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ABSTRACT

We obtain explicit separable solutions of the wave equation of massless minimally coupled

scalar fields in the subtracted geometry of four-dimensional rotating and Melvin (mag-

netised) four-charge black holes of the STU model, a consistent truncation of maximally

supersymmetric supergravity with four types of electromagnetic fields. These backgrounds

possess a hidden SL(2,R)×SL(2,R)×SO(3) symmetry and faithfully model the near horizon

geometry of these black holes, but locate them in a confining asymptotically conical box.

For each subtracted geometry we obtain two branches of quasi-normal modes, given in terms

of hypergeometric functions and spherical harmonics. One branch is over-damped and the

other under-damped and they exhibit rotational splitting. No black hole bomb is possible

because the Killing field which co-rotates with the horizon is everywhere timelike outside

the black hole. A five-dimensional lift of these geometries is given locally by the product

of a BTZ black hole with a two-sphere. This allows an explicit analysis of the minimally

coupled massive five-dimensional scalar field. Again, there are two branches, both damped,

however now their oscillatory parts are shifted by the quantised wave number k along the

fifth circle direction.
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1 Introduction

The wave equation in the black hole backgrounds provides very useful insights into its

internal structure and the relationship with a conformal symmetry [1] [2]. The wave equation

of a massless scalar field in the background of a general multi-charged rotating black hole

turns out to be separable and acquires an SL(2,R)×SL(2,R)×SO(3) symmetry, when certain

terms are omitted. In [3] it was suggested that this symmetry is a ”hidden conformal

symmetry” of the black hole that is spontaneously broken.

In [4, 5] an explicit example of the general multi-charged rotating black hole geometry,

which exhibits the SL(2,R)×SL(2,R)×SO(3) conformal symmetry of the wave equation,

was constructed. It has been dubbed ”subtracted geometry” because it is constructed by

subtracting certain terms from the warp factor of the metric. The subtracted geometry

preserves the internal structure of the black hole because it has the same horizon area and

periodicity of the angular and time coordinates in the near horizon regions as the original

black hole geometry it was constructed from. The new geometry is asymptotically conical

and may be interpreted physically as a black hole in an asymptotically confining box.

This paper is concerned with subtracted geometries that arise in four-dimensional N=2

STU supergravity. This is a consistent truncation of maximally supersymmetric ungauged

supergravity theories, which arise as an effective theory of toroidally compactified Type IIA

(N=8) or Heteortic (N=4) string theory. The original four-charge rotating solution [6]1,

along with the explicit expressions for all four gauge potentials was given in [8] as a solution

of the bosonic sector of the N = 2 supergravity coupled to three vector supermultiplets. In

[9], it was shown that the corresponding subtracted geometry may be obtained by taking a

particular scaling limit of the four-charge rotating black hole solution. Furthermore, it was

shown [9] that the subtracted geometry for the Schwarzchild black hole can be obtained by

applying Harrison transformations of the STU model, which comprise a part of the larger set

of symmetries of the black holes when the four-dimensional black hole Lagrangian is reduced

on time to three dimensions. In [10, 11, 12], this was generalized to the case of four-charge

rotating black holes of the STU model and the interpolating solutions between the rotating

black holes and their subtracting geometry were obtained [11, 13] by continuously varying

the boost parameters of the Harrison transformations from zero to an infinite boost. (For

related works on extremal subtracted geometries, see [14, 15].)

This paper will also be dealing with the subtracted geometry of Melvin STU black

1The full rotating charged black hole seed solution, parameterised by an additional charge parameter was

recently obtained in [7].
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holes which arise as a scaling limit of magnetised four-charge black holes. The magnetised

four charge black holes of the STU model were constructed in [16] by solution generating

techniques. Special cases include Schwarzschild and Reissner-Nordström black holes in the

magnetic field of Maxwell-Einstein gravity. The subtracted geometries of Melvin STU black

holes were also constructed there. These geometries faithfully model the near-horizon region

of multi-charged black holes in magnetic field backgrounds.

The physical properties of the black holes in the magnetic backgrounds can typically be

studied only numerically. We shall see that these magnetised backgrounds can be analysed

analytically.

The main aim of this paper is to analyse the quasi-normal solutions of the scalar wave

equation in the background of the above mentioned subtracted rotating geometry and the

subtracted magnetised geometry, by employing their hidden SL(2,R)×SO(2,R)×SO(3) sym-

metry. We do so by first explicitly solving the wave equation for a massless scalar field in

four dimensions, which due to the very special structure of the metric is separable and

solvable in terms of hypergeometric functions and spherical harmonics both for subtracted

rotating and subtracted magnetised geometries. In each case we obtain two branches of

quasi-normal modes, with remarkably simple values of complex eigenfrequencies, one over-

damped and one under-damped. Specifically, in the case of magnetised geometries the effect

of the magnetic field turns out to be an additive shift of the real part of the eigenfrequency

of the quasi-normal modes. The regularity of these solutions near the outer horizon is anal-

ysed in terms of Kruskal-Szekeres coordinates. These results are presented for subtracted

rotating geometries in Section 2 and for subtracted magnetised geometries in Section 3.

The analysis is further extended by studying the wave equation for a minimally coupled

massive scalar field in the five-dimensional lift of these subtracted geometries. For both

rotating and magnetised cases, the lift on a circle S1 results in a geometry that is locally

BTZ × S2, a product of the BTZ black hole and a two-sphere. As a consequence, the

wave equation for a massive minimally coupled scalar field is separable and may be solved

again in terms of the hypergeometric functions, spherical harmonics and a plane wave along

the S1 circle direction. Remarkably simple, explicit expressions for the frequencies of the

two branches of the quasi-normal modes are obtained , where the quantised wave number

along the S1 circle shifts the real part of he eigenfrequencies. For the special case of the

zero wave number and zero five-dimensional mass, one reproduces the results of Sections 2

and 3 as expected. Solutions for the non-zero wave numbers can be interpreted as quasi-

normal modes for the massive four-dimensional Kaluza-Klein modes whose electric charge
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is proportional to the wave number. The regularity of these modes near the outer horizon is

manifest after performing a Kaluza-Klein U(1) gauge transformation on the wave function.

All of these results are presented in Section 4.

The paper also contains a number of Appendices (Section 5) collecting together results

needed for the calculations described above in a uniform notation. Section 5.1 provides

explicit formulae for the subtracted rotating geometry and all the fields of the STU model,

which were worked out in [9]. Section 5.2 does the same for the subtracted magnetised

geometry in the STU model by elaborating on results given in [16]. Section 5.3 gives

detailed expressions for the lift of these geometries on a circle to five dimensions, leading

to the BTZ × S2 geometry. Earlier partial results for the rotating geometry were given in

[5, 9], and for the magnetised one in [16]. Here particular care is taken of the dimensions

and of the periodicities of metric coordinates. In Section 5.4 a map is provided taking the

BTZ coordinates to the local AdS3 metric from [18, 19]. Section 5.5 contains the formulae

for the Kalulza-Klein reduction of the scalar wave equation on a circle.

2 Subtracted Rotating Geometry

The metric for the four-charge rotating black hole solution of the STU model can be written

in the form [6, 8, 5]:

ds24 = −∆
−

1

2

0 G(dt+A)2 +∆
1

2

0 (
dr2

X
+ dθ2 +

X

G
sin2 θdφ2), (2.1)

with

X = r2 − 2mr + a2 ,

G = r2 − 2mr + a2 cos2 θ ,

A ≡ a sin2 θAred

G
=

2ma sin2 θ

G
[(Πc −Πs)r + 2mΠs] dφ , (2.2)

and the warp factor ∆0 given by

∆0 =

4
∏

i=1

(r + 2m sinh2 δi) + 2a2 cos2 θ[r2 +mr

4
∑

i=1

sinh2 δi + 4m2(Πc −Πs)Πs

−2m2
∑

i<j<k

sinh2 δi sinh
2 δj sinh

2 δk] + a4 cos4 θ . (2.3)
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The mass, four charges and the angular momentum are parameterised as

G4M =
1

4
m

4
∑

i=1

cosh 2δi ,

G4Qi =
1

4
m sinh 2δi , i = 1, 2, 3, 4 ,

G4J = ma(Πc −Πs) , (2.4)

with G4 the four-dimensional Netwon’s constant and we employ the abbreviations

Πc ≡
4
∏

i=1

cosh δi , Πs ≡
4
∏

i=1

sinh δi . (2.5)

The two horizons, given by X = 0, are at

r± = m±
√

m2 − a2 . (2.6)

It was shown in [5] that the replacement

∆0 → ∆ = (2m)3r(Π2
c −Π2

s) + (2m)4Π2
s − (2m)2(Πc −Πs)

2a2 cos2 θ , (2.7)

in the metric (2.1) reduces the highest power of r in ∆0 and renders in the radial part of

the massless scalar wave equation the irregular singular point at infinity regular, allowing

for solutions in terms of hypergeometric functions. Moreover, the massless scalar wave

equation is separable in terms of ordinary spherical harmonics, rather than the complicated

spheroidal functions needed for the full four-charge black hole solution. This new metric

has been dubbed a “subtracted geometry” and the massless scalar wave equation in this

background exhibits a hidden SL(2,R)×SL(2,R)×SO(3) symmetry. Furthermore, at the

outer and inner horizons the entropies

S± =
2πm

G4

[

(Πc +Πs)m± (Πc −Πs)
√

m2 − a2
]

, (2.8)

the inverse surface gravities

1

κ±
= 2m

[

m√
m2 − a2

(Πc +Πs)± (Πc −Πs)

]

, (2.9)

and the angular velocities

Ω± = κ±
a√

m2 − a2
, (2.10)

remain unchanged by this replacement, thus preserving the local geometry and thermo-

dynamic properties of the metric. The expressions simplify significantly in the static case

when a = 0.

5



It is straightforward to see that these black hole solutions and their subtracted geometry

encompasses the following special cases:

Kerr-Newman: δ1 = δ2 = δ3 = δ4 ,

Kerr: δi = 0 , i = 1, 2, 3, 4 ,

Reissner-Nordström: δ1 = δ2 = δ3 = δ4 , a = 0 ,

Schwarzschild: δi = 0 , a = 0 , i = 1, 2, 3, 4 . (2.11)

2.1 Kruskal-Szekeres Coordinates for Subtracted Rotating Geometry

In the following we construct Kruskal-Szekeres type coordinates to cover the outer horizon

which allow us to identify suitable boundary conditions there2. At infinity the appropriate

boundary condition is boundedness of the solution. The construction of Kruskal-Szekeres

coordinates is in fact considerably simpler than that used for the Kerr solution [20, 21].

The subtracted metric (2.1), (2.2) with (2.7) can be cast in the following remarkably

simple form3:

ds2 =
√
∆

X

F 2

(

−dt2 +
F 2dr2

X2

)

+
√
∆dθ2 +

F 2 sin2 θ√
∆

(dφ+Wdt)2 , (2.12)

with

W = −aAred

F 2
, F 2 = (2m)2

[

2m(Π2
c −Π2

s)r + (2m)2Π2
s − a2(Πc −Πs)

2
]

. (2.13)

X and Ared are defined in (2.2) and we display them again

X = r2 − 2mr + a2 , Ared = 2m(Πc −Πs)r + (2m)2Πs . (2.14)

Importantly, X, F and W are only functions of r. We also note that the factor ∆ (2.7) can

be written in terms of F 2 as

∆ = F 2 + (2m)2a2(Πc −Πs)
2 sin2 θ . (2.15)

It is straightforward to show that

1

κ±
=

2F (r±)

r+ − r−
, (2.16)

and

Ω± = −W (r±) . (2.17)

2One can analogously construct Kruskal-Szekeres type coordinates to cover the inner horizon region.
3This structure was also anticipated in [5] by evaluating the Laplacian of the subtracted rotating geometry.
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This special property of the angular velocities and surface gravities leads to an asymmetry

of two branches of the quasi-normal modes as analysed later in this Section.

We now construct Kruskal-Szekeres type coordinates to cover the horizon which allow

us to identify suitable boundary conditions there. Due to the structure of the metric (2.12)

the construction of Kruskal-Szekeres coordinates is straightforward.

The metric (2.12) allows for the introduction of retarded and advanced co-rotating

Eddington-Finkelstein coordinates:

u = t− r∗ , v = t+ r∗ , φ+ = φ+W (r+)t , (2.18)

which satisfy

gαβ∂αu∂βu = 0 = gαβ∂αv∂βv . (2.19)

The Hamilton-Jacobi equation is separable, yielding a solution

r∗ =

∫ r Fdr

X
, (2.20)

which is manifest for the metric (2.12).

The co-rotating Kiling vector

l+ =
∂

∂t
−W (r+)

∂

∂φ
, (2.21)

coincides with the null generator of the horizon. The angle φ+ is constant along the orbits

of the co-rotating Killing vector l+:

l+φ+ = (∂t −W (r+)∂φ)φ+ = 0 . (2.22)

We introduce Kruskal-Szekeres coordinates:

U = −e−κ+u , V = eκ+v , (2.23)

and thus

dV

V
+

dU

U
=

2κ+Fdr

X
,

dV

V
− dU

U
= 2κ+dt . (2.24)

In terms of Kruskal-Szekeres coordinates the metric (2.12) takes the following form:

ds2 =
√
∆

X

F 2

dUdV

κ2+UV
+

√
∆dθ2

+
F 2 sin2 θ√

∆

[

dφ+ +
1

2κ+
(W (r)−W (r+))(

dV

V
− dU

U
)

]2

. (2.25)
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In the vicinity of the outer horizon r ∼ r+ one has

r∗ =

∫ r F (r)dr

X
∼ F (r+)

r+ − r−
ln(r − r+) =

1

2κ+
ln(r − r+) , (2.26)

where we used (2.16) at the last step. This ensures

−UV = e2κ+r∗ ∼ (r − r+) , (2.27)

and the metric (2.25) is regular and analytic.

An argument given by Hawking and Reall [22] in the asymptotically AdS case may

be adapted to show that if the co-rotating Killing vector l+ (2.21) is timelike outside the

horizon then there can be no super-radiance instability or a black hole bomb [23, 24].

The length squared of the co-rotating Killing vector l+ (2.21) is

gαβ l+α l
+
β = − 1√

∆

[

X +
a2 sin2 θ(Πc −Πs)

2(r+ − r−)(r − r+)

[(Πc −Πs)r+ + 2mΠs]
2

]

. (2.28)

which is manifestly negative for r > r+ and thus their is no super-radiance.

2.2 Massless Wave Equation and Quasi-Normal Modes

The massless scalar wave equation for the multi-charge black hole metric (2.1) is separable

and the solutions expressible in terms of spheroidal functions of θ [2, 1]. The radial function

may be expressed in terms of solutions of a confluent form of Heun’s equation which has

two regular singular points and an irregular singular point at infinity.

For the subtracted geometry metric (2.12) the massless scalar wave equation is also

separable and of a specific form:

e−iωteinφPn
l (θ)χ(x) , (2.29)

where Pn
l (θ) is an associated Legendre polynomial, the solution of the unit two-sphere S2

Laplacian with eigenvalues l(l + 1), l = 0, 1, . . . and n = ±l,±(l − 1), . . .

The radial equation takes the form [2, 1]:

[ ∂

∂x
(x2−1

4
)
∂

∂x
+

1

4(x− 1
2)

( ω

κ+
−n

Ω+

κ+

)2− 1

4(x+ 1
2)

( ω

κ−
−n

Ω−

κ−

)2−l(l+1)
]

χ(x) = 0 , (2.30)

where

x =
r − 1

2(r+ + r−)

r+ − r−
, (2.31)

is designed so that the two horizons r± are at x = ±1
2 .
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Due to (2.10) rotating solutions have the property:

Ω+

κ+
=

Ω−

κ−
, (2.32)

and thus the solutions to (2.30) depend only on one ratio Ω+κ
−1
+ , only.

Solutions which are ingoing on the future horizon must be regular at U = 0 in Kruskal-

Szekeres coordinates and this implies [2, 1, 5]

χ(x) = (x+
1

2
)−(l+1)

(x− 1
2

x+ 1
2

)−i(ω−nΩ+)
βH
4π

× F (l + 1− i
βRω − 2nβHΩ+

4π
, l + 1− i

βLω

4π
, 1− i

βH(ω − nΩ+)

2π
;
x− 1

2

x+ 1
2

) , (2.33)

where
βH

2π
=

1

κ+
,

βR

2π
=

1

κ+
+

1

κ−
,

βL

2π
=

1

κ+
− 1

κ−
. (2.34)

Near the outer horizon r⋆ → −∞, (x− 1
2)(x+ 1

2)
−1 → e2κ+r⋆ and so

χ(x) ≈ e−i(ω−nΩ+)r⋆F (l + 1− i
βRω − 2nβHΩ+

4π
, l + 1− i

βLω

4π
, 1− i

βH(ω − nΩ+)

2π
; e2κ+r⋆) .

(2.35)

In Kruskal-Szekeres coordinates therefore

e−iωteinφχ(x) ≈ einφ+V
−i

ω−nΩ+

κ+ (1 + . . . ) , (2.36)

where the ellipses denote a power series in UV which is convergent in a neighbourhood of

the future horizon U = 0 .

At large x [2, 1]

χ(x) ≈ x−(l+1) Γ(1− i
βH (ω−nΩ+)

2π )Γ(−2l − 1)

Γ(−l − iβLω
4π )Γ(−l − i

ωβR−2nβHΩ+

4π )

+ xl
Γ(1− i

ωβH (ω−nΩ+)
2π )Γ(2l + 1)

Γ(l + 1− iβLω
4π )Γ(l + 1− i

ωβR−2nβHΩ+

4π )
. (2.37)

In order that χ be finite at spatial infinity, we must set

iω
βL

4π
= l + 1 +NL ,

or i
ωβR − 2nβHΩ+

4π
= l + 1 +NR , (2.38)

where NL,R = 0, 1, . . . This gives remarkably simple formulae for the frequencies of the

quasi-normal modes

ω = − i

2m(Πc −Πs)
(1 + l +NL) ,

or ω = − i
√
m2 − a2

2m2(Πc +Πs)
(1 + l +NR) +

a

2m2(Πc +Πs)
n . (2.39)
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Both frequencies result in damped modes, with the under-damped branch exhibiting os-

cillatory behaviour and the damping absent in the extremal limit a → m. The specific

asymmetry in frequencies of the two branches, resulting in the oscillatory behaviour of the

under-damped branch only, is due to the special relationship between ratios (2.32). It is

intriguing that the expressions are no more complex than those in the Kerr case [25]. In

particular, eq. (2.39) agrees with eq. (0.28) of [25] which was obtained for the subtracted

geometry of the neutral Kerr solution, i.e. the case with δi = 0, and thus Πc = 1 and

Πs = 0.

The subtracted geometry has a remarkable property that in the near-BPS limit (m → 0,

a → 0, δi → ∞, with me2δi and ma−1 finite) the near-horizon geometry of such black holes

and their subtracted geometry are the same. As a consequence, the quasi-normal modes of

the near-BPS black holes and those of their subtracted geometry are the same4.

3 Subtracted Magnetised Geometry

The original subtracted Melvin metric was derived in [16] as a scaling limit of magnetised

STU black holes. It describes a generalization of the (static) subtracted geometry, parame-

terised by an additional magnetic field parameter β4 which is associated with the magnetic

component of the Kaluza-Klein gauge field A2. The full solution is given in the Appendix

5.2.

Remarkably, one may cast this metric in the same form as the rotating subtracted metric

(2.12), which we display again

ds2 =
√
∆

X

F 2

(

−dt2 +
F 2dr2

X2

)

+
√
∆dθ2 +

F 2 sin2 θ√
∆

(dφ+Wdt)2 , (3.1)

4We are grateful for Shahar Hod for pointing out to us after the appearance of [25] that if one specialises

to the near-BPS case of slowly rotating (a ≪ m) Kerr-Newman black holes then βR ≃ 2βH and the family

of modes given by eq. (11) of [26] have identical frequencies to those of the second family of modes in

eq. (0.28) of [25] and hence to the second family of (2.39) of this paper. The first family of (2.39) in this

limit corresponds to negative imaginary frequencies whose absolute values are much larger than those of the

second family, and thus this (ultra-damped) branch did not appear in [26].
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where now

X = r2 − 2mr ,

F 2 = (2m)3
[

(Π2
c −Π2

s)r + (2m)Π2
s

]

,

W = −16m4ΠsΠcβ4

F 2
,

∆ = F 2 + (2m)6β2
4(Π

2
c −Π2

s)
2 sin2 θ .

(3.2)

This is effectively a generalization of the static subtracted geometry with the magnetic field

parameter β4 introducing a specific spatial rotation. The metric has two horizons

r+ = 2m, r− = 0 . (3.3)

The inverse surface gravities of the inner and outer horizon are determined by

1

κ+
=

2F (r+)

r+ − r−
= 4mΠc ,

1

κ−
=

2F (r−)

r+ − r−
= 4mΠs , (3.4)

and are the same as the inverse surface gravities for the static subtracted geometry, i.e.

(2.9) with a = 0. The angular velocities at the inner and outer horizon are are given by

Ω+ = −W (r+) = β4
Πs

Πc
, Ω− = −W (r−) = β4

Πc

Πs
. (3.5)

Note that in this case the ratios

Ω+

κ+
= 4mβ4Πs ,

Ω−

κ−
= 4mβ4Πc , (3.6)

are different, and now the radial part of the massless scalar wave equation (2.30) depends

on both independent ratios.

3.1 Kruskal-Szekeres Coordinates for Subtracted Magnetised Geometry

The retarded and advanced co-rotating Eddington-Finkelstein coordinates are of the same

form as in (2.18) and the Killing vector l+ (2.21) again coincides with the null generator on

the horizon.

We introduce the Kruskal-Szekeres coordinates (2.23) which yield (2.24) and the metric

(3.1) takes the form (2.25). In the vicinity of the outer horizon r ∼ 2m one obtains

−UV ∼ (r − 2m), and thus the metric (2.25) is regular and analytic there.

We calculate the length squared of the co-rotating Killing vector l+ (2.21)

gαβ l+α l
+
β = −

√
∆s

F

(r − 2m)

(Π2
c −Π2

s)r + 2mΠ2
s + 8m3β2

4 sin
2 θ(Π2

c −Π2
s)

2

×
[

(Π2
c −Π2

s)r + 2mΠ2
s

]

×
[

r + 8m3β2
4 sin

2 θ
1

Π2
c

(Π2
c −Π2

s)
2

]

, (3.7)
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which is negative outside the horizon, r > 2m. Thus, this geometry is stable with no

super-radiance.

3.2 Massless Wave Equation and Quasi-Normal Modes

The massless wave equation is again separable with the same wave function Ansatz as (2.29).

The radial wave equation can be cast in the same form as (2.30) with the inverse surface

gravities (3.4) and angular velocities (3.5).

Solutions which are ingoing on the future horizon must be regular at U = 0 in Kruskal-

Szekeres coordinates and this implies that [2, 1, 5]

χ(x) = (x+
1

2
)−(l+1)

(x− 1
2

x+ 1
2

)−i(ω−nΩ+)
βH
4π

F (l + 1− i
βRω − n(βHΩ+ + β−Ω−)

4π
, l + 1− i

βLω − n(βHΩ+ − β−Ω−)

4π
, 1− i

βH(ω − nΩ+)

2π
;
x− 1

2

x+ 1
2

) ,

where again

βH

2π
=

1

κ+
,

β−

2π
=

1

κ−

βR

2π
=

1

κ+
+

1

κ−
,

βL

2π
=

1

κ+
− 1

κ−
. (3.8)

Near the outer horizon r⋆ → −∞, (x− 1
2)(x+ 1

2)
−1 → e2κ+r⋆ and so

χ(x) ≈ e−i(ω−nΩ+)r⋆

F (l + 1− i
βRω − n(βHΩ+ + β−Ω−)

4π
, l + 1− i

βLω − n(βHΩ+ − β−Ω−)

4π
, 1− i

βH(ω − nΩ+)

2π
; e2κ+r⋆) .

In Kruskal-Szekeres coordinates therefore

e−iωteinφχ(x) ≈ einφ+V
−i

ω−nΩ+

κ+ (1 + . . . ) (3.9)

where the ellipses denote a power series in UV which is convergent in a neighbourhood of

the future horizon U = 0 .

At large x [2, 1]

χ(x) ≈ x−(l+1) Γ(1− i
βH (ω−nΩ+)

2π )Γ(−2l − 1)

Γ(−l − i
βLω−n(βHΩ+−β

−
Ω

−
)

4π )Γ(−l − i
ωβR−n(βHΩ++β

−
Ω

−
)

4π )

+xl
Γ(1− i

ωβH (ω−nΩ+)
2π )Γ(2l + 1)

Γ(l + 1− i
βLω−n(βHΩ+−β

−
Ω

−
)

4π )Γ(l + 1− i
ωβR−n(βHΩ++β

−
Ω

−
)

4π )
. (3.10)

In order that χ be finite at spatial infinity, we must set

i

(

ωβL

4π
− n

βHΩ+ − β−Ω−

4π

)

= l + 1 +NL ,

or i

(

ωβR

4π
− n

βHΩ+ + β−Ω−

4π

)

= l + 1 +NR , (3.11)
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where NL,R = 0, 1, . . . This gives remarkably simple and symmetric formulae for the fre-

quencies of the quasi-normal modes

ω = − i

2m(Πc −Πs)
(1 + l +NL)− nβ4 ,

or ω = − i

2m(Πc +Πs)
(1 + l +NR) + nβ4 . (3.12)

Both frequencies result in damped modes with a symmetric shift in advanced and retarded

oscillatory behaviour due to the magnetic field parameter β4.

An interesting observation can be made here about the magnetic field parameter in

the above quasi-normal modes. According to the Bohr’s correspondence principle, the

frequency of oscillation of a classical system is equivalent to the frequency of transition of

the corresponding quantum system. Guided by this principle, in [17], some observations

were made which indicate that the real part of the quasi-normal modes is related to the

quantized area spectrum of the quantum black hole. In our case the real part of the quasi-

normal modes is related in a very simple way to the magnetic field parameter, thus making

it easy to see how turning on the magnetic field affects the area spectrum of the quantum

black hole.

4 Lifted Geometries and Quasi-Normal Modes

In Appendix 5.3 we derive the explicit lift of the subtracted geometries on a circle of size 2πR

and parameterised by a coordinate z. The five-dimensional geometry is locally BTZ × S2

with the BTZ coordinates denoted by {t3, r3, φ3} and the S2 coordinates denoted by {θ, φ̄}.
The explicit transformation between {t, r, θ, φ, z} coordinates, and the BTZ×S2 coordinates

is given in the Appendix 5.3, too. The BTZ metric (5.29) can also be cast into local AdS3

metric (5.39), parameterised by coordinates {T, ρ,Φ}. The explicit transformation between

the BTZ and the local AdS3 coordinates is given in Appendix 5.4, following [18, 19]. The

radius of AdS3 is ℓ and the radius of S2 is ℓ
2 . Specifically, ℓ = 4m(Π2

c −Π2
s)

1

3 .

Since for this five-dimensional geometry the wave equation for the minimally coupled

massive scalar field is separable and exactly solvable, this allows us to study explicitly

the quasi-normal modes directly in five dimensions. Furthermore, the scalar field wave

function can be expanded in terms of Kaluza-Klein modes, parameterised by a quantised

wave number k along the circle direction z. We can therefore study the quasi-normal modes

for each Kaluza-Klein mode by solving directly the wave equation in five dimensions for the

complete tower of Kaluza-Klein states, i.e. we do not have to resort to solving a complicated

13



equation for each Kaluza-Klein mode separately.

The wave equation for a massive, minimally coupled scalar field Φ in the local AdS3×S2

background is separable and solved with the Ansatz

Φ = e−iω̄T eik̄Φeinφ̄ Pn
l (cos θ)χ(ρ) . (4.1)

Pn
l (cos θ), the associated Legendre function, is a solution for the Laplacian of the unit two-

sphere S2 with eigenvalues l(l+1). Here n = 0,±1,±2...± l and l is a non-negative integer.

Again, {T,Φ, ρ} and {θ, φ̄} parameterise the local AdS3 and S2 coordinates, respectively.

Furthermore, in our context the radius of AdS3 is ℓ and that of S2 is ℓ
2 where we have

ℓ = 4m(Π2
c −Π2

s)
1

3 (see Appendix 5.3).

The metric, describing a local AdS3 (5.39)

ds2AdS3
= ℓ2 (− sinh2 ρ dT 2 + dρ2 + cosh2 ρ dΦ2) . (4.2)

has the Laplacian

�AdS3
= ∂2

ρ +
2cosh(2ρ)

sinh(2ρ)
∂ρ −

1

sinh2 ρ
∂2
T +

1

cosh2 ρ
∂2
Φ , (4.3)

and enters the five-dimensional Klein-Gordon equation equation in the following form:

[ℓ2 (�AdS3
− 4l(l + 1))−M2

5 ]Φ = 0 (4.4)

Note again that 4ℓ2l(l + 1) is the eigenvalue of the two-sphere S2 Laplacian with the two-

sphere radius ℓ
2 . For the Ansatz (4.1) this equation becomes

[

ℓ2
(

∂2
ρ +

2cosh(2ρ)

sinh(2ρ)
∂ρ +

ω̄2

sinh2 ρ
− k̄2

cosh2 ρ
− 4l(l + 1)

)

−M2
5

]

)χ(ρ) = 0 . (4.5)

The solution, corresponding to the incoming wave at the outer horizon, is

χ(ρ) = (x+
1

2
)−(l̄+1)

(x− 1
2

x+ 1
2

)−i ω̄
2

F (l̄ + 1− i
(ω̄ + k̄)

2
, l̄ + 1− i

(ω̄ − k̄)

2
, 1− iω̄; tanh2 ρ) . (4.6)

Here we have introduced

l̄(l̄ + 1) ≡ l(l + 1) +
M2

5

4ℓ2
. (4.7)

While the analysis can be completed for massive minimally coupled five-dimensional scalars,

in the following we will focus on massless ones, i.e. taking M5 = 0 and thus l̄ = l. The

only quantitative difference in the analysis for massive five-dimensional scalars is that the
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expressions below involve a change l → l̄ > l, and thus a shift in the quasi-normal frequen-

cies.

At this point we relate the respective local AdS3 and S2 coordinates {T,Φ, ρ} and {θ, φ̄}
to {t, r, θ, φ, z}. This can be done by first employing Appendix 5.3, where the explicit lift

to the BTZ×S2 and the map to the BTZ and S2 coordinates is given, and then employing

Appendix 5.4, where the transformation between the BTZ and local AdS3 coordinates is

provided. The result for the subtracted rotating geometry is

T =
4
√
m2 − a2

ℓ3
(
t

κ+
− z

κ−
) ,

Φ =
4
√
m2 − a2

ℓ3
(
z

κ+
− t

κ−
) , (4.8)

and

cosh2 ρ = x+
1

2
, sinh2 ρ = x− 1

2
, (4.9)

where x is defined in (2.31), i.e. x =
[

r − 1
2 (r+ + r−)

]

(r+ − r−)
−1. Furthermore, for S2

coordinates, θ is unchanged and the azimuthal angle φ̄ is related to φ as in (5.28):

φ̄ = φ− 16ma(Πc −Πs)

ℓ3
(z + t) . (4.10)

The 2π periodicity of φ̄ is ensured if 16ma(Πc −Πs)ℓ
−3 = a(2m)−2(Πc+Πs)

−1 is quantized

in units of R−1.

The radial equation (4.5) can be cast in the following form:

[

∂x(x
2 − 1

4
)∂x +

ω̄2

4(x− 1
2)

− k̄2

4(x+ 1
2 )

− l(l + 1)
]

χ(x) = 0 . (4.11)

The above coordinate transformations allow us to relate the quantum numbers in the Ansatz

(4.1) to those of the standard Kaluza-Klein Ansatz:5

Φ = e−iωteikzeinφ Pn
l (cos θ)χ(r) . (4.12)

Namely, equating the two Ansätze (4.1) and (4.12), and employing the coordinate trans-

formations (4.8) and (4.10) yields the following transformation between quantum numbers

{ω̄, k̄} and {ω, k}:

ω̄ =
ω

κ+
− k

κ−
− n

Ω+

κ+
, k̄ = − ω

κ−
+

k

κ+
+ n

Ω+

κ+
, (4.13)

and n unchanged.

5By abuse of notation we use above the same radial function notation.
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For the subtracted magnetised geometry the expressions for (4.8) are the same, but

with a = 0 and static expressions for inverse surface gravities (3.4), i.e. κ−1
+ = 4mΠc and

κ−1
− = 4mΠs. The azimuthal angle is shifted due to the magnetic field β4 as in (5.32):

φ̄ = φ− β4z . (4.14)

Note that 2π periodicity of the S2 azimuthal angle φ̄ is ensured if the magnetic field pa-

rameter β4 is quantised in units of R−1.

As a consequence, the transformation between the quantum numbers {ω̄, k̄} and {ω, k}
is

ω̄ =
ω

κ+
− k + nβ4

κ−
, k̄ = − ω

κ−
+

k + nβ4

κ+
, (4.15)

and again, n unchanged.

These general expressions now allow us to recover results for the massless four-dimensional

field with vanishing wave number k = 0. For the subtracted rotating geometry one obtains

ω̄ =
ω

κ+
− n

Ω+

κ+
, k̄ = − ω

κ−
+ n

Ω+

κ+
, (4.16)

just as in Section 2. Similarly for the magnetised subtracted geometry:

ω̄ =
ω

κ+
− nβ4

κ−
, k̄ = − ω

κ−
+

nβ4

κ+
, (4.17)

in agreement with Section 3.

We can also study massive Kaluza-Klein modes with the wave number k 6= 0, which

is quantised in units of R−1, where R is the radius of the circle S1. Those are massive

four-dimensional particles with mass m4 ∝ k, and they are charged under the Kaluza-Klein

U(1) gauge symmetry with the charge k = q (see Appendix 5.5). Their quasi-normal modes

can be determined completely analogously to massless modes in Sections 2 and 3.

The solution (4.6), corresponding to the incoming wave at the outer horizon, is required

to be finite at a large x, which is achieved for

ω̄ + k̄

2
= −i(1 + l +NL) , or

ω̄ − k̄

2
= −i(1 + l +NR) , (4.18)

where l = 0, 1, . . . , and NL = 0, 1, . . . or NR = 0, 1, . . . This constrains a specific combina-

tion of ω and k. In the rotating case we have

ω = − i

2m(Πc −Πs)
(1 + l +NL) + k ,

or ω = − i
√
m2 − a2

2m2(Πc +Πs)
(1 + l +NR) +

a

2m2(Πc +Πs)
n− k . (4.19)
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In the subtracted magnetised case we obtain

ω = − i

2m(Πc −Πs)
(1 + l +NL) + nβ4 + k ,

or ω = − i

2m(Πc +Πs)
(1 + l +NR)− nβ4 − k . (4.20)

Again, we obtained two branches of damped quasi-normal modes, both with oscillatory

behaviour symmetrically advanced and retarded by nβ4 + k.

It is interesting to point out that the solution (4.6) for massive modes with k 6= 0 has

a regular, analytic behaviour near the outer horizon, after one has made a gauge trans-

formation χ(x) → eikA2t+tχ(x), where A2t+ = (2m)4ΠcΠsF
−2(r+) is the time component

of the Kaluza-Klein gauge potential A2 (5.4) or (5.24), evaluated at the outer horizon r+.

Namely, we obtain

eikA2t+te−iωteinφχ(x) ≈ eikA2t+te−i(ω−nΩ+)teinφ+e−iω̄κ+r∗(1 + · · · )

≈ einφ+V
−i

ω−nΩ+

κ+
+i k

κ
− (1 + . . . ) , (4.21)

where we wrote the final expression in terms of Kruskal-Szekeres coordinates, and the ellipses

denote a power series in UV which is convergent in a neighbourhood of the future horizon

U = 0 .
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5 Appendices

5.1 Subtracted Rotating Geometry with Sources

In [9] it was shown that the subtracted geometry (2.1), (2.2), (2.7) for four-charge rotating

black hole is a solution of the equations of motion for the STU Lagrangian, describing the

bosonic part of the N=2 supergravity Lagrangian coupled to three vector super-multiplets:

L4 = R ∗1− 1

2
∗dϕi ∧ dϕi −

1

2
e2ϕi ∗dχi ∧ dχi −

1

2
e−ϕ1 (eϕ2−ϕ3 ∗F1 ∧ F1

+ eϕ2+ϕ3 ∗F2 ∧ F2 + e−ϕ2+ϕ3 ∗F1 ∧ F1 + e−ϕ2−ϕ3 ∗F2 ∧ F2)

− χ1 (F1 ∧ F1 + F2 ∧ F2) , (5.1)

where the index i labelling the dilatons ϕi and axions χi ranges over 1 ≤ i ≤ 3. The four

U(1) field strengths can be written in terms of potentials as

F1 = dA1 − χ2 dA2 ,

F2 = dA2 + χ2 dA1 − χ3 dA1 + χ2 χ3 dA2 ,

F1 = dA1 + χ3 dA2 ,

F2 = dA2 .

The three axio-scalar fields and the four U(1) gauge potentials can be formally obtained

as a scaling limit of a certain black hole solution (for details, see [9]), resulting in

χ1 = χ2 = χ3 = −2ma(Πc −Πs) cos θ

Q2
, eϕ1 = eϕ2 = eϕ3 =

Q2

√
∆

, (5.2)

and the gauge potentials A1 = A2 = A3 ≡ A for gauge field strengths ∗F1 = F2 = ∗F1 ≡ F

and A2 for F2 are of the following form:

A = − r

Q
dt+

(2m)2a2[2mΠ2
s − r(Πc −Πs)

2] cos2 θ

Q∆
dt

−2ma(Πc −Πs) sin
2 θ

Q

(

1 +
(2m)2a2(Πc −Πs)

2 cos2 θ

∆

)

dφ , (5.3)

A2 =
Q3[(2m)2ΠcΠs + a2(Πc −Πs)

2 cos2 θ]

2m(Π2
c −Π2

s)∆
dt +

Q32ma(Πc −Πs) sin
2 θ

∆
dφ , (5.4)

where

Q = 2m(Π2
c −Π2

s)
1

3 ǫ−
1

3 ≡ 1
2ℓǫ

−
1

3 , as ǫ → 0 . (5.5)

and again, ∆ defined as in (2.7):

∆0 → ∆ = (2m)3r(Π2
c −Π2

s) + (2m)4Π2
s − (2m)2(Πc −Πs)

2a2 cos2 θ . (5.6)
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The (formally infinite) factors of Q can in principle be removed from gauge potentials by

removing corresponding factors from scalar fields. However, when lifting the scaling limit

solution to five dimensions, it is useful to keep this scaling factor explicit; in the final

five-dimensional metric an overall factor is not relevant.

5.2 Subtracted Magnetised Geometry with Sources

The magnetised solution of the static STU black hole was obtained in [16] and is of the

form:

ds24 = H [−r(r − 2m)dt2 +
r1r2r3r4

r(r − 2m)
dr2 + r1r2r3r4dθ

2 ] +H−1 sin2 θ (dφ− ω̃dt)2 . (5.7)

Here

ri = r + 2ms2i , (5.8)

and we shall use the notation si = sinh δi and ci = cosh δi, with i = 1, 2, 3, 4. The function

ω̃ is given by

ω̃ =

4
∑

i=1

[

− qi βi

ri
+

qi Ξi [ri + (r − 2m) cos2 θ]r

ri

]

, (5.9)

where

qi = 2msici , Ξi =
β1β2β3β4

βi
, βi =

1
2Bi , (5.10)

and Bi (i = 1, 2, 3, 4) denote the external magnetic field strengths for each of the four gauge

fields. Finally, the function H is given by

H =

√
∆̄√

r1r2r3r4
, (5.11)

where

∆̄ = 1 +
∑

i

β2
i r1r2r3r4

r2i
sin2 θ + 2[β3β4q1q2 + · · · ] cos2 θ + [β2

3 β
2
4 R

2
1 R

2
2 + · · · ]

−2(
∏

j

βjrj)
∑

i

q2i
r2i

sin2 θ cos2 θ + [2β2β3β
2
4q2q3R

2
1 + · · · ] cos2 θ +

∏

i

β2
i R

2
i

+r1r2r3r4
∑

i

Ξ2
i R

2
i

r2i
sin2 θ + [2β1β2β

2
3β

2
4q3q4R

2
1 R

2
2 + · · · ] cos2 θ , (5.12)

and we have defined

R2
i = r2i sin2 θ + q2i cos2 θ . (5.13)

The Kaluza-Klein gauge field here is given by

A2 =
[q4

r4
−

3
∑

i=1

r qi β1β2β3 [ri + (r − 2m) cos2 θ]

βi ri

]

dt− σ4 (dφ − ω̃dt) , (5.14)
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where σ4 = σ̃4∆̄
−1, and

σ̃4 =
β4r1r2r3

r4
sin2 θ + (β1q2q3 + · · · ) cos2 θ + β4(β

2
1R

2
2R

2
3 + · · · )

+2β4(β2β3q2q3R
2
1 + · · · ) cos2 θ + q4[β

2
1(β2q2R

2
3 + β3q3R

2
2) + · · · ] cos2 θ

+4β1β2β3q1q2q3q4 cos
4 θ

−β1β2β3q
2
4r1r2r3

r4
sin2 θ cos2 θ − β1β2β3 r4

(q21r2r3

r1
+ · · ·

)

sin2 θ cos2 θ

+β1β2β3(β2β3q2q3R
2
1 + · · · )R2

4 cos
2 θ + β4r4

[β2
2β

2
3r2r3

r1
R4

1 + · · ·
]

sin2 θ

+2β1β2β3β4q4(β1q1R
2
2R

2
3 + · · · ) cos2 θ + β4β

2
1β

2
2β

2
3R

2
1R

2
2R

2
3R

2
4 . (5.15)

The dilaton field is given by

eϕ1 =
Y1

√

∆̄ r1r2r3r4
, (5.16)

where

Y1 = r1r3(1 + 2β1β3q2q4 cos
2 θ + β2

1β
2
3R

2
2R

2
4)

+ r2r4(β
2
1R

2
3 + β2

3R
2
1 + 2β1β3q1q3 cos

2 θ) . (5.17)

For explicit expressions of all the fields see [16]. Note however in order to have the same

sign for the gauge fields of the rotating and magnetised geometries, we have changed an

overall sign for the gauge fields relative to [16].

The Scaling Limit

The subtracted geometry can be obtained by taking a scaling limit of the above magnetised

electric black holes, analogously to the rotating case. The limit can be implemented by

means of the scalings

m → mǫ , r = r ǫ , t → t ǫ−1 , βi → βi ǫ , i = 1, 2, 3, 4 ,

sinh2 δ4 →
Π2

s

Π2
c −Π2

s

, sinh2 δi → (Π2
c −Π2

s)
1

3 ǫ−
4

3 , i = 1, 2, 3 , (5.18)

where ǫ is then sent to zero. In particular, this gives

(dφ− ω̃dt) −→ dφ− (β1 + β2 + β3)dt−
2mβ4 ΠcΠs

(Π2
c −Π2

s)r + 2mΠ2
s

dt , (5.19)

and

∆̄ −→ 1 +
(2m)3β2

4(Π
2
c −Π2

s)
2 sin2 θ

(Π2
c −Π2

s)r + 2mΠ2
s

, r1r2r3r4 −→ (2m)3
[

(Π2
c −Π2

s)r + 2mΠ2
s

]

. (5.20)
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The quantities β1, β2 and β3 are removed by a gauge transformation φ −→ φ+(β1+β2+β3)t.

We shall assume from now on that this transformation has been performed. The final metric

can be cast in the following form:

ds2 =
√
∆

X

F 2

(

−dt2 +
F 2dr2

X2

)

+
√
∆dθ2 +

F 2 sin2 θ√
∆

(dφ+Wdt)2 , (5.21)

where

X = r2 − 2mr ,

F 2 = (2m)3
[

(Π2
c −Π2

s)r + (2m)Π2
s

]

,

W = −16m4ΠsΠcβ4

F 2
,

∆ = F 2 + (2m)6β2
4(Π

2
c −Π2

s)
2 sin2 θ . (5.22)

The dilation fields are of the form:

eφ1 = eϕ2 = eϕ3 =
Q2

√
∆

, (5.23)

and the axion fields vanish. The Kaluza-Klein U(1) gauge field becomes

A2 =
Q32mΠcΠs

(Π2
c −Π2

s)F
2
dt− Q3(2m)3β4(Π

2
c −Π2

s) sin
2 θ

∆
(dφ+Wdt) . (5.24)

Note that at the horizon the combination φ + W (r+)t = φ+, and thus the second term

in (5.24) becomes the φ+ component of the Kaluza-Klein gauge potential. The remaining

three gauge potentials become identified and are of the form (5.3) by setting a = 0.

One can of course remove Q in the scalar and gauge fields via a gauge transformation.

However, it is useful to keep it in the discussion of the lift and at the end remove the overall

scaling parameter ǫ.

5.3 Subtracted Geometry Lifted to Five Dimensions

We now provide a lift of the subtracted rotating geometry to five-dimensions6. The five-

dimensional metric for the scaling limit takes the form:

ds25 = eϕ1ds24 + e−2ϕ1(dz +A2)
2 , (5.25)

where we have to implement the scaling z → zǫ−1. This metric takes the form:

ds25 = ǫ−
2

3 (ds2S2 + ds2BTZ) , (5.26)

6Partial results were provided in [5, 9]. Here we take particular care of the dimensions and of the

periodicities of metric coordinates.
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where

ds2S2 = 1
4ℓ

2
(

dθ2 + sin2 θdφ̄2
)

, (5.27)

with

φ̄ = φ− 16ma(Πc −Πs)

ℓ3
(z + t) , (5.28)

and

ds2BTZ = −(r23 − r23+)(r
2
3 − r23−)

ℓ2 r23
dt23 +

ℓ2r23
(r23 − r23+)(r

2
3 − r23−)

dr23 + r23(dφ3 +
r3+r3−

ℓr23
dt3)

2 ,

(5.29)

where

φ3 =
z

R
,

t3 =
ℓ

R
t ,

r23 =
16(2mR)2

ℓ4

[

2m(Π2
c −Π2

s)r + (2m)2Π2
s − a2(Πc −Πs)

2
]

. (5.30)

Here, R is the radius of the circle S1 and ℓ = 4m(Π2
c − Π2

s)
1

3 is the radius of the AdS3.

Furthermore

r3± =
8mR

ℓ2

[

m(Πc +Πs)±
√

m2 − a2(Πc −Πs)
]

. (5.31)

The periodicity of z coordinate is 2πR, and thus the angular coordinate φ3 has the correct

periodicity of 2π. Note also that the 2π periodicity of φ̄ is ensured if 16ma(Πc −Πs)ℓ
−3 =

a(2m)−2(Πc +Πs)
−1 is quantized in units of R−1.

The lifted geometry is indeed locally AdS3 × S2 with the radius of AdS3 equal to ℓ and

the radius of S2 equal to ℓ
2 .

Subtracted Magnetised Geometry

This geometry also lifts to (5.26) where now φ̄ in (5.27) is defined as7

φ̄ = φ− β4 z , (5.32)

and we set in all expressions above a = 0, i.e. the BTZ coordinates are related to {t, r, z}
as in (5.30) with a = 0. (Obviously, β4 = 0 corresponds to the lift of the static subtracted

geometry.) Note that the shift requires that β4 be quantized in units of R−1, in order for φ̄

to have the correct periodicity of 2π.

7It was observed in [28] that such a shift produces a magnetic field for the Kaluza-Klein U(1) gauge

potential and thus a four-dimensional geometry in a Kaluza-Klein magnetic field.
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5.4 Relation of the BTZ Black Hole Coordinates to the AdS3 Coordinates

According to [18, 19] AdS3 is the quadric

u2 + v2 − x2 − y2 = ℓ2 , (5.33)

in E
2,2 with the metric induced from

ds2 = −du2 − dv2 + dx2 + dy2 . (5.34)

In a local patch we have the embedding

u =
√

A(r) cosh Φ = ℓ cosh ρ coshΦ , (5.35)

x =
√

A(r) sinhΦ = ℓ cosh ρ sinhΦ , (5.36)

y =
√

B(r) coshT = ℓ sinh ρ cosh T , (5.37)

v =
√

B(r) sinhT = ℓ sinh ρ sinhT . (5.38)

The metric is of the form:

ds2AdS3
= ℓ2 (− sinh2 ρ dT 2 + dρ2 + cosh2 ρ dΦ2) . (5.39)

The relationship to the BTZ metric coordinates and parameters introduced in the Appendix

5.3 (eqs.(5.29,5.30)) is

A(r) = ℓ2
r23 − r23−

r23+ − r23−
, B(r) = ℓ2

r23 − r23+

r23+ − r23−
, (5.40)

T =
r3+t3 − r3−ℓφ3

ℓ2
Φ =

r3+ℓφ3 − r3−t3

ℓ2
, (5.41)

where r3± is defined in (5.31).

Note that a shift in T is a boost in the Minkowski v−y plane and a shift in Φ corresponds

to a boost in the Minkowski u−x plane. Since φ3 of the BTZ metric (5.29) is periodic with

period 2π, the coordinates {T,Φ} must be identified under the composition of two discrete

boosts:
(

T,Φ
)

→
(

T − 2πr3−
ℓ

,Φ+
2πr3+

ℓ

)

. (5.42)

5.5 Kaluza-Klein Reduction of the Scalar Wave Equation

The five-dimenskonal Kaluza-Klein metric Ansatz

ds25 = eφ1γαβdx
αdxβ + e−2φ1(dz +A2αdx

α)2 , (5.43)
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where {α, β} = 0, 1, 2, 3, results in the five-dimensional wave equation given by

∇α∇αΦ−∇αA2α∂zΦ− 2A2
α∇α∂zΦ+ (A2)

2∂2
zΦ = −eφ1∂2

zΦ . (5.44)

If we make the assumption that Φ is separable in term of a four-dimensional wave function

and a function of the fifth coordinate z:

Φ(xα, z) = Φ(xα)eif(z) , (5.45)

we can rewrite the above equation as

γαβ (∇α − i(∂zf)A2α)
(

∇β − i(∂zf)A2β

)

Φ(xα) = (∂zf)
2eφ1Φ(xα) . (5.46)

For the compactification on a circle S1 with radius 2πR, the above equation is solved with

the Ansatz for f(z) = kz, where the wave number k is quantised in units of R−1. The

remaining effective four-dimensional wave equation can then be interpreted as the Klein-

Gordon equation of the four-dimensional charged particle with a charge q = k and an

effective mass ∝ k which is modulated by the scalar field eφ1 :

m2
eff = k2eφ1 . (5.47)
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