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I. INTRODUCTION

A number of observatories based on optical interferometric detectors of gravitational waves (henceforth GW) have
been already built (LIGO [1], GEO [2], Virgo [3] and TAMA [4]), are under construction (KAGRA, formerly LCGT
[5]), or have been proposed (ACIGA [6], and INDIGO [7]). Second-generation upgrades of existing detectors have
been implemented using new materials and technologies to reduce their noise floor and improve their astrophysical
reach [8].
However, thermal noise in the high-reflectivity dielectric coatings of the test masses sets the limiting sensitivity of
these instruments. Reducing coating thermal noise is essential if we want to reach the standard quantum-noise limit,
and such a reduction is also a necessary prerequisite for any quantum non-demolition schemes to surpass this limit
[9].
The coatings used in both first- and second-generation GW detectors consist of alternating layers of materials with high
and low index of refraction [9]. Coating materials presently in use belong to the class of amorphous glassy oxides [10]
including, among others, SiO2, ZrO2, HfO2, T iO2, Al2O3, Ta2O5 andNb2O5. Noise in these coatings originates from
mechanical dissipation in the coating materials via a mechanism described by the fluctuation-dissipation theorem. On
the basis of available evidence, dissipation in the bulk of the coating materials appears to be the dominant mechanism,
and interfacial friction between coating layers, and between coating and substrate, is comparatively negligible [12].
Coating materials presently in use belong to the class of amorphous glassy oxides [10] including, among others, SiO2,
ZrO2, HfO2, T iO2, Al2O3, Ta2O5 and Nb2O5. Most estimates of material loss angles obtained so far are based on
the measurement of the mechanical quality factor, or damping time, of coated blades.
A physically sound and well credited theory relates optical and mechanical properties of amorphous materials to
the existence of asymmetric double-well potentials representing material defects. The complex frequency dependent
optical index and Young’s modulus can be in principle obtained from the distributions of the potential barrier heights
and height-asymmetries [13], but so far this theory has not yielded any quantitative predictions of loss angles in the
actual materials used in GW detectors. Until now, all attempts to synthetize coating materials with better optical
and mechanical properties using glassy-oxide mixtures [14] have been essentially based on trial-and-error.
We present here the first extraction of the individual loss angles of the materials currently used in the mirror coatings
of interferometric GW detectors, namely Silica, Tantala, and Titania-doped Tantala, based on the direct measurement
of coating thermal noise in an interferometric (i.e. GW detector-like) setting (see Sections II and III). A preliminary
account was given in [15].
We also propose here, for the first time in this field to the best of our knowledge, a simple predictive model for the
optical and mechanical properties of glassy oxide mixtures based on effective-medium theory (see Section IV). This
model yields results in good agreement with our measurements on Titania doped Tantala based coatings, discussed
in Sections III A and III B.
We review the results obtained from different measurement techniques in Section V. Conclusions follow under Section
VI.

II. FROM COATING NOISE TO COATING LOSS ANGLES.

THE THERMAL NOISE INTERFEROMETER

As mentioned above, most coating-material characterizations have been done by measuring the mechanical quality
factor and then predicting the mechanical noise using the fluctuation-dissipation theorem. Direct interferometric mea-
surements of coating noise are more challenging and hence rarer. The first measurement of this kind was described by
Numata [16], referring to a proof-of-principle experiment using intentionally-noisy coatings to make the measurement
easier. The second direct measurement was done in an apparatus that had been in development longer than Numata’s,
but sought to measure the substantially-lower noise floor of the actual coatings used in GW detectors at the time. In
addition, it used a larger illumination spot size on the mirrors to further reduce the noise floor. This apparatus was
based at Caltech and was known as the Thermal Noise Interferometer, or TNI (see [17] for details). Conceptually
similar instruments are presently under development at the Albert Einstein Institute for Gravitational Physics, Golm
and Hannover, GER [18], and the University of Florida, Gainesville, FL, USA [19], but as of this writing they have
yet to produce useful results. In this paper, we shall focus on the results from the TNI.
Using the procedure described in [17] and [20], we measured the loss angles of four different coatings at the TNI.
From these four independent measurements we extracted the loss angles of the three relevant coating materials: Silica
(SiO2), Tantala (Ta2O5), and Tantala doped with Titania to a concentration of ∼ 15% [21].
The first coating was a standard quarter wavelength (QWL) stacked-doublets design, using Silica and Tantala for the
low and high index materials, respectively.
The second coating also used Silica and Tantala, but the thickness and number of the layers were adjusted so as to
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minimize thermal noise, while keeping the coating reflectivity at the operating wavelength of 1064 nm unchanged.
The relevant optimization procedure and the TNI measurements made on this ”optimized” coating are described in
detail in [20]. The third coating was also QWL, and used Silica for the low index material and Tantala doped with
Titania to a concentration of ∼ 15%, for the high index material [22]. Finally, the fourth coating was designed for
minimal noise dichroic operation, featuring some reflectance at 532 nm needed for locking-acquisition in Advanced
LIGO, using Silica and the same LMA-formula Titania-doped Tantala. All coatings were deposited on similar fused
silica substrates by ion-beam sputtering. The first coating was manufactured by REO (Research Electro-Optics Inc.,
Boulder CO, USA), the remaining three by LMA (Laboratoire des Materiaux Avances of the IN2P3, Lyon, FR).
The design type, material composition, and manufacturer of the four coatings are summarized in Table I.

III. FROM φC TO MATERIAL LOSS ANGLES

Dissipation due to internal friction in a material can be described in terms of a loss angle φ, that is the phase of the
material’s complex Young’s modulus, Ỹ . For the materials of interest here, φ ≪ 1, and the complex Young’s modulus
can be written Ỹ = Y (1 + ıφ), where Y is the material’s elastic (tensile) modulus.
The Power Spectral Density (henceforth PSD) of the coating Brownian noise is related to the effective coating loss
angle φc by [23]:

SB(f) =
2kBT

π3/2f

(1− σ2
s )

wYs
φc, (1)

where kB is Boltzmann’s constant, T the absolute temperature, w the effective laser Gaussian beam radius, σs the
Poisson’s ratio of the substrate, and Ys its Young’s modulus. The effective coating loss angle, φc, is a thickness-
weighted average of the loss angles of its low and high index constituents [20], viz.

φc = bLdLφL + bHdHφH , (2)

where dL and dH are the total thickness of the low and high index materials, respectively, φL and φH their loss angles,
and the coefficients bL,H are given by

bL,H =
1√
πw

(

YL,H

Ys
+

Ys

YL,H

)

, (3)

Ys, YL and YH denoting the Young’s moduli of the substrate, low index and high index material, respectively. In the
limit of vanishingly small Poisson’s ratios [9], eq. (2) agrees well with the more complicated formula for coating noise
derived in [23] from first principles.
Given two coatings, denoted with superscripts (I) and (II), using the same materials but with different thicknesses,
eqs. (2) yield

M · φ = φc. (4)

where

M =

[

bLd
(I)
L bHd

(I)
H

bLd
(II)
L bHd

(II)
H

]

, φ =

[

φL

φH

]

, φc =

[

φ
(I)
c

φ
(II)
c

]

. (5)

The low and high index material loss angles are accordingly related to the loss angles of two coatings I and II by an
affine (in particular linear) relation,

φ = M−1 · φc. (6)

In [20] it was noted that the residuals of the fitting used to estimate the coating loss angles from the measured
Brownian noise spectra were Gaussian distributed (see Figure 13 in [20]). The average µc and standard deviation σc

of the estimated loss angle distributions of all coatings in Table I are listed in Table II.
Hence eqs. (6) yields a jointly Gaussian distribution for φL, φH [24]. The related marginal distributions of φL and
φH , which are the quantities of interest, will be Gaussian too, and hence completely characterized by their averages
µL,H and std. deviations σL,H , which can be written explicitly (see Appendix).
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A. Silica and Tantala Loss Angles

The mechanical loss angles of Silica and un-doped Tantala were estimated from the noise measurements made on
coatings #1 and #2 in Table I. To calculate the elements of M we used the fiducial values Ys = YSiO2 = 73 GPa,
and YTa2O5 = 140 GPa for the tensile Young’s moduli, used throughout in the topical Literature and originated in
[25], and the thickness values collected in Table III below.
The coating thickness uncertainties are of the order of a few nm, due to the high accuracy of the coating deposition
process, and have no sensible effect on the retrieved material loss angles. On the other hand, as further discussed
in Section VI, the actual values of the Young moduli may differ from the quoted fiducial ones by a few percent,
depending, e.g., on the thermal annealing treatment of the materials. This entails comparable uncertainties in the
retrieved material loss angles.
The 1st and 2nd order moments µ and σ of the marginal distributions of φSiO2 and φTa2O5 are collected in Table IV .
It is interesting to compare the confidence intervals obtained above, based on the observed Gaussianity of the coating
loss angle fitting residuals to the uncertainty intervals obtained from a plain error propagation formula, viz. [26]

δφ = abs(M−1) · δφc (7)

The uncertainty intervals obtained from eq. (7) on letting δφc = σc are also listed in Table IV.

B. Titania Doped Tantala Loss Angle

For coatings #3 and #4 in Table I the matrix M turns out to be ill-conditioned, and eq. (6) yields exceedingly
broad confidence intervals.
However, we may safely assume the loss angle of the low-index material (Silica) to be the same for all coatings in
Table I, the low index material being fiducially the same in all. Hence we may use the Gaussian distribution for
φL obtained in Sect. III A to derive from eq. (2) two independent estimates for the loss angle φ∗

H of Titania doped
Tantala from the measured loss angles of coatings #3 and #4. The two distributions can be further pooled into a
single one (see Appendix for technical details).
The numerical values of the first and second order moment of the pooled distribution are collected in Table V..
Similarly, we may obtain two uncertainty intervals by applying standard error propagation to eq. (2), that can be
also combined yielding the uncertainty interval in Table V.

IV. COMPARISON WITH AN EFFECTIVE MEDIUM THEORY BASED MODEL

It is interesting to compare the above results to those obtained from a mixture (aka effective medium) theory based
approach. Despite their simplicity, effective medium theories (henceforth EMT) admit a solid microscopic foundation
[27], and have been widely and successfully used to obtain accurate predictions of the complex refraction index of
glassy oxide mixtures, from knowledge (or measurement) of the individual material properties. EMT is valid for
inclusions which are small compared to the optical and acoustic wavelengths, and which do not interact to form
chemically different compounds. While EMT is admittedly not the ”Holy Grail” ab initio theory that one would like,
it emerged as a powerful and versatile tool in Material Science anyway. Its use has been accordingly proposed to
model glassy oxide mixtures for optical coatings [28].
Here we shall adopt the well known Bruggemann approach [29] which treats the host medium and the inclusions
on equal grounds, assuming both to be embedded into an effective medium, yielding mixture formulas which are
symmetric with respect to the host and inclusion params. The Bruggemann formula for the (complex) permittivity
ǫ = n2 of a mixture is

η2
ǫ2 − ǫmix

γǫ2 + (1− γ)ǫmix
+ (1 − η2)

ǫ1 − ǫmix

γǫ1 + (1 − γ)ǫmix
= 0, (8)

where η is the volume fraction, the suffixes 1, 2 and mix denote the constituents and the composite, and γ depends on
the morphology of the inclusions. Here we shall tentatively adopt the value γ = 3, appropriate to spherical inclusions.
Using the fiducial values nTa2O5 = 2.03, nTiO2 = 2.29, and nTiO2::Ta2O5 = 2.07, we may use (8) to retrieve the Titania
fraction in the doped material, yielding η = 0.16, as shown in Figure 1 (top left panel). This value is close to the
nominal one for the LMA Ti-doped Tantala [22], [30] used in the coating prototypes tested.
In order to compute the viscoelastic properties of the mixture we shall adopt the physically neat formulation by Barta
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[31], according to which the complex mixture elastic Young’s modulus Y , and Poisson’s ratio σ, can be found by
solving the system



















(1− η2)
X −X1

2X + (X1/y1)(σ1 + 1)
+ η2

X −X2

2X + (X2/y2)(σ2 + 1)
= 0

(1− η2)
X/y −X1/y1

2X + (X1/y1)(σ1 + 1)
+ η2

X/y −X2/y2
2X + (X2/y2)(σ2 + 1)

= 0

, (9)

where, omitting the subscripts for notational ease,

X =
σY

σ + 1
, y = σ − 2. (10)

Equations (9) and (10) can be used to compute the Young’s modulus and Poisson’s ratio of doped Tantala, using the
fiducial values YTa2O5 = 140 GPa, YTiO2 = 165 GPa, σTa2O5 = 0.23, and σTiO2 = 0.28. The results are shown in
Figure 1.
The real part of the mixture’s Young’s modulus and Poisson’s ratio (top-right and bottom-right panels in Figure 1)
show no sensible dependence on the very small constituents’ loss angles. The loss angle (imaginary part of the elastic
modulus) depends on the loss angle of amorphous Tantala and Titania as shown in the bottom left panel of Figure 1.
We next attempt to compute a confidence interval for the Titania-doped Tantala loss angle, computed via EMT
eqs. (9), (10), assuming for the Tantala loss angle a Gaussian distribution obtained from the TNI measurements on
undoped coatings, and for the Titania loss angle a Gaussian distribution, with average value 1.2 10−4 taken from [32],
and a reasonable value for the standard deviation of 10% its average value. The Titania volume fraction is taken to
be 16%, as obtained from Bruggeman’s formula above.
The EMT deduced Ti-doped Tantala loss angle distribution is shown in Figure 2, where it is compared to the (pooled)
distribution obtained from our measurements on coatings #3 and #4. The two distributions look fairly consistent.
Thus we have a simple theory that, at least in the present case, predicts the loss angle of the doped material from
the known properties of its components, yielding results that are consistent with experimental observations, within
the uncertainties of the measurements.

V. OTHER MEASUREMENT METHODS AND RESULTS

During the last decade the mechanical loss angles of various candidate coating materials for interferometric GW de-
tectors have been estimated by several research groups, both at room and cryogenic temperatures, from the measured
damping-times of mechanical oscillators consisting of thin/thick disk or cantilever shaped blades, before and after
coating deposition. This Section presents a brief summary of available room temperature results, mostly referring to
ion-beam sputtered coatings, for comparison.

A. Suspended Disk Blades

A measurement setup based on suspended disk-shaped thin or thick blades was described in ([33], [34]), and used to
estimate the mechanical losses of several glassy oxides. Knowledge of the mechanical and optical losses of candidate
materials led to downselect Silica and Tantala as the ”best” low and high index materials available for interferometric
gravitational wave detector mirror coatings [35]. The main results obtained using this setup were summarized in
[12]. One of the main results was that noise originated mainly from the coating bulk, the interfacial contributions
being negligible. Also, the following estimates for the loss angles of annealed SiO2 and un-doped Ta2O5 were given
φL = (0.5± 0.3) · 10−4 and φH = (4.4± 0.2) · 10−4, at frequencies ∼ 103Hz.

These values, as reported in [12], are consistent with ours as reported in Table IV for both silica and undoped
tantala. However, the authors re-analyzed their data in a later publication [35], and their amended values are not
consistent with our results. It is worth noting that the thicknesses of the samples measured in [12, 33, 34] and [35]
vary from λ/8 to 3λ/8 and are thus in the same general range as our layer thicknesses, which were λ/4 for Coating #1
and 0.62λ/4 for Coating #2.
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B. Clamped Cantilevers

A different setup, based on clamped cantilever-shaped blades was developed at LMA, in collaboration with re-
searchers from the Universities of Perugia and Glasgow. An analytic model of the cantilever oscillator allowing to
extract the coating loss angles from the measured quality factors was laid out in [36] for single-layer coatings, and in
[37] for the multi-layer ones.
This setup was used to estimate the loss angle of cantilevers coated with a single-layer of Silica or (undoped) Tantala,
at frequencies ∼ 102Hz, yielding φL = (0.5± 0.018) · 10−4 and φH = (3.02± 0.11) · 10−4, respectively [37].
The same setup was used at LMA to optimize mixtures where Tantala was doped with different materials, including
Cobalt, Tungsten and Titanium, to reduce its mechanical losses [37]. It was found that Ta2O5 doped with T i at
concentrations ≈ 14% was almost as good as undoped Tantala in terms of optical absorption, but better by ≈ 17%
in terms of loss angle. A consistent reduction in loss angle going from plain to Ti-doped Tantala was observed also
using a suspended disk Q-measurement setup [22], and also from TNI measurements.. Experiments on other doped
oxides (in particular ZrO2) at LMA eventually indicated that Ti-doped Tantala was the best option for the high
index material [30].
Mesurements on single-layer coated cantilevers from several Groups produced consistent results for the Silica and
Ti-doped Tantala loss angles [38], yielding: φL = (4.6 ± 0.1) · 10−5 and φH∗ = (2.4 ± 0.4) · 10−4, denoting here and
henceforth the loss angle of Ti-doped Tantala as φH∗ .
Results for SiO2 are consistently in agreement with our results, but the results for both doped and undoped Tantala
are not consistent with our results as listed in Tables IV and V, based on direct noise measurements. It is worth
noting that the thicknesses of the individual Tantala layers in these clamped-cantilever measurements are 500 nm,
compared with 132 nm in our coatings.

C. Multi-Layer Coated Cantilevers

Loss angle measurements on multi-layer coated cantilevers started around the year 2009. Coating loss angles larger
than those extrapolated from single-layer results were obtained. The origin of the observed excess noise is, as yet,
unclear.
Assuming φH∗ = (2.4 ± 0.2) · 10−4, the multi-layer cantilever based measurements yield φL = (1.3 ± 0.4) · 10−4,
significantly larger than the value (≈ 5 ·10−5) retrieved from single-layer Silica-coated blades [39]. On the other hand,
assuming φL ≈ 0.5 · 10−4, the same multi-layer cantilever based measurements yield φH = (4.2 ± 0.2) · 10−4, much
larger than the value (≈ 2.4 · 10−4) retrieved from single-layer Titania doped-Tantala-coated blades [39].
Further measurements at LMA indicated that excess noise was increasing with the number of layers [39], suggesting
that excess losses could originate at the interfaces between the high and low index layers, in disagreement with results
in [12] based on suspended multi-layer coated disk measurements.
It was also suggested that interfacial diffusion during the annealing phase, producing graded/index regions at the
boundaries between the low and high index layers, may account for the observed discrepancy [40]. A subsequent
analysis based on EMT shew that interfacial diffusion is not sufficient to contribute the observed extra noise [41].
It was further observed that the distribution of the loss-angle fitting residuals of cantilever-based loss angle measure-
ments is usually markedly non-Gaussian [42]. Robust estimation of the retrieved loss-angle confidence intervals would
be accordingly in order, possibly mitigating the noted discrepancies between loss angle estimates based on single-layer
and multi-layer blades.

D. The Gentle Nodal Suspension

The accuracy and repeatability of clamped-cantilever based measurement is severely affected by clamping losses.
Reducing these latter requires careful control of the contacting surfaces of the clamping-vise and cantilever [38]. These
problems can be effectively mitigated using a different setup, where a disk-shaped blade is supported at a nodal point
of its mechanical vibration pattern by a hard (e.g., sapphire) conical tip, ideally without friction [43].
Ringdown measurements of single-layer undoped Tantala-coated silicon disks, based on this setup, nicknamed GeNS,
for Gentle Nodal Suspension, yield loss angle values φH = (3.3 ± 0.9) · 10−4 for 133 nm monolayers of Ta2O5, with
very good repeatability [43, 44]. This result is consistent, to within two std. deviations, with our results in Table IV.
Measurements on Ti-doped Tantala are underway.
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E. Quadrature Phase Differential Interferometry

A different measurement setup for the direct measurement of broadband thermal noise of coated cantilevers based
on quadrature phase differential interferometry [45] has been described in [46, 47].
The loss angles of SiO2 and undoped Ta2O5 estimated from these measurements were φL = (6.0 ± 0.1) · 10−5 and
φH = (4.7 ± 0.2) · 10−4, close to our TNI based results. Both values are reasonably consistent with our results as
reported in Table IV, even thought he thicknesses of their samples were much larger than ours, (3.07 ± 0.12)µm of
silica and (3.13± 0.12)µm of tantala versus 182 nm and 131 nm respectively. Measurements on Ti-doped Tantala are
underway.

F. Young’s Modulus

Retrieving the material loss angles from the measured loss angles of disks/blades before and after coating relies on
knowledge of the ratio, known as the energy dilution factor, between the energies stored in the coating and substrate
[12], [36], [37], [46]. This latter, can be expressed in terms of the of the tensile (Young) moduli of the substrate and
coating materials [48].
The fiducial estimates YL = 72.7 GPa and YH = 140 GPa, for Silica and (Titania doped as well as undoped) Tantala,
respectively, taken from optical glass databases, have been widely used for this purpose. Accurate values of the Young
moduli are also needed to retrieve the material loss angles from the coating ones, as in Sect. III of the present paper.
Accurate measurements of the tensile Young’s modulus based both on nano-indentation [49] and ultrasonic reflection
techniques [50] are ongoing. Preliminary results in [51] indicate that the Young’s modulus for Titania doped Tantala
may vary in a rather wide range, roughly from 120 to 175Gpa, depending on dopant concentration and heat treatment.

VI. CONCLUSIONS

Sofar, material losses have been estimated from mechanical Q measurements. In this paper we presented a deriva-
tion of the individual material loss angles, including pertinent uncertainties, from the direct measurement of thermal
noise in the mirror coatings of an interferometer, in a frequency range relevant to interferometric gravitational-wave
detectors.
During the review process we became aware of a recent work by Chalermsongsak et al., where direct noise measure-
ments from a new rigid cavity instrument are combined with early ringdown measurements in a Bayesian perspective
[53], similar to ours.
We also presented here a simple, predictive theory for the material properties of glassy oxide mixtures. All approaches
to mixture optimization proposed so far required fabrication first, followed by measurement of the relevant optical and
mechanical properties. Our simple approach reproduces accurately our measured values of the loss-angle of Ti-doped
Tantala.
As of today, loss angle estimates from different measurement methods and facilities exhibit non-negligible discrep-
ancies. The reasons of such discrepancies are yet unclear. A number of possible causes have been scrutinized so
far, without conclusive results. Ongoing efforts toward better knowledge of the relevant process/dependent material
parameters (in particular, the Young’s modulus), and improved coating-noise models may hopefully help clarifying
these issues.
Accurate measurements of the viscoelastic properties of glassy oxides are needed to design better coatings for GW
detectors. This a relatively recent research field, no older than twelve years. Experimental setups for material loss
angle and Young’s modulus measurements have been steadily improving, resulting into better and better accuracy
and repeatability.
We believe that the present work adds to the available body of knowledge, and will stimulate further investigations.
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APPENDIX

In view of of eq. (4), if we model φ
(I)
c and φ

(II)
c as independent Gaussian random variables with known averages

µ
(I,II)
c and std deviations σ

(I,II)
c , then φL and φH will be jointly Gaussian [24], and their distribution Ψ2(φL, φH) will

be completely characterized by the average vector

M−1 · E [φc] , (11)

and the covariance matrix

M−1 ·
[

σ2

φ
(I)
c

0

0 σ2

φ
(II)
c

]

·
[

M−1
]T

. (12)

The joint distribution of φSiO2 and φTa2O5 , obtained from eq. (11) and (12) using the measured loss angles of
coatings #1 and #2 is shown in Figure 3 (left panel), together with a few of its quantile-ellipses (right panel). These
latter are squeezed along a line going through the point {E(φL), E(φH)} where the distribution is peaked, with slope
≈ −0.51, reflecting the correlation between φL and φH , represented by the non-diagonal matrix (12). The marginal

distributions of φL and φH ,

ΨL(φL) =

∫

∞

−∞

dφHΨ2(φL, φH), ΨH(φH) =

∫

∞

−∞

dφLΨ2(φL, φH) (13)

are readily compute in closed analytic form and, being Gaussian are completely characterized by their means and std.
deviations, used to obtain the numbers in the middle column of Table IV and given by

µL,H =
µ
(I)
c d

(II)
H,L − µ

(II)
c d

(I)
H,L

bL,H

(

d
(I)
L,Hd

(II)
H,L − d

(II)
L,Hd

(I)
H,L

) (14)

σ2
L,H =

(d
(II)
H,Lσ

(I)
c )2 + (d

(I)
H,Lσ

(II)
c )2

b2L,H

(

d
(I)
L,Hd

(II)
H,L − d

(II)
L,Hd

(I)
H,L

)2 . (15)

Standard error propagation, eq. (7), is equivalent to the simple graphic construction shown in Figure 4, where the
uncertainty intervals follow from the intersections of the uncertainty strips in the {φH , φL}-plane obtained from eq.

(2) upon letting φc = µ
(I,II)
c ± σ

(I,II)
c .

For coatings #3 and #4 in Table I the matrix M turns out to be ill-conditioned, and eqs. (11)-(13) yield exceedingly
broad confidence intervals.
The low-index material (Silica) being fiducially the same for all coatings, we may use the Gaussian distribution for
φL obtained from coatings #1 and #2, in eq. (2) to derive two (independent) estimates for the loss angle φ∗

H of the
Titania-doped Tantala, from the measured loss angles of coatings #3 and #4. The high-index material loss angles
retrieved from eq. (2) will be Gaussian distributed, with

E[φ∗

H ] =
1

bHdH
µc −

bLdL
bHdH

µL, (16)

var[φ∗

H ] =

(

1

bHdH

)2

σ2
c +

(

bLdL
bHdH

)2

σ2
L. (17)

The two distributions obtained from coatings #3 and #4, henceforth labeled with the suffixes 3 and 4, can be further
combined (technically, pooled or conflated [52]) to obtain a (Gaussian) maximum-likelihood distribution for φ∗

H whose
1st and 2nd order moments are [24]

E[φ∗

H ] = w3E[φ∗

H ]3 + w4E[φ∗

H ]4, (18)

var[φ∗

H ] =
1

2
(w3var[φ

∗

H ]3 + w4var[φ
∗

H ]4) (19)
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where

w3,4 =
var[φ∗

H ]−1
3,4

var[φ∗

H ]−1
3 + var[φ∗

H ]−1
4

. (20)

Note that eq. (18) is also the best linear unbiased estimator of φ∗

H . The two distributions obtained from coatings #3
and #4, and their pooled combination are shown in Figure 5. Standard error propagation is equivalent in this case
to first intersecting each of the loss uncertainty strips, obtained through eq. (2), for coatings #3 and #4, with the
strip φL = µL ± σL, and then computing the intersection of the resulting uncertainty intervals for φ∗

H , as shown in
Figure 6. This corresponds to assuming, in the spirit of plain error propagation, a uniform distributon of φ∗

H in the
two uncertainty intervals in Figure 6, and constructing the conflated (pooled) distribution [52].
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FIGURES

FIG. 1. Ti-doped Tantala. Refraction index according to Bruggemann formula (top-left); tensile (Young) modulus (top-right),
loss angle (bottom-left), and Poisson modulus (bottom right) according to Barta EMT formula.

FIG. 2. Comparison between Titania-doped Tantala loss angle distributions resulting from TNI measurements and effective
medium theory (EMT).

FIG. 3. Left: Joint distribution of φSiO2 and φTa2O5 obtained from the measured loss angles of coatings #1 and #2 in Table-I.
Right: The 0.95, 0.9, 0.85 quantile ellipses of the same distribution.

FIG. 4. Graphic construction for standard error propagation for coatings #1 and #2, showing the intersection between the

uncertainty strips obtained from eq. (2) upon letting φC = µ
(I,II)
c ± σ

(I,II)
c . The resulting uncertainty intervals for SiO2, IL,

and for Ta2O5, IH , are indicated.

FIG. 5. Titania doped Tantala loss angle distributions from coatings #3 (QWL) and #4 (OPT), and their pooled (maximum
likelyhood) combination. The average and std. deviation of the pooled distribution are 3.66 · 10−5 and 0.26 · 10−5 , respectively.

FIG. 6. Graphic construction for standard error propagation for coatings #3 and #4. The red and blue strips are obtained
from eq. (2) using the measured loss angles of coatings #3 and #4, and their uncertainties. The green band is the Silica loss
angle uncertainty strip obtained from measurements on coatings #1 and #2. The intersection of the green band with each
coating measurement yields two uncertainty intervals for T iO2 :: Ta2O5 loss angle, IH,3 and IH,4, respectively. The pooled
uncertanity interval is IH,3 ∩ IH,4.

TABLES

Coating # Type Materials Manufacturer

1 QWL SiO2/Ta2O5 REO
2 Optimized SiO2/Ta2O5 LMA
3 QWL SiO2/T iO2 :: Ta2O5 LMA
4 Dichroic optimized. SiO2/T iO2 :: Ta2O5 LMA

TABLE I. The four different coatings whose loss angles were measured at the Caltech LIGO-Lab TNI.

Coating # µc std. deviation σc
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1 8.25 · 10−6 0.3 · 10−6

2 6.85 · 10−6 0.2 · 10−6

3 6.0 · 10−6 0.5 · 10−6

4 5.5 · 10−6 0.25 · 10−6

TABLE II. Parameters of the retrieved Gaussian loss angle distributions for the coatings in Table I

Coating # Silica layers [nm] dL [µm] Tantala layers [nm] dH [µm]

1 13× 181.517 + 1× 363.033 2.72 14× 130.713 1.83
2 16× 250.984 + 1× 29.410 4.05 16× 80.688 + 1× 72.677 1.36
3 12× 181.5 + 1× 363.0 2.54 13× 128.8 1.67
4 12× 195.49 + 1× 15.48 2.36 12× 112.10 + 1× 103.69 1.45

TABLE III. Coating structure and total thicknesses of low and high index layers.

Loss angle µ σ from error propagation

φSiO2 5.14 · 10−5 2.1 · 10−5 (5.14± 3.0) · 10−5

φTa2O5 4.72 · 10−4 0.43 · 10−4 (4.72 ± 0.56) · 10−4

TABLE IV. Silica and Tantala loss angles from coatings #1 and #2 .

Loss angle µ σ from error propagation

φTiO2::Ta2O5 3.66 · 10−4 0.27 · 10−4 (3.6± 0.6) 10−4

TABLE V. Ti-doped Tantala loss angle from coatings #3 and #4.

Material Layer thickness (nm) φ (×10−4) source

90.8-272.3 0.5 ± 0.3 Suspended disks [12]
181.5-250.984 0.51 ± 0.07 TNI

SiO2 500 0.5± 0.018 Clamped cantilevers [37]
500 0.46 ± 0.01 Clamped cantilevers [38]
3,070 0.6± 0.03 Quad. Phase Diff. IFO [47]

65.36-196.07 4.4 ± 0.2 Suspended disks [12]
80.688-130.713 4.72 ± 0.14 TNI

Ta2O5 133 3.3 ± 0.9 GeNS [44]
500 3.02 ± 0.11 Clamped cantilevers [37]
3,130 4.7 ± 0.2 Quad. Phase Diff. IFO [47]

TiO2:Ta2O5 112.10-128.8 3.66 ± 0.26 TNI
500 2.4 ± 0.4 Clamped cantilevers [38]

TABLE VI. Loss angles of different materials from various measurement methods.
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