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If the Standard Model (SM) is valid up to extremely high energy scales, then the

Higgs potential becomes unstable at approximately 1011 GeV. However, calculations

of the lifetime of the SM vacuum have shown that it vastly exceeds the age of the

Universe. It was pointed out by two of us (VB,EM) that these calculations are

extremely sensitive to effects from Planck scale higher-dimensional operators and,

without knowledge of these operators, firm conclusions about the lifetime of the SM

vacuum cannot be drawn. The previous paper used analytical approximations to the

potential and, except for Higgs contributions, ignored loop corrections to the bounce

action. In this work, we do not rely on any analytical approximations and consider

all contributions to the bounce action, confirming the earlier result. It is surprising

that the Planck scale operators can have such a large effect when the instability is

at 1011 GeV. There are two reasons for the size of this effect. In typical tunneling

calculations, the value of the field at the center of the critical bubble is much larger

than the point of the instability; in the SM case, this turns out to be numerically

within an order of magnitude of the Planck scale. In addition, tunneling is an

inherently non-perturbative phenomenon, and may not be as strongly suppressed

by inverse powers of the Planck scale. We include effective Φ6 and Φ8 Planck-scale

operators and show that they can have an enormous effect on the tunneling rate.
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I. INTRODUCTION

Shortly after the Standard Model (SM) was established, it was pointed out in a semi-

nal paper by Cabibbo et al. [1] that the quartic scalar coupling could either become non-

perturbative or become negative before the unification scale is reached. In the former case,

new physics would have to intervene, and in the latter case the potential would become

metastable; requiring that neither of these occur led to bounds on the Higgs and fermion

masses. Over the decades, this calculation has been increasingly refined [2–18].

While several different scenarios for physics beyond the Standard Model are possible, the

conservative choice is to assume that the Standard Model is valid all the way up to the Planck

scale MP , i.e. that new physics interactions only occur at MP . This has been most recently

investigated in Refs. [19–23]. According to these analyses, the recently measured value of

the Higgs boson mass [24, 25] is, in conjunction with improved measurements of the top

quark mass, tantalizing close to the stability/metastability boundary. These calculations,

however, show that the instability does occur at scales below the Planck scale.

The instability is primarily due to the top quark mass. Due to the loop corrections coming

from the top, the Higgs effective potential Veff (φ) turns over for values of φ much larger

than v, the location of the electroweak (EW) minimum, and develops a new minimum at

φmin >> v. Depending on SM parameters, in particular on the top and Higgs masses, Mt

and MH , the second minimum can be higher or lower than the EW one. In the first case, the

EW vacuum is stable, in the second one it is metastable and we have to consider its lifetime

τ . Normalizing Veff (φ) so that it vanishes at φ = v, in the case when Veff (φmin) < Veff (v),

the instability scale φinst is the value of φ such that Veff (φinst) = 0: for φ > φinst, the

potential becomes negative, later developing the new minimum. For the Higgs and top

masses given by the current central experimental values, MH ∼ 125.7 GeV and Mt ∼ 173.34

GeV, φinst ∼ 1011 GeV >> v.

The results are usually summarized with the help of the stability phase diagram of fig.1,

where the (MH ,Mt)-plane is divided into three different sectors: an absolute stability region,

where Veff (φmin) > Veff (v), a (so called) metastability region, where Veff (φmin) < Veff (v),

but the lifetime, τ , is given by τ > TU , and an instability region, where Veff (φmin) < Veff (v)

‡Electronic address: mtsher@wm.edu
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but τ < TU (TU is the age of the universe). The stability (dashed) line separates the

stability and the metastability sectors. The instability (dotted-dashed) line separates the

metastability and the instability regions and is obtained for MH and Mt such that τ = TU .

This stability phase diagram is obtained by considering SM interactions only, as it is

usually argued [18–22] that new physics interactions at the Planck scale, although present,

have no impact on it. This argument seems quite reasonable, since the instability occurs at

scales of ∼ 1011 GeV and new physics interactions are suppressed by powers of the inverse

Planck scale. If this is really the case, from fig.1, we learn that for the current experimental

values of MH and Mt, the electroweak vacuum is metastable, with a lifetime much larger

than the age of the universe [18, 21, 22], and also that we are very close to the stability

line (so called “criticality”), so that a better determination of MH and Mt would allow us

to discriminate between a metastable, a stable or a critical vacuum state for our universe

[26, 27]. Some authors consider this “near criticality” of the SM as the most important

message from the data on the Higgs boson [23]. We note that this is also needed for the

Higgs inflation scenario of [28].

For MH = 125.7 GeV and Mt ∼ 173.34 GeV, φinst ∼ 1011 GeV. For φ > φinst, Veff (φ) is

negative and decreasing. For φ ≥ MP , the potential continues to decrease for a long while,

forming a new minimum at a scale φmin much larger than MP , φmin ∼ 1030 GeV. Of course,

one expects Planck scale operators to have an effect long before that scale is reached.

It is usually argued [18] that this potential must be eventually stabilized by the unknown

new physics around MP . In other words, these new physics interactions are expected to

modify Veff (φ) around MP in such a way as to lead to a new minimum around this scale.

However, it is also argued that the computation of the lifetime τ of the electroweak vacuum

can still be performed with the help of the unmodified Higgs potential Veff (φ), obtained

with SM interactions only.

As the instability occurs for very large values of φ (φinst ∼ 1011 GeV), Veff (φ) is well

approximated by keeping only the quartic term [11]. Therefore, following [29–31], the elec-

troweak vacuum lifetime is computed by considering first the bounce solution to the euclidean

equation of motion for the classical potential V (φ) = λ
4
φ4 with a negative value of λ, and

then taking into account the quantum fluctuations around the bounce.

It has been recently shown, however, that new physics at MP can enormously modify the

tunneling time and, more generally, the stability phase diagram [32–34]. For the purposes
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FIG. 1: In this figure we plot the stability phase diagram according to the standard analysis, i.e.

in the absence of new interactions at the Planck scale. The MH −Mt plane is divided in three

sectors: absolute stability, metastability and instability regions. The dot indicates MH ∼ 125.7

GeV and Mt ∼ 173.34 GeV. The ellipses take into account 1σ, 2σ and 3σ, according to the current

experimental errors.

of illustrating this effect, the analysis in [32] was performed by considering two major sim-

plifications. An approximation for the modified Higgs potential was considered that allowed

for the existence of analytical bounce solutions; and only the quantum fluctuations coming

from the Higgs sector were considered.

In the present paper, the analysis of [32] is improved, extended and completed in the

following important aspects. First of all, we do not consider any approximation for the

potential. Therefore, as we can no longer rely on analytical tools, we look for numerical

bounce solutions for the complete potential. Also, the quantum fluctuation corrections to

τ are computed by considering the contributions from all of the different sectors of the

theory. This more complete analysis, as we shall see, confirms the results presented in [32]

and provides the theoretical support for the results presented in [34], where some of the

results presented in this work were anticipated and used.

The rest of the paper is organized as follows. In the next section, we review the calculation

of the electroweak vacuum lifetime in the Standard Model. It is shown there that the

standard assumption that Planck scale operators can be neglected may not be valid, since the

value of the field in the center of the critical bubble is much larger than the instability scale,

and is close to the Planck scale. In section III, the effects of Planck scale operators are then

included. In section IV, we compare the numerical results with the analytic results of Ref.
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[32], and section V contains our conclusions. There are three appendices. In Appendix A, the

computation of the quantum fluctuation contribution to the tunneling time is presented in

some detail. Appendix B provides some tools for the numerical computation of the bounce.

In particular, the bounce considered in section III is computed. In Appendix D, we provide

a explicit example, using SU(5), giving the size of the higher dimensional operators.

II. BOUNCES AND THE PLANCK SCALE MP

Before starting our analysis on the impact of new physics, in the present section we focus

our attention on the standard analysis, where it is assumed that the stability phase diagram

and, in particular, the lifetime of the electroweak vacuum τ are not affected by new physics

at the Planck scale [18–22].

Let us begin by considering the euclidean action for the scalar sector of the SM

S[Φ] =

∫
d4x ((∂µΦ)† · (∂µΦ) + V (Φ)) (1)

where we write the scalar doublet Φ as

Φ =
1√
2

 −i(G1 − iG2)

φ+ iG3

 , (2)

with φ the Higgs field and Gi the Goldstone bosons, while the potential V (Φ) is, for large

values of φ,

V (Φ) = λ(Φ†Φ)2 . (3)

The procedure for determining the tunneling rate was first discussed in Refs. [29–31], and

a very clear discussion involving the Standard Model can be found in Ref. [35]. The bounce,

φb, is a solution of the Euclidean equations of motion for the above action. Renaming for a

moment S as the full SM action, following [35] we write for the tunneling probability (details

are given in Appendix A)

p =

∫ 8∏
i=1

dγi Jzeros(γ1, ..., γ8)

∣∣∣∣SDet′(S ′′[φb])SDet(S ′′[0])

∣∣∣∣−1/2

e−S[φb] . (4)

S[φb] is the tree-level action computed at φ = φb, with all of the other SM fields vanishing.

S ′′ denotes double functional differentiation with respect to all of the SM fields. SDet is



6

Φ @ GeVD

Veff H ΦL

246 10 11 10 18 10 30

FIG. 2: The potential in the Standard Model, for MH = 125.7 GeV and Mt = 173.34 GeV, is

sketched (figure not to scale). The potential goes negative at a scale of 1011 GeV and reaches a

new minimum at roughly 1030 GeV. The tunneling through the barrier goes from the base of the

arrow (φ(r =∞)) to the tip (φ(0)), which turns out to be close to or above the Planck scale.

the Superdeterminant, and Det′ means that in the computation of the determinant the zero

modes are excluded (SDet(S ′′[0]) comes from the normalization). The γi (i = 1, ..., 8) are the

collective coordinates, the flat directions related to the zero modes, and Jzeros(γ1, ..., γ8) is

the product of the Jacobians coming from the corresponding change of variables in the path

integral (from usual to collective coordinates). In the SM there are eight zero modes: four

translational (the collective coordinates being x0, y0, z0, t0, the coordinates of the center of

the bounce), three related to SU(2) “rotations” (the collective coordinates being the angles

θ1,θ2 and θ3) and finally, when the potential is taken as in Eq. (3) (where the mass term

is neglected), one dilatation zero mode (the collective coordinate being the size R of the

bounce). The complicated term in front of the exponential is often sub-dominant, although

we will include it here.

For negative values of λ, the (euclidean) equation of motion for the action (1) has non-

trivial configuration solutions for the Higgs field (with Gi = 0), i.e. bounce solutions, which

are solutions of the equation (r is the radial coordinate in R4)

d2φ

dr2
+

3

r

dφ

dr
− dV

dφ
= 0 , (5)

with boundary conditions

φ(∞) = 0 (6)

dφ(r)

dr

∣∣∣∣
r=0

= 0 , (7)
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where V (φ) is

V (φ) =
λ

4
φ4 . (8)

Note that Eq. (5) is also obtained by considering the restriction

S[φ] =

∫
d4x (

1

2
∂µφ∂µφ+ V (φ)) (9)

of the action (1) when all the Gi vanish.

The family of bounce solutions to Eq. (5) is

φb(r) =

√
8

|λ|
R

r2 +R2
, (10)

and is parametrized by R, the size of the bounce (0 < R <∞).

For negative values of λ, the action (9) is scale invariant, so that all these configurations,

irrespectively of the size R, have the same value of the action, namely

S[φb] =
8π2

3|λ|
. (11)

From Eq. (10), we see that R and φb(0) (the maximal value of φb(r)) are related by

R =

√
8

|λ|
1

φb(0)
(12)

and that R is nothing but that value of r such that

φb(R) =
1

2
φb(0). (13)

In Figure 2, we have sketched the potential. Note that the tunneling does not lead directly

to the other side of the barrier. This is because of the gradient terms (surface tension for a

thin-walled bubble), which require the bubble to gain volume energy. The point at the tip

of the arrow is φb(0). The value of φb(0) can, in principle, be substantially larger than the

point of the instability, and we will shortly see that this does, in fact, occur.

Going back to Eq. (4), we note that the integration over the center of the bounce (the four

translational zero modes) can be immediately performed and gives the four-volume factor

Ω = V TU (V and TU are the volume and the age of the universe, respectively), that in our

case is Ω = T 4
U . The same is true for the integration over the angular SU(2) variables (θ1,

θ2, θ3), that provides a factor 16π2.
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Finally, concerning the integration in the remaining collective coordinate, the bounce

size R, we note that, although the value of S is the same for all bounce sizes, R, quantum

fluctuations break the degeneracy, and only one value of R, say RM , saturates the path

integral.

Therefore, from Eq. (4) for the tunneling probability, we can immediately write the tun-

neling time as

τ =

[
R4
M

T 4
U

e
8π2

3|λ(µ)|

]
×
[
e∆S
]
× TU , (14)

where we have used Eq. (11) for S[φb], and ∆S corresponds to quantum fluctuations, to be

discussed shortly,

∆S = −ln

(
16π2

R8
JtransJSU(2)Jdil

∣∣∣∣SDet′(S ′′(φb))SDet(S ′′(0))

∣∣∣∣−1/2
)
R=RM

, (15)

the Jacobian factor of Eq. (4) being split into the product of the three Jacobians related to

the translation, dilatation, and SU(2) zero modes (in Appendix A these Jacobian factors,

together with the determinants, are computed).

Crucial to our analysis is the knowledge of the running of the quartic coupling λ(µ), to

be solved together with the coupled RG equations for the other SM couplings. We have

used the RG equations up to the next-to-next to leading order. The beta functions and the

boundary conditions up to this order have been recently worked out and are presented in

[22, 36–38].

By considering the RG equations for λ(µ), we see that the instability of the kind shown

in Figure 2 occurs when λ(µ) hits zero and then becomes negative. This is the case when

the electroweak vacuum is metastable. For sufficiently large values of µ, λ(µ) saturates to

a constant negative value. As for the renormalization scale µren, it is convenient to choose

µren ∼ 1/RM . This is the value of λ(µ) to be used in Eq. (14). For MH = 127.5 GeV and

Mt = 173.34 GeV, we find

RM ∼ 1.87 · 10−17GeV −1 = 224.5M−1
P (16)

and

λ(1/RM) = −0.01345 , (17)

that in turn gives
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FIG. 3: Profile of the bounce solution that enters in the computation of the electroweak vacuum

lifetime τ for MH = 125.7 GeV and Mt = 173.34 GeV, the present central experimental values of

MH and Mt. The value of the field at the center of the bounce (r = 0) is φb(0) = 0.34MP , very

close to the Planck scale.

S[φb] = 1956.54 . (18)

Inserting Eqs. (16) and (18) in Eq. (14), a first estimate of τ can be obtained by considering

the classical (tree level) contributions only, i.e. by neglecting the quantum fluctuations (the

term e∆S). We find that

τtree ∼ 10 613 TU . (19)

At tree level, we already see that the electroweak vacuum lifetime τ turns out to be

enormously larger than the age of the universe, thus justifying the so called metastability

scenario: the electroweak vacuum is metastable but its lifetime is much larger than the age

of the universe. This is why the allowed region in Figure 1 is so far from the line where the

lifetime is the age of the Universe.

The next step is the inclusion of the quantum fluctuations. In Eq. (14), the contribution

of the fluctuation determinant is given by the factor e∆S. More precisely, each of the different

sectors of the theory (Higgs, gauge, goldstone, top) provides a contribution to ∆S, which

then takes the form

∆S = ∆SH + ∆St + ∆Sgg , (20)

where ∆SH is the loop contribution from he Higgs sector, ∆St the contribution from the

top sector and ∆Sgg the one from the gauge and Goldstone sectors.
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In Appendix A the computation of the different ∆Si is shown. Here we present the results

in the table below

Loop contributions to τ

e∆SH 10−7

e∆St 10−19

e∆Sgg 1068

Collecting the different multiplicative contributions to τ listed above, we finally have

τ ∼ 10655 TU . (21)

Despite of the enormous difference in magnitudes between (19) and (21), it seems appro-

priate to quantify the distance between the classical and the quantum corrected estimate of

τ by noting that in terms of orders of magnitudes, the exponent 655 in (21) provides a 6 %

correction to the exponent 613 in (19). In this sense, even the tree level result (19) gives, in

this framework, a “good” estimate of τ .

What we have just seen is that, even after the inclusion of the quantum fluctuation

corrections, the lifetime of the electroweak vacuum τ turns out to be enormously larger than

the age of the universe, and this seems to give support to the metastability scenario. As

explained in the introduction, a more complete study of electroweak vacuum stability can

be done in terms of the Higgs and top masses MH and Mt. In Figure 1, the corresponding

SM phase diagram in the MH −Mt plane is shown.

We now move to consider one of the key points of this paper, by turning our attention

to the profile of the bounce. As we said above, due to the removal of the degeneracy from

quantum fluctuations, the path integral for the computation of τ is saturated by only one of

the bounces, with a specific value of the size R, RM . For MH = 125.7 GeV and Mt = 173.34

GeV, RM is given in Eq. (16). Moreover, the value of the quartic coupling for the same

values of MH and Mt is given in Eq. (17). Then, from Eq. (10), we can determine the profile

of the bounce that enters the evaluation of τ . The result is given in Figure 3. We have also

shown the profiles for different values of MH and Mt in Figure 4.

Looking at these results, we see that the value of the field at the center of the bubble,

φb(r = 0), is dangerously close to the Planck scale. One can then suspect that Planck scale

effects might be significant, even though the potential becomes unstable at a scale of roughly
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FIG. 4: Profile of the bounce solution that enters in the computation of the electroweak vacuum

lifetime τ for values of MH and Mt slightly different from those of Figure 3. Actually, ±2σ (current

experimantal errors) for Mt in the left panel (with MH kept fixed to the central value MH = 125.7

GeV), and ±2σ (current experimental errors) for MH in the right panel (with Mt kept fixed to the

central value Mt = 173.34 GeV). As in Figure 3, the values of the field at the center of the bounce,

φb(0), turn out to be very close to the Planck scale, sometimes even above this scale.

10−8MP , i.e. much below MP . In this respect, it is important to note that the Planck mass

never entered into our calculation, we have simply scaled φ and r in terms of MP , instead

of GeV and GeV −1 respectively.

The key point that emerges from inspecting these bounce profiles (figs. 3 and 4), then, is

that the value of the field at the center of the bubble can be not only substantially larger than

the instability scale, but actually so close to MP that Planck scale effects can be expected

to affect the tunneling rate. In order to investigate this question, we will now add Planck

scale operators to the potential and redo the calculation. We will see in the next section

that the results (19) and (21) on the electroweak vacuum lifetime and the phase diagram of

Fig. 1 can be dramatically modified.

III. BOUNCES AND NEW PHYSICS

In order to study the impact of new physics interactions at the Planck scale on the

electroweak vacuum lifetime τ , following [32–34], we consider a simple modification of the

theory by adding to the quartic potential (with negative λ) of the previous section two higher
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powers of the scalar field

Vnew(φ) =
λ

4
φ4 +

λ6

6M2
P

φ6 +
λ8

8M4
P

φ8 . (22)

The goal of the present work is not that of studying specific models. Our aim is rather to

show that the presence of new physics at the Planck scale is far from being harmless in the

evaluation of the electroweak vacuum lifetime. The choice of the potential (22) is well suited

for this purpose. As a demonstration of a model in which this potential arises as an effective

field theory (without, to leading order in the couplings, φ10 or higher terms), in Appendix

C we have given an example from a minimal SU(5) model, in which MP is replaced by the

unification scale. This shows that it is very easy to have λ6 and λ8 of O(1). In order to

have a stable potential, λ8 has to be taken positive, while λ6 can have both signs. In the

toy minimal SU(5) model that we look at in the Appendix C this happens automatically.

In contrast with the previous section, with the potential (22) we cannot find analytical

solutions to the euclidean equation of motion (5). Moreover, the scale invariance of the

action (9) is lost. However, when φ << MP and the coupling constants λ6 and λ8 have

natural O(1) values, (22) is well approximated by (8). Under these conditions, the new

action is almost scale invariant and the configurations (10) turn out to be good approximate

solutions even for Vnew(φ). Note that as long as we limit ourselves to consider bounces of

“large size” (large with respect to 1/MP ), even in the presence of the higher order operators

φ6 and φ8, the configurations (10) are (quasi-)solutions to the euclidean equation of motion

(a result to be expected).

In the computation of the tunneling time, then, these configuration have to be taken

into account. Will will come back to this point at the end of this section. But for now,

let us look for the existence of exact bounce solutions to the euclidean equation of motion

(5) with the potential (22). Although we cannot rely on analytical tools, with the help of

forward-backward shooting techniques [39], we can search for numerical solutions.

For our purposes, it is useful to rescale the radial coordinate r and the field φ by defining

the dimensionless coordinate x and the dimensionless field ϕ in terms of Planck mass units

x = MP r (23)

ϕ(r) =
φ(x)

MP

. (24)
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FIG. 5: Profile of the bounce solution found with the forward-backward method described in

Appendix B for the potential of Eq.(22), with λ = −0.01345, λ6 = −2, and λ8 = 2.1.

Eq. (5), with the potential (22), then becomes

d2ϕ

dx2
+

3

x

dϕ

dx
− λϕ3 − λ6ϕ

5 − λ8ϕ
7 = 0 , (25)

while the boundary conditions are

ϕ(∞) = 0 (26)

dϕ(x)

dx

∣∣∣∣
x=0

= 0 . (27)

In Appendix B, Eq. (25) is solved numerically with the help of forward-backward shooting

methods. The profile ϕ
bou

(r) of the bounce solution found with the help of the numerical

procedure outlined in this Appendix is plotted in Fig. 5. Here we have somewhat arbitrarily

chosen λ6 = −2 and λ8 = 2.1. This profile has to be compared with the bounce of Fig. 3,

which is a solution obtained for the potential (8), i.e. in the absence of the higher order

operators φ6 and φ8. Quite interestingly, the value of the field at the center of the bounce,

φb(r = 0), is not much different from the values obtained for the case when the Planckian

new physics operators φ6 and φ8 are absent (see Figs. 3 and 4).

Going back to dimensionful quantities, naming φ
bou

(r) the dimensionful counterpart of

ϕ
bou

(r) (see (23)) and defining the size R of this bounce according to (13), i.e. as that value

of r such that

φ
bou

(R ) =
1

2
φ
bou

(0) , (28)

we obtain

R ' 5.06M−1
P . (29)
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As for the corresponding action, from (9) and (22) we have

S[φ
bou

] ' 82.09 . (30)

Note that this action is much, much less than the action in Eq.(18), implying that the

lifetime of the electroweak vacuum is much, much smaller.

Let us pause for a moment to make some comments. The classical theory considered in

the previous section is scale invariant. This is why we found an infinity of bounce solutions

with all possible values of the size. The quantum fluctuations lifted the degeneracy and

the path integral was then dominated by a single bounce with a well defined size RM .

In the present case, the classical theory with potential (22) is no longer scale invariant.

Accordingly, there is no degeneracy in the bounce size already at the classical level. Our

numerical procedure, in fact, has shown that there is only one bounce, with a well defined

size R, that solves the euclidean equation of motion and satisfies the boundary conditions for

the bounce. This removal of the degeneracy at the classical level certainly occurs whenever

new physics interactions at the Planck (or, more generally, new physics) scale are included.

Having at our disposal R and S[φ
bou

], we are in the position to compute, according to

(14), the tree-level contribution to τ , i.e. the contribution obtained neglecting the quantum

fluctuation (∆S = 0)

τtree ∼

[
R

4

T 4
U

eS[φbou]

]
TU ∼ 10−206 TU . (31)

Eq. (31) is the key result. It has to be compared with Eq. (19) of the previous section.

From this comparison we immediately see that the inclusion of new physics interactions at

the Planck scale, already at the classical (tree) level, has produced a dramatic modification in

the electroweak vacuum lifetime. A bona fide computation where new physics interactions at

the Planck scale are explicitly taken into account has shown that they have a huge impact on

the electroweak vacuum lifetime. Clearly, such values for λ6 and λ8 are phenomenologically

unacceptable. This shows the importance of Planck scale operators on the metastability

calculations, and shows that the conventional diagram of Fig. 1 can be drastically changed

by such operators.

It might be surprising that the Planck scale operators can have such a large effect. After

all, while the value of the field at the center of the bubble is fairly close to the Planck

scale, it isn’t substantially larger (and most of the field values throughout the bubble wall
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are substantially smaller) and thus one might expect O(1) corrections, not the huge correc-

tions we have seen. However, one must keep in mind that tunneling is a non-perturbative

phenomenon. The tunneling rate is computed by looking for the bounce solution and then

considering quantum fluctuations on top of that. While the latter are perturbative, and thus

suppressed by inverse powers of the Planck scale, the former is not.

The potential (22) differs from the potential λφ4/4, and the corresponding new saddle

point φbou provides a different non-perturbative contribution e−S[φbou] to the tunneling rate.

The bounce φbou(r) is a profile, not a localized configuration, defined in the whole range

r ∈ [0,∞[. No matter how similar it looks to φb(r) of the previous section. The differ-

ence between these two profiles provides the difference between the two exponentials e−S[φb]

(previous section) and e−S[φbou] (this section), and these two numbers are exponentially de-

coupled.

As in the previous section, the next step consists in the inclusion of the quantum fluctu-

ations. Once again, the contribution of the fluctuation determinant is given in terms of the

factor e∆S and, as before, each of the different sectors of the theory (Higgs, gauge, goldstone,

top) provides a contribution to ∆S (∆S = ∆SH + ∆St + ∆Sgg). These are computed in

Appendix A. Here we present the results in the table below

Loop contributions to τ

e∆SH 10−9

e∆St 10−5

e∆Sgg 108

Collecting now the different multiplicative contributions listed above to the electroweak

vacuum lifetime τ , we finally have

τ ∼ 10−212 TU . (32)

As before, we have an enormous difference between the tree level result (31) for τ and the

quantum corrected one (32), but we again see that the bulk of the contribution to τ comes

from the classical level, which, in this sense, provides a “good” estimate of τ .

In the case that we have just considered, the electroweak vacuum lifetime τ turns out

to be enormously shorter than the age of the universe, thus showing that the metastability

scenario is far from being a generic feature of theories which allow for the SM to be valid all
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the way up to the Planck scale. The expectations and arguments of [18, 21, 22] are simply

not fulfilled.

Clearly, in the light of the above results, the SM phase diagram in the MH −Mt plane

of Fig. 1 no longer holds. For the case that we have considered, for instance, the instability

line is tremendously lowered and the big dot in the figure, corresponding to MH = 125.7

GeV and Mt = 173.34 Gev, lies within the instability region. See [34], where new phase

diagrams of this kind are plotted.

Before ending this section, we would like to come back to the question of the existence

of other bounce solutions and/or of configurations that are quasi-solutions. In principle, if,

in addition to the solution found above, other solutions or quasi-solutions are present, they

could contribute to τ and the result (32) should be revisited. However, this is not the case

here. As we have just seen, in fact, the action related to the solution φbou(r) found above,

is S[φ
bou

] ∼ 80 (see (30)), while for the (quasi-)solutions mentioned at the beginning of this

section, the action is (see (18)) S[φb] ∼ 1800. This means that the contribution of the latter

is enormously (exponentially) suppressed as compared to the contribution of φ
bou

(r).

IV. ANALYTICAL APPROXIMATIONS

We would like to compare now the results of the previous sections with those obtained

in [32], where the presence of new physics interactions was studied with the help of an

approximation for the potential Vnew(φ) in (22) that made it possible to get analytic solutions

for the bounces.

The solid line in fig. 6 shows the plot of the potential (22) with λ = −0.01435, λ6 = −2

and λ8 = 2.1. Up to the scale η ' 0.7912MP (that will be determined self-consistently in

the following), Vnew(φ) is well approximated by an upside down quartic parabola, Vnew(φ) '
λeff

4
φ4, with λeff = λ + 2

3
λ6

η2

M2
P

+ 1
2
λ8

η4

M4
P

. For φ > η, Vnew(φ) bends down creating a new

minimum at φmin ' 0.979MP . Therefore, for values of φ larger than (but close to) η,

φ & η, Vnew(φ) can be linearized and we get Vnew(φ) =
[
λeff

4
η4 − λeffη

3

γ
(|φ| − η)

]
, with

γ = −λeff η3
(
λη3 + λ6

η5

M2
P

+ λ8
η7

M4
P

)−1

.

The previous approximations can be included in a single expression. Indeed, the potential
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FIG. 6: The solid line shows the potential Vnew(φ) of Eq. (22) with λ = −0.01345, λ6 = −2 and

λ8 = 2.1. The dotted line is the plot of the approximation to Vnew(φ) given in Eq. (33), with

η ' 0.7912MP (determined self-consistently in the text), λeff = λ+ 2
3λ6

η2

M2
P

+ 1
2λ8

η4

M4
P

= −0.4366

and γ = −λeff η3
(
λη3 + λ6

η5

M2
P

+ λ8
η7

M4
P

)−1
= −0.987. As explained in the text, the latter

provides a good approximation to Vnew(φ) for values of φ around η. The dashed line is the

potential in the absence of new physics interactions (λ6 = 0 and λ8 = 0).

Vnew(φ), for values of φ around η, can finally be written as

Vnew(φ) ' λeff
4
φ4θ(η − |φ|) +

[
λeff

4
η4 − λeffη

3

γ
(|φ| − η)

]
θ(|φ| − η). (33)

The equation of motion possesses the bounce solution

φb(r) =

 2η − η2

√
|λeff |

8
r2+R

2

R
0 < r < r√

8
|λeff |

R

r2+R
2 r > r

(34)

where

r =

√
8γ

λeffη2
(1 + γ) , R =

√
8

|λeff |
γ2

η2
, (35)

R being the size of the bounce (see Eq.(34)), and the action is

S[φb] = (1− (γ + 1)4)
8π2

3|λeff |
. (36)

From Eq. (31) we see the expression for the main contribution to the tunneling time.

Therefore, in the approximation that we are considering, the tunneling time is obtained
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FIG. 7: The analytical bounce solution, Eq. (34), when Vnew(φ) is approximated as in Eq. (33), for

the values of the parameters considered in the text (see also Fig. 6). In particular, from Eq. (35),

we have r = 0.61M−1
P , and for the bounce size, R = 5.33M−1

P .

maximizing the expression

T (η) =
R(η)4

T 4
U

eS[φb(η)] (37)

with respect to η. This in turn determines the value of η appearing in Eq. (33).

By considering the values λ = −0.01345, λ6 = −2 and λ8 = 2.1 of the example in Fig. 6,

we find η = 0.7912MP . The dotted line in this figure is the plot of the approximation in

Eq. (33) for the potential Vnew(φ) for the above value of η. We immediately see that this is

an excellent approximation for the potential for value of φ close to η. In this respect, we

should note that for the purposes of computing the bounce, this is the only region of interest

[40].

The profile of the bounce solution found with this approximation is shown in Fig.7 and

has to be compared with the bounce obtained numerically, shown in Fig.5. Moreover, the

tunneling time under this approximation turns out to be

τ ∼ 10−215 TU , (38)

that is a quite good estimate for τ , to be compared with the exact numerical result of

Eq. (31).
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V. CONCLUSIONS

During the early discussions of the stability of the Standard Model Higgs potential, the

top quark and Higgs masses were completely unknown. It is remarkable that the values

of these masses turn out to lead to a corner of parameter-space in which the stability,

metastability and instability regions are so close together. As a result, calculations need to

be carried out to higher precision in order to determine the ultimate fate of our vacuum.

Although these calculations have been done, it was shown in Refs. [32–34] that higher

dimensional Planck scale operators, neglected in previous calculations, could have an enor-

mous effect on the tunneling rate, and thus on the lifetime of the Standard Model vacuum.

As a result, predictions of the fate of our vacuum without knowledge of these operators

cannot reliably be made.

Neglecting Planck scale operators would seem to be completely reasonable, since the

electroweak vacuum becomes unstable at a scale of 1011 GeV, far, far below the Planck

scale. In this paper we have pointed out two reasons why they are still important (and

can dominate the tunneling rate). First, when the Higgs field tunnels through a potential

barrier (in more than one dimension), the value of the field at the center of the bubble is

much, much bigger than the location of the instability. This is because additional vacuum

energy is needed to overcome the gradient terms in the Higgs Lagrangian; this is nothing

other than needed a large volume energy difference to overcome surface tension. In the

SM, this results in the value of the field at the center of the bubble being roughly 107

times the value at the instability, which happens to be close to the Planck scale. Second,

tunneling is an inherently non-perturbative process, and thus one’s naive expectation that

higher dimensional operators will have effects which are strongly Planck-scale suppressed

may not be valid. All one can do is to redo the calculations including higher dimensional

operators to see if their effect is significant. This was done in Refs. [32–34], where it was

shown that they can have a huge effect.

These previous calculations made several simplifying assumptions. They used an analytic

approximation to the Higgs potential and for the tunneling rate. While this is a reasonable

way to estimate the size of the Planck scale operators, a more precise calculation is needed.

In this paper, we have improved on the previous results in several ways. We have used

fully numerical techniques to solve for the bounce action and the tunneling rate, without
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the earlier analytic approximations. We have included not only Higgs loop contributions

to the tunneling rate, but the contributions of the other fields as well. In addition, a toy

SU(5) model shows that the type of higher dimensional operators with the given coefficients

is completely reasonable. The results confirm the earlier calculations and show that Planck

scale operators do, in fact, have a huge effect on the tunneling rate. Only with knowledge

of these higher dimensional operators can the fate of our vacuum be known.

There are many other situations in which these operators can have a large effect. As noted

in Ref. [34], the Higgs inflation scenario would be drastically altered. In fact, one generally

can be concerned about the basic slow-roll inflation scenario. It is always assumed that

the inflaton rolls down the potential, following the classical equations of motion. However,

while it is rolling, it could tunnel through, changing the inflation scenario completely; higher

dimensional operators can drastically alter the tunneling rate, making this possibility much

more likely. Clearly, there are many potential applications of this scenario.

Finally, as the higher dimensional Planck scale operators could have an enormous im-

pact on the stability phase diagram of the Standard Model, the common expectation that

more precise measurements of the top and Higgs masses would allow one to discriminate

between whether our vacuum is stable or metastable (or critical) turns out to be unjustified.

Without the knowledge of the (Planck scale) new physics interactions, no conclusion on the

electroweak vacuum stability can be drawn, a better knowledge of Mt and MH being of no

help in that respect [34].
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Appendix A

In this appendix we outline the computation of the quantum fluctuation contribution

to the electroweak vacuum lifetime from the different sectors of the Standard Model, see

Equations (14), (15) and (20) in the text.

If we denote with χr(x) all of the SM fields (the index “r” indicates the different fields),

the semiclassical approximation to the path integral for the computation of the tunneling

rate is obtained by expanding around the configuration χbr(x) that consists of a collection

of zeroes, except for the case when the index r indicates the Higgs field, in which case

χbr(x) = φb(x), the bounce solution. Let us then indicate the saddle point as χb(x)

The tunneling rate is computed by performing a saddle point expansion of the transition

amplitude around χb(x) according to

χ(x) = χb(x) +
∑
j

cjηj(x), (A1)

where ηj(x) is a complete set of orthonormal eigenfunctions of the second variation operator

(S ′′[χb])rs =
δ2S[χ]

δχr(x)δχs(y)

∣∣∣∣
χ=χb

, (A2)

where the r and s indices run over all the sectors of the model.

The computation of the tunneling rate is complicated by the presence of some zero eigen-

values in the spectrum of the operator S ′′[χb] and of a negative eigenvalue. The zero modes

are related to symmetries of the classical action with respect to four translations (in Eu-

clidean space-time), to dilatation (a symmetry that is broken by quantum effects), and to

three SU(2) global rotations. With reference to the two cases treated in the text, where we

have considered the case of the Standard Model alone with the quartic potential, and the

case where the SM is modified due to the presence new physics interactions, higher powers

of the scalar field, the dilatation symmetry of the classical action is present only in the first

case.

In the functional space, these are flat directions and we take care of them with the help

of eight collective coordinates (seven in the case that the dilatation invariance is absent).

Let us indicate with γi (for i = 1, ..., 8) these collective coordinates: the spatial coordinates

xµ0 of the center of the bounce, the three Euler angles θi of the group space of SU(2), and

the size of the bounce R.
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Actually, the instanton (bounce) size R is a collective coordinate only when the theory

is scale invariant (dilatation symmetry). This is the case for the SM (when the scalar mass

term is neglected). When new physics interactions as those appearing in the potential (22)

are taken into account, the dilatation symmetry is lost, the collective coordinate R is missing,

and we have only seven zero modes.

In the following we will treat the case when all of the eight symmetries are present,

bearing in mind that we are also interested to the case when dilatation symmetry is lost.

Therefore the Superdeterminant of the fluctuation operator is modified according to

(SDet(S ′′(χb)))
−1/2 →

1

2
(2π)−8/2

∫ 8∏
r=1

dγr det

(
∂ci
∂γj

)
|SDet′(S ′′(χb))|−1/2

. (A3)

where the γi are the collective coordinates mentioned above, that allow to perform the

integration along the flat directions exactly. The contribution of the zero modes is encoded

in the Jacobian The factor (2π)−8/2 arises to compensate the missing gaussian integrations

and the negative mode provides the factor 1/2 and the absolute value in the determinant

[31].

Let us define the SU(2) multiplet Φb(x) as

Φb(x) =
1√
2

 0

φb(x)

 , (A4)

The Jacobian J = (2π)−4det
(
∂ci
∂γj

)
is written in terms of the norm of the eight linearly

independent zero modes ∂Φb(x,γ)
∂γj

and turns out to be

J = det


1

2π

∫
d4x ∂µΦ†b∂νΦb 0 0

0 1
2π

∫
d4x ∂

∂R
Φ†b

∂
∂R

Φb 0

0 0 1
2π

∫
d4x ∂

∂θi
Φ†b

∂
∂θj

Φb


1/2

. (A5)

Since the above matrix has a block diagonal form, J can be expressed as the product

of Jtrans, the contribution of the translational zero modes, times JSU(2), the contribution of

the zero modes related to the SU(2) global symmetry, times Jdil, the contribution of the

dilatation zero mode.
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The Jacobian Jtrans is given by

Jtrans = (2π)−2

∫
d4x

4∏
µ=1

[(
∂µΦ†b∂µΦb

)]1/2

=
S[φb]

2

4π2
. (A6)

As for the Jacobian JSU(2), let us consider it in conjunction with the integration in the

three corresponding collective coordinates

∫ 3∏
r=1

dθr JSU(2) =

∫ 3∏
r=1

dθr det

(
1

2π

∫
d4x

∂

∂θi
Φ†b

∂

∂θj
Φb

)1/2

, (A7)

where θ1 ∈ [0, 2π] , θ2 ∈ [0, π] and θ3 ∈ [0, 2π].

We can obtain an expression that is the product of a measure term invariant under the

global SU(2) transformation times a quantity that does not depend on the variables θi. To

this end, we multiply and divide the expression in Eq. (A7) for sin θ2. Then, by further

multiplying and dividing the same expression for R3, we can also extract the dimensions

from JSU(2) thus obtaining∫
d3θ JSU(2) =

∫
d3θ sin θ2 R

3 J ′SU(2) (A8)

where the new dimensionless jacobian J ′SU(2) is

J ′SU(2) =
1

R3 sin θ2

det

(
1

2π

∫
d4x

∂

∂θi
Φ†b

∂

∂θj
Φb

)1/2

, (A9)

and the invariant measure is d3θ sin θ2.

J ′SU(2) can be now be made explicit by writing Φb in terms of a generic SU(2) transfor-

mation applied to Φ0
b defined as Φ0

b ≡ Φb(x, x0, R, θi = 0). By replacing then

Φb = eiθ1T1eiθ2T2eiθ3T3Φ0
b (A10)

in Eq. (A9) and performing some algebraic manipulations we get

J ′SU(2) =
1

R3
det

(
1

2π

∫
d4xΦ0†

b T
†
i · TjΦ0

b

)1/2

=
1

R3

[
1

2π

∫
d4xφ2

b

]3/2

, (A11)

where Ti (for i = 1, 2, 3) is the real representation of the SU(2) generators.

Finally the contribution of the dilatational zero mode Jdil is

Jdil =

(
1

2π

∫
d4x

(
∂φb
∂R

)2
)1/2

. (A12)
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Bearing in mind that the integration over the SU(2) angular variables provides a factor

16π2 and that the volume factor
∫
d4x0 is four times the time of the universe TU , referring

to Eq. (4) in the text, we find that the tunneling rate TU/τ for unit volume and time is

p = e−S[χb]16π2 V TU

∫
dRR3 JtransJSU(2)Jdil

∣∣∣∣SDet′(S ′′(χb))SDet(S ′′(0))

∣∣∣∣−1/2

. (A13)

where TU is the age of the universe and V the volume (V = T 3
U). Note that the dimensional

factor T 4
U

∫
dRR3 is compensated by the dimension of the ratio SDet′(S ′′(χb))/SDet(S

′′(0)).

Finally, we recall that the fluctuation determinant breaks the scale invariance, so that

only one of the bounces, with a specific value of the size R, dominates the above integral.

Referring again to the notation introduced in the text, we indicate with RM this value of R

and we have

τ

TU
=
R4
M

T 4
U

eS[φb]

(
16π2

R8
JtransJSU(2)Jdil

∣∣∣∣SDet′(S ′′(φb))SDet(S ′′(0))

∣∣∣∣−1/2
)−1

R=RM

, (A14)

that immediately brings to Eq. (15) used in the text.

It is worth stressing here that when the dilatation symmetry is absent, as is the case for

the modified potential considered in this paper, where new physics interactions are added to

the usual SM potential (see Eq. (22) in the text), the above formula has to be modified in

the following three aspects. The size R of the bounce that appears in (A14) is no longer the

result of the maximization of the integrand function, but comes directly from the equation

of motion (the action is not scale invariant already at the classical level, so we have only

one bounce, no degeneracy). For the same reason, Jdil is absent and the factor R−8 becomes

R−6.

The next step concerns the evaluation of the ratio∣∣∣∣SDet′(S ′′(χb))SDet(S ′′(0))

∣∣∣∣−1/2

, (A15)

with contributions from the different sectors of the Standard Model. More specifically, we

have to compute the contribution from the Higgs field φ, the three Goldstone bosons Gi

(for i = 1, 2, 3), the four gauge fields Aaµ (for a = 1, 2, 3, 4), the four corresponding ghost

fields ca and the heaviest matter contribution, i.e. the contribution from top quark ψ (the

contribution of the other fermion fields are far less important and can be neglected).

In the following we will see that the S ′′ operator takes block diagonal form, each block

being related to one of the following three different sectors: Higgs, top, and gauge + gold-

stone. To this end, we write down the different contribution to the EW Lagrangian and
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extract its quadratic part in the fields, the only part that is relevant for the computation of

the fluctuations around the bounce.

The action of the scalar sector of the model, Eq. (1) is usually written in terms of the

SU(2) doublet of Eq. (2) (here we write φ = φb +H)

Φ =

 φ+

φ0

 =
1√
2

 −i(G1 − iG2)

φb +H + iG3

 . (A16)

However for our purposes it is useful to consider the real four dimensional representation

of the SU(2)× U(1) group acting on the scalar multiplet φi = (G1, G2, G3, φb +H), so that

by adding the interaction term between the scalars and the gauge fields we get

Lscalar =
1

2
(Dµφi)

2 + V (φ2
i )

=
1

2
(∂µφi)

2 + V (φ2
i ) +

1

2
g2
a(T

a)ji(T
b)jkφiφkA

a
µA

b
µ

+ ga(T
a)ij∂µφi φjA

a
µ (A17)

where (with the mass term neglected, i.e. for large values of the scalar field)

V (φ2
i ) =

λ

4
(φiφi)

2 (A18)

when we consider the SM interactions only. When, on the contrary, we also take into account

the presence of new physics interactions as those considered in Eq. (22), the potential takes

the form

V (φ2
i ) =

λ

4
(φiφi)

2 +
λ6

6M2
P

(φiφi)
3 +

λ8

8M4
P

(φiφi)
4 . (A19)

The computation of the fluctuation determinant in the presence of these additional terms

presents quite nontrivial aspects. However, for the time being, we continue to write the

formulas referring only to the potential of Eq. (A18), bearing in mind that they have to be

modified by inserting the potential Eq. (A19) when we take into account the presence of new

physics.

Note that in Eq. (A17) we have written the covariant derivative Dµ in terms of the 4× 4

SU(2) × U(1) generators T a (a = 1, 2, 3, 4), of the four gauge bosons Aaµ and of the gauge

coupling ga (that are g for a = 1, 2, 3 and g′ for a = 4, i.e. the usual SU(2) and U(1)

couplings, respectively) as

Dµ = ∂µ + gaT
aAaµ. (A20)



26

The quadratic part of Eq. (A17) is therefore given by

L(2)
scalar =

1

2
(∂µφb)

2 +
λ

4
φ4
b +

1

2
(∂µH)2 +

3

2
λφ2

bH
2

+
1

2

∑
i

(∂µGi)
2 +

λ

2
φ2
b

∑
i

G2
i

+
φ2
b

8

(
g2A1µA1

µ + g2A2µA2
µ + (g2 + g

′2)ZµZµ

)
+ gA1

µφb∂µG1 + gA2
µφb∂µG2 +

√
g2 + g′2Zµφb∂µG3

+
g

2
∂µA1

µφbG1 +
g

2
∂µA

2µφbG2 +

√
g2 + g′2

2
∂µZ

µφbG3 (A21)

where the equation of motion −∂2φb+λφ3
b = 0 has been used and we have rotated the gauge

field A3
µ and A4

µ according to the transformations

A3
µ =

1√
g2 + g′2

(gZµ + g′Aµ)

A4
µ =

1√
g2 + g′2

(gAµ − g′Zµ) . (A22)

The kinetic term for the four gauge bosons is given by

Lgauge,kin =
1

4
F a
µνF

aµν (A23)

where

F a
µν = ∂µA

a
ν − ∂νAaµ + gaf

abcAbµA
c
ν . (A24)

The fabc are the structure constants of the group which are equal to εabc when all the

indices take one of the values 1, 2, 3 and zero otherwise. The quadratic part in the gauge

fields of the lagrangian in Eq. (A23) is given by

L(2)
gauge,kin =

1

2

4∑
a=1

Aaµ
(
−∂2δµν + ∂µ∂ν

)
Aaν =

1

2

2∑
i=1

Aiµ
(
−∂2δµν + ∂µ∂ν

)
Aiν

+
1

2
Aµ
(
−∂2δµν + ∂µ∂ν

)
Aν +

1

2
Zµ
(
−∂2δµν + ∂µ∂ν

)
Zν , (A25)

where again the rotation in Eq. (A22) is considered.

We use the Rξ gauge fixing, so that the gauge fixing lagrangian is written as

Lgauge,fix =
1

2ξ

(
∂µA

aµ + ξga(T
a)ijφ

j
b

(
φi − φib

))2
. (A26)
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The quadratic part of the lagrangian in Eq. (A26) is

L(2)
gauge,fix = − 1

2ξ

2∑
i=1

Aiµ∂
µ∂νAiν −

1

2ξ
Aµ∂

µ∂νAν −
1

2ξ
Zµ∂

µ∂νZν

+
ξ

8
φ2
b

(
g2(G2

1 +G2
2) + (g2 + g

′2)G2
3

)
+

g

2
∂µA1

µφbG1 +
g

2
∂µA

2µφbG2 +

√
g2 + g′2

2
∂µZ

µφbG3. (A27)

Note that the terms that mix the gauge and Goldstone fields in Eq. (A27), together with

the analogous terms in Eq. (A21), give

−gA1
µ∂

µφbG1 − g∂µA2µφbG2 −
√
g2 + g′2Zµ∂µφbG3. (A28)

Moreover, the contribution to the determinant coming from the field Aµ in Eqs. (A21)

and (A27) is the same as in the free case. Therefore, when the ratio of determinants is

performed, this terms disappear.

In addition to the gauge fixing terms, the Fadeev-Popov quantization also requires the

introduction of four additional ghost fields ca (with the corresponding conjugate fields c∗a),

the lagrangian being

Lghost = c∗a
[
−∂µDab

µ + ξg2
a(T

a · φb) · (T b · φ)
]
cb, (A29)

where the covariant derivative for the ghost fields is given by Dac
µ = ∂µδ

ac + gaf
abcAbµ. The

quadratic part of (A29) is

L(2)
ghost =

2∑
i=1

c∗i

(
−∂2 + ξ

g2

4
φ2
b

)
ci + c∗3

(
−∂2 + ξ

g2 + g
′2

4
φ2
b

)
c3

+ c∗4
(
−∂2

)
c4. (A30)

As in the case of the Aµ fields above, the ghost c4 gives the same contribution as in the free

case, then it can be neglected.

Finally, for the fermions fields, the only relevant contribution comes from the top quark

(all the other contributions being negligible). The quadratic part of the top lagrangian, in

the bounce background field, is then (gt is the Yukawa top coupling and ψ the top field)

L(2)
F = ψ̄

(
/∂ +

gt√
2
φb

)
ψ. (A31)
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With all the above building blocks at our disposal, we are finally in the position to write

the fluctuation operator S ′′(χb). It takes the block diagonal form

S ′′(χb) =



SHH 0 0 0 0 0 0

0 0 Sψψ̄ 0 0 0 0

0 Sψ̄ψ 0 0 0 0 0

0 0 0 SÃiÃi SÃiGi 0 0

0 0 0 SGiÃi SGiGi 0 0

0 0 0 0 0 0 Scic∗i

0 0 0 0 0 Sc∗i ci 0


(A32)

where i = 1, 2, 3 and we have set Ãiµ = (A1
µ, A

2
µ, Zµ).

Since this matrix is block diagonal, SDet in Eq.(A15) becomes the product of the different

determinants appearing in the different blocks, i.e. the product of the determinants of the

operators

S ′′H ≡ SHH

S ′′t ≡

 0 Sψψ̄

Sψ̄ψ 0


S ′′gg ≡

 SÃiÃi SÃiGi

SGiÃi SGiGi

 (A33)

S ′′ghost ≡

 0 Scic∗i

Sc∗i ci 0

 (A34)

We can then write the tunneling time in Eq.(A14) as

τ

TU
=
R4
M

T 4
U

eS[φb]e∆SH+∆St+∆Sgg (A35)

where

∆SH =
1

2
ln

(
1

R10
M

Det′S ′′H [φb]

DetS ′′H [0]

)
− ln Jtrans − ln Jdil (A36)

∆St = −3

2
ln

(
DetS ′′t [φb]

DetS ′′t [0]

)
(A37)

∆Sgg =
1

2
ln

(
1

R6
M

Det′S ′′gg[φb]

DetS ′′gg[0]

)
− 1

2
ln

(
DetS ′′ghost[φb]

DetS ′′ghost[0]

)
− ln(16π2JSU(2)) . (A38)
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Eq. (A35) has to be compared with Eq. (14) in the text.

It is important to note that the contribution ∆SH of Eq. (A36) is greatly modified when

the potential with the new physics interactions (A19) replaces the SM potential (A18).

Namely, Jdil is missing and R8 rather than R10 appears (we have already commented on the

size of the bounce to be considered).

Let us compute the different contributions to the fluctuation determinant, (A36), (A37),

and (A38), in the two cases of interest for us, namely the case where only SM interactions

are considered, potential given by Eq. (A18) (Section II), and the case where we take into

account the new physics interactions at the Planck scale, namely the case of the potential

(A19) (Section III).

Let us begin with the Jacobian factors. As for Jtrans, that appears in Eq. (A36) for ∆SH ,

from Eq. (A6) we already know that

− ln Jtrans = − ln
S[φb]

2

4π2
. (A39)

In the case of the SM potential alone (Section II), Eq. (A18), we have (see Eq. (11))

− ln JSMtrans = − ln
16π2

9λ2
. (A40)

Inserting the value of λ considered in the text (λ = −0.01345), we get

− ln JSMtrans ∼ −11.5 . (A41)

If we now consider the potential with the inclusion of the new physics interactions (Section

III), while ln Jtrans is still given by Eq. (A39), we no longer have an analytical expression for

S[φb]. In fact, we compute the bounce solution φb(x) numerically in the next appendix, so

that in turn we obtain S[φb] numerically. For the values of λ, λ6 and λ8 considered in the

text (see Section III), we have

− ln Jnewtrans ∼ −5.14 . (A42)

Let us consider now the contribution of Jdil to ∆SH . As we have already said, the con-

tribution of Jdil appears only for the SM case. From Eq. (A12) we see that this contribution

is given by

− ln JSMdil = −1

2
ln

(
1

2π

∫
d4x

(
∂φb
∂R

)2
)

= −1

2
ln

(
8π2

|λ|

∫ 1
RMv

0

dy y3 (y2 − 1)2

(1 + y2)4

)

= −1

2
ln

(
8π2

|λ|
ln

1

RMv

)
, (A43)
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where we have defined y as y = r/RM . Moreover, the integral over the radial coordinate r

is infra-red divergent. This is due to the fact that in the potential the mass term has been

neglected. For this reason, an infra-red cut-off r = 1/v has been inserted, thus getting the

above result. By considering the values of λ and RM given in the text, we get

− ln JSMdil = −6.07 . (A44)

Finally we move to the contribution of JSU(2) to ∆Sgg. From Eq. (A11) we have

−ln(16π2 JSU(2)) = −3

2
ln

(
(16π2)2/3

[
1

2π

∫
d4x

φ2
b(r)

R2
M

])
. (A45)

In the case of the SM potential alone (Section II), Eq. (A18), we have

−ln(16π2 JSU(2)) = −3

2
ln

(
217/3π7/3

|λ|

∫ 1
RMv

>>1

0

dy
y3

(1 + y2)2

)

= −3

2
ln

(
217/3π7/3

|λ|
ln

1

RMv

)
(A46)

where, as for Jdil, y = r/RM and we have inserted an infra-red cut-off r = 1/v. By

considering the values of λ and RM given in the text, we get

−ln(16π2 JSMSU(2)) = −22.6 . (A47)

If we now consider the potential with the inclusion of the new physics interactions (Section

III), as for the case of Jtrans, we have to move to the numerical evaluation of the bounce

solution (Section III and Appendix B). Then, by taking the values of λ, λ6 and λ8 considered

in the text (see Section III), from Eq. (A45) we get

− ln JnewSU(2) ∼ −15.4 . (A48)

Let us move now to the computation of the determinants, and focus our attention on

∆SH , i.e. on S ′′H . As is well known, the functional determinant is obtained by solving the

eigenvalue equation

S ′′Hψ = λψ, (A49)

where ψ are the eigenfunctions of S ′′H and λ the corresponding eigenvalues. In ∆SH , the

ratio Det′S ′′H [φb]/DetS ′′H [0] appears. The prime in the determinant is due to the fact that

only the non zero eigenvalues have to be considered in the evaluation of the determinant.
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As S ′′H(φb) = −∂2 + V ′′(φb), we have to compute

det′(−∂2 + V′′(φb))

det(−∂2)
. (A50)

Due to radial symmetry, V ′′(φb) in [−∂2 + V ′′(φb)] only depends on r, and we can use the

powerful Gelfand-Yaglom method for the computation of the determinant. Following [41],

the logarithm of the ratio of determinants, with some specifications given below, is then

obtained as (j = 0, 1/2, 1, 3/2, 2, ...)

log

(
det′(−∂2 + V′′(φb))

det(−∂2)

)1/2

=
1

2

∞∑
j=0

(2j + 1)2 ln ρj (A51)

where ρj = lim
r→∞

ρj(r) (A52)

and each of the ρj(r) is solution of the differential equation

ρ′′j (r) +
(4j + 3)

r
ρ′j(r)− V ′′(φb(r))ρj(r) = 0 (A53)

with boundary conditions ρj(0) = 1 and ρ′j(0) = 0. (ρ′′j (r) is the second derivative of ρj(r)

w.r.to r,...). As for the laplacian operator ∂2, we can write it as

∂2 =
d2

dr
+

3

r

d

dr
− Ĵ2

r2
, (A54)

where the operator Ĵ2 is Ĵ2 = Ĵµν Ĵµν , with Ĵµν = − i√
2
(xµ∂ν − xν∂µ), “angular momen-

tum operator” in R4. The eigenfunctions of of J2 are the hyperspherical harmonics Y m,m′

j

(m,m′ = −j, ...,+j) and the eigenvalues are λj = 4j(j+1), with degeneracy (2j+1)2. Each

of the ρj is the product of eigenvalues of the operator S ′′H(φb) = −∂2 + V ′′(φb) divided by

the product of eigenvalues of ∂2, where the operator Ĵ2 of Eq. (A54) is replaced by the

eigenvalue 4j(j + 1).

Eq. (A51) is ill defined in the following three aspects. One of the eigenvalues related to

j = 0 is negative, and a second one is vanishing and is related to the dilatation invariance of

the theory. Actually, this is true only when we do not consider the presence of new physics

interactions, in which case there is no dilatation invariance. Moreover, four of the eigenvalues

entering in ρ1/2 vanish, as they correspond to the four translational zero modes. Actually ρ0

and ρ1/2 can be separately treated in a standard way [39, 41] (see below). Finally, the sum

in Eq. (A51) is divergent. This is the usual UV divergence.
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If we consider, for instance, the SM case with the λφ4 potential, inserting the bounce,

Eq. (10), in V ′′(φb) of Eq. (A53), and then taking the limit in Eq. (A52) we have

ρj =
j(2j − 1)

(j + 1)(2j + 3)
(A55)

From the above equation, it is immediate to see that, if we cut the sum in Eq. (A51) to

a maximal value of j, say j = jmax, we get terms proportional to jmax (quadratic diver-

gences), terms proportional to ln jmax (logarithmic divergences), finite terms and then terms

O(1/jmax).

If we now consider the potential with the insertion of the new physics operators, Eq. (A19),

the differential equations (A53) can be solved only numerically. However, also in this case,

we can still easily recognize the quadratic and logarithmic divergences as well as the finite

contributions.

In order to get rid of these divergences, we have to follow the usual renormalization

procedure, i.e. we have to introduce counterterms δSctH , and get for the renormalized sum[
1

2

∞∑
j=0

(2j + 1)2 ln ρj

]
r

≡ 1

2

∞∑
j=0

(2j + 1)2 ln ρj − δSctH . (A56)

Naturally, the determination of the counterterms depends on the choice of the renormal-

ization conditions and scheme. One possibility consists in extracting the divergences from

Eq. (A51) by expanding the ρj for large values of j. The first two terms of this expansion

provide nothing but the quadratic and logarithmic divergences. By subtracting these terms,

we operate a specific choice of counterterms δSctH , that finally would lead to renormalized

quantities, in particular to the renormalized quartic coupling.

However, in order to make contact with the existing literature, it is convenient to adopt

a more conventional renormalization procedure, namely the MS scheme. This amounts to

the following procedure [18].

First we solve perturbatively the differential equation for the ρj(r), Eq. (A53), by con-

sidering V ′′(φb) as a perturbation, expanding the functions ρj(r) as ρj(r) = 1 + ρ
(1)
j (r) +

ρ
(2)
j (r) + · · · , and assuming ρ

(1)
j (r) ∼ O (V ′′(φb)) and ρ

(2)
j (r) ∼ O (V ′′(φb)

2). Then we take

the limit for r →∞ and compute the expression

∞∑
j=0

(2j + 1)2

(
ln ρj − ρ(1)

j +
1

2
(ρ

(1)
j )2 − ρ(2)

j

)
(A57)



33

which turns out to be finite. This is because the above combination of ρ(1) and ρ(2) has the

same divergences of ln ρj. Referring again to Eq. (A51), one immediately verifies that such

a procedure corresponds to subtract from the first member of Eq. (A51) the first two terms

of the perturbative expansion

1

2
Tr ln

[
1 + (−∂2)−1V ′′(φb)

]
=

1

2
Tr
[
(−∂2)−1V ′′(φb)

]
− 1

4
Tr
[
(−∂2)−1V ′′(φb)(−∂2)−1V ′′(φb)

]
+ O

(
(V ′′)3

)
. (A58)

Finally, the contact with existing literature is made when Eq. (A56) is written by adding

and subtracting the quadratic and logarithmic divergencies written once in the form given

in Eq. (A57), once in the form given in Eq. (A58), i.e. by writing

[
1

2

∞∑
j=0

(2j + 1)2 ln ρj

]
r

=
∞∑
j=0

(2j + 1)2

(
ln ρj − ρ(1)

j +
1

2
(ρ

(1)
j )2 − ρ(2)

j

)
+

1

2
Tr
[
(−∂2)−1V ′′(φb)

]
− 1

4
Tr
[
(−∂2)−1V ′′(φb)(−∂2)−1V ′′(φb)

]
− δSctH (A59)

The sum in the r.h.s of the first line is computed numerically. For the potential in

Eq. (A18), i.e. for the potential of the SM alone, the result does not depends on the values

of the SM couplings. By performing the numerical computation for this sum, we get: 6.02.

When we include the couplings λ6 and λ8, i.e. when we consider the potential of Eq. (A18),

we find that the sum depends on these latter couplings as well as on the other ones. For the

numerical example considered in the text, λ6 = −2 and λ6 = 2.1, and for the central values

of the top and Higgs masses, Mt = 173.34 GeV and MH = 125.7 GeV, we finally find for

this sum: 2.46.

As for the first two terms in the second line of the Eq. (A59), they are nothing but the

quadratic and the logarithmic divergences respectively, and can be computed with the help

of ordinary momentum integrals (Fourier space). By computing these integrals within the

framework of the MS scheme, and determining the counterterms accordingly, we have

1

2
Tr
[
(−∂2)−1V ′′(φb)

]
− 1

4
Tr
[
(−∂2)−1V ′′(φb)(−∂2)−1V ′′(φb)

]
− δSct,MS

H

= [(1 + L)I1 + I2] , (A60)
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where L = ln (µRMe
γE/2), γE is the Euler gamma and

I1 =
1

32

∫
d4q

(2π)4
Ṽ ′′(−q)Ṽ ′′(q)

I2 =
1

32

∫
d4q

(2π)4
Ṽ ′′(−q)Ṽ ′′(q) ln

(
2e−γE

(q2)1/2RM

)
. (A61)

where Ṽ ′′(q) is the Fourier transform of V ′′(φb(r)). For the potential in Eq. (A18), i.e. for

the potential of the SM alone, the integrals in Eq. (A61) can be computed analytically and

we find I1 = −3 and I2 = 1/2. The renormalized sum of Eq. (A56) is then given by[
1

2

∞∑
j=0

(2j + 1)2 ln ρj

]SM
r

= 6.02− 5

2
− 3L . (A62)

Putting together then the results of Eq. (A62), with those of Eqs. (A41), (A44) and (A47),

and choosing the renormalization scale (as mentioned above) so to make the logarithmic term

vanishing (L = 0), we finally get

∆SSMH = −5.88792 . (A63)

For the potential with new physics terms, Eq. (A19), on the contrary, both I1 and I2 have

to be computed by means of some numerical routine, and the result depends on the value

of the couplings. For the value of the parameters given in the text (λ6 = −2 and λ8 = 2.1),

we get: I1 = −6.19 and I2 = 8.92. The renormalized sum in Eq. (A56) is now given by[
1

2

∞∑
j=0

(2j + 1)2 ln ρj

]new
r

= 2.72856− 6.19251 · L (A64)

For the purpose of comparing the two results (with and without the new physics oper-

ators), we choose even for this case the same renormalization scale taken above, namely

µren = 2 e−γE/RSM
M ' 2 × 1017GeV . The logarithmic term L in this case is not vanishing,

as Rnew
M is different from RSM

M . Putting together then the result of Eq. (A64) with those of

and of Eqs. (A42), (A48), we finally get (L = −2.63)

∆SnewH = −9.4425 . (A65)

For the evaluation of ∆St and ∆Sgg in Eqs. (A37) and (A38), we have to follow steps

very similar to those used for ∆SH . The only novelty is that we now have to deal also

with (Dirac and/or Lorentz) indices, the eigenfunctions of the corresponding fluctuation
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operators, S ′′t [φb] and S ′′gg[φb], having an additional algebraic, spinor or vector, structure

that can de dealt with in a standard manner [42].

When we consider the SM theory only (SM couplings only), i.e. when the potential of

the scalar sector is given by Eq. (A19), the expression for the renormalized determinant

appearing in ∆St only depends on the ratio of the top Yukawa coupling to the quartic

coupling, g2
t /|λ|, and turns out to be

[
−3

2
ln

(
DetS ′′t [φb]

DetS ′′t [0]

)]SM
r

= Ft

(
g2
t

|λ|

)
+
g4
t

λ2

(
5

6
+ L

)
+
g2
t

|λ|

(
13

6
+ 2L

)
, (A66)

where Ft is a numerical function. For the central experimental values of MH and Mt,

MH = 125.7 GeV and Mt = 173.34 GeV, we find that gt at the scale µren = 2e−γE/RM ' 2×

1017GeV is gt = 0.40375 and that g2
t /|λ| ' 12.1184, and the corresponding Ft is Ft(g

2
t /|λ|) '

−193.058. From Eq. (A66) then, ∆St when only SM opertors are considered turns out to be

∆SSMt ' −19.29 . (A67)

When we consider the potential that involves the contribution of new physics operators,

i.e. the potential of equation (A19) that contains the contribution of λ6 and the λ8, ∆St has

to be computed in a way that is similar to the one used for the Higgs sector, i.e. for ∆SH .

We find

∆Snewt ' −4.98315 . (A68)

Finally, we have to consider ∆Sgg. When the SM interactions only are taken into account,

the renormalized determinant appearing in ∆Sgg turns out to depend on the two ratios g2

|λ|

and (g2 + g
′2)/|λ|, and we have[

1

2
ln

(
1

R6
M

Det′S ′′gg[φb]

DetS ′′gg[0]

)
− 1

2
ln

(
DetS ′′ghost[φb]

DetS ′′ghost[0]

)]SM
r

=

{
Fg(g

2/|λ|)−
(

6L+ 5

9
+

7 + 6L

9

g2

|λ|
+

1 + 2L

16

g4

λ2

)}
+

1

2
×
{
g2

|λ|
→ g2 + g

′2

|λ|

}
(A69)

where again Fg is a numerical function. We find that the renormalized couplings at the

renormalization scale µren = 2e−γE/RM ' 2× 1017 GeV are g = 0.5168 and g′ = 0.459068,

that in turn gives g2/|λ| ' 19.8562 and (g2 + g
′2)/|λ| ' 35.5228. Moreover, Fg(g

2/|λ|) '
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93.9308 and Fg((g
2 + g

′2)/|λ|) ' 380.344. Therefore, putting together these results with

those of Eq. (A47) we find

∆SSMgg ' 67.4064 . (A70)

Once again, when we consider the potential (A19) with the contribution of new physics

interactions, and therefore the contribution of the additional couplings λ6 and the λ8, the

expression corresponding Eq. (A69) can be computed only numerically. Performing this

computation, and then including the contribution of Eq. (A48), we finally find

∆Snewgg ' 8.42902 . (A71)

This latter result completes the work of this Appendix. Actually, by collecting all of the

quantum fluctuation contributions ∆Si, discussed in the present appendix, the tables for

the loop contribution to τ presented in section II and III are obtained.

Appendix B

In this appendix we present the numerical determination of the bounce solution to Eq. (25)

of Section III in the text, with boundary conditions given by Eqs. (26) and (27). These

boundary conditions at x = 0 and x = ∞ are implemented by first considering a minimal

and a maximal value of x, xmin and xmax, and then studying the convergence of the solution

(to the desired level of accuracy) by taking lower and lower values of xmin and higher and

higher values of xmax. As described in Ref. [5], one technique is to guess values of φ(0) and

integrate outward. If the value of φ(0) is too large, then φ will overshoot the value of φ

at the false vacuum, whereas if it is too small, it will undershoot. So one can gradually

converge on the correct value. However, the forward-backward shooting method converges

more quickly.

To proceed with such an analysis, however, we first need to study analytically the asymp-

totical behavior of Eq. (25) around x = 0 and x = ∞. Let us begin by performing an

expansion of ϕ(x) in powers of x around x = 0. For our purposes, it is sufficient to consider

an expansion up to x8. We write only the first few terms,

ϕ(x) = B0 +B2x
2 +B3x

3 + · · · (B1)
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where, due to the condition ϕ′(0) = 0, the linear term is missing. Inserting the expansion

(B1) in (25), we find that the coefficients of odd powers of x vanish, while those of even

powers of x are all given in terms of B0 (from now on indicated with B):

ϕ(x) = B +
(
λB3 + λ6B

5 + λ8B
7
) x2

8
+ . . . , (B2)

where only the first and the second term of the expansion are explicitly written.

As we shall see in a moment, the coefficient of x2 (for the case of interest to us) is negative

and Eq. (B2) shows that, for values of x close to x = 0, the bounce behaves as an upside

down parabola. This observation is very useful for our numerical analysis.

Let us study now the asymptotic region x→∞. As the bounce has to fulfill the condition

(26), we expand ϕ(x) in powers of 1/x. For our purposes, we perform the expansion up to

1/x20. Writing again only the first few terms,

ϕ(x) =
A1

x
+
A2

x2
+
A3

x3
+
A4

x4
+ . . . (B3)

Inserting the expansion (B3) in (25), we find that the coefficients of odd powers of 1/x

vanish, while those of even powers are all written in terms of A2 (from now on indicated

with A)

ϕ(x) =
A

x2
− λ

8

A3

x4
+ . . . , (B4)

where, as for Eq. (B2), only the first and the second term are explicitly written. Eq. (B4)

shows that, for large values of x, ϕ(x) behaves as 1/x2. As we shall see in a moment, this

observation is very useful for our numerical analysis.

Let us proceed now with the forward-backward shooting. Going back to Eq. (B2), we

choose a value of x close to x = 0, say x = xmin << 1, and consider the two “initial

conditions” ϕ(xmin) and ϕ′(xmin)

ϕ(xmin) = B +
(
λB3 + λ6B

5 + λ8B
7
) x2

min

8
+ . . .

ϕ′(xmin) =
(
λB3 + λ6B

5 + λ8B
7
) xmin

4
+ . . . (B5)

for the integration of the second order differential equation (25). Choosing also a value

x = xmax >> 1, Eq. (25) is integrated, for different choices of B, in the range [xmin, xmax].

As from (B4) we know that, for large values of x, ϕ(x) behaves as 1/x2, the search for

the bounce is realized by tuning B so that, for large values of x (actually up to xmax), the
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FIG. 8: Plot of x2ϕ(x), for three different solutions of Eq. (25), with λ = −0.01345, λ6 = −2 and

λ8 = 2.1. The x range goes from x = xmin = 6×10−2 to x = 50, although the numerical integration

is performed up to xmax = 102. This figure well illustrates the forward shooting. Eq. (25) is

integrated starting with the initial values (B5) for ϕ(xmin) and ϕ′(xmin) at x = xmin = 6× 10−2.

The parameter B is tuned until x2ϕ(x) saturates to a plateau for values of x greater than xmin

and at least up to xmax. We see that for B = 0.967 (dotted line) and B = 0.9665 (dashed line),

x2ϕ(x) diverges downwards and upwards, respectively. For B = 0.966777 (solid line), the plateau

is reached and our first approximation to the bounce is obtained .

product x2ϕ(x) reaches a plateau. This completes the “forward” part of the method. For

the “backward” part, we have to follow similar steps, but starting from large values of x and

integrating back our differential equation (25) towards small values.

Let us study now this equation for the values of the coupling constants considered in the

text, namely λ = −0.01345, λ6 = −2 and λ8 = 2.1. The forward shooting described above

is illustrated in Fig. 8, where x2ϕ(x) is plotted against x. For the integration range, we have

chosen xmin = 6× 10−2, xmax = 102.

The central part of the forward shooting is the tuning of the parameter B. In Fig. 8, we

plot three curves x2ϕ(x) for three different values of B. Although the x range in the figure

goes from x = xmin = 6 × 10−2 to x = 50, the numerical integration is performed from

xmin = 6× 10−2 up to xmax = 102. The dotted line is obtained for B = 0.967. After a first

transient regime, from x = xmin up to x ∼ 5, the product x2ϕ(x) becomes almost constant
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in the range from x ∼ 5 to x ∼ 10. For x > 10, however, it starts to decrease, so that the

corresponding ϕ(x) does not satisfy the asymptotic condition ϕ(x) ∝ 1/x2.

For a lower value of B, B = 0.9665, the product x2ϕ(x) is given by the dashed line of

Fig.8. Again, after a first transient regime, x2ϕ(x) becomes almost constant in the range

from x ∼ 5 to x ∼ 10. For x > 10, however, x2ϕ(x) starts to increase, again violating the

asymptotic condition ϕ(x) ∝ 1/x2. Finally, continuing with the tuning of B, it is found that,

forB = 0.966777 (solid line), the product x2ϕ(x), turns out to reach a plateau up to x = xmax

(in the figure the x range is extended only up to x = 50). The corresponding numerical

solution ϕ(x) is then our first estimate of the bounce (in the range xmin ≤ x ≤ xmax).
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FIG. 9: This figure illustrates the backward shooting with a plot of ϕ′(x)/x for three different

solutions of Eq. (25) (λ = −0.01345, λ6 = −2, λ8 = 2.1). The x range goes from xmin = 10−2 to

x = 0.15, although the numerical integration is performed from xmax = 102 down to xmin = 10−3.

Eq. (25) is integrated with initial values (B6) for ϕ(xmax) and ϕ′(xmax). The parameter A is tuned

until ϕ′(x)/x saturates to a plateau for small values of x. For A = 13.39776497 (dotted line) and

A = 13.39776498 (dashed line), ϕ′(x)/x diverges downwards and upwards, respectively. Finally,

for A = 13.3977649785377 (solid line), the plateau is reached. We have then, to a very high degree

of numerical accuracy, the bounce solution to our equation.

The next step of our numerical procedure is the backward shooting, where we integrate

backward Eq. (25) from the upper limit xmax of the previous (forward) integration, xmax =

102, and extend the integration domain down to x′min = 10−3 < xmin. The initial conditions
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are taken from the asymptotic behavior of the bounce, Eq. (B4),

ϕ(xmax) =
A

x2
max

− λ

8

A3

x4
max

+ . . .

ϕ′(xmax) = − 2A

x3
max

+
λ

2

A3

x5
max

+ . . . . (B6)

Similarly to the forward case, we have to fine tune the parameter A so that, according

to (B2), the solution ϕ(x), for small values of x, satisfies the condition

ϕ′(x)

x
' Const. (B7)

in the range [x′min, xmax].

In Fig. 9 we plot ϕ′(x)/x versus x for three different values of A and illustrate how the

fine tuning of A is realized. The domain of our numerical (backward) integration ranges

from xmax = 102 down to x′min = 10−3, although in the figure we only show the range from

x′min = 10−3 to x = 0.15.

The dotted line is obtained for A = 13.39776497. As we approach smaller and smaller

values of x, ϕ′(x)/x starts to decrease, thus violating the bounce condition ϕ′(x)/x ∼ Const..

The dashed line is obtained forA = 13.39776498. For smaller and smaller values of x, ϕ′(x)/x

starts to increase, again violating the bounce condition. Finally, for A = 13.3977649785377,

the ratio ϕ′(x)/x reaches a plateau, thus showing that this is the value of A that corresponds

to the bounce solution (at this order of numerical precision).

We can then iterate the procedure of forward and backward integrations by enlarging

the range of integration, thus obtaining values of A and B with higher and higher degree of

numerical accuracy.

Appendix C

Here we consider a toy grand unified model which gives Eq. (22) as the effective low

energy theory. Note that nothing we have done in this paper involves gravity, and thus MP

can be replaced by the unification scale, MX . Note that if MX << MP , the effective values

of λ6 and λ8 would be much larger, leading to even bigger effects, and thus the conservative

approach is to consider the case in which MX ∼MP .
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FIG. 10: Diagrams leading to higher dimensional operators in the low energy theory. φ is the

Standard Model Higgs and Ψ is the 24-plet.

We will consider the minimal SU(5) model broken at the MP scale. Such a model, of

course, is phenomenologically unacceptable, but if this model gives the potential of Eq. (22)

with O(1) coefficients, then clearly a more complicated (and acceptable) grand unified theory

can also do so. The symmetry is broken down to SU(3)× SU(2)× U(1) with the minimal

Higgs content of a 24-plet, and the breaking of the Standard Model group uses a 5-plet.

The Higgs potential is given, with Ψ being the 24 and φ being the 5, by

V (Ψ) = −1

2
µ2Tr(Ψ2) +

1

4
a(Tr(Ψ2))2 +

1

2
bTr(Ψ4) (C1)

V (φ) = −1

2
ν2φ†φ+

1

4
λ(φ†φ)2 (C2)

V (Φ, φ) = αφ†φTr(Ψ2) + βφ†Ψ2φ (C3)

The relevant Higgs fields in the 24 are the Ψ3 and the Ψ0, where Ψ3 is the neutral member

of the color-singlet, isotriplet and Ψ0 is the isosinglet.

The diagrams leading to higher order operators in the effective low-energy theory (below

MP ) to leading order in the couplings are shown in Fig. 10. For the φ6 term, there are two

diagrams, one with three Ψ0 fields and one with two Ψ3 fields and one Ψ0 field. Using the

vertices found in Ref. [43], we find that the contributions to λ6 are

5
(1

4
α + 3

40
β)3

(15a+ 7b)2
(C4)

for the first, and
1

10

(
3

4

)4
5a+ 9b

15a+ 7b
(

1

10
α +

3

100
β)
β2

b2
(C5)

for the second. We have chosen the scale MP to equal the vev of the 24-plet (which is

numerically very close to the gauge boson mass).
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Now, in order to have the correct symmetry breaking pattern, β must be negative, and

15a + 7b and b must be positive. But α + 3
10
β can have either sign. So if α, for example,

equals ±4 (well below the unitarity bound, see [43]), β is small, and 15a + 7b is, say, 1,

then the contribution to λ6 is ±2, showing that a large coefficient isn’t unreasonable, and

well within unitarity limits. Of course, the contribution to λ6 would be even larger if, as

expected, the unification scale is well below the Planck scale.

For the φ8 term, one has three diagrams, one with four Ψ0, one with four Ψ3 and one

with two of each (there are six copies from combinatorics). The contributions to λ8 are

8

7

(1
4
α + 3

40
β)4

(15a+ 7b)3
(C6)

from the first. This term numerically dominates for most of parameter-space. The second

gives (
3
40
β
)4

(2b)4
(C7)

and the third gives (
3

20

)4 (5a+ 9b)(1
4
α + 3

40
β)2

(10b)2(15a+ 7b)2
(C8)

Again, these can easily be large and still be within unitarity bounds, even if the unification

scale is at the Planck scale. Note that the expressions are positive, and thus Eq. (22) would

be bounded. Also note that, to leading order, there are no φ10 terms, further justifying the

truncation in Eq. (22).

This model is not to be taken too seriously, of course, but does demonstrate how a very

simple unified theory can give the effective low energy theory of Eq. (22).
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