
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Photothermal transfer function of dielectric mirrors for
precision measurements

Stefan W. Ballmer
Phys. Rev. D 91, 023010 — Published 26 January 2015

DOI: 10.1103/PhysRevD.91.023010

http://dx.doi.org/10.1103/PhysRevD.91.023010
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The photo-thermal transfer function from absorbed power incident on a dielectric mirror to the
effective mirror position is calculated using the coating design as input. The effect is found to
change in amplitude and sign for frequencies corresponding to diffusion length comparable to the
coating thickness. Transfer functions are calculated for the T i-doped Ta2O5 : SiO2 coating used in
Advanced LIGO and for a crystalline AlxGa1−xAs coating. The shape of the transfer function at
high frequencies is shown to be a sensitive indicator of the effective absorption depth, providing
a potentially powerful tool to distinguish coating-internal absorption from surface contamination
related absorption. The sign change of the photo-thermal effect could also be useful to stabilize
radiation pressure-based opto-mechanical systems. High frequency corrections to the previously
published thermo-optic noise estimates are also provided. Finally, estimating the quality of the
thermo-optic noise cancellation occurring in fine-tuned AlxGa1−xAs coatings requires the detailed
heat flow analysis done in this paper.

PACS numbers: 42.79.Bh, 95.55.Ym, 04.80.Nn, 05.40.Ca

I. INTRODUCTION

The photo-thermal effect is the coupling from fluctua-
tions in absorbed power incident on a mirror to the ef-
fective mirror position. It is important for a wide range
of applications involving varying amounts of power in-
cident on a mirror. Examples range from a source of
noise coupling in gravitational-wave interferometers to
an important feed-back path in many types of mico-
electromechanical systems. Additionally, the photo-
thermal effect is closely related to the thermo-optic noise
in mirror coatings, which is one of the limiting noise
sources for upgrades to the gravitational-wave interfer-
ometers currently under construction (Advanced LIGO
[18], Advanced Virgo [1] and Kagra [23]). The impor-
tance of the effect for gravitational wave detectors has
driven a theoretical [3–6, 11, 13, 19, 20] and experimental
[8, 10, 16–18, 22] interest in understanding and improving
the fundamental thermal noise of optical elements.

The photo-thermal transfer function takes a simple
form at frequencies for which the diffusion length ddiff is
small compared to the transverse dimension of the beam
spot, but large compared to the coating thickness dcoat.
Both the thermal diffusion and the elasticity problem be-
come one-dimensional, and the resulting mirror surface
displacement is the integral of the deposited heat (equa-
tion 2 below). In [6] Cerdonio et al. explored correc-
tions to this simple picture that arise due to transverse
diffusion. Their result predicted a decrease in the photo-
thermal response for frequencies corresponding to diffu-
sion length comparable to the beam spot (equation 3 be-
low). This result was later experimentally confirmed by
De Rosa et al. [10], measuring the coupling up to 200 Hz.
Both papers however assume that the diffusion length is
much bigger than the coating thickness.
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The dielectric stack of the mirror coating affects both
the heat diffusion at higher frequencies and the local cou-
pling of temperature to the total reflected phase of the
coating, which is the quantity that determines the mirror
position read-out. The latter was discussed in detail in
[13] in the context of exploring thermo-optic noise. In
particular we found that, compared to substrate heat-
ing, heating of the first couple of dielectric layers has the
opposite effect on the mirror position read-out. This is
caused by the change in optical thickness of the dielectric
layers. However [13] did not discuss the implications for
the photo-thermal transfer function, which is explored in
this paper.

The rest of the paper is structured as follows: Sec-
tion II revisits the previously published properties of the
photo-thermal effect. In section III the photo-thermal
transfer function is calculated taking into account the
coating structure. Section IV applies the result to both
the Ti-doped Ta2O5 : SiO2 coating used in Advanced
LIGO and for a crystalline AlxGa1−xAs coating. In sec-
tion V the implications for thermo-optic noise are dis-
cussed.

II. SUBSTRATE PHOTO-THERMAL
COUPLING

Throughout this paper we will work in the complex
Fourier domain, i.e. observed quantities like the effective
mirror displacement 4z are complex and obey the relation
4z∗(ω) = 4z(−ω).

We are interested in the photo-thermal transfer func-
tion from the absorbed surface intensity j to effective
mirror displacement 4z, i.e. the mirror position as read
out by a laser beam. In the limit where the coating thick-
ness dcoat is negligible compared to the diffusion length
ddiff and transverse diffusion is irrelevant, dcoat�ddiff�w,
with w is the Gaussian beam radius, we can solve the
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one-dimensional heat diffusion equation

∂zj(z) + ρCṪ (z) = 0 (1)

with the boundary conditions j(∞) = 0, and j(0) = j,
the absorbed surface intensity. The mirror displacement
4z, and therefore the photo-thermal transfer function
take the form

4z = ᾱ

∫ ∞
0

Tdz = ᾱ
j

iωρC
. (2)

Here ddiff =
√
κ/(ρCω) is the diffusion length in the sub-

strate, with κ, C and ρ the thermal conductivity, heat
capacity and density of the material. ω and j are the ob-
servation frequency and the absorbed surface intensity.
Finally, ᾱ = 2(1 + σ)α is the effective expansion coef-
ficient under the mechanical constraint that the heated
spot is part of a much larger optic, see for instance [13],
equation A1, or [14]. α and σ are the regular linear ex-
pansion coefficient and the Poisson ratio.

Cerdonio et al. [6] expanded this to include the effect
of transverse diffusion, and found that equation 2 needs
an additional multiplicative correction factor

I(Ω) =
1

π

∞∫
0

du

∞∫
−∞

dv
u2e−u

2/2

(u2 + v2)
(

1 + (u2+v2)
iΩ

) , (3)

with Ω = ωCρw2/(2κ). As expected, for Ω � 1, the
correction factor becomes I(Ω) ≈ 1. The magnitude of
equation 3 was experimentally confirmed by De Rosa et.
al. [10].

III. COATING CORRECTION

To calculate the effect of a dielectric coating on the
photo-thermal transfer function we first have to find the
response of the coating reflected phase to temperature
fluctuations at each layer, and then solve the heat diffu-
sion equation. If we include the detailed coating struc-
ture and transverse diffusion we will find the full photo-
thermal transfer function. However, dielectric optical
coatings require that the spot size w is much bigger than
the coating thickness dcoat - otherwise the plane wave ap-
proximation inside the coating is not justified. Since the
frequency dependent diffusion length ddiff is the relevant
scale parameter for both coating effects and transverse
diffusion effects, and since the limit dcoat�ddiff�w results
in the simple expression from equation 2, the corrections
due to transverse diffusion and the corrections due to
the coating structure will never be big at the same time.
Furthermore, expanding the heat diffusion equation as
Taylor series shows that to first order one can simply
calculate both effects as multiplicative corrections. Thus
for the following calculation I can ignore any transverse
heat diffusion without loss of generality.

First I calculate the response of the coating reflected
phase to temperature fluctuations at each coating layer.

Following the notation of [13], the change 4φk in the opti-
cal round trip phase in coating layer k due to temperature
fluctuations is given by the following integral across layer
k:

4φk =
4π

λ0

∫
k

(βk + ᾱknk)T (z)dz, (4)

where ᾱk is the effective expansion coefficient under the
mechanical constraint from the coating being attached to
a substrate, as discussed in [13], equation A1, or [14]:

ᾱk = αk
1 + σs
1− σk

[
1 + σk
1 + σs

+ (1− 2σs)
Ek
Es

]
. (5)

Ek, Es, σk and σs are the Young’s moduli and Poisson ra-
tio for layer k and the substrate. If the coating layers have
similar elastic properties this becomes ᾱk ≈ 2(1 + σ) αk.

The coupling of 4φk to the phase of the light reflected
of the coating 4φc is given by

∂φc

∂φk
= Im

1

r

∂r

∂φk
, (6)

where r is the complex field reflectivity of the coating.
In [13] a recursive expression for these partial derivatives
is given, and they are shown to be negative for quar-
ter wavelength coatings. Appendix A gives an alternate
approach to calculating them.

Additionally all layers and the substrate also con-
tribute to the total expansion of the mirror. If I set
∂φc

∂φs
= 0 and include the substrate in the summation, the

total change of the coating reflected phase 4φc becomes

4φc =
4π

λ0

∫ ∞
0

[
∂φc

∂φk
(βk+ᾱknk)+ᾱk

]
T (z)dz, (7)

where the material parameters in the brackets are evalu-
ated for the layer k that contains the volume element at
depth z.

Next, I solve the one-dimensional heat diffusion equa-
tion across the coating. For simplifying the derivation
I assume that all heat is deposited on the first interface
layer. This is not necessarily a good assumption as the
field penetrates a couple layers into the coating. Extend-
ing the analysis to bulk absorption is briefly discussed at
the end of appendix B, and results in a small change to
equations 8, 9 and 10. I now define ξk =

√
iωCkρk/κk for

every layer k. Inside this layer the heat diffusion equa-
tion is ξ2

kT = T ′′, where the notation ′ = ∂z is used. This
has the solution

T (z) = TRe−ξ(z−z0) + TLeξ(z−z0), (8)

where TR and TL are the right-propagating and left-
propagating mode amplitudes at z = z0. The solution for
the temperature profile across the whole coating can now
be found by matching the boundary conditions. Specif-
ically, T and j = −κk∇T are continuous across coating
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boundaries, and j at the surface is equal to the external
heating power. A solution is given in appendix B.

To evaluate equation 7 the temperature integral across
every layer k is needed. It can be expressed as a function
of the temperature in the middle of the layer:

T̄kdk :=

∫ dk/2

−dk/2
T (z)dz =

2

ξk
sinh(

ξk
2
dk)(TR + TL)middle.

(9)
Similarly for the substrate I can define

T̄sds :=

∫ ∞
0

T (z)dz =
TR,s
ξs

, (10)

where TR,s is the temperature at the coating-substrate
interface. The total change of the effective mirror posi-
tion thus becomes

4z =
∑
k

[
∂φc

∂φk
(βk+ᾱknk)+ᾱk

]
T̄kdk, (11)

where the sum goes over all layers plus the substrate,
and I used 4φc = 4π4z/λ0. The bracket in equation 11 is
negative and relatively large for the first few layers of the
coating, and becomes positive closer to the substrate.

Now all the pieces for calculating the photo-thermal
transfer function are in place. Since I am working in
the Fourier domain, I will evaluate it one frequency at
a time: (i) Given the surface heating j, I calculate the
temperature profile across the coating. In particular I
am interested in the temperatures in the middle of the
coating layers, given by equation B9. (ii) I calculate the

partial derivatives ∂φc

∂φk
using equation A8 to get the sensi-

tivity of the coating to round trip phase changes in each
layer. (iii) I can now evaluate equation 11 to find the
effective mirror displacement 4z. The ratio 4z/j is the
photo-thermal transfer function.

At low frequencies (dcoat�ddiff) the temperature fluc-
tuations will reach far into the substrate. Thus only the
substrate term in equation 11 will be relevant, and equa-
tion 2 is recovered. On the other hand, for frequencies
with ddiff smaller than dcoat, the negative bracket in equa-
tion 11 for the first few coating layers results in an en-
hancement and a sign change of the transfer function, as
we will see on concrete examples in the next section.

IV. DISCUSSION AND IMPLICATIONS

First I evaluate the photo-thermal transfer function for
two coatings of interest for the gravitational-wave com-
munity. I start with a quarter-wave Ta2O5:SiO2 coating,
heated at the coating surface. The Advanced LIGO end
and input test masses are coated with a titanium-doped
Ta2O5:SiO2 coating with 19 and 8 doublet layers respec-
tively. For clarity I divide out the naive expectation from
equation 2 and ignore the beam spot size dependence
from equation 3. Note that for the case of Advanced

LIGO (w = 6 cm) this is a good approximation. Even at
the lower edge of the Advanced LIGO observation band
(10 Hz) the normalized frequency Ω from equation 3 is
already 1.3·105 and transverse diffusion is not important.
The correction factor arising from the coating structure
is shown in figure 1 for both coatings (black and gray
solid traces). As expected a gradual sign change and in-
crease in magnitude is occurring around about 100 kHz.
The correction factor however has a tail that extends to
relatively low frequencies, reaching 3 dB at 160 Hz and
6 dB at 1 kHz for the 19-doublet coating. Note that the
high frequency feature significantly depends on the depth
at which the heat is deposited, while the same is not true
for the low frequency tail. To illustrate this point figure 1
shows two additional traces for each coating. The dashed
traces correspond to transfer functions for which the heat
was deposited at a depth of 0.68 µm, that is at the 4th
interface layer (beginning of the 2nd high-index layer).
The dash-dotted traces correspond to a model in which
the power absorbed in each layer is proportional to the
optical power circulation at that depth. This is a realis-
tic absorption model if the absorption is not dominated
by surface contamination. If all the heat is deposited at
the 6th interface layer or deeper (not shown in figure 1),
the sign change or phase wrapping at higher frequencies
that is seen in all traces in figure 1 will disappears. The
photo-thermal effect is then dominated by simple mate-
rial expansion at all frequencies.

We therefore see that at high frequencies the trans-
fer function is a sensitive function of the heat deposi-
tion depth. This effect can be exploited to measure the
depth at which the optical absorption in the coating oc-
curs. This approach could be a powerful diagnostic tool
to distinguish intrinsic absorption inside the coating from
contamination on the coating surface.

Next, figure 2 shows the photo-thermal transfer
function correction factor for the crystalline GaAs :
Al0.92Ga0.08As coating discussed in [8]. Shown in black
and gray are traces for coatings with 40.5 and 18.5 λ/4
doublets respectively. They correspond to power reflec-
tivities of (1−2.5ppm) and 0.9976. Due to the higher heat
conductivity of the crystalline coating the transfer func-
tion is much less dependent on the absorption depth. The
flatness of the 18.5 doublet photo-thermal transfer func-
tion implies that the coating has no influence on the total
photo-thermal effect, i.e. the substrate photo-thermal ef-
fect acquires no correction due to the coating. This is a
sign of the cancellation effect between thermal expansion
and index of refraction change that naturally occurs for
this particular coating. As shown below this leads to a
significant thermo-optic noise cancellation.

There are several implications worth discussing here.
First this calculation predicts a small change in the ex-
pected intensity noise coupling in the observation band
of gravitational-wave detectors. The Advanced LIGO
mirrors are expected to have a coating absorption co-
efficient of less than 1 ppm, which should keep photo-
thermal shot noise below the design quantum noise.
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FIG. 1. A bode plot of the photo-thermal transfer function correction factor for a Ta2O5 : SiO2 coating. The black (gray)
traces are for a 19-doublet (8-doublet) coating, corresponding to a Advanced LIGO end (input) test mass coating. For the
solid traces the heat was deposited at the front surface of the coating. For the dashed traces it was deposited at the fourth
interface layer, at a depth of 0.68 µm. Finally, for the dash-dotted traces, the power was deposited in the coating according to
the optical power present in each layer. At high frequencies the transfer function strongly depends on heat deposition depth,
which in turn can be explotited to measure the absorption depth (see text). To get the full transfer function multiply with
equation 2. The calculation is based on the parameters from table I.

The effect would be more important for any compen-
sation system for thermal lensing that relies of project-
ing a heating pattern on to the surface of a test optic.
This is currently not planned for Advanced LIGO ex-
actly because of the photo-thermal effect [2]. Comparing
GaAs : Al0.92Ga0.08As coatings to Ta2O5 : SiO2 coat-
ings, the influence of the coating onto the photo-thermal
transfer function is nominally slightly larger in the grav-
itational wave observation band. However the higher
thermal conductivity tends to equalize the temperature
fluctuations across the whole coating, making it easier
to design a coating for which the photo-thermal effect
cancels across a wide band [7, 12].

The photo-thermal effect is also important for any
opto-mechanical feed-back system, as it tends to dom-
inate over the radiation pressure at higher frequencies.
Due to the cavity response time, radiation pressure based

single carrier optical spring systems are either statically
or dynamically unstable. A second optical carrier is
needed to get stable optical feed-back [9, 21]. The photo-
thermal effect due to residual absorption will slightly
change the phase of the optical spring. Indeed, the first-
order effect given in equation 2 will always drive the op-
tical spring towards instability. If however an optical
spring has a resonance frequency high enough that the
photo-thermal effect changes sign, in the case of figure 1
above about 100 kHz, the photo-thermal effect will tend
to stabilize the optical spring. The additional photo-
thermal feed-back can indeed overcome the feed-back de-
lay due the cavity response time, and lead to a cavity
self-locking effect. This holds even for a single-carrier
optical spring.
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FIG. 2. A bode plot of the photo-thermal transfer function
correction factor for a GaAs : Al0.92Ga0.08As coating with
40.5 and 18.5 λ/4 doublets (black and gray). For the solid
traces the heat was deposited at the front surface of the coat-
ing. For the dash-dotted traces, the power was deposited in
the coating according to the optical power present in each
layer. To get the full transfer function multiply with equa-
tion 2. The calculation is based on the parameters from table
II.

V. THERMO-OPTIC NOISE

FIG. 3. Thermo-optic noise of a Ta2O5 : SiO2 coating with 19
and 8 doublets (black and gray). The solid trace is based on
the full heat flow calculation in the coating. The dashed and
dash-dotted traces are the thin and thick coating approxi-
mations discussed in [13]. The calculation is based on the
parameters from table I and a beam spot size of w = 6 cm.

In his 2008 paper [20] Levin applied the fluctuation-
dissipation theorem to thermo-refractive noise calcula-
tion. He was interested in the thermal noise seen by one
specific degree of freedom, such as the mirror displace-

FIG. 4. Thermo-optic noise of a GaAs : Al0.92Ga0.08As coat-
ing with 40.5 and 18.5 λ/4 doublets (black and gray), corre-
sponding to power reflectivities of (1 − 2.5ppm) and 0.9976.
The solid trace is based on the full heat flow calculation in
the coating. The dashed and dash-dotted traces are again
the thin and thick coating approximations discussed in [13],
applied to the crystalline coating. A cancellation of the noise
coupling naturally occurs for a 18.5 layer doublet, but can be
engineered for higher reflectivity coatings by deviating from
the simple λ/4 structure [7]. The calculation is based on the
parameters from table II and a beam spot size of w = 6 cm.

ment 4z read out by a laser beam. 4z is a linear function
of the temperature field in the optic:

4z =

∫
dV q(r, z)δT (r, z). (12)

Levin showed that the thermal noise seen by this degree
of freedom is proportional to the dissipated power per
cycle if we inject an entropy with the same spatial profile
q(r, z). For the calculation of the photo-thermal transfer
function we had to solve the heat diffusion equation and
found the full heat flow field in the optic as a by-product
(appendix B). This directly permits calculating the dis-
sipated power. Taking into account the full details of the
coating we can thus use the same approach to calculate
the thermo-optic noise, that is the coupling of tempera-
ture fluctuations due to the combined effect of thermal
expansion (thermo-elastic noise) and change in index of
refraction (thermo-refractive noise). More details on the
thermal noise calculation is given in appendix C.

In [13] we gave approximations for both a thin-coating
limit and a thick coating extension that describes the
correlation of thermo-elastic and thermo-refractive noise
as a function of coating thickness. This thick coating
extension is a good approximation for the observation
band of Advanced LIGO. We did however use coating-
averaged material properties for solving the thermal dif-
fusion equation. That approximation will break down
at higher frequencies, and solving the full heat diffusion
equation becomes necessary for calculating the high fre-
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quency thermo-optic noise. The result for a Ta2O5 : SiO2

coatings is shown in figure 3, again for a 19-doublet and
a 8-doublet coating. Below 1 kHz the former agrees well
with the thick-coating approximation, while the latter
is better represented by the thin-coating approximation.
Above about 10 kHz both approximations break down.
Finally, figure 4 shows the thermo-optic noise of the two
GaAs : Al0.92Ga0.08As coatings discussed in this paper.
The cancellation effect that naturally occurs for the 18.5
doublet coating results in a thermal noise at 100 Hz fifty
times below the one of the 40.5 doublet coating. By devi-
ating from a simple λ/4 design such a cancellation effect
can also be achieved for coating with higher reflectivi-
ties [7, 12]. The thick-coating approximation from [13]
provides good results for the 40.5 doublet coating in the
gravitational-wave observation band below about 2 kHz.
However none of the approximations is particularly use-
ful for the 18.5 doublet, suggesting that estimating the
extent to which a thermo-optic noise cancellation can be
achieved requires the detailed heat flow analysis done in
this paper.

VI. CONCLUSION

I derived a coating correction factor for the photo-
thermal transfer function in dielectric mirror coatings.
I showed that, depending on the depth at which the ab-
sorption in the coating occurs, this can lead to an en-
hancement and a sign flip of the photo-thermal trans-
fer function at frequencies for which the diffusion length
becomes comparable or smaller than the coating thick-
ness. The thermo-optic transfer function for two mirror
coatings important for the gravitational-wave community
was calculated. The high frequency shape of the transfer
function can be a powerful tool to distinguish between
coating-intrinsic absorption and absorption on the mir-
ror surface due to contamination. Another possible ap-
plication is the use of the sign flip in the photo-thermal
transfer function to stabilize radiation pressure feed-back
in single carrier opto-mechanical systems. Finally the
thermo-optic noise expression given by Evans et al. [13]
acquires additional corrections at high frequencies, and I
showed that estimating the quality of thermo-optic can-
cellation effects in crystalline coatings requires a detailed
analysis of the heat flow.
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Parameters Ta2O5 :SiO2 Symbol SiO2 Ta2O5 Unit

Refractive Index (@1064 nm) n 1.45 2.06 -

Specific Heat C 746 306 J/kg/K

Density ρ 2200 6850 kg/m3

Thermal Conductivity κ 1.38 33 W/m/K

Thermal expansion coef. α 0.51 3.6 ppm/K

Thermo-Optic coef. (1µm) β = dn
dT

8 14 ppm/K

Poisson ratio σ 0.17 0.23 -

Youngs Modulus E 72.80 140 GPa

TABLE I. Parameters for fused silica (SiO2) and tantulum-
pentoxide (Ta2O5). The values are taken from [13] and [14].

Parameter AlxGa1−xAs Symbol x = 0 x = 0.92 Unit

Refractive Index (@1064 nm) n 3.48 2.977 -

Specific Heat C 330 440 J/kg/K

Density ρ 5320 3880 kg/m3

Thermal Conductivity κ 55 77 W/m/K

Thermal expansion coef. α 5.7 5.2 ppm/K

Thermo-Optic coef. (1µm) β = dn
dT

366 179 ppm/K

Poisson ratio σ 0.31 0.40 -

Youngs Modulus E 85.3 83.6 GPa

TABLE II. Parameters for a GaAs:Al0.92Ga0.08As crystalline
coating. The values are taken from [8, 15].

Appendix A: Coating Reflectivity

Here I give a derivation for the partial derivatives of the
coating reflectivity with respect to the round trip phase
in coating layer k. For a dielectric stack with N layers,
each layer with index of refraction nk, thickness dk and
round trip phase φk = 4πnkdk/λ0, I can define right-
and left-travelling modes ΨR and ΨL at every interface.
I assume the light is incident from the left towards the
coating at z = 0, and find the transfer matrix relation(

ΨR

ΨL

)
k+1

= QkDk

(
ΨR

ΨL

)
i

, (A1)

where

Dk =

(
e−iφk/2 0

0 eiφk/2

)
(A2)

is the propagator through the layer and

Qk =
1

2nk+1

(
nk+1 + nk nk+1 − nk
nk+1 − nk nk+1 + nk

)
(A3)

is the transition matrix from layer k to layer k + 1. The
transfer matrix for the total coating is

M = QNDN ...QkDk...Q1D1Q0, (A4)

with Q0 the transition matrix from vacuum to layer 1.
M is related to coating reflectivity r and transmission t
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by

M

(
1

r

)
=

(
t

0

)
, (A5)

which can easily be solved for the reflectivity r. I will
need the derivative of r with respect to the round trip
phase φk in layer k. Thus I also want

∂M

∂φk
= QNDN ...QkDk

(
−i/2 0

0 i/2

)
Qk−1Dk−1...Q1D1Q0.

(A6)
Using the chain rule on equation A5 I find

1

r

∂r

∂φk
=

1

M21

∂M21

∂φk
− 1

M22

∂M22

∂φk
, (A7)

which can be used directly in equation 6, and we find

∂φc

∂φk
= Im

(
1

M21

∂M21

∂φk
− 1

M22

∂M22

∂φk

)
. (A8)

Appendix B: Coating Heat Diffusion

Here I give the solution to the one-dimensional heat
diffusion equation ξ2

kT = T ′′ across the whole coating
and substrate. As discussed in the main text I assume
that the heat j is deposited on the first interface layer.

The boundary conditions require that T and j =
−κk∇T are continuous everywhere. In each layer we have
ξk =

√
iωCkρk/κk, and the solution has the form given

in equation 8. At z = z0 the heat flow j and temperature
T are related to TR and TL via(

j

T

)
=

(
κξ

1

)(
1 −1

1 1

)(
TR
TL

)
. (B1)

I can therefore define

Ek =

(
κkξk

1

)(
1 −1

1 1

)(
e−ξk

dk
2

eξk
dk
2

)
(B2)

and

Fk =

(
e−ξk

dk
2

eξk
dk
2

)
1

2

(
1 1

−1 1

)(
1

κkξk

1

)
.

(B3)
The operator Dk = EkFk propagates the heat flow and
temperature field by across the layer k:(

j

T

)
k,k+1

= Dk

(
j

T

)
k−1,k

, (B4)

while Fk reads out the temperature in the middle of the
coating: (

TR
TL

)
k,middle

= Fk

(
j

T

)
k−1,k

. (B5)

To fulfill the global boundary conditions, I define for the
substrate

Fs =
1

2

(
1 1

−1 1

)(
1

ξsκs

1

)
(B6)

and

M = FsDN ...D2D1, (B7)

which fulfills

M

(
j

T

)
0,1

=

(
TR
0

)
N,s

, (B8)

where the left-propagating mode is set to zero in the sub-
strate to keep the temperature finite at plus infinity.

This can be solved for T0,1. The temperature in the
middle of each coating layer i becomes(

TR
TL

)
k,middle

= FkDk−1...D1

(
1

−M21

M22

)
j. (B9)

Similarly equation B8 directly gives us TR,N,s. Both re-
sults can now be used in equations 9 and 10.

The matrix formalism discussed here can also be ex-
tended to bulk heating. For this I use 3x3 matrices with
the third row equal to (0,0,1). The field vectors are also
extended to j

T

1

 =

 κξ −κξ
1 1

1


 TR
TL
1

 . (B10)

The layer propagation matrices Dk become

Dk=

 cosh ξkdk −κkξk sinh ξkdk
pk
ξk

sinh ξkdk

− 1
κkξk

sinh ξkdk cosh ξkdk − 2pk
κkξ2k

sinh2 ξkdk
2

1


(B11)

where pk is the bulk heating power density in layer k.
For substrate heating the boundary conditions deserve
some attention. Since it is non-adiabatic, the heat flow j
should asymptote to zero, whereas the temperature will
asymptote to the adiabatic value Tadi = qs/(ξ

2
sκs). This

extension was used for the thermal noise calculation in
appendix C.

Appendix C: Noise calculation

For the thermo-optic noise calculation I follow [20].
According to the discussion in section III the displace-
ment fluctuations of the mirror as seen by a laser beam
are given by

4z =

∞∫
0

dz

∫
d2rq(z)q(r)δT (r, z), (C1)



8

with the readout functions

q(r) =
2

πw2
e−2 r2

w2 (C2)

normalized to
∫
d2q(r) = 1, and

q(z) =

[
∂φc

∂φk
(βk+ᾱknk)+ᾱk

]
k(z)

, (C3)

where the bracket is evaluated for the corresponding coat-
ing layer. In time domain the coating is now heated with
the energy density

dQ

dV
= Tds = TF0 cos (ωt)q(z)q(r)), (C4)

where s is the entropy per unit volume. F0 is the entropy
drive amplitude as introduced by Levin [20]. It will cancel
in the final expression C9. Switching back to frequency
domain we find for the heating power per volume, p:

p = iω
dQ

dV
= iωTF0q(z)q(r). (C5)

The cycle-averaged dissipated power is

Wdiss =
1

T

∫
dV
|j(z, r)|2

2κ
(C6)

The factor of 2 in the denominator is required because
we are working in Foruirer domain and j(z, r) is com-
plex. Since we again neglect radial diffusion, the radial
dependence reduces to∫

d2rq2(r) =
1

πw2
, (C7)

and we find for the cycle-averaged dissipated power

Wdiss =
1

2Tπw2

∞∫
0

|j(z)|2

κ
dz. (C8)

Given the bulk heating p from equation C5 as input, we
can use the approach layed out in appendix B to calculate
the last integral.

Finally, directly following Levin’s approach [20], the
thermo-optic power spectral density for the readout de-
gree of freedom 4z is then given by

SδT (f) =
8kBT

ω2

Wdiss

F 2
0

. (C9)
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