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Heavy Flavor & Dark Sector

A.E. Nelson and J. Scholtz

Abstract

We consider some contributions to rare processes in B meson decays from a Dark Sector
containing 2 light unstable scalars, with large couplings to each other and small mixings with
Standard Model Higgs scalars. We show that existing constraints allow for an exotic contribution
to high multiplicity final states with a branching fraction as large as O(10−4), and that exotic
particles could appear as narrow resonances or long lived particles which are mainly found in
high multiplicity final states from B decays.

1 Introduction

The last decade has seen an explosion of available measurements performed on the Bd and Bs meson
systems. Their masses, mass differences, lifetimes, branching ratios of common and rare decays,
asymmetries in their decays are all well measured. Unfortunately, there are very few deviations
from the predictions put forth by the Standard Model (SM), despite the effort poured into new
sophisticated methods to interpret this data [1, 2, 3]. With so few observed deviations, we are
forced to wonder: Is this it? Is there any more physics we can extract out of B mesons?

In other fields, such as Cosmology, we face puzzles of a different kind: A large body of evidence
points towards the existence of Dark Matter (DM) as a significant (∼ 25%) component of our
Universe. We know very little about DM: most of it is cold (from structure formation) and it
interacts very weakly with itself (halo formation, bullet cluster) and with baryonic matter (direct
detection, bullet cluster). The weakness of interaction between DM and SM particles justifies a
separation of these two sectors. We will call the sector containing DM the Dark Sector (DS).

Although we know very little about dark matter, we know even less about the dark sector. The
principle of Occam’s Razor drives us towards the simplest theories of the DS with no additional
particle content beyond what is necessary to explain the DM density of our Universe. However,
this directly contradicts the nature of the Standard Model – the degrees of freedom of the Standard
Model far outnumber the degrees of freedom that participate in forming the 5% of the Universe
populated by baryonic matter. We conclude that minimalism is not a valid principle for particle
physics.

In this paper, we abandon minimalism and propose there are other fields and particles within
the DS that do not contribute to the DM density of our Universe. There are a few reasons why
only some DS particles might contribute significantly to DM density: some particles may freeze
out at too low density, some might be too light to form a cold enough component of DM during
the epoch of structure formation and some particles might be unstable on cosmological scales.

So far, the particles that form DM remain unobserved by direct detection experiments. There-
fore, we wish to focus on the unstable particles that do not contribute to the DM density. If their
lack of stability comes from decay into SM particles, we have a chance of observing their decay
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products in our detectors. Thus although the existence of DM motivates us to consider sectors
which are weakly coupled to the SM, in this paper we do not discuss stable DM candidates at all.

Luckily, we have been given a physical system that is extremely sensitive to the existence of
new decay channels. The B mesons, with their relatively long lifetimes and relatively low mass, are
ideally suited for probing a GeV scale DS. Moreover, as already mentioned, these systems are very
well explored by many dedicated experiments such as Belle, BaBar and LHCb as well as general
purpose such as ATLAS and CMS. It would be a shame not to use this vast amount of experimental
data to constrain the possible shape of the DS.

However, there are many different realizations of possible DS models and it is impossible to rule
out all, or even a fraction of these models. In fact, a complete decoupling between the SM and the
DS is a logical possibility that does not contradict any current experimental data, yet is impossible
to rule out without a positive signal from the DS. Therefore, instead of focusing on constraining
every corner of the DS model space, it would be far more fruitful to focus on describing possible
signals that could arise as consequences of these models. This way we can alert the experimental
community to measurements that may shed some light on the nature of these models. This approach
is often called exploring the signal space, as opposed to exploring the model space.

Since we probe the B meson systems, it makes sense to use an effective field theory of the DS
with a cut off above the B meson mass (∼ 5 GeV). In order to extract some interesting signals out
of our DS, we have chosen to populate it with two scalars with internal couplings approaching a
strongly coupled regime. If we wish, we can interpret these scalars as bound states of a strongly
interacting theory or elementary scalars. In order to allow for some coupling between the two
sectors, we include operators that contain both the Higgs fields and the DS scalars – the so called
Higgs Portal [4, 5, 6].

We chose to include not just one SM Higgs field, but two Higgs Doublets [7]. This allows
our models to be included not only within the Minimal Supersymmetric Standard Model (MSSM)
frame work, but also allows us to use the decoupling limit which corresponds to the SM with one
Higgs field.

We discover that within our framework it is remarkably simple to significantly change the rate
of rare decays of B mesons, in particular the decays into multi-particle final states. Depending on
the parameters of our model these decays may appear prompt, or with displaced vertices. Finally,
irrespective of including second Higgs doublets, light Higgs-like scalars preferentially couple to
mesonic final states which motivates many new searches.

This paper is organized as follows: we will set up our model and establish our conventions and
notation in section 2. We will present a UV completion of this model in section 3. In section 4
we will discuss the interaction between the SM and the DS. We will explore the experimental and
theoretical constraints on our model in section 5 and show the allowed branching fractions for
high multiplicity decay modes of B mesons in section 6. We finally conclude and suggest future
directions in section 7.

2 Definitions, Notation and Setup

2.1 The Model

We will extend the SM in two ways. First, we use a Higgs sector with two Higgs doublets. This is is
a well known extension thanks to its presence in supersymmetric models. For the second extension,
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we take the simplest non-trivial low energy effective theory of the DS: two unstable scalars, both
with masses on the order of GeV. Although we call this sector the DS, we do not explicitly include
the DM particle, as we are not assuming it is light enough to affect B decays. We expect that all
other dimensionful constants in this effective theory will be generated by the same processes and
therefore will be roughly the same scale. The SM sector and the DS will be coupled through a
Higgs Portal [4, 5, 6] – a set of renormalizable operators that mix the 2HDM Higgs fields and the
scalars in the DS. As a result, we split the Lagrangian into logically separate parts:

L = LSM+2HDM + LDS + LPortal, (1)

and discuss the individual parts in this section.

2.2 Two Higgs Doublet Extension of the Standard Model

Two Higgs doublet extensions of the Standard Model are part of the standard lore of particle
physics [7]. As opposed to the Standard Model (which we will occasionally call 1HDM), where
only one Higgs field spontaneously breaks the Electro-Weak symmetry and gives mass to fermions,
these extensions contain an additional Higgs doublet. In order to avoid large flavor-changing neutral
currents, only one Higgs field is allowed to couple to up-type quarks, down-type quarks and leptons,
respectively. We will use the type II model in which Hu couples to the up-type quarks and Hd

couples to the down-type quarks and leptons. After Electro-Weak symmetry breaking (EWSB),
this extension contains two massive neutral singlets hu and hd. These mix and we will rotate the
flavor basis {hu, hd} into the mass eigenstate basis {h,H}:(

h
H

)
=

(
cosα − sinα
sinα cosα

)(
hu
hd

)
(2)

The ratio of the two vacuum expectation values of the two Higgs fields is called tanβ = vu/vd. The
couplings of the light h and the heavy H to up-type and down-type fermions are then proportional
to:

yhu =
mu

v

cosα

sinβ
yhd,l = −

md,l

v

sinα

cosβ
yHu =

mu

v

sinα

sinβ
yHd,l =

md,l

v

cosα

cosβ
(3)

The 2 Higgs Doublet Model (2HDM) extension also contains a pseudoscalar neutral boson A and
a charged H±, but they do not significantly contribute to our analysis since H± is charged and
therefore does not mix with the DS and A is typically too heavy under current experimental
constraints.

2.3 The Dark Sector

As we state in the introduction, there is no reason why the DS should be simple. This view certainly
complicates our ability to fully classify the effects of DS on measurable quantities. We take the
view that although there is no reason for the DS to be simple, it is certainly preferable to start
with a simple one. However, if too simple, the DS is unlikely to produce any novel signature. In
order to avoid both problems we take what we consider a minimal low energy effective theory of
the DS which has distinctive consequences of multiple particle content. It contains two real scalars
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n1 and n2. We assume no symmetry properties for these scalars. This DS can be summarized by
its Lagrangian1:

LDS =
1

2
∂µn1∂µn1 +

1

2
m2

1n
2
1 +

1

2
∂µn2∂µn2 +

1

2
m2

1n
2
2 +

1

3!

∑
ijk

Λijkninjnk +
1

4!

∑
ijkl

λijklninjnknl (4)

In the next paragraph we will choose benchmark values of m1, m2 as well as Λijk. We propose
several mass study points for this DS as indicated in table 1. Study points SP1 and SP4 feature
a particularly wide n1. Currently, rather large values of ε1 are allowed for m1 = 2 GeV, which is
why we choose three of the study points along this line (SP1,SP2,SP3). For completeness we also
choose SP4 because it is a good representative for the low mass DS.

Study Point m1 [GeV] m2 [GeV]

SP1 2.0 0.85
SP2 2.0 0.5
SP3 2.0 0.3
SP4 0.7 0.3

Table 1: List of Study Points.

In order to avoid the existence of easily detected sharp resonances we require that the decay
width for the process n1 → n2n2 be as large as possible. We parametrize the dimensionful cubic in
the following way:

Λ122 =
√

16πλ122m2 (5)

The n1(n2)2 operator is also responsible for mass correction to both n1 and n2, which is why we
express it in terms of m2. This way it is easier to track the contribution of Λ122 to renormalization
of m2. With this parametrization, the width of n1 takes a simple form:

Γ(n1 → n2n2) = λ122
m2

2

m1

√
1− 4

m2
2

m2
1

(6)

This is maximized for m1 =
√

6m2, leading to Γ1/m1 ∼ λ122/10. When λ122 is large this theory
becomes strongly coupled and our perturbative approach fails to make any sense. Also, for large
enough λ122 the cut-off needed to regulate the mass of n2 becomes very low as shown in Appendix
A. We estimate that the boundary between the weakly coupled and the strongly coupled regimes
sits around λ122 ∼ 1 for m1 ∼ m2. If the cut-off for regulating the mass of n2 is smaller than mBs ,
we would have to introduce additional dynamics at this scale and further change the decay channels
of Bs and Bd. Therefore, we also require λ122 . 1/3 in order to avoid this scenario. Allowing a
1% fine-tuning for m2

2, λ122 can be as large as 30 – far in the nonperturbative regime. Therefore
as long as we stay within the perturbative regime, we do not have to be worried about fine-tuning
between the cubic operators and the mass operator. For more details please read appendix A.

1We assume the renormalized couplings are such that there is a stable vacuum at the origin of field space. This
will constrain a combination of the quadratic, quartic and cubic terms.
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2.4 Higgs Portal

As already advertised we will establish interactions with the Standard Model through the 2HDM
generalized Higgs Portal. We will consider the set of all 2 dimensional operators that cause mixing
between 2HDM and DS scalars:

LPortal = m2
1uhun1 +m2

2uhun2 +m2
1dhdn1 +m2

2dhdn2 (7)

In a general model we would have to find the eigenvectors of the full four dimensional ({hu, hd, n1, n2})
Hamiltonian. However, since we do not expect the cross-terms m2

ix to be very large, it is sufficient
to define pairwise rotations by angles

θix =
1

2
tan−1

(
2m2

ix

m2
x −m2

i

)
. (8)

These define the almost eigenstates ñi and h̃x:(
h̃u
ñ1

)
=

(
cos θu1 sin θu1

− sin θu1 cos θu1

)(
hu
n1

)
. (9)

We define θ2u, θ1d and θ2d similarly. The rotations defined by these angles do not commute, and
so any successive application of these four rotations will not lead to mass eigenbasis of the model.
However, as we will see in the subsequent sections, these angles are small and so all the terms
arising from commutators are going to be suppressed and the states ñi and h̃x are going to be for
all practical purposes the eigenstates of the Hamiltonian. Ignoring the huhd mass mixing operator
for now, we can use a single matrix to rotate into the mass eigenstate basis. To the first order in
θix this matrix takes a simple form:

h̃u
h̃d
ñ1

ñ2

 =


1 0 θu1 θu2

0 1 θd1 θd2

−θu1 −θd1 1 0
−θu2 −θd2 0 1



hu
hd
n1

n2

 (10)

It is more convenient to express these angles by a different set of parameters:

θu1 = ε1 cos δ1

θd1 = ε1 sin δ1

θu2 = ε2 cos δ2

θd2 = ε2 sin δ2.

(11)

This way εi stand for the amount of mixing between ni and the SM Higgs fields, while tan δi marks
the ratio between ni’s couplings with up-type and down-type fermions. In this treatment we only
need to require that ε1, ε2 � 1 in order to ensure that all four mixing angles are small. Rotating
into the mass eigenstate basis also introduces new mixed cubic and quartic operators between the
two sectors. For example, we encounter a new operator that allows Higgs decay into a pair of DS
scalars:

Lnew = . . .+
1

2
ε1 cos δ1Λ122hun2n2 + . . . (12)

We will explore how this affects the range of allowed parameters in the later sections of this paper.
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3 A UV Example with Naturally Light Hidden Scalars

Although the model we have presented is mathematically consistent and renormalizable, it is inter-
esting to consider whether there could be a natural origin for the small size of the scalar masses and
the large size of their self couplings. We present an example in which they are composite particles,
with naturally light masses. We take the two Higgs doublet model and populate the DS with a
fermion ψ that transforms under an SU(N) with a confinement scale ΛD. We add a heavy DS
Higgs-like scalar X, with a vev vX . The X and Higgses mix and the UV Lagrangian for this DS
takes the familiar form:

L = ψ̄ /Dψ + λψXψ̄ψ + λX

(
X†X − v2

X

)2
+

+ λXu

(
X†X − v2

X

)(
H†uHu − v2

u

)
+ λXd

(
X†X − v2

X

)(
H†dHd − v2

d

)
(13)

After symmetry breaking in the DS, we can integrate out the heavy X:

L = ψ̄
(
/D +mψ

)
ψ + · · ·+ λXu

λψvX ψ̄ψ

M2
X

(
H†uHu − v2

u

)
+ (u←→ d) (14)

Below ΛD, the ψ are confined into mesons: ψ̄ψ → f2
Dni. Thus we get an effective field theory for

a bound state of ψ̄ψ coupled to our Higgses:

L = (∂ni)
2 +m2

in
2
i +

(
λXuλψvXvuf

2
D

M2
X

)
huni + (u←→ d), (15)

which corresponds to a misalignment between the flavor and mass basis of the order:

θui ∼
λXuλψvXvuf

2
D

M2
Xm

2
h

≤
λXumivuf

2
D

M2
Xm

2
h

∼ λXum
3
i vu

M2
Xm

2
h

f2
D

m2
i

∼ λXum
3
i cosβ

M2
Xmh

f2
D

m2
i

(16)

Suppose that X is not much heavier than mh, then we expect:

θui ∼ 10−5 cosβ

(
λXu
0.1

)(
fD
mi

)2

(17)

However, if the SU(N) coupling remains strong between MX and mi, the operator ψ̄ψ might have
a large anomalous dimension γ ∼ O(1) near such an infrared conformal fixed point. This means
that the operator (

λXuλψvXvuf
2
D

M2
X

)
huni (18)

would be scaled by a factor: (
MX

mi

)γ
. (19)

This would allow a much larger θui ∼ 10−1. It is possible to double the Dark Higgs sector in order
to allow for different couplings between the DS bound states and Standard Model up and down
Higgses.

Note that in this model there will be other states besides our minimal pair of scalars. As long
as it contains a scalar n1 that can decay into 2 mesons n2, which in turn are unable to decay into
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any hidden states, the signatures we discuss could be present. As ψ number is conserved, there
will be a new stable dark “baryon”, which is a bound state of N ψ particles, and is a dark matter
candidate. As this baryon is heaver than the scalars by a factor of O(N), we assume it does not
appear in B meson decays.

4 Interactions between the Dark Sector and the Standard Model

We would like to observe measurable effects of our model in decays of B mesons. Therefore, we
need to make sure B mesons can decay into the DS. Moreover, unless we want to look for events
with just missing energy we also need make sure that the DS particles decay back into Standard
Model particles. In the next two sections we show how this can be done.

4.1 B decays through the Higgs penguin

We are interested in B meson decays into the DS. This happens through the Higgs penguin operator
s̄bh and the Higgs Portal. The Standard Model Higgs penguin has a relatively simple form compared
to its 2HDM cousin. In the 2HDM extension the total size of the matrix elements as well as the
ratio between the s̄bh and s̄bH couplings are functions of the form of the 2HDM extension as well
as tanβ and α. We will parametrize this model dependence by two parameters, ξ and γ, that
modify the SM operator:

Lbs =
3
√

2GFm
2
tV
∗
tsVtbξ(tanβ,mt,mW , . . .)

16π2v
(h cos γ +H sin γ) [s̄LbR]

=ξλp (h cos γ +H sin γ) [s̄LbR],

(20)

where we have defined:

λq =
3
√

2GFm
2
tV
∗
tqVtbmb

16π2v
(21)

|λs| = 9.47× 10−6 (22)

|λd| = 1.85× 10−6 (23)

Notice that these parameters are degenerate with other parameters in our model. For example,
take the coupling s̄bni:

ξλp (h cos γ +H sin γ) [s̄LbR] = ξλp (hu cos(γ − α) + hd sin(γ − α)) [s̄LbR] =

= λp(ξεi) cos(γ − α− δi)ni[s̄LbR] + . . . ,
(24)

and so until we have detailed knowledge of the 2HDM Higgs sector2 we will be content with
expressing all predictions in terms of ξεi and δi.

The LHC has discovered a 126 GeV Higgs particle which is Standard Model-like [8]. These
studies strongly prefer sin(α−β) = 1 and allow a somewhat large range for tanβ including tanβ = 1.
This would foreshadow Standard Model-like penguin diagrams with ξ ∼ 1 and γ ∼ 0. We will, for
study purposes, use these values. However, due to the above mentioned degeneracy even if these
are not correct assumptions our study can be easily recast into different 2HDM scenarios.

2A Supersymmetric 2HDM will give different penguin strength compared to a simpler 2HDM extension
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The nature of the link between the Standard Model B mesons and the DS scalars implies
correlations between different decay channels, which should be exploited when identifying this
particular DS. For example, an excess of events in Bd → K0µµ should be accompanied by a
similar excess in B± → K±µµ, Bs → φµµ as well as a smaller excess (by a factor of |Vtd/Vts|2) in
Bs → Kµµ. Similarly, an excess in Bs → 4π should come with a similar excess in Bd → K + 4π
and Bs → φ+ 4π.

4.2 Decays of n1 and n2

We have already ensured that n1 decays very quickly into two n2s by setting λ122 as large as
possible. However kinematic constraints only allow n2 to decay into Standard Model particles. Its
couplings through the Higgs Portal allow decays into pairs of leptons, mesons and photons. Given
the nature of its couplings, the branching fractions into these modes are identical to those of a light
Higgs boson and are dependent on the mass of n2 as well as δ2.

Ordinarily, for m2 < 2mK , we could be content with the chiral perturbation theory (χPT)
prediction featured in appendix B. However, Donoghue et al. have shown in [9] that higher order
contributions generate a non-zero ∆π = 〈ππ|s̄s|0〉 matrix element (which violates the OZI rule).
The coefficient of this operator, ms, is large enough to make its contribution towards n2 → ππ
significant. One can think about this contribution as creating a virtual pair of kaons that rescatter
into a pair of pions.

We will use data from [9] to form a more complete picture of decays of n2. However, close to the
m2 = 2mK threshold, where the ratio Br(ππ)/Br(µµ) is significantly enhanced, the approximations
used may not be very reliable, and the predictions in this mass region should be taken with a grain
of salt. The authors of [9] separate the transition operator into three parts:

〈ππ|O|0〉 = 〈ππ|θµµ|0〉+ 〈ππ|mss̄s|0〉+ 〈ππ|muūu+mdd̄d|0〉 = θπ + ∆π + Γπ (25)

The contribution from Γπ (due to smallness of mu and md) is negligible and we will omit this
operator in our analysis. In our model the couplings to up and down fermions are modified to:

muūu→ ε2
cos δ2

sinβ
muūu mdd̄d→ ε2

sin δ2

cosβ
mdd̄d mll

+l− → ε2
sin δ2

cosβ
mll

+l−, (26)

which means that the relative branching fraction between pairs of pions and muons depends on β
and δ2:

Γ(n2 → ππ)

Γ(n2 → µµ)
=

∣∣∣(2 cot δ2 cotβ+1
3

)
BF(SM,∆π = 0)

1
2 +

(
25−4 cot δ2 cotβ

21

)
BF(SM, θπ = 0)

1
2

∣∣∣2
BF(n2 → µµ)SM

, (27)

where BF(SM,X = 0) is the branching fraction for a Standard Model Higgs with the operator X
turned off, while BF(n2 → µµ)SM would be the branching fraction of n2 in a model with single
Higgs boson. Since the phases of θπ and ∆π are identical, we can extract exact contribution of
each operator [9]. Figure 1 shows our results for the branching ratio Γ(n2 → ππ)/Γ(n2 → µµ) for
a range of m2.
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Figure 1: Branching ratio Br(n2 → ππ)/Br(n2 → µµ) as a function of m2. The lower, red curve
corresponds to δ2 = π/4, the higher, blue curve represents the choice δ2 = π/16.

5 Constraining the Model

In order to make our task manageable we will limit the range of some parameters (such as m1 and
m2) as well as only use a set of discrete values for other parameters (δ1 and δ2). Using chosen values
we will then derive constraints on ε1 and ε2. With a complete set of parameters we will then make
predictions for multi-particle final states that have not been yet measured and (happily) point out
that the allowed rates are large and (hopefully) observable.

How do we extract ε1 and ε2? First, in agreement with our initial desire to work with an almost
strongly coupled DS we set all the DS scalar couplings:

Λ111 =
√

16πλ111m1, λ111 = 1 (28)

Λ112 =
√

16πλ112m2, λ112 = 1 (29)

Λ122 =
√

16πλ122m2, λ122 = 1 (30)

Since operators Λ112n
2
1n2 and Λ122n1n

2
2 contribute to renormalization of m2 we make them pro-

portional to m2. On the other hand Λ111 is proportional to m1 since it does not renormalize m2 at
one-loop level.

The processes Bq →Mµµ and Bq →Mππ are dominated by the narrow n2 resonance and their
rates are virtually independent of any of the properties of n1. Therefore, we use these processes
to constrain ε2(m2, δ2). The allowed ε2(m2, δ2) is low enough that New Physics contribution to
processes such as Bq → µµ, Bq → ππ as well as Bq → 4µ or Bq → 4π is dominated by n1 in the
s-channel. This means we can use the two and four body decays of Bq to constrain ε1(δ1, δ2,m1,m2)
for given δ1, δ2, m1 and m2.

We still must specify δ1 and δ2. We choose δ1 = π/4. Although we could choose a different
value, present constraints on this DS do not force us to go beyond the simplest case.

The parameter δ2 determines whether the final states of DS decays are hadronic or leptonic. We
choose two different scenarios: the 1HDM equivalent δ2 = π/4 and the somewhat leptophobic δ2 =
π/16. We believe that possibly the best motivation for the somewhat leptophobic scenario is that it
represents a logical possibility that provides a motivation for exploring a large swath of experimental
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scenarios such as high multiplicity hadronic final states. However, note that cotπ/16 ∼ 5, therefore
this is not a particularly fine-tuned scenario. With every other parameter in place we are ready to
constrain ε1 and ε2.

5.1 Constraining with Υ decays

The branching fraction for a heavy vector state Υ to decay into a photon and a very light higgs
particle with mass mi was estimated in ref. [10] to be

GFm
2
b√

2πα

(
1− m2

i

m2
Υ

)
Br (Υ→ µµ) . (31)

Since the light hidden scalars mix with Hd, the Υ could decay into a photon and either n1 or n2,
with a branching fraction suppressed by an additional factor of of the mixing angle θdi squared, and
enhanced by tan2 β. Since for light scalars this constraint on the parameter space is less stringent
than the constraints from B mesons we will not consider it further.

5.2 Constraining ε2 with Three Body Final States

Decays of B mesons into a meson and ni result in final states such as Kµµ, K∗µµ, φππ. The
s-channel contribution from the broad n1 is negligible compared to the much narrower on-shell
n2 as long as ε2 > 10−4ε1, which we will find to be true. Therefore, these decay channels only
depend on ε2, δ2 and m2. Since many of these final states are well constrained by experimental
measurements and some are accessible to theoretical predictions with varying range of accuracy
and reliability we can use these measurements and predictions to put significant constraints on ε2.
Table 2 lists the decay channels we use to constrain our model as well as the HFAG combinations
[1], the Standard Model predictions and the allowed 2σ deviation for each channel. Similar results
in agreement with ours can be found in [11]. Every Bd channel has an equivalent Bu channel. The
currents responsible for these transitions are identical (if we treat the u and d quarks as spectators
there is no difference at all) and so up to minor electromagnetic corrections these modes are nearly
identical. The experimental constraints are also very similar and so we list the charged B meson
modes for completeness rather than for additional information. Notice that for the same reason
the lattice predictions are identical for the neutral and charged modes. The widths for Bq → Pn2

and Bq → V n2 are expressed in terms of Form Factors adopted from [15, 16]:

Γ(Bq → Pn2) =
λ2
qε

2
2 cos2(γ − α− δ2)

64πm3
Bq
m2
b

(
m2
Bq
−m2

P

)2 ∣∣∣f q→P0 (m2
2)
∣∣∣2×

×
[(
m2
Bq
− (m2 −mP )2

)(
m2
Bq
− (m2 +mP )2

)]1/2
(32)

Γ(Bq → V n2) =
λ2
qε

2
2 cos2(γ − α− δ2)

16πm3
Bq
m2
b

∣∣∣Aq→V0 (m2
2)
∣∣∣2 [(m2

Bq
− (m2 −mV )2

)(
m2
Bq
− (m2 +mV )2

)]3/2

(33)
Since n2 is very narrow, there is virtually no interference between the SM processes and New
Physics, which justifies incoherently adding results of equations 32 and 33 to the Standard Model
contribution. The spectrum of the invariant mass of the two muons would show a narrow peak
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Process HFAG combination [1] SM prediction Allowed 2σ Excess

Bd → Kµµ, 0.32+0.21
−0.20 × 10−7 (0.67± 0.28)× 10−7, [12] 0.35× 10−7

q2 < 2GeV2

Bd → Kππ (NR) (14.7± 2.0)× 10−6 Unreliable 18.7× 10−6

Bd → K∗µµ, (1.46± 0.5)× 10−7 (2.0± 0.25)× 10−7, [13] 0.57× 10−6

q2 < 2GeV2

Bd → K∗ππ (55± 5)× 10−6 Unreliable 65× 10−6

Bu → K+µµ, (0.53± 0.04)× 10−7 (0.67± 0.28)× 10−7, [12] 0.42× 10−7

q2 < 2GeV2

Bu → K+ππ(NR) (16.3± 2.0)× 10−6 Unreliable 20.3× 10−6

Bu → K+∗µµ (1.41± 0.5)× 10−7 (2.0± 0.25)× 10−7, [13] 0.52× 10−6

q2 < 2GeV2

Bu → K+∗ππ (75.3± 10.1)× 10−6 Unreliable 95.5× 10−6

Bs → φµµ (0.91± 0.24)× 10−6 1.23× 10−6 [14] 0.16× 10−6

Bs → Kππ (11.9± 3.7)× 10−6 Unreliable 19.3× 10−6

Table 2: Some three body decay channels of B mesons we use to constrain the parameters of our
model. NR stands for non-resonant and q2 < 2 GeV2 implies a constraint in a particular bin of the
differential cross-section.

centered around m2. It may seem dangerous to place a very narrow line in a well measured process.
However, although the differential width dΓ/dq2 is a well measured quantity, a search for narrow
lines has been only done for m2 < 0.3 GeV [17]. Above this mass the results are quoted in
somewhat coarser bins. Since our study points satisfy m2

2 < 2 GeV2, when the differential width
measurements are available, we use the binned (0 < q2 < 2 GeV2) measurement to obtain stronger
constraints on ε2.

When ε2 is low enough, n2 becomes long-lived on detector scales. As a result, the detector
acceptance suffers and the bounds on ε2 weaken. In order to model this effect when considering
the bounds on ε2 we only consider the portion of n2s that decay within 5 cm or within 10 cm from
the primary interaction point. We summarize these bounds on ε2 in figure 2.

5.3 Constraining ε1 with Bq → µµ and Bq → ππ

With recent experimental determination of the branching fraction Bs → µµ and ever increasing
constraints on Bd → µµ, these two channels could provide a constraint on our model. In Bq →
ni → µµ the momentum flowing through ni is fixed to q2 = m2

B. Unless m1 or m2 are close to the
mass of the B meson, this processes is not enhanced by any resonances as it was in Bq → Mni.
Given that the n1 and n2 propagators are both of nearly equal size, the relative strength of these
two s-channel processes is set by the ratio ε1/ε2. However, bounds from Bq → Mn2 force ε2 so
low that n2 has no measurable effect on this branching fraction. Notice that the contribution from
the neutral Higgs particle with mass mh is suppressed by (mB/ε1mh)4 ∼ (25ε1)−4. Therefore we
cannot constrain ε1 much below 0.04 using this decay. As a result the expression for this partial
width is relatively simple (as long as ε1 & 0.04):

Γ(Bq → n∗1 → µµ) =
1

8π

m5
Bq
m2
µf

2
Bq

v2m2
b cos2 β

λ2
qε

4
1 cos2(γ − α− δ1) sin2(δ1)

(m2
Bq
−m2

1)2 +m2
1Γ2

1(m2
Bq

)
, (34)
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Figure 2: On the left, the bounds on ε2 for δ2 = π/4 are shown in red and the bounds for δ2 = π/16
are shown in blue. The solid lines represent results of a naive analysis that assumes a full sensitivity
independent of the lifetime of n2. The dotted and dashed lines represent the bounds on ε2 if decays
that happen within 5 cm or 10 cm of the primary interaction point were recorded. The right figure
shows the width of n2 in terms of width of Bd. The dashed lines show the actual values including
the correction from lowered detector acceptance due to long lifetimes of n2.

where it is important to evaluate the width of n1 at q2 = m2
B. We show the experimental values

and the Standard Model predictions for branching fractions as well as the allowed 2σ deviations
for the decay modes of interest in table 3. The constraints from these processes are in general not

Process Experimental Bound SM prediction Allowed 2σ Excess

Bs → µµ (3.2± 1)× 10−9 [18, 19, 20] (3.23± 0.27)× 10−9, [21] 2× 10−9

Bs → ππ (0.73± 0.14)× 10−6 [22] (0.57+0.26
−0.23)× 10−6, [23] 0.76× 10−6

Bd → µµ < 8× 10−10 [18, 19, 20] (1.07± 0.1)× 10−10, [21] 7× 10−10

Bd → ππ 7.01± 0.29 [1] pQCD: (6.7± 3.8)× 10−6, [23] 7.9× 10−6

SCET: (6.2± 4)× 10−6, [24] 9.1× 10−6

Table 3: Two particle decay channels of B mesons we use to constrain ε1.

strong enough to constrain ε1. This is because these processes do not create any on-shell DS states
and are therefore suppressed by the additional factors of (ε1mµ/v)2 ∼ 10−9. In general we will
obtain much higher rates (at the possible cost of displaced vertices) by creating on-shell DS states
that decay into SM particles later. The most constraining modes are presented in the next section.

5.4 Constraining ε1 with Bq → 4µ and Bq → 4π

As we have mentioned, Bq → ni → µµ do not constrain ε1 all that well in comparison with other
decay modes such as Bq → 4µ. Similar to the three particle final state, the dominant contribution
to Bq → 4µ comes from Bq → 2n2 → 4µ with both n2s on-shell. The width for this processes is

12



not complicated:

Γ(Bq → 2n2) =
1

32π

λ2
qf

2
Bq
m3
Bq

m2
b

∣∣∣∣∣4m2

√
πλ122ε1 cos(γ − α− δ1)

m2
Bq
−m2

1 + im1Γ1(m2
B)

+
4m2

√
πλ222ε2 cos(γ − α− δ2)

m2
Bq
−m2

2 + im2Γ2(m2
B)

+

+
Λh22 cos(γ)

m2
Bq
−m2

h

+
ΛH22 sin(γ)

m2
Bq
−m2

H

∣∣∣∣∣
2

(35)

Notice that we have set λ122 = λ222 and the n1 and n2 propagators are dominated by m2
B and

so their relative contribution is again determined by the ratio ε1/ε2. We only need to keep the
contribution from n1 unless ε1 ∼ ε2. The Higgs contribution is suppressed by

fh =
Λh22m

2
B

εiΛi22m2
h

∼ Λh22

εiΛi22

m2
B

m2
h

. (36)

We expect Λh22 ∼ εiΛi22 and so the s-channel Higgs contribution is suppressed by (mB/mh)2 and
is negligible. This is true every time n1 carries momentum much smaller than the mass of Higgs
and we will ignore the low momentum Higgs boson contribution in the future. Thus, we only need
to consider a simple partial width:

Γ(Bq → 2n2) =
λ2
qf

2
Bq
m3
Bq
m2

2

m2
b

λ122ε
2
1 cos2(γ − α− δ1)

(m2
Bq
−m2

1)2 +m2
1Γ1(m2

B)2
(37)

The properties of the three experimentally measured decay channels that fall into this category
are summarized in table 4. The most stringent test (not surprisingly) comes from Bs → 4µ since

Process Experimental Bound SM prediction Allowed 2σ Excess

Bs → 4µ < 1.2× 10−8 [25] NR: < 10−10, [26] < 1.2× 10−8

Bd → 4µ < 5.1× 10−9 [25] Negligible < 5.1× 10−9

Bd → 4π < 19.3× 10−6 [1] Unreliable < 19.3× 10−6

Table 4: Four particle decay channels of B mesons we use to constrain ε1.

the other two channels are suppressed by |Vtd/Vts|2. Measuring Bs → 4π would provide a great
constraint on ε1 for δ2 = π/16, however, an experimental measurement of this mode is currently
unavailable.

5.5 Changes to the B − B̄ oscillations

Both n1 and n2 can cause the transition between Bq and B̄q for q ∈ {d, s} by participating in the
diagrams on figure 5.

In the s-channel the momentum running through the n1 propagator is just mBq . In the t-
channel the momentum depends on the parton wave functions inside the B meson. Nevertheless,
it will be on the order of mb − ms, therefore not much different from the s-channel and we will
assume the two to be comparable. With this assumption we can extract the contribution to both
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Figure 3: Plots of Bd → 4π and Bs → 4π. Bd → 4π comes close to saturating the experimen-
tal bound for m2 ∼ 0.9 GeV. However, exploring the branching fraction for Bs → 4π would
significantly constrain the model.

∆mq = 2M12 = Re(M)/mB and ∆Γq = 2Γ12 = Im(M)/mB:

δM12 =
2

3
(Bλ2

pmBf
2
B)

(
ε21 cos2(δ1 + α− γ)(m2

1 −m2
B)

(m2
1 −m2

B)2 +m2
1Γ2

1(m2
B)

+
ε22 cos2(δ2 + α− γ)(m2

2 −m2
B)

(m2
2 −m2

B)2 +m2
2Γ2

2(m2
B)

)
δΓ12 =

1

3
(Bλ2

pmBf
2
B)

(
−ε21 cos2(δ1 + α− γ)m1Γ1(m2

B)

(m2
1 −m2

B)2 +m2
1Γ2

1(m2
B)

+
−ε22 cos2(δ2 + α− γ)m2Γ2(m2

B)

(m2
2 −m2

B)2 +m2
2Γ2

2(m2
B)

)
,

(38)

where B ∼ O(1) is the bag parameter associated with the scalar operator (b(1 +γ5)s̄)2. We use the
scenario I from [27, 28] to evaluate the theoretical uncertainties connected with these measurements.
The allowed deviations we are going to use are in table 5. Since the actual deviations caused by
this New Physics are quite small, it is unnecessary to study the relative CP violating phases φd
and φs. Nevertheless, the changes to ∆mq and ∆Γq are at most on the order O(10−3), given other
constraints on ε1 and ε2.
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Figure 4: Bounds on ε1 for δ2 = π/4 (left) and δ2 = π/16 (right). As expected choosing lower δ2

relaxes the dominant bound from Bs → 4µ which leads to larger ε1.

Figure 5: n1 and n2 can contribute to B − B̄ oscillations both through s-channel and t-channel.

5.6 Collider Constraints: Higgs Decays and pp→ b̄bni

Since the DS directly couples to the Higgs sector of the Standard Model, we consider the constraints
that would arise from collider studies. One of these is the invisible Higgs width, another is the
associated production of ni with a q̄q pair: pp→ q̄qni.

If the b̄b is produced with energy much bigger than Ebb � mi, it is quite possible to radiate ni.
The rate of radiation of a soft ni is on the order:

σ(pp→ q̄q + ni) =
y2
q ε

2
i f(δi)

2

4π
σ(pp→ q̄q), (39)

where f(δi) is either cos(δi) or sin(δi) depending on the type of the quark. Since ε1 � ε2, n1

makes the dominant contribution. A radiated ni would promptly decay into 2n2, 3n2 or 4n2 and
these would then appear as multiple-muons, jets or muon rich jets, depending on m2 and δ2. The

Observable Current experimental value 2σ Allowed NP contribution

∆md 3.3× 10−13 GeV [27] (−9.7, 7.0)× 10−14 GeV
∆Γd 2.5× 10−15 GeV [27] (−0.7, 1.6)× 10−15 GeV

∆ms 1.2× 10−11 GeV [29] (−1.6, 2.1)× 10−12 GeV
∆Γs 6.6× 10−14 GeV [30] (−2.4, 3.7)× 10−14 GeV

Table 5: Allowed deviations from Bq−B̄q mixing observables. When driven by a single experimental
input we quote it, otherwise we rely on [27, 28].
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investigation of this phenomenon is quite beyond the scope of this paper and would be great topic
of future work. Nevertheless, for δ2 = π/4, ε1 ∼ 10−2, which means that a pair of b quarks would
radiate a soft n1 with probability of about 5×10−8. Since hard b̄b pair has a cross-section of about
11 nb, this makes the cross-section for radiative b̄bn1 on the order 0.5 fb, meaning there are about
forty events in the 20 fb−1 dataset. Therefore we believe this process does not represent a challenge
to our model, so far.

As a result of the mass mixing our model allows processes such as h→ ninj . Sincemh � m1,m2,
the available phase space is about the same whether we consider h→ 2n1, n1n2, or 2n2. The partial
width for h→ ninj is:

Γ(h→ NP) =
1

16πmh

∑
ij

1

S
Λ2
hij , (40)

where S stands for the necessary symmetry factor. If we impose a fairly loose constraint Γ(h →
NP) . 1

2Γ(h → SM) ∼ 2 MeV, which would correspond to about 30% branching fraction for
invisible decays of the Higgs boson. Thus we obtain a bound:

1

2
Λ2
h11 + Λ2

h12 +
1

2
Λ2
h22 . 16π(125 GeV)(2 MeV) ∼ (3.5 GeV)2 (41)

As we have shown in equation 12, the expected size of these operators is roughly
∑
εiΛijk. As we

will see, ε1 . 10−1 or lower, and ε2 . 10−3. Since the largest Λijk is Λ111 .
√

16π× GeV ∼ 20 GeV
– this puts a slight constraint on ε1 for the more massive n1.

The result of applying all the bounds on ε1 mentioned so far is summarized in figure 4.

6 New Decay Channels of Bq

This section presents decay channels of B mesons into multi-particle final states that have not been
experimentally constrained. Our model provides a way to achieve rather high branching fractions
for these modes. All of the results are achieved by saturating the bounds on ε1 and ε2 from section 5.

6.0.1 Five Particle Final States

Instead of completely annihilating, the flavor changed constituent quarks of B meson might form
another scalar or vector meson which appears in the final state. Therefore instead of Bq → 2n2 we
might also observe Bq →M + 2n2, where M stands for any meson. In the future, we will use S for
a scalar or pseudo-scalar meson and V for vector or pseudo-vector meson.

Under current constraints on ε1 these decay modes have almost absurdly large branching frac-
tions in the mesonic decay channels of Bd. Just as we have seen in the comparison between the
2PFS and 3PFS, the contribution from on-shell n1 or n2 can be large enough that these processes
effectively become decays into two particle states, Bq → Mn∗i , with n∗i slightly off-shell. We use
the following width to obtain our predictions for final branching fractions we plot in figures 6 and 7
:

dΓ(Bd → K + 2n2)

dq2
=

1

128π2

λ122ε
2
1λ

2
sm

2
2 cos2(α− γ − δ1)

m2
bm

3
Bd

(m2
Bd
−m2

K)2
∣∣fB→K0 (q2)

∣∣2
√

1− 4m2
2/q

2

√(
m2
Bd
− (|q|+mK)2

)(
m2
Bd
− (|q| −mK)2

)
(q2 −m2

1)2 +m2
1Γ2

1(q2)
(42)
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dΓ(Bd → K∗ + 2n2)

dq2
=

1

16π2

λ122ε
2
1λ

2
sm

2
2 cos2(α− γ − δ1)

m2
bm

3
Bd

∣∣∣AB→K?

0 (q2)
∣∣∣2

√
1− 4m2

2/q
2
((
m2
Bd
− (|q|+mK?)2

)(
m2
Bd
− (|q| −mK?)2

))3/2

(q2 −m2
1)2 +m2

1Γ2
1(q2)

(43)
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Figure 6: Five Particle decays Bd → K+2n2. The purely muonic decay modes could be observable
given the bounds on Bq → 4µ.

These modes present a great way to identify this particular model of the DS. Since all de-
cays proceed through a penguin operator, the annihilation decays of Bd are suppressed by a fac-
tor |Vtd/Vts|2 ∼ 0.04. Nevertheless, the decays Bd → K + (Dark Sector) proceed through the
b → s penguin operator and therefore are not suppressed. Figure 8 shows the ratio ΓNP (Bs →
2n2)/ΓNP (Bd → K + 2n2), which is independent of all the couplings in the DS: ε1, ε2, δ1, δ2 and
λ122. This ratio should then only be dependent on m1, m2 and the kinematic of the Standard
Model bound states and forms an independent check on the model in decay modes of two different
particles.

At first, it may be surprising that Bd → K + 4π has a larger rate compared to Bs → 4π.
However, since mB −mK ∼ mB the only phase-space suppression comes from the (4π)−1 factor.
However, adding the Kaon allows n1 to contribute on-shell and the form factor for Bd → K is
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Figure 7: Five Particle decays Bd → K∗ + 2n2. The purely muonic decay modes should be
observable given the bounds on Bq → 4µ. The allowed branching fraction for Bd → K(∗) + 4π are
very large and should be easy to constrain with experimental measurement.

typically larger than the annihilation form factor:

〈K|bs̄|B〉 ∼ (m2
B −m2

K)2O(1) (44)

〈0|bs̄|B〉 ∼ fBm2
B (45)

Since the size of the phase-space is of the order mB, ratio of these two is roughly fB/mB ∼ 1/20.
We will see that this trend persists and six and seven particle final states will also have comparable
rates.

6.1 Six, Seven and Eight Particle Final States

The decay channel Bs → n∗1 does not have to proceed to 2n2 it can also turn into n1n2 → 3n2

respectively 2n1 → 4n2 and so on. The later two options produce six and seven or eight and nine
particle states, respectively. The even number particle states come from annihilation diagrams.
Since we have designed the DS to sit close to the strongly coupled regime, additional branchings do
not cost much and we expect these processes to have comparable branching fractions. Equations 46,
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Figure 8: Comparison between four and five particle final states. This ratio is independent of ε1,
ε2, δ1, δ2 and λ122. You can see it does depend on m1 and m2. We can see that the five particle
final states are preferred.

47, 48 and 49 show the widths for these processes.
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The purely muonic final states are highly suppressed by the small muon branching fraction
BF (n2 → µ+µ−). Branching fractions on the order O(10−10) and lower rule out the possibility
that discovery of New Physics will ever happen in the purely muonic final states. Instead we should
turn our attention to hadronic decays as is apparent from figures 9 and 10.

7 Conclusion

We have considered a very simple model of the dark sector. By coupling this model to the Stan-
dard Model through a two Higgs doublet generalization of the Higgs portal we allow charmless high
particle multiplicity decay modes of B mesons. The B mesons decays include new exotic scalars,
which tend to decay into pairs of pions much more often than into pairs of muons. Thus, exist-
ing searches involving muons in the final state still allow a large parameter space for significant
branching fractions into final states with multiple pions.

Although hadronic decays of B mesons are typically harder to constrain and the Standard
Model backgrounds are hard to predict compared to their leptonic counterparts, our model offers
branching fractions so large (∼ 10−3) that an experimental study should be able to significantly
constrain the parameter space of our model. The signature of this model is a correlation between
these exotic decay modes for Bd, Bu and Bs as well as presence of pion resonances that are only
seen in high multiplicity B-hadron decays.

In order to reveal these correlations it is necessary to study decays of both Bs and Bd particles.
Whereas both Babar and Belle experiments have a large data set of decays of of the Bd meson,
the LHCb has a much better chance of observing rare decays of the Bs system. The best way to
discover such a model lies in looking for resonances in finely binned distributions of invariant masses
of muons and pions in events with higher multiplicity of these particles. Such binning precision
is already available as shown by [32]. Since our model predicts that the branching fraction into
muons and pions add up to one a possible strategy would consists of ”turning off” pion-muon
discrimination all together in order to increase the acceptance rate for both channels. Once a
signal is found further studies might attempt to distinguish between the two channels.

There are several directions in which our study could be expanded. We have not covered all
the decay modes this model allows. We estimate that the branching fractions for higher and higher
multiplicity final states begin to drop when the phase space available to the final state particles
becomes small. In particular the final number of n2s in the final state cannot exceed mB/m2 . 17.
Investigating these spectacular B →≈ 30µ decay modes might be fun.

Since our DS is strongly coupled we believe that the effect of quartic and cubic couplings is
comparable. However, a more detailed study of this claim could prove worthwhile.
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Full collider phenomenology of this model is also beyond the scope of this paper and would
benefit from future attention. Some of the consequences of this model have already been described
in terms of muon-jets and photon-jets.

Finally, in order to maintain some predictive power for the branching ratio Γ(n2 → µµ)/Γ(n2 →
ππ), we have maintained m2 < 2mK . However, there is no physical reason this is the case. Once
m2 > 2mK not only it is harder to make any accurate predictions but also additional decay modes
such as n2 → KK become important signatures to look for.
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A Wide n1

With the definition Λ122 =
√

16πλ122m2, let us have a look at the loop correction to the n1n
2
2

vertex:

n1

n2

n1

n2

= Λ3
122

∫
dq2

16π2

q2

(q2 −m2
2)2(q2 −m2

1)
= Λ122

λ122

2π
f

(
m2

m1

)
(50)

The function f(m2/m1), plotted in figure 11, ranges between 0 and 1 and so taking λ122 ∼ 1 already
seems to ensure the one-loop correction is subleading to the tree-level amplitude.

However, the estimate for one-loop correction to the mass of n2 becomes of the order of m2 for
a cut-off scale Λ:

Λ2
122

16π2
ln

(
Λ2

m2
2

)
=
λ122m

2
2

π
ln

(
Λ2

m2
2

)
= m2

2, (51)

which implies:

Λ = m2exp

(
π

2λ122

)
(52)

When λ122 = 1/3 the cut-off scale is roughly Λ ∼ 100m2, already quite low. Nevertheless, for
the masses of n2 we will consider, this cut-off scale is still higher than the mass of the B mesons.
However, should we be satisfied with an order percent fine-tunning, π/(2λ122) is replaced with
100π/(2λ122). This pushes available range of λ122 to ∼ 30 far out of the perturbative regime.
Fig. A shows the maximum cut-off scale as a function of κ−1.

21



B Estimates of Branching Ratios for a Light Higgs with χPT for
m2 < 2mK

In this mass regime we can use χPT to compare the decay widths Γ(n2 → `+`−) and Γ(n2 → πaπa).
Although n2 → γγ is allowed, it is unimportant unless m2 < 2me. Coupling of light Higgs boson
is well described by [31] and we follow their reasoning. The basic trick is to express the effective
Higgs coupling in terms of operators that are easily evaluated within χPT. The effective theory for
SM Higgs coupling to gluons and quarks can be obtained from integrating out the Nh heavy quark
loops:

Leff =
h

v

(
αsNh

12π
GµνGµν −muūu−mdd̄d−mss̄s

)
(53)

For a 2HDM this can be easily translated in the hu, hd basis:

Leff =
hu
vu

(
αsN

u
H

12π
GµνGµν −muūu

)
+
hd
vd

(
αsN

d
H

12π
GµνGµν −mdd̄d−mss̄s

)
(54)

In our case Nu
h = 2 and Nd

h = 1. As a result the n2 coupling is given by:

Leff = ε2
n2

v

[
cos δ2

sinβ

(
2αs
12π

GµνGµν −muūu

)
+

sin δ2

cosβ

( αs
12π

GµνGµν −mdd̄d−mss̄s
)]

(55)

This is very similar to the trace of the stress-energy tensor for the gluons and fermions of this
effective theory:

θµµ = −9αs
8π

GµνGµν +
∑

mq q̄q → GµνGµν =
8π

9αs

(∑
mq q̄q − θµµ

)
(56)

And so we can express the effective coupling in terms of the stress-energy tensor and quark mass
operator:

Leff = −ε2
n2

v

[
2NE

27
θµµ +

(
cos δ2

sinβ
− 2NE

27

)
muūu+

(
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(57)

where the effective number of heavy flavors NE depends on the couplings:

NE =

(
2

cos δ2

sinβ
+

sin δ2

cosβ

)
(58)

On the χPT side, working with L2 to the leading order, the stress-energy tensor is simple:

θµµ = gµνθµν = gµν
2√
−g

δ(
√
−gL2)

δgµν
= −2L2 (59)

and so the matrix elements for transition to two pions is easy to evaluate:

〈πaπb|θµµ(q2)|0〉 = (q2 + 2m2
π)δab (60)

We can similarly evaluate the matrix elements for the quark mass operators (since χPT predicts
how pion mass depends on the quark masses):

〈πaπb|q̄q|0〉〉πaπb|
f2
πm0

2

∂Tr(MΣ +M †Σ†)

∂mq
|0〉 (61)
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and so ignoring electromagnetic corrections we can evaluate the necessary matrix elements:

〈π+π−|muūu|0〉 = m0mu =
1

2

(
m2
π +m2

K+ −m2
K0

)
〈π+π−|mdd̄d|0〉 = m0md =

1

2

(
m2
π −m2

K+ +m2
K0

) (62)

We put all these results together to obtain the desired matrix element for n2 → ππ decay:

〈ππ|Leff |n2〉 = −ε2
v
×

×
(

sin δ2

cosβ

)(
2

27
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2T−1

βδ2
+ 1
)

(m2
2 +m2
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2

(
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+ 1
)
m2
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1

2

(
T−1
βδ2
− 1
) (
m2
K+ −m2

K0

))
(63)

This allows us to compare the relative width for hadronic and leptonic decays for m2 < 2mK .
Since the muon branching fraction is proportional to ε2 sin δ2/ cosβ, the relative branching fraction
is only sensitive to the two parameters: m2 and the product Tβδ2 = tanβ tan δ2. We plot the
comparison between the results based on [9] and those obtained from using tree-level unimproved
χPT in figure B.
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Figure 9: Six and Eight Particle Final States. The couplings between n1 and n2 are strong and
we expect that additional particles in the final state do not significantly change the width for the
process. It is clear that searching in the pure muonic channel would be fruitless. However, decays
into purely hadronic decay channels should be abundant.
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Figure 10: Seven Particle Final States. Additional meson in the final state can increase the branch-
ing fraction for the same Hidden Sector decay.
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Figure 11: Plot of f(m2/m1).
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Figure 12: Cut-off scale as a function of κ−1.
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Figure 13: This plot shows partial width Γ(n2 → µµ) in green, Γ(n2 → ππ) according to tree-level
χPT in red and Γ(n2 → ππ) based on improved χPT [9] in blue. The solid lines stand for δ2 = π/4,
whereas the dashed lines mark the results for δ2 = π/16. The lack of change for tree-level χPT
between δ2 = π/4 and δ2 = π/16 is caused by a numerical coincidence.
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