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We show how to obtain a Bayesian estimate of the rates or numbers of signal and background
events from a set of events when the shapes of the signal and background distributions are known,
can be estimated, or approximated; our method works well even if the foreground and background
event distributions overlap significantly and the nature of any individual event cannot be determined
with any certainty. We give examples of determining the rates of gravitational-wave events in the
presence of background triggers from a template bank when noise parameters are known and/or
can be fit from the trigger data. We also give an example of determining globular-cluster shape,
location, and density from an observation of a stellar field that contains a non-uniform background
density of stars superimposed on the cluster stars.

I. INTRODUCTION

The task of estimating rates of events when a mixture
of foreground and background events is present in data is
a common one in physical and astrophysical applications.
This problem comes up, among others, in gravitational-
wave data analysis [e.g., 2–7] and in astronomical obser-
vations of a field of objects of mixed provenance [1, 8].
In this paper, we introduce a robust formalism for es-
timating event rates from the data when the shape of
foreground and background distributions are known (or
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parameterized), but the provenance of individual events
as either background or foreground is unknown.

We use a Bayesian approach and consider all available
data to ensure that the inferred rates are both unbiased
and maximally constrained in the presence of limited ob-
servations. Bayes’ theorem yields the posterior probabil-

ity density function on a set of parameters, ~θ, given the
observed data, d, under a model M :

p(~θ|d,M) =
p(~θ|M)p(d|~θ,M)

p(d|M)
, (1)

where p(~θ|M) are the prior probabilities of the model

parameters, p(d|~θ,M) is the likelihood of obtaining the
data given a particular choice of parameters, and the
normalizing factor p(d|M) is known as the evidence.

Two alternative approaches to rate estimation have
been suggested and are commonly used. One, known
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as the loudest-event statistic [9–11], uses only the infor-
mation from the highest-ranked event in the data to in-
fer the rate distribution. This approach has been used
successfully [2–7] when the number of loud foreground
events is small (typically zero or one) to obtain upper
limits on foreground rates. However, the loudest-event
statistic ignores all events except the loudest one, and
so suffers from an unnecessary loss of information; there-
fore, we expect it to yield a much larger variance than
strictly necessary when multiple events are present in the
data. In practice, the loudest-event statistic is typically
applied repeatedly to multiple “chunks” of data, using
the estimated rate posterior from each chunk as a rate
prior for the next chunk’s analysis [3–5]. Even when used
in this mode, the method discards information, with the
amount of information loss depending on the (arbitrary)
division of the data into chunks.

Another possible approach is based on the use of only
loud, “gold-plated” events, ones which are certain (or
nearly certain) to come from the foreground, to derive
rates. We refer to this approach as the foreground-
dominated statistic. The foreground-dominated statis-
tic may yield accurate results when the foreground and
background are cleanly separated, at least for the loud-
est events, and the number of such loud events is suf-
ficiently large. However, it cannot properly account for
marginal events. In addition, the results of the method
are very sensitive to contamination by the background
events, and therefore the method requires a careful choice
of threshold or reliable membership information to distin-
guish foregrounds and backgrounds for individual events.
While either the loudest-event statistic or the foreground-
dominated statistic can approach the accuracy of our pro-
posed method in specific regimes, both are suboptimal in
a general case.

Ref. [12] considered the problem of determining an in-
trinsic rate and population parameters in the presence of
missing data, either due to thresholding, poor sensitiv-
ity, or contamination from noise events. The approach is
complementary to ours: we consider the problem of ac-
curately counting the events of different classes present
in a dataset, while Ref. [12] deals with translating such
counts into physical rates by properly accounting for the
selection effects on the data set.

Our key results appear in Eq. (18), which provides
the joint posterior probability distribution on the fore-
ground and background rates and shape parameters and
the provenance of individual events as either foreground
or background. Eq. (21) is a marginalized version of
Eq. (18), useful when the provenance of individual events
is not relevant. In practice, these posteriors are best
sampled with stochastic techniques such as Markov chain
Monte Carlo.

In order to demonstrate our method, we consider three
different examples. The first two come from the field of
gravitational-wave data analysis, but could equally arise
in any application that employs matched filtering [13] to
extract weak signals with known shapes from the data.

The last example considers the case of a globular cluster
on a background of field stars. Throughout, we compare
the results obtained with our technique to the loudest-
event and foreground-dominated statistics, which make
use of a limited subset of the available information.

II. MODEL

We first consider one-dimensional data, but will gen-
eralize to the multidimensional case below. We assume
that we are presented with a data set of N events that ex-
ceed a pre-specified threshold in ranking statistic, xmin.
Each event may be due to either a signal of interest or an
uninteresting background. Each event is associated with
a ranking statistic, x. Our data set therefore consists of
the ranking statistics for the set of events:

d = {xi|i = 1, . . . , N} . (2)

The number of events N is also part of the observed
data, but we separate out N and the observed ranking
statistics, d, for convenience. We can choose how to label
our events. Ultimately we will label the events in order
of ranking statistic, i.e., x1 < x2 < · · · < xN , but some
of the derivations that follow are simpler if the events are
ordered by time of arrival (i.e. randomly with respect to
the xi). We will use d to denote ranking statistic-ordered
events, and dto to denote time-ordered events.

We assume that both the foreground and background
events are samples from an inhomogeneous Poisson pro-
cess with respective differential rates

dNf
dx

= f(x, θ) (3)

and

dNb
dx

= b(x, θ), (4)

where the θ argument represents additional “shape” pa-
rameters that may affect the distribution, and for which
we will eventually fit. The cumulative rates of the two
processes are therefore

F (x, θ) ≡
∫ x

−∞
ds f(s, θ) (5)

and

B(x, θ) ≡
∫ x

−∞
ds b(s, θ). (6)

The assumption that the foreground and background
events form an inhomogeneous Poisson process implies

1. The number of events in any range of ranking
statistics, x ∈ [x1, x2] is Poisson distributed with
rate F (x2, θ)− F (x1, θ) or B(x2, θ)−B(x1, θ).
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2. The numbers of events in non-overlapping ranges
of ranking statistics are independent.

3. The probability of exactly one foreground event be-
tween x and x+ h is given by

P (n = 1 ∈ [x, x+ h]) = f(x, θ)h+O
(
h2
)
. (7)

and similarly for background events.

4. The probability of two or more events in a small
range of ranking statistic is negligible

P (n = 2 ∈ [x, x+ h]) = O
(
h2
)
. (8)

The foreground and background rates can in general de-
pend on several parameters; the goal of our analysis is
to determine the posterior probability distributions for
these parameters that are implied by the data. At the
least, we will want to know the overall dimensionless am-
plitude of the foreground and background rates. Let

f(x, θ) = Rf f̂(x, θ′), (9)

and

b(x, θ) = Rbb̂(x, θ
′), (10)

where F̂ (∞, θ′) = B̂(∞, θ′) = 1, and θ′ = θ \ {Rf , Rb}.
Then Rf ≡ F (∞, θ) and Rb ≡ B(∞, θ) are the total
number of foreground and background events expected

and f̂(x, θ′) and b̂(x, θ′) are the likelihood of obtaining
an event with ranking statistic x under the foreground
and background distributions. In what follows, we will
drop the prime, using θ to denote all parameters of the
rate distributions except Rf and Rb.

We do not know a priori which of the events are fore-
ground and which are background. For each event, we
introduce a flag, gi, which is either 0 (background) or 1
(foreground). These “state” flags are parameters in our
model, along with Rf , Rb, and θ. We can marginalize
over our uncertainty in the state of any given event by
summing posteriors over gi = {0, 1}.

Assuming time-ordered data, dto, in the follow-
ing, Bayes’ theorem relates the posterior probabil-
ity of the state flags, rates, and shape parameters,
p ({gi} , Rf , Rb, θ|dto, N), the likelihood of the data,
p (dto| {gi} , N,Rf , Rb, θ), and the prior probability of
state flags, rates and shape parameters before any data
are obtained, p ({gi} , N,Rf , Rb, θ):

p ({gi} , Rf , Rb, θ|dto, N)

=
p (dto| {gi} , N,Rf , Rb, θ) p ({gi} , N,Rf , Rb, θ)

p(dto, N)
. (11)

The normalization constant, called the evidence,
p(dto, N), is independent of the state flags, rates, and
shape parameters.

Each foreground event is drawn from the probability

distribution f̂ and each background event is drawn from

the probability distribution b̂. The events are indepen-
dent of each other. Therefore, the likelihood of the data
is

p (dto| {gi} , N,Rf , Rb, θ)

=

 ∏
{i|gi=1}

f̂ (xi, θ)

 ∏
{i|gi=0}

b̂ (xi, θ)

 . (12)

This is the probability that the first observed event is a
fore/background event (if g1 = 1, 0) with ranking statis-
tic x1 and the second observed event is a fore/background
event (if g2 = 1, 0) with ranking statistic x2, etc. If the
events are ordered by ranking statistic the corresponding
expression is more complicated, since x1 is now the event
from foreground or background with the smallest ranking
statistic, etc. We will return to the statistic-ordered case
later.

The prior distribution can be factorized as

p ({gi} , N,Rf , Rb, θ)
= p ({gi} |N,Rf , Rb) p (N |Rf , Rb) p (Rf , Rb, θ)

= p ({gi} , N |Rf , Rb) p (Rf , Rb, θ) . (13)

The probability that the i’th state flag is gi = 1 is
given by Rf/(Rf + Rb), while the probability that it is
zero is Rb/(Rf +Rb), provided the data are time-ordered
as we have assumed. Then

p ({gi} |N,Rf , Rb)

=
∏

{i|gi=1}

(
Rf

Rf +Rb

) ∏
{i|gi=0}

(
Rb

Rf +Rb

)

=

(
Rf

Rf +Rb

)Nf
(

Rb
Rf +Rb

)Nb

, (14)

where Nf and Nb are the numbers of foreground and
background flags, Nf +Nb = N . Meanwhile,

p (N |Rf , Rb) =
(Rf +Rb)

N

N !
e−(Rf+Rb), (15)

since the distribution of total event number is a Poisson
process with rate Rf + Rb. Combining these yields the
conditional probability of the flags on the rates:

p ({gi} , N |Rf , Rb) =
R
Nf

f RNb

b

N !
exp [− (Rf +Rb)] . (16)

The last term in Eq. (13) is a traditional prior. Because
the rate parameters enter the posterior in the same form
as Poisson rates, we choose here the Poisson Jeffreys prior
on rates [14], independent of the shape parameters

p (Rf , Rb, θ) = α
1√
RfRb

p(θ), (17)

where α is a normalization constant; but of course other
choices are possible. This choice has the advantage that
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the prior is normalizable asRf , Rb → 0, and the exponen-
tials in Eq. (16) regularize the posterior as Rf , Rb →∞.

Putting everything together, the posterior is

p ({gi} , Rf , Rb, θ|dto, N) =
α

p(dto, N)N !

×

 ∏
{i|gi=1}

Rf f̂ (xi, θ)

 ∏
{i|gi=0}

Rbb̂ (xi, θ)


× exp [− (Rf +Rb)]

p(θ)√
RfRb

. (18)

When sampling the posterior, the first term, which is in-
dependent of the parameters of interest, can be omitted
and the equals sign replaced by proportionality; however,
we have kept this term explicitly so that we can see the
equivalence to ranking-statistic ordered data. Once data
have been observed, there is a unique loudness ordering
and time ordering of those events, and so there is a one
to one correspondence between a time-ordered posterior
p ({gi} , Rf , Rb, θ|dto, N) and the corresponding statistic-
ordered posterior p ({gi} , Rf , Rb, θ|d,N), which means
p ({gi} , Rf , Rb, θ|d,N) = p ({gi} , Rf , Rb, θ|dto, N).
However, the evidence p(d,N) = N ! p(dto, N), since
there are N ! ways in which N events with a given set of
ranking statistics can be ordered in time.

The ranking-statistic ordered posterior can be com-
puted directly by assuming that the flags, {gi}, are
un-observed data and treating the sets {xi|gi = 1} and
{xi|gi = 0} as samples from an inhomogeneous Poisson
process. For an inhomogeneous Poisson process with rate
function r(y) (cumulative rate R(y)), the likelihood of a
set of samples {yi} is given by

p ({yi} |r) dNyi = P (zero events below y1)

× P (one event between y1 and y1 + dy1)

× P (zero events between y1 + dy1 and y2) . . . , (19)

so

p ({yi} |r) = lim
δyi→0

exp [−R (y1)] [r (y1) +O (δy1)]

× exp [− [R (y2)−R (y1 + δy1)]]× . . .

=

[∏
i

r (yi)

]
exp [−R (∞)] . (20)

Applying this once to the foreground samples, once to the
background samples and taking the product, we obtain
p(d, {gi} , N |Rf , Rb, θ) and thus p({gi} , Rf , Rb, θ|d,N) =
p(d, {gi} , N |Rf , Rb, θ) p(Rf , Rb, θ) / p(d,N). With the
identification p(d,N) = N ! p(dto, N), as justified above,
we reproduce Eq. (18).

We can marginalize the posterior over the flags, gi,

obtaining

p (Rf , Rb, θ|d,N) =
∑

{gi}∈{0,1}N
p ({gi} , Rf , Rb, θ|d,N)

∝
∏
i

[
Rf f̂ (xi, θ) +Rbb̂ (xi, θ)

]
× exp [− (Rf +Rb)]

p(θ)√
RfRb

. (21)

This expression is useful if we are only interested in
rates and not the probability that any particular event
is foreground or background. Unlike the full posterior
(Eq. (18)), Eq. (21) contains only continuous parameters.
We note that the terms that depend on the overall rate

parameters, Rb or Rf , are of the form R
n−1/2
b exp(−Rb)

and so marginalization over either Rb or Rf can be
achieved analytically using

In =

∫ ∞
0

xn−
1
2 e−xdx =

(2n− 1)!!

2n
√
π (22)

using the usual notation (2n−1)!! ≡ (2n−1)(2n−3) · · · 1.
Eq. (18) is unchanged if the ranking statistic is multi-

dimensional; in this case, the rates are

Rf =

∫
dk~x f(x, θ) (23)

and

Rb =

∫
dk~x b(x, θ), (24)

where f and b are rate densities on the k-dimensional
space of ranking statistics. We give an example of fitting
for multi-dimensional rate densities in § V D.

III. COMPARISON TO OTHER RATE
ESTIMATION METHODS

It is informative to relate these results to two other
methods for estimating the foreground rate parameter —
the loudest event statistic and the foreground-dominated
statistic.

A. Loudest event statistic

If we were to include only the k loudest events in the
posterior distribution, rather than all observed events,
the posterior (Eq. (18)) would be modified by an addi-

tional factor of exp[Rf F̂ (xN−k+1, θ) +RbB̂(xN−k+1, θ)],
where we have assumed events are ordered by loudness,
so that xN−k+1 is the k-th loudest event. This term ac-
counts for the data-dependent threshold that a loudest
event statistic employs.
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For the usual k = 1 case [9], the marginalized posterior
(Eq. (21)) becomes

pLE (Rf , Rb, θ|d) ∝
(
Rf f̂(xN , θ) +Rbb̂(xN , θ)

)
× exp

[
−
(
Rf (1− F̂ (xN , θ)) +Rb(1− B̂(xN , θ))

)]
× p(θ)√

RfRb
. (25)

where xN denotes the loudness of the loudest event, and
Rf and Rb are the number of events expected above our

original threshold (so, for example, Rf (1 − F̂ (xN , θ)) is
the number of foreground events expected above loud-
ness xN ). In the loudest event statistic paper [9], the
authors assume the background distribution and rate are
known, which corresponds to using a narrow prior on Rb.
They further assume a flat prior (in the absence of other
experimental data) on Rf and that the foreground and
background distributions do not depend on any unknown
free parameters. With these assumptions, the posterior
on Rf , Eq. (25), is modified to

pLE(Rf |d) ∝
(
Rf f̂(xN ) +Rbb̂(xN )

)
× exp

[
−
(
Rf (1− F̂ (xN )) +Rb(1− B̂(xN ))

)]
. (26)

Integrating over Rf gives

∫ ∞
0

pLE(Rf |d)dRf =
Rbb̂(xN )

(1− F̂ (xN ))
e−(1−B̂(xN ))Rb

×
(

f̂(xN )

(1− F̂ (xN ))Rbb̂(xN )
+ 1

)
(27)

and so the normalised posterior is

pLE(Rf |d) =
(1− F̂ (xN ))

1 + Λ

(
1 +Rf (1− F̂ (xN ))Λ

)
× exp

[
−Rf (1− F̂ (xN ))

]
(28)

in which we have defined

Λ ≡ f̂(xN )

(1− F̂ (xN ))Rbb̂(xN )
. (29)

With the further identification µ ≡ Rf and ε̂ ≡ 1 −
F̂ (xN ), this is Eq. (14) of [9] and we have shown how their

parameter Λ is related to the foreground and background
distributions used here.

Returning now to Eq. (25) and marginalizing over Rb,
we obtain

pLE (Rf , θ|d) ∝
(

b̂(xN , θ)

2(1− B̂(xN , θ))
+Rf f̂(xN , θ)

)

×
√
π p(θ)√

1− B̂(xN , θ)
√
Rf

exp
(
−Rf (1− F̂ (xN , θ))

)
.

(30)

This posterior has a maximum in Rf at

Rf =
f̂(xN , θ)− (1− F̂ (xN , θ))b̃(xN , θ) +

√
g(xN , θ)

4f̂(xN , θ)(1− F̂ (xN , θ))

where g(xN , θ) =
(
f̂(xN , θ)− (1− F̂ (xN , θ))b̃(xN , θ)

)2

− 4b̃(xN , θ)(1− F̂ (xN , θ))f̂(xN , θ) (31)

and b̃(xN , θ) = b̂(xN , θ)/(1− B̂(xN , θ)) and similarly for

f̃(xN , θ).

If b̃(xN , θ) � f̃(xN , θ), we obtain the result (1 −
F̂ (xN , θ))Rf ≈ 1/2. This can be understood as the
statement that the rate of foreground events with ranking
statistic greater than xN , (1−F̂ (xN , θ))Rf , is of order 1,

as expected. However, b̃(xN , θ) = −d[ln(1− B̂(x, θ))]/dx

and (1 − B̂(x, θ)) → 0 as x → ∞, so this term may be
divergent and for many reasonable examples, we will find
b̃(xN , θ) � f̃(xN , θ), in which case the posterior on Rf
is peaked at 0. This issue highlights the problem with
using a loudest-event statistic with an improper prior
on the background rate Rb. No matter how improba-
ble an event with x = xN is under the background dis-
tribution, it can become likely that the event at xN is
from the background distribution by taking the back-
ground rate to be sufficiently large. Although this pre-
dicts many more events with x < xN , by using only the
loudest event we do not incorporate the information that
no such events are seen. This problem is avoided in the
new framework described here, since we use all events
detected above threshold and combined rates, Rf + Rb,
significantly greater than the total number of observed
events are strongly disfavored.

This problem can also be avoided in the context of the
loudest-event framework by even very weak prior infor-
mation on the background rate, Rb, of the kind present
in nearly all experiments. For example, we can include
an upper limit on the rate, Rmax, in the prior for Rb.
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The marginalized distribution for the foreground rate then becomes

pLE (Rf , θ|d) ∝
(

b̂(xN , θ)

(1− B̂(xN , θ))
3
2

[√
π

2
erf

(√
(1− B̂(xN , θ))Rmax

)
−
√

(1− B̂(xN , θ))Rmax e−(1−B̂(xN ,θ))Rmax

]

+Rf f̂(xN , θ)

√
π erf

(√
(1− B̂(xN , θ))Rmax

)
√

(1− B̂(xN , θ))

 p(θ)√
Rf

exp
(
−Rf (1− F̂ (xN , θ))

)
, (32)

where erf(x) is the error function, defined in the usual way erf(x) = (2/
√
π)
∫ x

0
exp(−u2)du. If (1− B̂(xN , θ))Rmax �

1, Eq. (32) can be approximated by

pLE (Rf , θ|d) ∝
(
Rmax

3
b̂(xN , θ) +Rf f̂(xN , θ)

)
p(θ)√
Rf

exp
(
−Rf (1− F̂ (xN , θ))

)
(33)

and if f̂(xN , θ)� Rmaxb̂(xN , θ) we find the same result as before, (1− F̂ (xN , θ))Rf ≈ 1/2.

B. Foreground dominated statistic

If we set the threshold for including an event, xmin,

sufficiently high, we can ensure that f̂(xi, θ) � b̂(xi, θ)
for all ranking statistics xi in the data set. If we can

further be confident that Rf f̂(xi, θ) � Rbb̂(xi, θ) for all
events, then the posterior can be approximated by

pFD (Rf , Rb, θ|d)

∝
∏
i

[
f̂ (xi, θ)

]
RNf exp [− (Rf +Rb)]

p(θ)√
RfRb

. (34)

Note that these are posteriors on the number of events
expected above the threshold xmin. The threshold choice
for the foreground-dominated statistic could be different
from the threshold choice applied elsewhere. If the rates
are estimated accurately, then a rate estimate Rf,1 above
threshold xmin = x1 can be converted into a rate estimate
Rf,2 above threshold xmin = x2 via Rf,1(1− F̂ (x2, θ)) =

Rf,2(1 − F̂ (x1, θ)); however, rate point estimates based
on thresholding can have significant fluctuations, as dis-
cussed in the following section.

Normalization over Rb gives a constant factor and the
posterior on the foreground rate becomes

pFD (Rf , θ|d)

∝
∏
i

[
f̂ (xi, θ)

]
R
N− 1

2

f exp [−Rf ] p(θ). (35)

Ignoring the dependence on θ, this is peaked at a rate
Rf = N−1/2, so we have the expected result that, in the
foreground dominated regime, the rate is approximately
equal to the number of events observed (the 1/2 comes
from our use of the Jeffreys prior on the rate).

IV. THRESHOLDING

This paper is concerned with Bayesian rate estimates
based on lists of events. Ideally, the lists should contain
all events in the data set. However, for experimental
or computational reasons one may wish to restrict the
events to only those above some loudness threshold; in
some cases the rate of foreground or background events,
or both, is even expected to diverge at certain loudnesses.
In this subsection we address the question of how the rate
estimate depends on the threshold value. For a discussion
of selection effects, of which thresholding is but one, on
the estimate of physical rates, see Ref. [12].

To begin with, we recall the well-known fact that the
Bayesian estimator is unbiased, in the following sense.
For simplicity, assume that the model consists of a single
rate parameter R, with prior distribution p(R). Consider
an ensemble of data sets whose distribution is consistent
with that prior; i.e., such that p(d) is given by

p(d) =

∫
p(d|R) p(R) dR . (36)

For each data set in the ensemble, compute the
Bayesian estimator for the mean of the posterior RB =∫
Rp(R|d)dR. Then it is immediate that∫

RB(d) p(d) d(d) =

∫
Rp(R) dR, (37)

i.e. the data-weighted average of the Bayesian estimator
RB equals the prior-weighted average R. Therefore all
threshold values will yield, on average, the same point
estimate of the rate. However this equality of averages
does not imply that all threshold values yield the same
information. In general, as the threshold is lowered to in-
clude more events, the error bar on the estimate shrinks.
In this subsection we give quantitative illustrations of
how the error bar shrinks when the threshold is lowered.

Consider the following model problem. Let p(x) =

b(x) + f(x) = Rbb̂(x) + Rf f̂(x) be the rate density of
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events (of both foreground and background type) per unit
loudness. Here we will assume that the background is
normally-distributed in loudness, so that b has the form

b(x) = Γb exp

(
−x

2

2

)
. (38)

We find it useful to define x1 as the loudness such that a
data set will have on average a single noise event louder
than x1; i.e., such that∫ ∞

x1

b(x)dx = Rb −B (x1) = 1. (39)

This condition fixes

Γb =

[√
π

2
erfc

(
x1√

2

)]−1

, (40)

while Rb will depend on the threshold, xth, as

Rb =
erfc

(
xth√

2

)
erfc

(
x1√

2

) . (41)

Let the foreground distribution follow a power law in
loudness (this is, for example, the distribution of SNR
for gravitational wave events from uniformly-distributed
sources in a single detector)

f(x) = 3Γf
x3

1

x4
, (42)

where Γf = Rf − F (x1) is the mean number of fore-
ground events with x > x1. The overall foreground rate
is given by

Rf = Γf
x3

1

x3
th

. (43)

We can write the full p(x) as

p(x) =

[√
π

2
erfc

(
x1√

2

)]−1

exp

[
−x

2

2

]
+ 3Γf

x3
1

x4
(44)

For any pair (x1,Γf ), it is straightforward to construct
random event lists drawn from the corresponding p(x),
and straightforward to apply a threshold by “throwing
away” all events with x less than the threshold value
xth. If Γf � 1, then we are in the foreground-dominated
regime at x = x1, if Γf � 1 we are in the background-
dominated regime, and if Γf ∼ 1 the foreground and
background counts above x1 are about equal. For any
thresholded event list, we use Eq. (21) to construct the
probability density p(Rf |d). For that event list, we define
the foreground rate uncertainty, ∆Rf , by

(∆Rf )2 ≡
∫

(Rf −Rtrue
f )2 p(Rf |d) dRf , (45)

where Rtrue
f is given by Eq. (43).
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FIG. 1. The mean foreground rate uncertainty, Eq. (45), as
a function of threshold for data sets with Γf = 100 (solid
line), Γf = 10 (dashed line), and Γf = 1 (dash-dotted line).
Recall that Γf is the mean number of foreground events
above xth = x1 = 8. The total background rate, Rb (xth),
is shown by the dotted line; we fix Rb (xth = x1 = 8) = 1,
so on average there is one background event above x = 8.
For xth & x1, increasing the threshold tends to increase the
foreground rate uncertainty because the rate is foreground-
dominated and fewer events are included in the data set. For
xth . x1, the background rate dominates at small loudness,
and the foreground rate uncertainty asymptotes to the count-
ing error on the events that stand out from the background,
∆Rf/Rf ' 1/

√
Γf .

Figure 1 illustrates how the mean fractional foreground
uncertainty, 〈∆Rf 〉 /Rf , varies with the threshold value
xth for the foreground-dominated and comparable-rate
regime. In all cases we assumed that x1 = 8. For
large thresholds, where Rb � 1, increasing the thresh-
old tends to increase the fractional uncertainty on the
foreground rate, since fewer foreground events are in-
cluded in the sample. However, as the threshold passes
into the background-dominated regime, the uncertainty
in the foreground rate asymptotes to

∆Rf
Rf

' 1√
Γf
, (46)

which is the usual Poisson counting uncertainty on the
events that stand out from the background (those with
x & x1). Note that this uncertainty applies even when
the total number of background events is orders of magni-
tude larger than the number of foreground events. When
a threshold must be chosen, it is safest—in the sense of
producing the minimal foreground rate uncertainty—to
choose the threshold well into the background-dominated
loudness regime; the extra background events in the data
set do not affect the estimate of the foreground rate, and,
when the background distribution is parameterized, can
help to better determine these parameters (see § V B).

Though we have only illustrated the behavior of the
rate estimate quantitatively for this specific example of
foreground and background rates, the conclusions hold
in general. Consider the Fisher information matrix for
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the posterior distribution in Eq. (21). For a model with
parameters {θi}, the Fisher information matrix has com-
ponents

Fij ≡
〈
∂ log p (θ|d)

∂θi

∂ log p (θ|d)

∂θj

〉
, (47)

where the average is taken over the data distribution at
fixed θ, p(d|θ). The components of the Fisher information
matrix describe the maximum amount of information
about the corresponding parameters available in a given
data set; the inverse of the Fisher information matrix
gives the Cramer-Rao bound on the covariance matrix of
unbiased estimators of θ. Though our Bayesian analy-
sis is not necessarily limited by the Cramer-Rao bound
(since estimators constructed from it need not be unbi-
ased and can also be affected by the prior), the Fisher
information is indicative of the influence of each mea-
surement on the posterior. For the likelihood that enters
Eq. (21), the Fisher information matrix is

F = (Rf +Rb)

×


〈(

f̂

Rf f̂+Rbb̂

)2
〉 〈

f̂ b̂

(Rf f̂+Rbb̂)
2

〉
〈

f̂ b̂

(Rf f̂+Rbb̂)
2

〉 〈(
b̂

Rf f̂+Rbb̂

)2
〉
 , (48)

where the expectation values are taken over the distri-

butions f̂ and b̂ (i.e. they are expectations for one event
from the combined rate distribution). If the cross-terms
are small, then the Cramer-Rao bound on the uncertainty
of Rf will be given by

σRf
' 1√

Rf +Rb

〈( f̂

Rf f̂ +Rbb̂

)2〉−1/2

(49)

Extending a threshold into regions where the factor(
f̂

Rf f̂ +Rbb̂

)2

(50)

becomes small—that is, into background-dominated
regions—contributes little to reducing the overall uncer-
tainty in the foreground rate. Thus, when the back-
ground distribution itself is of no interest and compu-
tational costs are high, the threshold does not need to be
pushed into background-dominated regions in order to
obtain an accurate foreground estimate. This is consis-
tent with the behavior of the specific example in Figure
1.

A. Extreme Sensitivity of the LE Rate Estimate to
a Single, Unusually Loud Event

Here we discuss a very unattractive feature of the
Bayesian loudest event estimate of R [9]: a small percent-
age of the time it will yield a very large over-estimate.

To explain this, we will use the same model as de-
scribed in the previous subsection, and we will begin with
a very specific example. Let Γf = 1, meaning that the ex-
pected number of actual events with x > x1 is one. Then
there is a 1/64 chance (1 − F̂ (xLE) ≈ 1.6%) that the
loudest event will have xLE > 4x1. Consider this case,
and let us also assume that there are no events (noise or
actual) with x1 < x < xLE .

The loudest event estimate basically “throws away”
the information that there are no events in this inter-
val. The maximum of the loudest-event-statistic poste-
rior on Rf , Eq. (28), is at Rf = Λ−1

Λ(1−F̂ (xLE))
. If the

value of Λ is sufficiently high at x1 (and Λ will be even
greater at xLE), then, for this data set, we would esti-
mate Rf ≈ 1

1−F̂ (xLE)
& 64. Thus, for our assumed shape

of the foreground distribution, we will estimate the rate
of events above x1 to be 64 times the true rate!

Now, if the true rate really were Γf = 64, then the
expected number of events with x > x1 would be 64. So
in this case, the loudest event estimate ignores the fact
that there are ∼ 56 − 72 “missing” events. However a
Bayesian estimate with xth set to x1 incorporates this
information quite naturally, and so (correctly) yields an
estimated Γf of order one.

V. EXAMPLES

In this section we present several examples of the appli-
cation of our framework to various rate estimation prob-
lems in the presence of background.

A. Gravitational Waves with Non-Overlapping
Templates

Suppose we attempt to detect gravitational wave sig-
nals in a data stream by matched filtering in the fre-
quency domain against a set of N template waveforms
[e.g., 6, 13]. We use an extremely simplified model of
such a search and the ensuing analysis to demonstrate
how our framework could be used in practice.

In our simplistic model, we suppose the data stream
consists of stationary Gaussian noise with a power spec-
tral density S(f) combined additively with some number
of gravitational wave signals. We assume that the signals
are sufficiently rare that they do not overlap in the data
stream. The signal-to-noise ratio (SNR) of a template,
h(f), given data, d(f), is

ρh ≡
〈h, d〉√
〈h, h〉

, (51)

where 〈·〉 denotes the noise-weighted inner product:

〈a, b〉 ≡ 4<
∫ ∞

0

df
a∗(f)b(f)

S(f)
. (52)
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We suppose for simplicity that the templates are suffi-
ciently distinct that

〈hi, hj〉 ' δij . (53)

In the following subsection, we will generalize the model
to overlapping templates. We rank candidate events by
their maximum SNR over the entire template bank,

x ≡ max
h

ρh, (54)

and consider only events that have a maximum SNR
above some threshold, x > xmin.

For a data stream of pure noise, d(f) = n(f), the SNRs
of the templates are independent N(0, 1) random vari-
ables. The background ranking statistic (i.e. the maxi-
mum SNR over the template bank) then has a cumulative
distribution without thresholding of

B̂(x) =

1 + erf
(
x√
2

)
2

N

(55)

where erf(x) is the error function as before. Imposing
the threshold, x > xmin, the cumulative distribution of
the background becomes

B̂(x) =

(
1 + erf

(
x√
2

))N
−
(

1 + erf
(
xmin√

2

))N
2N −

(
1 + erf

(
xmin√

2

))N (56)

for x > xmin, 0 otherwise.
The SNR of a gravitational-wave signal in an interfero-

metric detector scales as 1/d [15], where d is the distance
to the source. Ignoring cosmological effects, the num-
ber of sources scales as d3. Thus, we expect that the
foreground cumulative distribution of events will follow

F̂ (x) = 1− x3
min

x3
. (57)

Note that this scenario has no shape parameters θ for
the foreground and background distributions.

To demonstrate the effectiveness of our formalism, we
applied it to a synthetic data set with foreground and
background distributions drawn from Eqs. (56) and (57)
using xmin = 3.5, with Rtrue

f = 10.4 and Rtrue
b = 95.1

and 1000 templates. The synthetic data consisted of 13
foreground events and 85 background events; the cumula-
tive distribution for the ranking statistic of the synthetic
data appears in Figure 2. We used a Markov chain Monte
Carlo simulation to draw samples of state flags and rates
from the joint posterior (Eq. (18)).

In Figure 3, we show the marginalized posterior den-
sities for the foreground and background rates (see
Eq. (21)). Figure 4 shows the posterior foreground prob-
ability for each event marginalized over all other events’
types and the foreground and background rates.
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x
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1.0

N
(x

)/
N

to
t

FIG. 2. The cumulative distribution of the ranking statistics
for the synthetic data used to test the formalism on the model
from §V A. The solid line gives the cumulative distribution
of the synthetic data; the dashed line gives the theoretical
cumulative distribution for the models in Eqs. (56) and (57)
combined with Rf = 10.4 and Rb = 95.1.

We can compare these results to results obtained using
the two approximations described earlier, the loudest-
event statistic and the foreground-dominated statistic.
The marginalized distribution for the foreground rate us-
ing these alternatives are shown in Figure 5. In this
case, the loudest event had xN ' 9.47. The loudest-
event statistic depends on a specification of the max-
imum, Rmax, for the background rate. We show re-
sults for Rmax = ∞, i.e., the improper prior, and
Rmax = 10000. The results for other reasonable choices
of Rmax = 100, 1000, 100000 etc. gave exactly the same

posterior, since b̂(xN )Rmax � f̂(xN ) for all these choices
and we are therefore in the regime where the posterior is
insensitive to Rmax. To apply the foreground-dominated
statistic we must specify a threshold above which we as-
sume all events are foreground. It is reasonable to do
this based on a specification for the relative probability

of an event being fore/background, f̂(x)/b̂(x) = pthresh.
Setting pthresh = 0.99 gives xmin = 4.07 and there
are N = 18 (11 foreground and 7 background) events
exceeding that threshold. Setting pthresh = 0.5 gives
xmin = 3.82 and there are N = 30 (11 foreground and
19 background) events exceeding that threshold. Each
of these thresholds gives a biased estimate of the rate
because there are background events still above thresh-
old. The “omniscient” threshold of xmin = 4.38 pro-
duces N = 7 (7 foreground and 0 background) events in
this data set, and therefore an unbiased estimate, but of
course this threshold can only be determined because we
can examine the synthetic foreground and background
data samples. The threshold may seem obvious from a
visual examination of Figure 4; however, the construction
of this figure relies on the application of the full frame-
work in the first place. We show results for the first two
choices of xmin in Figure 5; the omniscient choice pro-
duces essentially the same posterior as our full analysis.
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FIG. 3. The marginalized posterior densities for Rf (solid
line) and Rb (dashed line) for the analytic model discussed
in §V A. The vertical lines indicate the “true” values used
to generate the synthetic data set. Both the true foreground
and background rates lie well within the probability envelope
for Rf and Rb.

The loudest event statistic with the improper prior
gives, as expected, a poor approximation to the fore-
ground rate. The peak is more accurately located when
a prior maximum rate is defined, but the distribution is
much wider than using the full analysis described here in
any case. This is to be expected as much of the informa-
tion is being thrown away. The foreground-dominated
statistic gives a reasonable approximation to the true
foreground rate, and a distribution that is essentially
equal to the full analysis, for the “omniscient” choice of
threshold value that excludes all background data. For
lower thresholds, even for a threshold where pthresh =
0.99, it performs poorly since we are approximating the
foreground rate by the total foreground plus background
rate. This indicates that, provided the threshold is cho-
sen appropriately, the foreground dominated statistic can
perform quite well at estimating the rate—but choosing
this threshold correctly is difficult. The fact that it re-
produces the posterior from the full analysis so well is
indicative of the fact that most of the information about
the foreground comes from the loudest events. The full
analysis naturally incorporates inference about the back-
ground rate Rb along with the foreground rate and in-
corporates maximum information from the data set and
should therefore lead to narrower posteriors in general.

B. Gravitational Waves With Overlapping
Templates

In §V A we assumed that the overlap between differ-
ent templates in the template bank was negligible, so the
SNRs recovered by different templates are independent
random variables. In fact, template banks are not con-
structed in this way [e.g., 16, 17], because signals could
fall in the gaps between the non-overlapping templates.
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FIG. 4. Foreground probability for each event in the synthetic
data set of §V A marginalized over all other parameters. True
foreground events are in dark grey, background events in light
grey. Even though our method cannot identify the status of
most events with confidence, it can still correctly estimate the
rates (Figure 3).
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FIG. 5. Posteriors on foreground rate obtained using the
method described in this paper, the loudest event statistic
and the foreground dominated analysis for the data set from
§V A. For the loudest event statistic, we present the posterior
with and without an upper limit on the background rate, Rb;
in both cases the rate posterior is significantly wider than the
one obtained with the method described in this paper. For
the foreground dominated statistic, the limits xmin = 3.82
and xmin = 4.07 give likelihood ratios of f̂/b̂ = 0.5 and 0.99.
For this data set, the thresholds in fact include 19 and 7
background events, respectively, so the corresponding rate es-
timates are significantly biased. An “omniscient” threshold
of xmin = 4.38 would produce exactly 7 foreground and zero
background events, and the resulting posterior is essentially
indistinguishable from the curve for the full analysis.

We can model this effect by assuming that a template
bank of N actual templates will behave as if it had Neff

independent templates. Rather than pre-computing Neff ,
we can fit for it as a shape parameter. That is, we assume
that θ = {Neff} is a shape parameter for the background
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FIG. 6. The foreground (solid lines) and background (dashed
lines) rate posterior, marginalized over all flags and the Neff

parameter, for the gravitational wave template detection sce-
nario with overlapping templates discussed in §V B. The true
values of the rates, Rf = 10.4 and Rb = 95.1, are indicated
with vertical lines. The distributions are not significantly
wider than those of Figure 3, in spite of the extra parame-
ter.

cumulative distribution:

B̂ (x,Neff) =

(
1 + erf

(
x√
2

))Neff

−
(

1 + erf
(
xmin√

2

))Neff

2Neff −
(

1 + erf
(
xmin√

2

))Neff
.

(58)

Results from such an analysis appear in Figures 6 and
7. We use the same parameters and data set as in §V A,
with xmin = 3.5, Rf = 10.4, Rb = 95.1, and Neff = 1000,
but now allow Neff to be a parameter of the background
distribution, with a flat prior. Both the rates and the
number of effective templates are recovered without sig-
nificant loss of accuracy relative to the fixedNeff situation
in §V A.

If we consider the two alternative methods, the loud-
est event and foreground dominated statistics, and ap-
ply the same foreground-dominated thresholds as before,
we will recover the same foreground distributions as are
shown in Figure 5. This is because the parameter Neff

affects only the background distribution, to which the
foreground-dominated statistic is insensitive, and in the
loudest event case, after marginalization over Neff we

find
∫ Nmax

0
b̂(xN , Neff)dNeff � 3Nmax/Rmaxf̂(xN , Neff)

and so we are still in the foreground-dominated regime in
which the loudest event tells us nothing about the back-
ground. Neither of these alternative methods can inform
us about the value of Neff , a property of the distribution
of background events identified by filtering with this tem-
plate bank. Moreover, the choice of threshold value for
the foreground-dominated statistic becomes significantly
more complicated in this case, since pthresh now depends
on Neff .
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FIG. 7. The posterior on the number of effective templates,
Neff , for the model and data discussed in §V B, marginalized
over all state flags and rates. The true value, Neff = 1000, is
indicated by the vertical line.

C. Uncertainty in the Foreground and Background
Distributions

The framework outlined above relies on the existence
of models for the foreground, f̂(x, θ), and background,

b̂(x, θ), distributions parameterized by a small number
of model parameters, θ. While in many situations sim-
ple analytic functions such as power laws will provide an
adequate description, this will not always be the case.
In the absence of a good analytic model, the space of
the ranking statistic x could be divided into bins and

f̂(x) and b̂(x) are taken to be flat in each of these bins.

The number of free parameters characterizing each of f̂

and b̂ is then the number of bins used. While such a
framework is model free, the increase in model parame-
ters will mean that more observed events will typically
be required to achieve the same precision on the rates
and foreground/background distributions.

In the context of gravitational wave experiments, addi-
tional information on the ranking statistic distributions
for the foreground can be obtained using mock signal
injections into the data, while distributions for the back-
ground can be estimated by analyzing time slides of data
sets from different detectors relative to each other [e.g.,
18]. This information can be readily incorporated in the
current framework by assuming there is another set of NI
events with ranking statistics {wi}, known to be drawn
from the foreground distribution (gi = 1) and a set of NT
events with ranking statistics {zi} known to be drawn
from the background distribution (gi = 0). These events
will typically not be drawn with the correct rate param-
eters, so they do not contribute to the estimates of Rf
and Rb, but they do contribute an extra factor

NI∏
l=1

f̂(wl, θ)

NT∏
m=1

b̂(zi, θ) (59)

to the right hand sides of Eqs (18) and (21). This ap-
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proach provides a way to incorporate extra information
into the analysis in order to simultaneously fit for the
shape of the background and foreground as well as the
rates. In the limit that there are many more events in
the timeslide and injection data set, this will reduce to
the analysis that was described above with fixed rank-

ing statistic distributions f̂(x) and b̂(x) given by the in-
jection and time slide data. We note that this analysis
makes the assumption that the background distribution
is the same in the time slide and real data and that the
foreground distribution is the same between the injection
and real data. The former assumption is probably rea-
sonable, modulo correlations of non-gravitational-wave
origin between data in different detectors, but the latter
relies on knowledge of the relative the astrophysical rates
of different events, which is more uncertain. These as-
trophysical uncertainties could be handled with a hybrid
approach, in which injections are used to characterize
the statistic distribution for sources of a particular type,
while additional rate or shape parameters are introduced
to characterize the variation in the astrophysical rate of
mergers as a function of source type.

D. Star Cluster Parameters With Background
Contamination

Our final example concerns fitting for the location
and shape parameters of a cluster of stars observed on
top of a stellar background with a density gradient. In
this example, stars are either members of the cluster
(i.e. foreground) or background contamination, with a
spatially varying density (i.e. our rate functions are two-
dimensional). Our method of analysis here is similar
to that of De Gennaro et al. [8], but here we marginal-
ize over membership flags and are simultaneously fitting
foreground and background densities (i.e. rates) and clus-
ter properties.

We assume that a star cluster has a Plummer surface-
density profile [19, 20],

f̂(~x, θ) =
1

πr2
0

(
1 + |~x−~x0|2

r20

)2 , (60)

where ~x0 is the location on the sky of the center of the
cluster, r0 is a radial scale parameter, and ~x = (x, y) is
the position on the sky. We assume a square observa-
tional domain1, ~x ∈ [0, 1]2, and a background that has a
density gradient at an arbitrary orientation with respect
to the observational axes:

b̂ (~x, θ) = 1 + ~γ ·
(
~x− ~x1/2

)
, (61)

1 The observational domain is not infinite, so the normalization
of the cluster density in Eq. (60) is not quite correct. In our
modeling we properly take this into account, but for simplicity
here we ignore it.
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FIG. 8. Density contours and synthetic data for the example
in § V D. The contours describe the true density profile with
the parameters in Eq. (62). The points are the realization
of this density profile used as synthetic data in § V D; the
dashed line encloses one Plummer scale radius about the true
cluster center. Because the peak cluster density is equal to
the background density at the cluster center, the cluster is
barely apparent to the eye.

where ~γ is the gradient, and ~x1/2 = [1/2, 1/2] is the cen-
troid of the observational domain.

We use simulated data drawn from our model with
parameters

θ0 ≡ {x0, y0, r0, γx, γy} =

{
1

2
,

1

2
, 0.18,−1

2
,

1

2

}
, (62)

with Rf = 1000 and Rb = 10000. For this set of parame-
ters, the average density of the background and the peak
density of the cluster are comparable; there are an order
of magnitude more background stars than cluster stars in
the field. Figure 8 shows the density of stars on the sky
and the particular synthetic data set used for this analy-
sis. Because the peak density of the cluster is equal to the
background density at the center of the domain, there is
no single star in the domain that is more likely to be a
cluster member than a background star (i.e. 〈gi〉 . 0.5
for all stars); nevertheless, we will see that our method
provides good constraints on the cluster parameters.

To analyze our synthetic data set, we analytically
marginalized over the state flags (i.e. cluster member-
ship), using the likelihood in Eq. (21). We did this to
take advantage of the emcee sampler of Foreman-Mackey
et al. [21], which requires all parameters to be in R. We
applied a prior on the shape parameters that is flat in ~x0

and ~γ, and an (approximately) Jeffreys prior on r0,

p (r0) =

√
Rf

r0
. (63)

(Note that this factor of
√
Rf cancels with the Jeffreys

prior on the rate, 1/
√
Rf ; we have verified that the priors

on these parameters are irrelevant to our results, as would
be expected from the measurement of ∼ 1000 foreground
stars.)
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FIG. 9. Contours of the posterior probability distribution for
the center of the cluster, ~x0, for the example from § V D. The
center (x, y) = (x0, y0) is determined to within about 5% of
the structural radius of the cluster, r0 (see Eq. (62)).
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FIG. 10. Posterior density for the scale parameter for the
cluster, r0, for the example from § V D. The true value is
indicated by the vertical line (see Eq. 62).

Figures 9 and 10 shows the posteriors for the cluster
location and scale parameters. The center of the cluster,
~x0, is localized to within about 5% of the cluster scale,
and the cluster radius with a relative error of about 10%.
In spite of the significant background, the cluster param-
eters are recovered to a relative accuracy consistent with
the expected uncertainty from Neff ' Rf = 1000 mea-
surements. Figure 11 shows the posteriors inferred on
the cluster and background numbers, Rf and Rb.

VI. DISCUSSION

In this paper, we have developed a Bayesian framework
for rate estimation when the data consists of a mixture
of foreground and background events. We demonstrated
the application of this framework using several examples
from gravitational-wave data analysis in the presence of
signatures of binary mergers and noise triggers, and as-
tronomical image analysis in the presence of several pop-
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FIG. 11. Posterior densities for the number of stars in the
cluster (Rf ) and in the field (Rb) in the example from § V D.
Vertical lines indicate the true values (see Eq. (62)).

ulations of stars. We showed that this framework is gen-
erally superior to both the loudest-event statistic and the
foreground-dominated statistic.

Through most of this paper, we have assumed that the
shape of the foreground and background distributions is
known, or at least can be modeled with several additional
parameters. This is not necessarily easy to do. For exam-
ple, in the case of gravitational-wave data analysis, the
shape of the foreground distribution of events may de-
pend on the details of a complex data-analysis pipeline
as well as the astrophysical source distribution, while the
background event distribution depends on data quality
and may deviate significantly from the simple Gaussian-
noise behavior modeled in section V. Several approaches
have been developed to accurately model both distribu-
tions, e.g., through the use of injected signals [18] or other
methods [22] to model the foreground distribution. How-
ever, this is a difficult problem (e.g., because of the need
to estimate the background at the very tails of the distri-
bution), and will require significant future work. In Sec-
tion V C, we discussed some of the possible approaches
when the shapes of the background and foreground distri-
butions cannot be confidently described by models with
a few adjustable parameters.

A further complication is that we have considered the
rate of events in the data as products of some analy-
sis pipeline. This rate may be different from the physical
rate of interest, such as the rate of compact-binary merg-
ers per unit time per unit volume which generate grav-
itational waves, or the physical numbers of stars in the
cluster and field populations which produce the observed
luminosities. Again, the conversion between the two will
depend on the details of the data-analysis algorithm and
ranking statistic, including any selection effects [12], and
would need to be determined on a case-by-case basis. See
Ref. [11] for an example of such conversion when the un-
derlying framework is the loudest-event statistic.

Furthermore, in a practical application there could be
multiple classes of events, not just foreground and back-
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ground. For example, we are not necessarily interested
in the rate of gravitational-wave signals per se, but sepa-
rately in the rate of signals from mergers of binary neu-
tron stars and binary black holes – populations that may
sometimes be difficult to distinguish. Our approach is
readily extendable to this particular complication, how-
ever. Note that it is symmetric with respect to fore-
ground and background events (as expected, since one
physicist’s background is another physicist’s foreground).
We could relabel foreground and background events into
other competing event classes, and further classes could
be added in a straightforward way. However, the ability
to distinguish classes relies on different distributions of
their statistics. In general, rankings may need to be ex-
tended to include other statistics in addition to the signal
“loudness” statistic in order to indicate both event sig-
nificance and the probability of event attribution to a

particular class.
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ener, N. Dorband, J. Gonzalez, M. Hannam, S. Husa,
D. Pollney, L. Rezzolla, L. Santamaŕıa, U. Sperhake,
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