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Charm meson molecule (cn̄)(nc̄ ) assignments for the supercharmonium state Z(4475) are consid-
ered, both on general grounds and in the context of specific pion exchange models. Two possible
charm molecule assignments for the JP = 1+ Z(4475) are considered here, involving respectively a
radially and an orbitally excited charm meson. In each assignment, a lower-mass isosinglet charm
molecule state is predicted. For both the Z(4475) and the Y(4260), measurement of the ratios of
the branching fractions to DD̄ plus n pions is recommended as a test of the nature of these states.

PACS numbers: 12.38.Lg, 14.70.Dj

I. INTRODUCTION

The Z(4475), a remarkable hadronic resonance with a mass and production properties reminiscent of charmonia,
but which carries electric charge, is clear evidence for a state that is qualitatively different from the known “cc̄ quark
model” charmonium resonances [1]. The detection and recent confirmation of the Z(4475) and measurement of its
JP = 1+ quantum numbers have excited considerable interest[2].

Since the Z(4475) is produced in a charmonium-rich B meson weak decay process, has a mass typical of excited
charmonia, decays to a charmonium channel (ψ′π), and yet has net electric charge, there is strong evidence that this
state is the product of charmonium cc̄ and light-quark dū basis states. Unfortunately, four-quark states occupy a
long, complicated, and rather controversial chapter in the history of hadron physics, and the terminology used in the
recent Z(4475) literature has occasionally been confusing or ambiguous.

In an attempt to rationalize the terminology, we propose the generic term “supercharmonium” for an experimental
resonance that appears to contain a cc̄ pair, but has other properties that preclude a description in terms of only
cc̄ (idealized charmonium) basis states. Within this general class of state, the remaining questions involve the Fock
space decomposition of the state, the nature of the non-cc̄ components, the type of spatial wavefunctions involved,
and the dynamical origin of the state. Here, in the interest of clarity, we will briefly discuss various possible subclasses
of such “superonia” (resonances beyond idealized qq̄ quarkonia).

When one considers the first Fock-space color-singlet quark model meson basis states beyond qq̄, generically q2q̄2,
the associated terms “four-quark state” and “tetraquark” appear prima facie to simply specify that q2q̄2 is the
dominant Fock-space state present in the decomposition of a state. However, these terms have historically come to
refer more exclusively to a specific type of q2q̄2 state, in which the spatial wavefunctions of the system describe a
closely overlapping tetraquark cluster. The classic examples of such states are provided by the MIT bag model [3], in
which all the quarks and antiquarks are distributed relatively uniformly through a common spherical region of extent
1/ΛQCD. Such states are known rather confusingly as “baryonia” when composed of light q = u, d, s quark flavors,
because it was once thought that they would be made copiously in baryon-antibaryon annihilation, q3q̄3 → qqq̄q̄.

A well-known argument for the nonexistence of such four-quark cluster states as physical resonances was provided
by Coleman in 1979 [4], who used the 1/Nc expansion of QCD to show that four-quark color singlets tend to propagate
as pairs of mesons. However, Weinberg has pointed out that subdominance of a four-quark component does not mean
that it is irrelevant; one must rather examine the lifetime of the component to determine its viability [5]. In this
regard, Weinberg noted that the f0(980) member of the low-lying scalar nonet evades Coleman’s argument because
it lies near KK̄ threshold, whereas the f0(500) could be an example of a four-quark state that exists despite its large
width. Generally, one expects that observable tetraquark systems arise with small or normal widths when either
(i) the only decay mode is to a pair of mesons near threshold, or (ii) when the fall-apart modes are kinematically
forbidden, so that decays require qq̄ creation or OZI violation.

Several qualitatively different possibilities for the spatial wavefunctions associated with (non-cluster) four-quark
or tetraquark basis states have been suggested. Here we mention three such possibilities proposed in the literature:
diquonium, hadrocharmonium, and two-meson molecules. Of course, not all experimental enhancements with exotic
characteristics need be superonia. For example, there is good evidence that the Zc(3900), Zb(10610), and Zb(10650)
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are coupled-channel cusp effects, and not truly resonances [6].
In the extreme case of diquark–antidiquark [7] “diquonium” systems (qq)(q̄q̄) that are spatially separated by a

large angular barrier, it was noted that the fall-apart effect might be so suppressed that four-quark resonances could
be observed. However the orbital angular momentum L between the (qq) and (q̄q̄) subsystems required to suppress
fall-apart was estimated to be sufficiently large to discourage further studies of this system.

Another possibility for a generalized charmonium state was discussed by Voloshin [8]. This work postulates an
important chromoelectric dipole interaction between a charmonium core and light hadronic matter, thereby creating
a supercharmonium state, which was referred to as “hadrocharmonium.”

Finally, a widely discussed type of four-quark state, which includes cc̄ in the dominant basis state, is a “charm
meson molecule.” This is (naively) a cq̄ and q′c̄ charm meson pair that is relatively weakly bound by the residual
strong force so that the wavefunction is close to that of two unperturbed mesons. “Hadronic molecule” states of this
general type are of course very well established, since they include nuclei and hypernuclei. Unfortunately, two-hadron
interactions are generally rather poorly understood, so it is difficult to anticipate which two-meson systems should
have sufficiently attractive interactions to form molecules [9]. As general guidelines, since these forces are short ranged,
S-wave meson pairs should be the most favorable possibilities, and typical nuclear binding energies of 1-10 MeV scale
might be anticipated.

The charm meson molecule candidate X(3872) is a well known example, as its mass is very close to the D0D̄∗0

two-meson threshold, and it has the JP = 1+ quantum numbers expected for this meson pair in S-wave [10]. The
X(3872) is often regarded as a hadronic molecule bound by π-exchange forces. That such states should occur was
predicted in Ref. [11], and detailed dynamical models were first developed in Refs. [12, 13].

Another molecular candidate is the vector state Y(4260). This is produced in e+e− annihilation, has a width of
about 90 MeV, and has only been seen in the mode ψππ [14]. The decay mode is superficially OZI violating, yet
the width is canonically hadronic, and not approximately 1 MeV as might have been expected for a conventional
OZI-violating channel. An energy of 4260 MeV is the first place where charmed meson pairs can be produced from
e+e− annihilation in S-wave, namely the 0−1+ combination D̄D1 or the 1−0+ combination D̄∗D0. A conservative
interpretation [15] is that the e+e− annihilation produces a cc̄ pair, followed by the strong production uū (say) for
the anticipated standard decay. The relative momentum being near zero, and the D being stable on the time scales of
strong interactions, allows the initially produced tetraquark state to rearrange as [cū][c̄u] → [cc̄][uū], which permits
the ψ(ππ) discovery mode. It is possible for π-exchange forces to play a role here too, through the off-diagonal
coupling D̄D1 → D̄∗D0; this could allow both 1−− and exotic 1−+ states to arise.

The anomalously low-lying charm-strange 0+ state at 2310 MeV is also intriguing. It has been suggested by Barnes,
Close, and Lipkin that this is a DK̄ analog of the f0 and a0(980) KK̄ molecule candidates[16]. These authors also
predicted the existence of a D∗K̄ 1+ molecular near 2460 MeV, which appears to have been found [17].

A common feature of all the molecular candidates in the charmonium mass range is that a four-quark superchar-
monium configuration occurs very near, or even below, the lowest (S-wave) threshold for production of meson pairs.
Thus these states all evade Coleman’s argument. This mechanism is not universal across all flavors because the meson
pairs into which the superonia would preferentially decay are pseudoscalar mesons with masses that are lowered by
chromomagnetic effects, which scale as 1/EiEj [18]. Here i and j refer to meson constituents and E refers to their
masses (in a constituent picture) or energies (in an MIT bag picture). Thus pseudoscalar mass shifts are reduced as
the quarks become heavier. The mass of the superonium is less trivially dependent on these constituent “masses”,
as it depends on both the various color substates and spin states of the quark and antiquark constituents. So while
we understand why the coincidences between a superonium mass and the channel for two pseudoscalar mesons are
not universal, it is less clear how to make sharp statements as to when and where such coincidences might happen,
so that observable superonium states appear. The moral, however, is that these delicate balances arise as a result of
interquark forces, which are not taken into account in the 1/Nc arguments of Coleman. These perturbations within
the hadrons can significantly modify the Coleman arguments, so that observable tetraquarks can occur.

The challenge is to understand the dynamical origin of various four-quark superonia, with the goal of classifying
families of states. It is clear that there is no common mechanism responsible for these states. In the following we shall
consider two possible charm meson molecule assignments for the Z(4475) in the context of a simple pion exchange
model of the intermeson nuclear force.

If two hadrons A and B are linked by A→ Bπ, then hadronic pairs AB or AB̄ necessarily experience a pion exchange
interaction. This force will be attractive in at least some channels. Long ago, the idea of π exchange between flavored
mesons, in particular charmed mesons, was suggested as a source of potential “deusons” [11, 19]. Using the deuteron
binding as normalization, the attractive force between the JP = 0− charmed D and its JP = 1− counterpart D∗ was
calculated for the DD̄∗+ c.c. S-wave combination with total JPC = 1++, and the results compared with the enigmatic
charmoniumlike state X(3872) [11–13, 20–22]. This mechanism may also play a role for the Y(4260) [23], but is
expected to be suppressed in the charm-strange examples cited above. Thus it appears that the understanding of the
dynamics of tetraquark systems is in its infancy.
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As pion exchange between baryons is a well-established binding mechanism, one can expect a similar role to be
played in meson molecule spectroscopy. The initial challenge is to clarify which exotic states arise due this force.
Once a pattern of such states is established as a function of flavor and spin, it may be possible to isolate the roles of
other mechanisms, such as those that play a role in the charm-strange and Y(4260) states. Thus the Z(4475) offers a
potential theater for assessing various possible molecule models. Here we discuss two different charm meson molecule
models of the Z(4475). The first, suggested by the DD̄∗ molecule model of the X(3872), generalizes this model to
include a radially-excited 2S charm meson. The second model assumes that the Z(4475) instead includes an orbitally
excited charm meson, and is a near-threshold molecule of a D∗D̄1 pair [23–25].

II. MOLECULES

Isovector states in the charmonium sector strongly suggest molecular interpretations. Such states may be bound
states of charmed mesons – supercharmonium, with binding driven for example by π-exchange forces – or more exotic
configurations of diquarks, whose binding lies in fundamental QCD effects. The former “charm meson molecule”
option is relatively conservative, and given that many molecular states are well known in the baryon sector (as atomic
nuclei), this category appears a prime candidate for supercharmonium dynamics. Tetraquark configurations, driven
by QCD, are less constrained and, furthermore, tend to imply the existence of many states. In contrast, the empirical
spectrum of experimental states appears to be rather sparse.

Within the conservative supposition that pion exchange provides the attractive binding force between pairs of
charmed mesons, there are two immediate possible origins for the Z(4475). First is traditional π exchange in a pion-
hadron P-wave, as occurs in pion exchange between pairs of nucleons in atomic nuclei. This provides potential bound
states with binding energies of MeV scale, as in the case of the 1+(3872) bound state of DD̄∗. The Z(4475) as a 1+

state is a priori consistent with a radial analog of that system, with π exchange providing binding between linear
superpositions of D(2S)D̄∗(1S) and D(1S)D̄∗(2S) states, which we call the DD̄∗(1S, 2S) system. We remark that the
possible identification of the Z(4475) with radially excited DD̄∗ pairs (although not with a mixture, as proposed here)
was one of the options considered by Ma et al. [2]. The proximity of the X(3872) to D0D̄∗0 threshold is comparable to
the d− u quark mass difference, so that isospin symmetry violation occurs in X(3872) decays. For the radial analog
system, isospin is in contrast expected to be a good quantum number. The important question of whether either or
both of the I = 0, 1 sectors of the DD̄∗(1S, 2S) system is predicted to support bound states immediately arises.

A second possibility is that deeper binding may be driven by π-exchange if the pion-hadron pair is in a relative
S-wave. This can occur in the D∗D̄1 sector, as was discussed in references [23, 25]. The ground state of such a system
is consistent with the established 1− Y(4260); P-wave excitations of this system are predicted to include bound states
some 200 MeV higher in mass, as well as a 1+ state that is consistent with the Z(4475). We shall focus on these two
possible π-exchange families of supercharmonia.

A. P-wave Pion Exchange

Pion emission vertices connect D to D∗ (or charge conjugates). In the analysis of the X(3872) these were all 1S
states, and after taking charge conjugation into account there were two independent configurations: DD̄∗ ± D̄D∗.
Binding occurred in the I = 0 JPC = 1++ channel (before u, d mass effects were taken into account) [12, 13].

In the case in which one charmed meson is in a 1S state and its partner is a 2S state, four quantum states are available
because D̄(2S)D∗(1S), D̄(1S)D∗(2S) and their charge conjugate modes are distinct. Qualitatively one would expect
that π-exchange would give attraction in two of the diagonalized channels and repulsion in two. This diagonalization,
combined with small energy denominators due to similar D(1S)D∗(2S) and D(2S)D∗(1S) thresholds, can lead to an
amplification of binding. We find that given pion exchange, attractive interactions are expected in the JPG = 1++

channel with I = 0 (as for the X(3872)) as well as in the I = 1 channel, with relative strengths of 3:1. Note that the
neutral member of the I = 1 channel has JPC = 1+−.

This model involves the following channel couplings (in the following we will normally suppress 1S labels):

DD̄∗(2S)→ D∗(2S)D̄, (1)

DD̄∗(2S)→ D∗D̄(2S), (2)
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and

D(2S)D̄∗ → D∗D̄(2S). (3)

These span a four-by-four effective potential with identical two-by-two subblocks. The entries in the potential matrix
can be obtained from a nonrelativistic reduction of a one pion-exchange interaction that coupled point-like pions to
quarks:

L =
g√
2fπ

ψ̄γµγ5~τ · ∂µ~πψ. (4)

Here fπ = 92 MeV is the pion decay constant, ~τ/2 is an SU(2) flavor generator, and g is a coupling to be determined.
The effective potential is derived by projecting the quark level interactions onto hadronic states in the nonrelativistic
limit. In the case of pseudoscalar-vector states one obtains [11]

Vπ = −γV0
[(

1 0
0 1

)
C(r) +

(
0 −

√
2

−
√

2 1

)
T (r)

]
(5)

where

C(r) =
µ2

m2
π

e−µr

mπr
, (6)

T (r) = C(r)

(
1 +

3

µr
+

3

(µr)2

)
, (7)

and

V0 ≡
m3
π

24π

g2

f2π
≈ 1.3 MeV. (8)

The matrix elements refer to S- and D-wave components of the pseudoscalar-vector system, in analogy with the
deuteron.

The strength of the interaction has been fixed by comparing to the πNN coupling constant through the relationship
g2πNN/4π = 25/18 · m2

πg
2/f2π . This allows a prediction of the D∗ decay width which is in good agreement with

experiment [11, 13]. The parameter µ is typically the pion mass, however one can use it to incorporate recoil effects
in the potential by setting µ2 = m2

π − (mV −mPs)
2.

Finally, the coupling γ is a spin-flavor matrix element that takes on the following values: γ = 3 for I = 0, C = +;
γ = 1 for I = 1, C = −; γ = −1 for I = 1, C = +; and γ = −3 for I = 0, C = −. The most attractive binding is
in the JPG = 1++ channel. Thus the isoscalar JPC = 1++ channel is the most likely to form bound states, while the
isovector negative charge conjugation channel, whose neutral member has JPC = 1+−, is the next most likely.

The tensor potential of Eq. 7 is an illegal quantum mechanical operator and must be regulated, typically with
a dipole form factor. The regulator scale, Λ can be fixed by comparison with nuclear physics; for example NN
interactions yield preferred values for Λ in the range 0.8 GeV to 1.5 GeV depending on model details. Alternatively,
reproducing the deuteron binding energy requires Λ ≈ 0.8 GeV. A value of Λ = 1.2 GeV which is appropriate for D
mesons was used in Refs. [11, 13] and this is taken as the canonical cutoff in the following.

Note that the coupling is fixed for interactions between all possible mesons. Differing internal mesonic structure
is reflected in the smearing of the potentials of Eq. 6 and 7. Thus application to pion exchange between excited
state mesons can differ in form. However this is difficult to implement within a simple dipole regulation scheme; we
therefore restrict investigation of this effect to varying the dipole cutoff Λ or the effective coupling, g.

The channels considered in our computation are (DD̄∗(2S))S, (DD̄∗(2S))D, (D(2S)D̄∗)S, (D(2S)D̄∗)D, and
J/ψ π(1300) for the isovector state, or ψ(2S)ω and J/ψ ω(2S) for the isoscalar molecule. The mass of the D(2S)
state has been fixed at 2580 MeV, the D∗(2S) mass was taken to be 2640 MeV [26], and the ω(2S) state mass was set
to 1425 MeV.
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B. Quark Exchange Induced Effective Interaction

It is also of interest to examine short-range quark-exchange interactions between the relevant mesons pairs. These
interactions can be estimated with nonrelativistic quark dynamics mediated by an instantaneous confining interaction
and a short range spin-dependent interaction. The color structure of the quark-(anti)quark interaction is taken to
be the usual λ · λ quadratic form of perturbation theory. This is an important assumption for multiquark dynamics,
which has received support from lattice computations for both confinement [27] and multiquark interactions [28]. The
final form of the interaction Hamiltonian is thus taken to be

HI =
∑
i<j

λ(i)

2
· λ(j)

2

{
αs
rij
− 3

4
brij −

8παs
3mimj

Si · Sj
(
σ3

π3/2

)
e−σ

2r2ij

}
, (9)

where λ is a color SU(3) Gell-Mann matrix, αs is the strong coupling constant, b is the string tension, mi and mj are
the interacting quark or antiquark masses, and σ is a range parameter in a regulated spin-spin hyperfine interaction.
The parameters were obtained from a global fit to the meson spectrum and are αs = 0.59, b = 0.162 GeV2, σ = 0.9
GeV, and 0.335, 0.55, and 1.6 GeV for up, strange, and charm quark masses respectively. Relevant meson masses
obtained from this model are ρ = 0.773 GeV, J/ψ = 3.076 GeV, D = 1.869 GeV, and D∗ = 2.018 GeV, in reasonably
good agreement with experiment.

Meson-meson interactions are obtained by computing the Born-order scattering amplitude for a given process [29, 30]
and equating this amplitude to an effective amplitude involving point-like mesons. Because of the color factors in Eq.
9 this amplitude necessarily involves an exchange of quarks between the interacting mesons. Thus the leading order
D̄D∗(2S) interaction couples this channel to hidden charm channels such as ψ(2S)ω, J/ψ ω(2S), and J/ψ π(1300).

The quark-exchange dynamics considered here are distinct from interactions mediated by pion exchange because
they have different flavor structure and ranges. While it is possible to mimic short range quark-exchange forces with
a sum over many mesons (ρ, ω, ππ, etc.), we choose to model the dynamics with a long range component described by
pion exchange and a short range component described by quark exchange. In principle, a scale could be introduced
to formally separate these regimes (in fact Λ largely plays this role), however we have found that this is unnecessary
in practice, and simply sum the two contributions in the following.

C. P-wave Pion Exchange – the D∗D̄(1S, 2S) System

For reference, the thresholds assumed for this system are D̄D∗(2S) = 4509 MeV, D̄(2S)D∗ = 4590 MeV, ρψ′ = 4461
MeV, and ωψ′ = 4469 MeV.

Given our specific choices above for the dipole cutoff, pion-quark coupling constant, and quark model parameters
we find no isovector bound state with JPG = 1++. However, an isoscalar resonance with this JPG does exist at 4480
MeV. Since this is a radial (isoscalar) analog of the X(3872) we call it the X′(4480). The existence of this state is
somewhat sensitive to the details of the one-pion-exchange force we assume in our model, but it is not sensitive to
the quark-exchange interaction assumed.

Some examples of model variation tests are as follows. If the hidden charm channels are removed from the system,
one obtains an X′ at a very slightly higher mass of 4482 MeV. Introducing an artificially high ω mass of 880 MeV,
we again find an X′ bound state at 4480 MeV. Reducing the ω mass to its physical value of 780 MeV leaves the X′

mass at approximately 4480 MeV, but the state becomes a resonance since it lies above the ωψ′ threshold. Doubling
the strength of the effective quark-exchange interactions increases the binding, and the X′ mass drops to 4473 MeV.

Variations in the pion-exchange model can be examined by changing the value of the dipole cutoff or by allowing the
pion-quark coupling g to change. Although this coupling is fixed by the model, a simple way to incorporate hadronic
form factors at low momentum transfer is to adjust these couplings to match the form factors predicted by the 3P0

decay model, which are shown in Fig. 1. The major effect of this modification is to rescale the DD̄∗(2S) coupling by
about a factor of 1/4. In this case, an isoscalar bound state still appears, but with a mass just below threshold.

Finally, with our standard parameter set the following component strengths are obtained for the X′: D̄(2S)D∗|S =
12%, D̄(2S)D∗|D = 8%, D̄D∗(2S)|S = 58%, D̄D∗(2S)|D = 14%, ψ(2S)ω = 5%, and J/ψ ω(2S) = 2%. The rms radius
of the state is approximately 1 fm, absent the coupling to the continuum.

It is of interest to examine whether an isovector state with Z(4475) quantum numbers can be generated within
reasonable model variations. The quark exchange potential corresponding to DD̄∗(2S) or D(2S)D̄∗ → J/ψπ(1300) is
quite weak, and this interaction alone appears insufficient to generate a Z(4475) bound state. Increasing the dipole
cutoff to 2.5 GeV would give such an isovector state at 4475 MeV, however we do not regard this as reasonable since
it would also predict isoscalar partner states at very low masses of 2530 and 4080 MeV. Alternatively, increasing
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FIG. 1: 3P0 Model Decay Amplitudes. Solid line: D∗ → Dπ; dashed line: D(2S)→ D∗π; dotted line: D∗(2S)→ Dπ; dash-dot
line: D∗(2S)→ D(2S)π.

the effective pion-quark coupling by 40% is sufficient to generate a Z(4475) isovector bound state with the required
JPG = 1++ (thus giving a neutral member with JPC = 1+−). With these parameters we would predict isoscalar states
with masses of 4225 and 4495 MeV. Thus, a Z(4475) state can be accommodated within this π exchange model, but
the pion exchange interaction required is somewhat larger than that predicted using our standard parameter set.

In summary, we have found that accommodating the Z(4475) as a DD̄∗(1S, 2S) charm meson molecule in this model
implies the existence of at least one isoscalar partner, ∼ 100 MeV (or more) lower in mass.

D. S-wave Pion Exchange – the D∗D̄1 System

In the above examples, as in the more traditional case of the nucleon, where the NNπ coupling is the source of an
attractive force that helps to form the deuteron, the exchanged π was emitted and absorbed in a relative P-wave with
respect to each charm meson. In such cases, the binding energies that result are ∼ 1− 10 MeV; hence the consistency
with the X(3872), which within errors is degenerate with the D0D̄∗0 threshold. Alternatively, the exchange of a pion
in S-wave between pairs of hadrons that are themselves in a relative S-wave potentially leads to deeply bound states
of these hadrons [23]. Instead of binding of a few MeV, there is now the potential for binding on the scale of ∼ 100
MeV, leading to a rich spectroscopy of bound states that are far below the thresholds of the di-hadron channels that
generate them. We remark that both the D∗D̄1(broad) and the D∗D̄′1(narrow) systems will contribute to possible
bound states. The broad D1 couples strongly to D∗π and thus presumably dominates the state, which implies that
the bound state will also be broad.

The phenomenology of S-wave pion-exchange in the D∗D̄1 system was discussed at length in [25]. The modelling
of this dynamics is not well constrained, and so only general remarks about the spectrum are possible. For our
purposes it is sufficient to note that with reasonable parameters the Y(4260) and Y(4360) 1−− states are consistent
with expectations for the 1S and 2S levels of the D∗D̄1 charm meson molecule bound state spectrum.

The 1P level of this system, with both I = 0 and I = 1 members, was found to lie near threshold, possibly bound
at the ∼ 1 MeV scale. Thus the 1+ Z(4475) state is intriguingly consistent with expectations for the P-wave D∗D̄1

charm molecule spectrum. Modulo spin-dependent mass shifts, this picture would predict companion P-wave D∗D̄1

states with JP = 0+ and 2+. The spectrum is dependent on aspects that are a priori indeterminate, such as the
modelling of pion – charm meson form factors, but it is intriguing that bound states can occur with either charge
conjugation, thus both JPG = 1++ and 1+− are possible.

Were a spectrum of states to be confirmed, more detailed modelling would be merited, including a study of the
effects of form factors and of intermediate states containing on-shell pions. As discussed in [25] and [31], the presence
of on-shell pions can wash out sharp states; however, the presence of strength in the continuum of DD̄3π as well as
DD̄2π should be a robust signature of a D∗D̄1 molecule throughout the region, in contrast to the D̄D∗(1S, 2S) model,
in which G = + bound states decay dominantly only to DD̄2π final states.
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III. TESTS

Here we consider two broad classes of supercharmonium: (i) states generated by π-exchange in either DD̄∗ or
D1D̄∗ systems, as above, and (ii) states that arise at or near an S-wave threshold for charmed meson pairs. In some
cases these two coincide. Thus the 1++ state X(3872) is both at DD̄∗ threshold and is also a natural consequence of
π-exchange binding. The Y(4260) however is near DD̄1 threshold, but can also be generated by π-exchange in the
D∗D̄1 system. The Y(4360) and Z(4475) are both not far from the D∗D̄1 threshold, but are also not far from the
D(2S)D̄∗ and DD̄∗(2S) thresholds, in which case π-exchange in this system is also possible. In this section we consider
some more general tests that follow from these various possibilities, and we propose experiments that may help to
distinguish among them.

(a) Y(4260)

The most immediate consequence is that JPG = 1−− states associated with the DD̄1 or D∗D̄0 threshold should
have strength in channels where DD̄ are accompanied by an even number of pions, whereas if their dynamics is
predominantly coupled with either D∗D̄1 or D(2S)D̄∗ and DD̄∗(2S), their decays will have a preference for DD̄ plus
an odd number of pions. This should be a sharp discriminator for the Y(4260), which has so far only been clearly
identified in ψππ, with no evidence in DD̄,DD̄∗ or D∗D̄∗. Any link to the DD̄1 threshold should generate a significant
signal in Y(4260) → D∗D̄π → DD̄ππ. This remark, which should be qualitatively true in general, has been examined
in a detailed model in Ref. [32].

To the best of our knowledge, the only data published on DD̄2π and DD̄3π relevant to the Y(4260) are in Refs.
[33, 34]. (Data on DD̄2π from CLEO in Ref. [35] is due to D∗D̄∗, and advertises no signal for DD̄1). However, these
papers give data only at a single fixed energy,

√
s = 4.26 GeV. What are required for our proposed tests are (i) a scan

across
√
s to see if these signals rise and fall in a manner consistent with the ∼ 90 MeV width of the Y(4260) structure

previously seen in ψππ, and (ii) a determination of the ratio of strengths in the two modes DD̄2π and DD̄3π. We
urge that this sharp test be carried out.

To satisfy G-parity, the JP of the resulting DD̄ and pion systems differ in these two cases. For DD̄2π, the DD̄ may
appear in 1−− with ππ in JPC = 0++, analogous to the presently observed ψππ decays. In the particular case of a
DD̄1 threshold state, there should be strong affinity for this to occur through DD̄1 → DD̄∗π → DD̄ππ (as in Ref.
[32]). For DD̄3π, in contrast, the DD̄ in 1−− can accompany η; alternatively, the DD̄ may form JPC = 0++, with
the JPC(3π) = 1−−. Thus a search or limit on Y(4260) → ψη in P-wave and for the S-wave decay mode DD̄ω are
relevant. In principle these may be able to distinguish the role of DD̄1 and D∗D̄1 in the dynamics of the Y(4260): a
DD̄1 threshold effect is dominantly the former; a deeply bound D∗D̄1 will have significant preference for the latter; a
hybrid vector will couple to both of these, with a preference for the latter, but branching ratios are model dependent
due to the DD̄3π being driven by virtual intermediate states. Nonetheless, a richer data set, as advocated here, may
be able to eliminate one or more scenarios.

Superficially the data from Refs. [33] and [34] suggest that the strengths of DD̄∗π and D∗D̄∗π are not dissimilar.
Although the published experiments do not enable immediate extraction of the actual ratio of σ(DD̄∗π)/σ(D∗D̄∗π)
at 4.260 GeV, this ratio is approximately 2.9 [36]. Nevertheless, one cannot infer the ratio of matrix elements for
Y(4260) coupling to DD̄1 to D∗D̄1 because (i) the data do not show what fraction of D∗π is actually D1; (ii) phase
space effects and the dynamics of couplings to states that are below threshold are nontrivial. Thus, measuring the
ratio of DD̄1/D∗D̄1 over a range of

√
s would be useful as it would aid in disentangling these effects.

(b) Z(4475)

The Z(4475) state has I = 1 and decays to ψ′π, and is therefore presumably JPG = 1++ (its neutral member thus
have C = −). While both DD̄∗(1S, 2S) and D∗D̄1 bound state possibilities admit the presence of JPG = 1++, and can
accommodate the Z(4475), D∗D̄1 molecules allow also a JPG = 1+− state in this mass region. The D∗D̄1 model also
predicts 0+ and 2+ isovector and isoscalar bound states, of both G-parities. Clearly, searching for these states has
high priority. Confirmation or elimination of this rich spectroscopy is perhaps the sharpest test for the role of this
D∗D̄1 dynamics.

For the particular case of the JP = 1+ states, we summarize the situation in Table I.
The DD̄πππ channel should be important for the Z(4475) state, whether it is associated with the DD̄∗(1S, 2S)) or

the D∗D̄1 systems. Both of these give attraction in the G = + sector, thus JPC = 1++; I = 0 (e.g., X(3872) and
its radial analog) and JPC = 1+−; I = 1, such as Z(4475). The structure of the DD̄πππ decay mode can be used to
distinguish D∗D̄1 and DD̄∗(1S, 2S) systems because the former will display D∗D̄∗ resonant structure while the latter
will have a complex resonant structure dominated by DD̄∗. Both cases yield Z(4475) states that are broad, due to the
decay of broad D1 or D0 virtual states. This is commensurate with the measured width of 172(37) MeV[1]. For the
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1++ case, the 3π system is dominated by the ω, whereas for the 1+−, they form a broad continuum such as π∗(0−+)
or ρπ (as in a1).

Another consequence of both the DD̄∗(1S, 2S) and D∗D̄1 interpretations of the Z(4475) as an I = 1, JPG = 1+−

state is that π-exchange necessarily binds an I = 0 partner at least some tens of MeV lower in mass. Finding this
state is crucial for these molecular hypotheses. In both cases, the deeper bound I = 0 1++ would make E1 radiative
transitions to γψ′ and to γJ/ψ, so we recommend searches in the invariant mass distributions of those final states, as
well as searches in J/ψω, which can be manifest in J/ψπγ.

G = + G = −
I = 0 1++ J/ψ 3π(ω) S 1+− J/ψ 3π(η) S

1+− J/ψ 2π P
I = 1 1+− J/ψ π S 1++ J/ψ 2π(ρ) P

1+− J/ψ 3π(ρπ) P

TABLE I: Isospin and G-parity eigenstates with JP = 1+, and some decay channels with J/ψ. The JPC of neutral members is
also shown, together with the partial wave (S or P) of the decays.

Radiative transitions between different levels of the D∗D̄1 bound states are possible, and can be used to gain
information. For example, in the D∗D̄1 scenario, a JPC = 1++ charge conjugate partner of the Z(4475) can decay
to the Y(4260) via the process [25] [D1D̄∗]P → [D1D̄∗]S + γ. Thus the charged partner state could be revealed in
the J/ψππγ channel. A similar radiative transition can also occur in the DD̄∗(1S, 2S) system for the isoscalar X′, as
DD̄∗(2S)→ DD̄1γ, where the Y(4260) is interpreted as a DD̄1 state.

Prospects for studying these channels do not appear promising at BESIII because the highest center of mass energy
available is 4.6 GeV. Furthermore, data at this energy are sparse [37]. The situation at Belle is likely to be worse.
However, DD̄ππ and DD̄πππ data exist, as in [33, 34], and should be extended over as wide a range of

√
s as possible.

Similarly, there are plans to study DD̄nπ with charged pions at LHCb [38].

IV. CONCLUSIONS

The interplay of long-range pion exchange forces and charm meson pair dynamics is likely to play a role in many
supercharmonium states. It is possible, for example, that the Z(4475) is either a D∗D̄1 state dominated by long-range
pion exchange, or a DD̄∗(1S, 2S) state. The relative strength of S-wave pion exchange drives the phenomenology of
the D∗D̄1 scenario and leads to a nearby isoscalar molecular state and a rich spectrum of JP = 0+ and 2+ states with
both positive and negative G parity. In the latter case an isoscalar state with JPC = 1++ well below the Z(4475)
is expected. The characteristics of the model that drive this spectrum are the near-degeneracy of the D(2S)D̄∗ and
DD̄∗(2S) channels and the ratio of different pion-exchange interactions driven by the isospin factor ~τ1 · ~τ2.

If additional information warrants it, the model considerations presented here could be improved by considering
form factors associated with the pion coupling to various constituent mesons, the possibility that pions go on-shell,
and the presence of left hand cuts [31]. However, at present, general strategies appear to be more useful than detailed
analyses, which would introduce further model-dependent uncertainties.

We have suggested that searching for the Z(4475) and related states in ψ(2S)nπ, DD̄nπ, and J/ψnπ modes can
provide crucial discriminating information on the nature of these states. The nature of the Y(4260) may be clarified
when data on DD̄2π (excluding D∗D̄∗) and DD̄3π are established through the 4.26 GeV region, and the relative
importance of (virtual) D1D̄ and D1D̄∗ states is established. Furthermore, whether the DD̄πππ system is dominated by
D∗D̄∗π or DD̄∗ππ can distinguish DD̄1 and DD̄∗(1S, 2S) systems. Data at BESIII implicitly contain this information,
but only at one energy; extending these data across a range of energies and extracting the D1 signal would be most
useful.

The way in which the dynamics suggested here is realized in other flavor systems is of interest. Certainly, one
expects greater binding in the b-quark analogs of all the systems considered here: BB̄∗, B∗B̄1, and BB̄∗(1S, 2S). In
the case of s-quark analog states, the pion exchange model is well justified. However, the higher kinetic energies of
strange states relative to charm states changes the computation significantly, so that KK̄∗ states do not bind with
pion exchange only [11]. Furthermore, the near degeneracies within the DD̄∗(1S, 2S) system that give small energy
denominators and enhance binding are not present in the strange sector; the thresholds KK̄∗(2S) (at 1905 MeV) and
K(2S)K̄∗ (at 2317 MeV) are far from degenerate.
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