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Multiple scattering leads to transverse momentum broadening of the struck quark in semi-inclusive
deeply inelastic scatterings (SIDIS). Nuclear broadening of the transverse momentum squared at
the leading twist is determined by the twist-four collinear quark-gluon correlation function of the
target nucleus that is in turn related to the jet transport parameter inside the nuclear medium. The
twist-six contributions to the transverse momentum broadening are calculated as power corrections
∼ 1/Q2. Such power corrections are found to have no extra nuclear enhancement beyond the twist-
four matrix elements and are determined by the nuclear modification of collinear parton distribution
and correlation functions. They become important for an accurate extraction of the jet transport
parameter inside large nuclei and its scale evolution at intermediate values of the hard scale Q2.
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I. INTRODUCTION

Multiple scattering of a propagating parton inside a
medium leads to many interesting phenomena such as
transverse momentum broadening and parton energy loss
[1–6]. These phenomena as observed in experiments in
both high-energy heavy-ion collisions and semi-inclusive
deeply inelastic scatterings (SIDIS) can in turn be used to
extract properties of hot and cold nuclear matter. One of
these medium properties as probed by propagating par-
tons is the jet transport parameter q̂. It is defined as
the transverse momentum broadening squared per unit
length [2] and measures the interaction strength between
the energetic parton and the medium. A recent com-
prehensive phenomenological study [7] of experimental
data on jet quenching in high-energy heavy-ion collisions
at both the Relativistic Heavy-ion Collider (RHIC) and
the Large Hadron Collider (LHC) has extracted values of
the jet transport parameter at the center of the produced
dense matter. They are about two orders of magnitude
higher than that in a cold nucleus as extracted from ex-
perimental data on semi-inclusive deeply inelastic scat-
terings (SIDIS) [8, 9]. Further improvements in the accu-
racy of the determination of the jet transport parameter
depend on the study of parton energy loss and the trans-
verse momentum broadening at the next-to-leading order
[10] and evolution of the jet transport parameter [11–15].
Within the framework of generalized collinear factor-

ization, multiple parton scattering and transverse mo-
mentum broadening can be expressed in terms of nu-
clear enhanced higher-twist contributions which depend
on the twist-4 parton correlation functions [16–19]. In
the same framework, we can also calculate parton en-
ergy loss and the leading hadron suppression [6, 20] in
SIDIS. In this paper we make the first attempt to calcu-
late the first power corrections to the transverse momen-

tum broadening in SIDIS off a large nucleus. Similar to
leading higher-twist corrections to hadron spectra, such
power corrections to the transverse momentum broaden-
ing can become non-negligible for intermediate values of
the hard scale Q2. Inclusion of these higher-twist correc-
tions should be important for a more accurate determi-
nation of the jet transport parameter from experimental
data on transverse momentum broadening and its scale
evolution.

Multiple soft interactions between the struck quark
and the remnant nucleus in SIDIS can also be resummed
in the eikonal limit into the gauge link in the transverse
momentum dependent (TMD) parton distribution func-
tions [21]. The transverse momentum broadening in a
large nucleus arises naturally from the expectation value
of the gauge link between the nuclear state. Under a max-
imal two-gluon correlation approximation, the transverse
momentum broadening takes the form of a Gaussian dis-
tribution with the width given by the path-integrated jet
transport parameter [22]. Within a systematic collinear
expansion of the hard parts of partonic scattering, one
can express the cross section of SIDIS in terms of TMD
parton distribution and correlation functions with dif-
ferent power corrections [23]. Calculations of the SIDIS
cross section have been carried out in the leading order
and up to twist-4 power corrections [24]. The results have
been applied to the study of nuclear dependence of the
azimuth asymmetry in both unpolarized [25] and polar-
ized nuclear targets [26, 27]. We will employ these cross
sections in this paper to study the transverse momentum
broadening up to O(1/Q2) corrections.

The remainder of this paper is organized as the fol-
lowing. In Section II, we present the kinematics of
SIDIS and review the differential cross section of the
SIDIS process in terms of the TMD parton distribution
and correlation functions within the collinear expansion.
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FIG. 1: Feynman diagrams for multiple scattering in SIDIS.

In Section III, we calculate the transverse momentum

squared (~k2⊥) weighted differential SIDIS cross section.

The corresponding ~k2⊥-weighted parton distribution and
correlation functions are shown to become higher-twist
collinear (transverse momentum integrated) matrix ele-
ments which can be related to the jet transport parame-
ter. We calculate the transverse momentum broadening
up to O(1/Q2) corrections in Section IV. Conclusions
and outlooks are given in Section V.

II. SIDIS CROSS SECTION UP TO O(1/Q2)

We consider the differential cross section of the SIDIS
process e−(ℓ) + A(p) → e−(ℓ′) + q(k) +X(pX) with an
unpolarized electron beam e− and an unpolarized target
nucleus A which carries momentum p per nucleon in the
infinite momentum frame,

dσ =
(4παem)2

2sQ4

d3ℓ′

2Eℓ′(2π)3
dWµνLµν , (1)

where αem is the fine structure constant in QED, s is
the Mandelstam variable for the center-of-mass energy

squared, q = ℓ− ℓ′ and Q2 = −q2 is the virtuality of the
virtual photon that probes the nucleus. We neglect all
the masses of particles.

The leptonic tensor Lµν and hadronic tensor Wµν are
defined as,

Lµν = Tr[/ℓγµ/ℓ
′
γν ] = 4(ℓµℓ

′
ν + ℓνℓ

′
µ − ℓ · ℓ

′gµν), (2)

Wµν =
1

2π

∑

X

〈A|Jµ(0)|X + q〉〈X + q|Jν(0)|A〉

×(2π)4δ4(p+ q − k − pX), (3)

respectively. In the infinite momentum frame, we param-
eterize the momenta in the following conventional light-
cone expansion [23, 24],

pµ = p+n̄µ, (4)

ℓµ =
1− y

y
xBp

+n̄µ +
1

y
q−nµ + ℓµT , (5)

ℓ′µ =
1

y
xBp

+n̄µ +
1− y

y
q−nµ + ℓµT , (6)

qµ = −xBp
+n̄µ + q−nµ, (7)

where the unit vectors are taken as n̄µ = (1, 0, 0, 0), nµ =
(0, 1, 0, 0).

At the leading order (LO) of a perturbative expansion
of the hard photon-parton scattering processes, one still
has to consider multiple interaction between the struck
quark and the remanent nucleus through soft gluon ex-
changes as shown in Fig. 1. The hadronic tensor can be
written as a sum of the contributions from all possible
diagrams with multiple gluon exchanges. With collinear
expansion of the hard partonic parts, the hadronic ten-
sor can be reorganized as products of collinear hard parts
and gauge invariant TMD quark (gluon) correlation func-
tions [16, 23, 28–31]. One can further reorganize the final
differential cross section in terms of a power expansion
in 1/Q. The differential cross section of the unpolarized
SIDIS process e−(ℓ) +A(p)→ e−(ℓ′) + q(k) +X(pX) up
to the power of O(1/Q2) takes the form [24],

dσA

dxBdyd2~k⊥
=

2πα2
eme

2
q

Q2y

{

[1 + (1− y)2]fA
q (xB , ~k⊥)− 4(2− y)

√

1− y
|~k⊥|

Q
xBf

A
q⊥(xB ,

~k⊥) cosφ

−4(1− y)
|~k⊥|

2

Q2
xB[ϕ

(1)A
⊥2 (xB , ~k⊥)− ϕ̃

(1)A
⊥2 (xB , ~k⊥)] cos 2φ+ 16(1− y)

x2BM
2

Q2
fA
q(−)(xB ,

~k⊥)

−2
[

1 + (1 − y)2
] |~k⊥|

2

Q2
xB

[

ϕ
(2)A
⊥ (xB , ~k⊥)− ϕ̃

(2)A
⊥ (xB , ~k⊥)

]

}

, (8)

where the TMD parton distribution and correlation func- tions fA
q , fA

q⊥, f
A
q(−), ϕ

(1)A
⊥2 , ϕ̃

(1)A
⊥2 , ϕ

(2)A
⊥ and ϕ̃

(2)A
⊥ in
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terms of matrix elements can be found in Eqs. (A2)–
(A13) in the appendix. The above expansion in terms
of TMD parton distribution and correlation functions is
a generalized expansion similar to the collinear twist ex-
pansion. The first term is the leading twist contribu-
tion proportional to the TMD quark distribution function

fA
q (xB , ~k⊥). This gives rise to the normal collinear quark
distribution function after integration over the transverse
momentum. The second term is the twist-3 contribu-
tion with an azimuthal asymmetry cosφ. The rest are
twist-four contributions. All high-twist contributions are

suppressed by O([|~k⊥|/Q]n, [M/Q]n).

III. NUCLEAR DEPENDENCE OF

HIGHER-TWIST MATRIX ELEMENTS

To study the transverse momentum broadening, we

need to calculate the ~k2⊥-weight-integrated differential

cross section. Multiplying with ~k2⊥ and integrating over
the transverse momentum, one obtains from Eq. (8),

d〈~k2⊥σ
A〉

dxBdy
=

2πα2
eme

2
q

Q2y

{

[

1 + (1− y)2
]

〈~k2⊥f
A
q 〉(xB)

+
16(1− y)x2BM

2

Q2
〈~k2⊥f

A
q(−)〉(xB)

−
2[1 + (1 − y)2]xB

Q2

×
[

〈~k4⊥ϕ
(2)A
⊥ 〉(xB)− 〈~k

4
⊥ϕ̃

(2)A
⊥ 〉(xB)

]

}

, (9)

where 〈~k2⊥f
A
q 〉(xB), 〈

~k2⊥f
A
q(−)〉(xB), 〈

~k2⊥ϕ
(2)A
⊥ 〉(xB) and

〈~k2⊥ϕ̃
(2)A
⊥ 〉(xB) are ~k

2
⊥-weight-integrated parton distribu-

tion/correlation functions of fA
q (xB, ~k⊥), f

A
q(−)(xB ,

~k⊥),

ϕ
(2)A
⊥ (xB , ~k⊥) and ϕ̃

(2)A
⊥ (xB , ~k⊥), respectively [see

Eqs. (A14)–(A19) in the appendix]. These ~k2⊥-weight-
integrated parton distribution and correlation functions

contain ~k2⊥-weighted matrix elements. Through partial

integration in the transverse momentum ~k⊥, one can con-

vert each ~k⊥ into a partial derivative with respect to the

transverse coordinate. The field operators in ~k2⊥-weight-
integrated parton distribution and correlation functions
are always two twist higher than those in the correspond-

ing distribution and correlation functions without ~k2⊥-

weight. Therefore the above ~k2⊥-weighted cross section
should contain parton correlation functions up to twist-
six.

Take the first term in Eq. (9) as an example, the ~k2⊥-
weight-integrated parton distribution function,

〈~k2⊥f
A
q 〉(x) ≡

∫

d2k⊥f
A
q (x,~k⊥)~k

2
⊥

= −

∫

dy−d2y⊥d
2~k⊥

(2π)3
eixp

+y−−i~k⊥·~y⊥

×〈A|ψ̄(0)
γ+

2
(−i∂⊥ρ)(−i∂

ρ
⊥)L(0; y)ψ(y)|A〉

≃ −

∫

dy−

2π

∫ ∞

y−

dξ−
∫ ∞

ξ−
dη−eixp

+y−

×2g2〈A|ψ̄(0)
γ+

2
F +
⊥ρ(η

−)F ρ+
⊥ (ξ−)ψ(y−)|A〉, (10)

is in fact a twist-four two-parton correlation function. In
the above equation, we have used the identity [22],

−i∂ρ⊥L(∞; y−, ~y⊥) = L(∞; y−, ~y⊥)

[

Dρ
⊥(y) + g

∫ ∞

y−

dξ−L(y−; ξ−, ~y⊥)F
ρ+
⊥ (ξ−, ~y⊥)L(ξ

−; y−, ~y⊥)

]

, (11)

for a derivative acting on a gauge link,

L(z−; y−, ~y⊥) = P exp

[

−ig

∫ z−

y−

dξ−A+(ξ−, ~y⊥)

]

.(12)

The covariant derivative is defined as Dρ
⊥(y) ≡ −i∂

ρ
⊥ +

gAρ
⊥(y). Note that the gauge link in Eq. (10) between

two space-time points with a transverse displacement is
defined as,

L(0; y) = L†(∞; 0)L(∞; y−, ~y⊥), (13)

in a covariant gauge. According to the above identity, the
double derivatives on the gauge link in Eq. (11) produce

three different contributions. We only keep the term with
two gluon field strength operators which is enhanced by
the nuclear size with a factor of A4/3 due to the double
path integrations across the nuclear size. Other terms
that have one or two covariant derivatives on the quark
field are ignored because they do not have such a nuclear
enhancement. We also omit the gauge link in the final
expression of the parton correlation function for brevity.
Note that one can change the limits of the integration
over η− to the same as ξ− in Eq. (10) with an overall
factor of 1/2.

Assuming a large and loosely bound nucleus, one can
factorize the twist-four quark-gluon correlation function
as a product of the quark distribution function for A
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nucleons and soft gluon distribution density integrated
over the size of the nucleus [32],

〈A|ψ̄(0)
γ+

2
F +
⊥ρ(η

−)F ρ+
⊥ (ξ−)ψ(y−)|A〉

≈ A〈N |ψ̄(0)
γ+

2
ψ(y−)|N〉

1

2Nc

ρN(ξ−N )

2p−

× 〈N |F +
⊥ρ(ξ

−
N −

λ−

2
) F ρ+

⊥ (ξ−N +
λ−

2
)|N〉, (14)

where ξ−N = (η− + ξ−)/2 and λ− = ξ− − η−. We have
taken the medium ensemble average,

∫

d3p

(2π)32p+
fA(p, ξN )〈N | · · · |N〉 =

ρAN (ξ−N )

2p+
〈N | · · · |N〉,

for the gluon field strengths over all possible nucleons in-
side the nucleus and ρAN (ξ−N ) is the spatial nucleon density
normalized to the atomic number A. Given the definition
of the collinear quark and gluon distribution functions,

fN
q (x) =

∫

dy−

2π
eixp

+y−

〈N |ψ̄(0)
γ+

2
ψ(y−)|N〉, (15)

xgN (x) = −

∫

dλ−

2πp+
eixp

+λ−

〈N |F +
⊥ρ(0)F

ρ+
⊥ (λ−)|N〉,

(16)

the ~k2⊥-weight-integrated quark distribution function be-
comes

〈~k2⊥f
A
q 〉(x) = AfN

q (x)

∫

dξ−N q̂F (ξ
−
N ) +O(A), (17)

where

q̂F (ξ
−
N ) =

2π2αs

Nc
ρAN (ξ−N )[xggN(xg)]xg≈0, (18)

is the jet transport parameter for a quark. It represents
the transverse momentum broadening squared per unit

length. The averaged total transverse momentum broad-
ening squared inside a nucleus is then,

∆2F =

∫

dξ−N q̂F (ξ
−
N ), (19)

which should be proportional to the nuclear size RA ≈
1.12A1/3 fm.

One can obtain similar relation for the ~k2⊥-weight-
integrated parton distribution function in the second
term of Eq. (9),

〈~k2⊥f
A
q(−)〉(x) = AfN

q(−)(x)∆2F +O(A), (20)

where

fA
q(−)(x,

~k⊥) =
p+

M2

∫

dy−

2π
eixp

+y−

〈A|ψ̄(0)
/p

2
ψ(y−)|A〉,

(21)
is a twist-4 collinear quark distribution function.
Since the integration over the length of the nucleus

should be proportional to the nuclear size RA ∼ A1/3,

the nuclear enhanced parts of both 〈~k2⊥f
A
q 〉(x) and

〈~k2⊥f
A
q(−)〉(x) are proportional to A4/3. One can neglect

other contributions that are not enhanced by the nuclear
size, including those that describe quark-gluon correla-
tion functions inside a single nucleon.

The third term of Eq. (9) contains contributions from
double scattering processes in Fig. 1 with two gluon ex-
changes. The associated parton correlation functions
have two covariant derivatives and have contributions
from both left and right-cut diagrams,

ϕ
(2)A
⊥ (x,~k⊥) =

1

2

[

ϕ
(2,L)A
⊥ (x,~k⊥) + ϕ

(2,R)A
⊥ (x,~k⊥)

]

.

(22)

The corresponding ~k4⊥-weight-integrated parton correla-
tion functions can be similarly simplified assuming fac-
torization in a large and loosely bound nucleus,
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〈~k4⊥ϕ
(2,L)A
⊥ 〉(x) =

∫

dy−d2y⊥d
2~k⊥p

+dz−

(2π)3
iθ(z−)eixp

+y−−i~k⊥·~y⊥~k2⊥

×〈A|ψ̄(0)
γ+

2
L(0; z−, 0⊥)D⊥σ(z

−, 0⊥)D
σ
⊥(z

−, 0⊥)L(z
−, 0⊥; y)ψ(y)|A〉

≃ −

∫

dy−p+dz−

2π
iθ(z−)eixp

+y−

∫ ∞

y−

dξ−
∫ ∞

ξ−
dη−2g2

×〈A|ψ̄(0)
γ+

2
D⊥σ(z

−, 0⊥)D
σ
⊥(z

−, 0⊥)F
+

⊥ρ(η
−, 0⊥)F

ρ+
⊥ (ξ−, 0⊥)ψ(y

−)|A〉, (23)

〈~k4⊥ϕ
(2,R)A
⊥ 〉(x) = −

∫

dy−d2y⊥d
2~k⊥p

+dz−

(2π)3
iθ(z− − y−)eixp

+y−−i~k⊥·~y⊥~k2⊥

×〈A|ψ̄(0)
γ+

2
L(0; z−, y⊥)Dρ(z

−, y⊥)Dσ(z
−, y⊥)L(z

−, y⊥; y)ψ(y)|A〉

≃

∫

dy−p+dz−

2π
iθ(z− − y−)eixp

+y−

∫ ∞

0

dξ−
∫ ∞

ξ−
dη−2g2

×〈A|ψ̄(0)
γ+

2
F ρ+
⊥ (ξ−, 0⊥)F

+
⊥ρ(η

−, 0⊥)D⊥σ(z
−, 0⊥)D

σ
⊥(z

−, 0⊥), ψ(y
−)|A〉, (24)

where we again omit the gauge links in the final expression for brevity. Using Eq. (11) we can also get,

Dσ
⊥(z

−, ~y⊥)D
ρ
⊥(z

−, ~y⊥)L(z
−; y−, ~y⊥)

≃ g2
∫ z−

y−

dξ−
∫ z−

ξ−
dη−

[

F σ+
⊥ (η−, ~y⊥)F

ρ+
⊥ (ξ−, ~y⊥) + F ρ+

⊥ (η−, ~y⊥)F
σ+
⊥ (ξ−, ~y⊥)

]

, (25)

L(0; z−, ~y⊥)
←−
Dσ

⊥(z
−)
←−
Dρ

⊥(z
−)

≃ g2
∫ z−

0

dξ−
∫ z−

ξ−
dη−

[

F σ+
⊥ (ξ−, ~y⊥)F

ρ+
⊥ (η−, ~y⊥) + F ρ+

⊥ (ξ−, ~y⊥)F
σ+
⊥ (η−, ~y⊥)

]

, (26)

which help to reduce the ~k4⊥-weight-integrated parton correlation functions to the following forms,

〈~k4⊥ϕ
(2,L)A
⊥ 〉(x) ≃

∫

dy−p+dz−

2π
iθ(z−)eixp

+y−

∫ ∞

y−

dξ−
∫ ∞

ξ−
dη−

∫ z−

0

dξ′−
∫ z−

ξ′−
dη′−

×(−4g4)〈A|ψ̄(0)
γ+

2
F +
⊥σ(ξ

′−)F σ+
⊥ (η′−)F +

⊥ρ(η
−)F ρ+

⊥ (ξ−)ψ(y−)|A〉, (27)

〈~k4⊥ϕ
(2,R)A
⊥ 〉(x) ≃

∫

dy−p+dz−

2π
iθ(z− − y−)eixp

+y−

∫ ∞

0

dξ−
∫ ∞

ξ−
dη−

∫ z−

y−

dξ′−
∫ z−

ξ′−
dη′−

×4g4〈A|ψ̄(0)
γ+

2
F σ+
⊥ (ξ−)F +

⊥σ(η
−)F ρ+

⊥ (η′−)F +
⊥ρ(ξ

′−)ψ(y−)|A〉. (28)

These are twist-six matrix elements for parton correla-
tion functions inside a nucleus. Under the same approx-
imation of a large and loosely bound nucleus, one can
similarly factorize these twist-six matrix elements into
products of twist-four or twist-two matrix elements in a
general form,

〈~k4⊥ϕ
(2,L/R)A
⊥ 〉(x) ≃ A5/3〈ψ̄ψ〉N ⊗ 〈FF 〉N ⊗ 〈FF 〉N

+ A4/3〈ψ̄FFψ〉N ⊗ 〈FF 〉N

+A4/3〈FFFF 〉N ⊗ 〈ψ̄ψ〉N +O(A), (29)

where 〈. . . 〉N represents the expectation value over a
nucleon state. Since the hard photon-quark scattering
can happen in any nucleon in the nucleus, summation
of these interactions over all nucleons inside the nucleus
contributes to a factor A. Integration over the position
of another nucleon in the secondary interaction along the
propagation path of the struck quark will give another
factor of RA ∼ A1/3. These matrix elements are en-
hanced by a factor of A1/3 for each additional nucleons
involved in the interaction beside the hard photon-quark
scattering. Other contributions without the nuclear en-
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hancement can be neglected here.
Let us exam separately contributions from the left and

right-cut diagrams in the first term in Eq. (29) with the
most nuclear enhancement,

〈~k4⊥ϕ
(2,L)A
⊥ 〉1(x) ≃ −A

∫

dy−

2π
eixp

+y−

〈N |ψ̄(0)
γ+

2
ψ(y−)|N〉

∫ ∞

0

dξ−
∫ ∞

ξ−
dη−2g2〈N |F +

⊥ρ(η
−)F ρ+

⊥ (ξ−)|N〉

×

∫

p+dz−iθ(z−)

∫ z−

0

dξ′−
∫ z−

ξ′−
dη′−2g2〈N |F +

⊥σ(ξ
′−)F σ+

⊥ (η′−)|N〉
ρAN (ξ−N )

2p−
ρAN (ξ′

−
N )

2p−
(30)

〈~k4⊥ϕ
(2,R)A
⊥ 〉1(x) ≃ A

∫

dy−

2π
eixp

+y−

〈N |ψ̄(0)
γ+

2
ψ(y−)|N〉

∫ ∞

0

dξ−
∫ ∞

ξ−
dη−2g2〈N |F σ+

⊥ (ξ−)F +
⊥σ(η

−)|N〉

×

∫

p+dz−iθ(z− − y−)

∫ z−

y−

dξ′−
∫ z−

ξ′−
dη′−2g2〈N |F ρ+

⊥ (η′−)F +
⊥ρ(ξ

′−)|N〉
ρAN (ξ−N )

2p−
ρAN (ξ′

−
N )

2p−

= A

∫

dy−

2π
eixp

+y−

〈N |ψ̄(0)
γ+

2
ψ(y−)|N〉

∫ ∞

0

dξ−
∫ ∞

ξ−
dη−2g2〈N |F σ+

⊥ (ξ−)F +
⊥σ(η

−)|N〉

×

∫

p+dz−iθ(z−)

∫ z−

0

dξ′−
∫ ξ′−

0

dη′−2g2〈N |F ρ+
⊥ (ξ′−)F +

⊥ρ(η
′−)|N〉

ρAN (ξ−N )

2p−
ρAN (ξ′

−
N )

2p−
, (31)

where ξ−N = (η− + ξ−)/2 and ξ′
−
N = (η′− + ξ′−)/2 are

the light-cone positions of the nucleons. In Eq. (30) we
approximate the integral boundary for ξ− ∈ (y−,∞) by
ξ− ∈ (0,∞). Since y− is confined to the size of a nu-
cleon for large and moderate values of momentum frac-
tion x, the difference should be small. In Eq. (31) we
first interchange the integration variables η′− ↔ ξ′− and
then make variable changes ξ′− → ξ′− − y− and η′− →
η′−− y−. We also assume the translational invariance of

the matrix element 〈N |F ρ+
⊥ (ξ′−+y−)F +

⊥ρ(η
′−+y−)|N〉 =

〈N |F ρ+
⊥ (ξ′−)F +

⊥ρ(η
′−)|N〉 and ρAN (ξ′−N + y−) ≈ ρAN (ξ′−N ).

The final result in Eq. (31) is obtained with another vari-
able change z− → z− − y−.

Note that there is a sign difference between contribu-
tions from the left and right-cut diagrams. The net sum
of these two contributions gives,

〈~k4⊥ϕ
(2)A
⊥ 〉1(x) =

1

2

[

〈~k4⊥ϕ
(2,L)A
⊥ 〉1(x) + 〈~k

4
⊥ϕ

(2,R)A
⊥ 〉1(x)

]

≃ AfN
q (x)∆2F

∫

p+dz−iθ(z−)

∫ z−

0

dξ′−
∫ ξ′−

0

dη′−g2〈N |
[

F ρ+
⊥ (ξ′−), F +

⊥ρ(η
′−)

]

|N〉
ρAN(ξ′

−
N )

2p−
= 0, (32)

that contains a commutator of the gluon field strength
tensor which should vanish on the light-cone [33, 34].

Therefore, 〈~k4⊥ϕ
(2)A
⊥ 〉(x) has no leading contribution with

A5/3 nuclear enhancement due to the cancellation be-
tween left and right-cut diagrams.
Using similar techniques one finds that the contribu-

tions from the third term of Eq. (29) also vanishes due
to cancellation between left and right-cut diagrams. The

only remaining contribution with nuclear enhancement
is the second term in Eq. (29) which can be cast in the
form,

〈~k4⊥ϕ
(2)A
⊥ 〉(x) = Aψ

(2)N
⊥ (x)∆2F +O(A), (33)

where
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ψ
(2,L)N
⊥ (x) =

∫

dy−

2π
p+dz−eixp

+y−

iθ(z−)〈N |ψ̄(0)
γ+

2
D2

⊥(z
−)ψ(y−)|N〉 (34)

ψ
(2,R)N
⊥ (x) =

∫

dy−

2π
p+dz−eixp

+y−

(−i)θ(z− − y−)〈N |ψ̄(0)
γ+

2
D2

⊥(z
−)ψ(y−)|N〉, (35)

ψ
(2)N
⊥ (x) =

1

2

[

ψ
(2,L)N
⊥ (x) + ψ

(2,R)N
⊥ (x)

]

= ip+
∫

dy−

4π

∫ y−

0

dz−eixp
+y−

〈N |ψ̄(0)
γ+

2
D2

⊥(z
−)ψ(y−)|N〉. (36)

are twist-four parton correlation functions for a nucleon
state. We have omitted the gauge links in the above
expressions for brevity. One can similarly find that

〈~k4⊥ϕ̃
(2)A
⊥ 〉(x) = Aψ̃

(2)N
⊥ (x)∆2F +O(A). (37)

The definition of ψ̃
(2)N
⊥ (x) is similar to ψ̃

(2)N
⊥ (x). Both

are given in the appendix.

IV. TRANSVERSE MOMENTUM

BROADENING

In the previous section, the ~k2⊥-weighted cross section
should also contain contributions that are not enhanced
by the nuclear size, including those that contain parton
correlations inside a single nucleon. These contributions
are essentially the same cross section for a single nucleon
target multiplied by the atomic number A. We should
subtract these contributions to obtain the final result for
the nuclear enhanced k2⊥-weighted differential cross sec-
tion,

d〈~k2⊥σ
A〉

dxBdy
−A

d〈~k2⊥σ
N 〉

dxBdy

≃
2πα2

eme
2
q

Q2y
A∆2F

{

[1 + (1− y)2]fN
q (xB)

−
2[1 + (1− y)2]xB

Q2

[

ψ
(2)N
⊥ (xB)− ψ̃

(2)N
⊥ (xB)

]

+
16(1− y)x2BM

2

Q2
fN
q(−)(xB)

}

. (38)

The averaged transverse momentum broadening is de-
fined as,

△〈p2⊥〉 ≡
d〈~k2⊥σ

A〉

dσA
−
d〈~k2⊥σ

N 〉

dσN
, (39)

where the transverse momentum integrated cross section
can be obtained from Eq. (8),

dσA

dxBdy
=

2πα2
eme

2
q

Q2y

{

[1 + (1 − y)2]fA
q (xB)

−2[1 + (1 − y)2]
xB
Q2

[ψ
(2)A
⊥ (xB)− ψ̃

(2)A
⊥ (xB)]

+16(1− y)
x2BM

2

Q2
fA
q(−)(xB)

}

. (40)

The above expression for transverse-momentum-
integrated cross section is suitable for both nuclear and
nucleon targets. The definition of twist-four parton

correlation functions ψ
(2)A
⊥ (xB) and ψ̃

(2)A
⊥ (xB) (see the

appendix) are also suitable for both nuclei and nucleons.
Because of the cancellation between contributions from
right and left-cut diagrams, the interaction with the soft
gluon field is limited within the size of a single nucleon

[the integration over z− in Eq. (36) for ψ
(2)A
⊥ (xB) is

limited to the size y− of the nucleon, for example].

Therefore, ψ
(2)A
⊥ (xB) and ψ̃

(2)A
⊥ (xB) have no nuclear

enhancement, similarly as fA
q (xB) and f

A
q(−)(xB).

Including only the leading nuclear enhancement in the
~k2⊥-weighted and ~k⊥-integrated differential cross sections
and expanding both in terms of power-corrections, one
has

△〈p2⊥〉 ≃ ∆2F

AfN
q (xB)

fA
q (xB)

{

1 +
16(1− y)

[1 + (1− y)2]

x2BM
2

Q2

[

fN
q(−)(xB)

fN
q (xB)

−
fA
q(−)(xB)

fA
q (xB)

]

−
2xB
Q2

[

ψ
(2)N
⊥ (xB)

fN
q (xB)

−
ψ̃
(2)N
⊥ (xB)

fN
q (xB)

−
ψ
(2)A
⊥ (xB)

fA
q (xB)

+
ψ̃
(2)A
⊥ (xB)

fA
q (xB)

]

}

. (41)

Since all the collinear nuclear parton distribution and

correlation functions, fA
q (xB), fA

q(−)(xB), ψ
(2)A
⊥ (xB)

and ψ̃
(2)A
⊥ (xB), have no extra nuclear enhance-

ment beside their linear dependence on A, their
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ratios fA
q(−)(xB)/f

A
q (xB), ψ

(2)A
⊥ (xB)/f

A
q (xB) and

ψ̃
(2)A
⊥ (xB)/f

A
q (xB), also do not have any nuclear

enhancement. Therefore, the power corrections in
the above transverse momentum broadening are not
enhanced by the nuclear size. The finite power correc-
tions to the transverse momentum broadening depend,
however, on the difference between the collinear parton
distribution and correlation functions in a nucleus
and that in a free nucleon. If the nuclear parton
distribution and correlation functions are just the sums
of those of free nucleons, i.e., fA

q (xB) = AfN
q (xB),

fA
q(−)(xB) = AfN

q(−)(xB), ψ
(2)A
⊥ (xB) = Aψ

(2)N
⊥ (xB),

ψ̃
(2)A
⊥ (xB) = Aψ̃

(2)N
⊥ (xB), the above power corrections

will all vanish. Therefore, the power corrections to the
transverse momentum broadening are sensitive to the
nuclear modifications of the collinear parton distribution
and correlation functions.

V. CONCLUSION

In conclusion, we use the differential TMD cross sec-
tion of SIDIS up to twist-four contributions to calcu-
late the transverse momentum broadening of the struck
quark up to the first power corrections in 1/Q2. The
~k2⊥-weighted differential cross section depends on higher-
twist collinear matrix elements of nuclear states up to
twist-six which are shown to factorize approximately into
products of jet transport parameter and collinear parton
distribution and correlation functions. Because of the
cancellation between left and right-cut diagrams, these
higher-twist matrix elements are shown to have no ex-
tra nuclear enhancement in addition to that involved
with the jet transport parameter. The final transverse
momentum broadening of the struck quark is shown to
be proportional to the leading twist result given by a
path-integral of the jet transport parameter. The next
power corrections are found to have no additional nuclear
enhancement. The coefficients of these power correc-
tions are determined by the nuclear modification of the
collinear parton distribution and correlation functions.
Such power corrections to the transverse momentum

broadening might be important for extracting the jet
transport parameter from experimental data. Under-
standing of these power corrections is also important to
the study of the scale evolution of the jet transport pa-
rameter according to the QCD evolution equation from
the NLO higher-twist contributions to the SIDIS cross
section [10], especially at intermediate values of Q2.
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Appendix A: Definitions of the matrix elements

The TMD parton distribution and correlation func-
tions in terms of matrix elements of parton field opera-
tors that we use in the differential cross sections of SIDIS
in Eq. (8) are defined as follows [24],

fA
q (x,~k⊥) =

∫

dy−d2y⊥
(2π)3

eixp
+y−−i~k⊥·~y⊥

× 〈A|ψ̄(0)
γ+

2
L(0; y)ψ(y)|A〉, (A1)

fA
q⊥(x,

~k⊥) =

∫

p+dy−d2y⊥
(2π)3

eixp
+y−−i~k⊥·~y⊥

× 〈A|ψ̄(0)
/k⊥

2~k2⊥
L(0; y)ψ(y)|A〉, (A2)

fA
q(−)(x,

~k⊥) =
1

M2

∫

p+dy−d2y⊥
(2π)3

eixp
+y−−i~k⊥·~y⊥

× 〈A|ψ̄(0)
/p

2
L(0; y)ψ(y)|A〉. (A3)

The corresponding collinear (~k⊥-integrated) parton dis-
tribution and correlation functions, fA

q (x) and fA
q(−)(x),

can be obtained from the above by integration over ~k⊥.

The following high-twist TMD parton distribution
functions in terms of the matrix elements from both left
and right cut diagrams in Fig. 1:

ϕ
(i)A
⊥2 ≡

1

2

(

ϕ
(i,L)N
⊥2 + ϕ

(i,R)A
⊥2

)

, (i = 1, 2), (A4)

ϕ̃
(i)A
⊥2 ≡

1

2

(

ϕ̃
(i,L)A
⊥2 + ϕ̃

(i,R)A
⊥2

)

, (i = 1, 2), (A5)

where,
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ϕ
(1,L)A
⊥2 =

∫

p+dy−d2y⊥
(2π)3

eixp
+y−−i~y⊥·~k⊥

(2k⊥αk⊥ρ − k
2
⊥dρα)

~k4⊥
〈A|ψ̄(0)

γα
2
Dρ(0)L(0; y)ψ(y)|A〉, (A6)

ϕ̃
(1,L)A
⊥2 =

∫

p+dy−d2y⊥
(2π)3

eixp
+y−−i~y⊥·~k⊥

(−ik⊥{αǫ⊥ρ}γk
γ
⊥)

~k4⊥
〈A|ψ̄(0)

γ5γα
2

Dρ(0)L(0; y)ψ(y)|A〉, (A7)

ϕ
(1,R)A
⊥2 =

∫

p+dy−d2y⊥
(2π)3

eixp
+y−−i~y⊥·~k⊥

(2k⊥αk⊥ρ − k
2
⊥dρα)

~k4⊥
〈A|ψ̄(0)

γα
2
L(0; y)Dρ(y)ψ(y)|A〉, (A8)

ϕ̃
(1,R)A
⊥2 =

∫

p+dy−d2y⊥
(2π)3

eixp
+y−−i~y⊥·~k⊥

(−ik⊥{αǫ⊥ρ}γk
γ
⊥)

~k4⊥
〈A|ψ̄(0)

γ5γα
2
L(0; y)Dρ(y)ψ(y)|A〉, (A9)

ϕ
(2,L)A
⊥ =

∫

dx2
x2 − x− iǫ

dy−d2y⊥
(2π)3

p+dz−

2π
eix2p

+z−+ixp+(y−−z−)−i~k⊥·~y⊥
−dρσ

k2⊥

×〈A|ψ̄(0)
γ+

2
L(0; z−, 0⊥)Dρ(z

−, 0⊥)Dσ(z
−, 0⊥)L(z

−, 0⊥; y)ψ(y)|A〉, (A10)

ϕ̃
(2,L)A
⊥ =

∫

dx2
x2 − x− iǫ

dy−d2y⊥
(2π)3

p+dz−

2π
eix2p

+z−+ixp+(y−−z−)−i~k⊥·~y⊥
−iǫρσ⊥
k2⊥

×〈A|ψ̄(0)
γ5γ

+

2
L(0; z−, 0⊥)Dρ(z

−, 0⊥)Dσ(z
−, 0⊥)L(z

−, 0⊥; y)ψ(y)|A〉, (A11)

ϕ
(2,R)A
⊥ =

∫

dx1
x1 − x+ iǫ

dy−d2y⊥
(2π)3

p+dz−

2π
eixp

+z−+ix1p
+(y−−z−)−i~k⊥·~y⊥

−dρσ

k2⊥

×〈A|ψ̄(0)
γ+

2
L(0; z−, y⊥)Dρ(z

−, y⊥)Dσ(z
−, y⊥)L(z

−, y⊥; y)ψ(y)|A〉, (A12)

ϕ̃
(2,R)A
⊥ =

∫

dx1
x1 − x+ iǫ

dy−d2y⊥
(2π)3

p+dz−

2π
eixp

+z−+ix1p
+(y−−z−)−i~k⊥·~y⊥

−iǫρσ⊥
k2⊥

×〈A|ψ̄(0)
γ5γ

+

2
L(0; z−, y⊥)Dρ(z

−, y⊥)Dσ(z
−, y⊥)L(z

−, y⊥; y)ψ(y)|A〉, (A13)

where dµν = gµν − n̄µnν − n̄νnµ, ǫµν⊥ = ǫµνρσn̄ρnσ and
ǫµνρσ the anti-symmetric unit tensor. The four-vector of

the transverse momentum is defined k⊥ = (0, 0, ~k⊥).

In the calculation of the ~k2⊥-weighted differential cross
section, the following collinear parton distribution and
correlation functions are used.

〈~k2⊥f
A
q 〉(x) =

∫

d2~k⊥~k
2
⊥f

A
q (x,~k⊥)

=

∫

dy−d2y⊥d
2~k⊥

(2π)3
eixp

+y−−i~k⊥·~y⊥~k2⊥〈A|ψ̄(0)
γ+

2
L(0; y)ψ(y)|A〉, (A14)

〈~k2⊥f
A
q(−)〉(x) =

∫

d2~k⊥~k
2
⊥f

A
q(−)(x,

~k⊥)

=
p+

M2

∫

dy−d2y⊥d
2~k⊥

(2π)3
eixp

+y−−i~k⊥·~y⊥~k2⊥〈A|ψ̄(0)
/p

2
L(0; y)ψ(y)|A〉, (A15)

〈~k4⊥ϕ
(2,L)A
⊥ 〉(x) =

∫

d2~k⊥dx2
x2 − x− iǫ

dy−d2y⊥
(2π)3

p+dz−

2π
eix2p

+z−+ixp+(y−−z−)−i~k⊥·~y⊥

(

dρσ~k2⊥

)

×〈A|ψ̄(0)
γ+

2
L(0; z−, 0⊥)Dρ(z

−, 0⊥)Dσ(z
−, 0⊥)L(z

−, 0⊥; y)ψ(y)|A〉, (A16)
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〈~k4⊥ϕ
(2,R)A
⊥ 〉(x) =

∫

d2~k⊥dx1
x1 − x+ iǫ

dy−d2y⊥
(2π)3

p+dz−

2π
eixp

+z−+ix1p
+(y−−z−)−i~k⊥·~y⊥

(

dρσ~k2⊥

)

×〈A|ψ̄(0)
γ+

2
L(0; z−, y⊥)Dρ(z

−, y⊥)Dσ(z
−, y⊥)L(z

−, y⊥; y)ψ(y)|A〉, (A17)

〈~k4⊥ϕ̃
(2,L)A
⊥ 〉(x) =

∫

d2~k⊥dx2
x2 − x− iǫ

dy−d2y⊥
(2π)3

p+dz−

2π
eix2p

+z−+ixp+(y−−z−)−i~k⊥·~y⊥

(

iǫρσ⊥
~k2⊥

)

×〈A|ψ̄(0)
γ5γ

+

2
L(0; z−, 0⊥)Dρ(z

−, 0⊥)Dσ(z
−, 0⊥)L(z

−, 0⊥; y)ψ(y)|A〉, (A18)

〈~k4⊥ϕ̃
(2,R)A
⊥ 〉(x) =

∫

d2~k⊥dx1
x1 − x+ iǫ

dy−d2y⊥
(2π)3

p+dz−

2π
eixp

+z−+ix1p
+(y−−z−)−i~k⊥·~y⊥

(

iǫρσ⊥
~k2⊥

)

×〈A|ψ̄(0)
γ5γ

+

2
L(0; z−, y⊥)Dρ(z

−, y⊥)Dσ(z
−, y⊥)L(z

−, y⊥; y)ψ(y)|A〉. (A19)

In the calculation of the ~k⊥-integrated differential cross section, one also encounters the following collinear parton
correlation functions,

ψ
(2)A
⊥ (x) =

1

2

[

〈~k2⊥ϕ
(2,L)A
⊥ 〉(x) + 〈~k2⊥ϕ

(2,R)A
⊥ 〉(x)

]

= ip+
∫

dy−

4π

∫ y−

0

dz−eixp
+y−

〈A|ψ̄(0)
γ+

2
L(0; z−)D2

⊥(z
−)L(z−; y−)ψ(y−)|A〉, (A20)

ψ̃
(2)A
⊥ (x) =

1

2

[

〈~k2⊥ϕ̃
(2,L)A
⊥ 〉(x) + 〈~k2⊥ϕ̃

(2,R)A
⊥ 〉(x)

]

= −p+
∫

dy−

4π

∫ y−

0

dz−eixp
+y−

ǫρσ⊥ 〈A|ψ̄(0)
γ5γ+

2
L(0; z−)Dρ(z

−)Dσ(z
−)L(z−; y−)ψ(y−)|A〉. (A21)

Since nucleons are color singlet states, the quark field
operators in the above matrix elements must operate on
a single nucleon inside the nucleus. This limits the range
of the coordinate y− to the size of a nucleon, which also
limits the range of z− integration. Therefore, the above
matrix elements should be proportional to the atomic
number of the nucleus and do not have any extra nuclear
enhancement.

All the matrix elements defined above for nu-
clear states are also valid for a nucleon. The ~k4⊥-
weight-integrated nuclear parton correlation functions

〈~k4⊥ϕ
(2)A
⊥ 〉(x) and 〈~k4⊥ϕ̃

(2)A
⊥ 〉(x) are also related to the

parton correlation functions in Eqs. (A20) and (A21) for
a nucleon state as shown in Sec. III.
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