587

0.16 0.581 0.581 0.581 0.581 0.581 0.583 0.582 0.582 0.58 0.581 0.581 0.581 0.586 0.581

0.17 0.574 0.575 0.574 0.574 0.574 0.575 0.575 0.576 0.576 0.576 0.574 0.574 0.58 0.574

0.18 0.567 0.568 0.567 0.567 0.567 0.567 0.568 0.57 0.569 0.569 0.568 0.566 0.573 0.567

0.19 0.56 0.561 0.56 0.56 0.56 0.561 0.561 0.558 0.562 0.564 0.56 0.56 0.564 0.559

0.20 0.553 0.553 0.551 0.552 0.553 0.554 0.553 0.554 0.553 0.556 0.553 0.551 0.556 0.552

0.21 0.544 0.545 0.544 0.544 0.545 0.545 0.545 0.546 0.546 0.546 0.545 0.542 0.545 0.544

0.22 0.535 0.537 0.536 0.536 0.536 0.538 0.537 0.537 0.538 0.538 0.536 0.532 0.536 0.535

0.23 0.526 0.528 0.527 0.527 0.527 0.529 0.528 0.53 0.531 0.529 0.527 0.523 0.528 0.526

0.24 0.516 0.519 0.518 0.518 0.518 0.519 0.518 0.518 0.519 0.519 0.518 0.511 0.518 0.516

0.25 0.506 0.509 0.508 0.508 0.508 0.51 0.509 0.509 0.51 0.508 0.509 - 0.512 0.505

0.26 0.495 0.498 0.497 0.498 0.497 0.498 0.498 0.498 0.499 0.498 0.497 - - 0.494

0.27 0.482 0.488 0.486 0.487 0.485 0.488 0.486 0.486 0.488 - - - - 0.482

0.28 0.469 0.475 0.472 0.475 0.473 0.475 0.474 0.472 0.474 - - - - 0.468

0.29 0.454 0.462 0.46 0.463 - 0.463 0.461 - 0.461 - - - - 0.453

0.30- - 0.448 0.445 0.449 - 0.447 0.444 - - - - - - -

0.31- - - - 0.433 - - - - - - - - - -

TABLE II: This table gives the numerical κ for all tabulated EoS, over the range of compactness values considered
in our analysis. These values are plotted in in Fig. 3. The “-” indicates a compactness that could not be obtained

with that EoS.


